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ABSTRACT
We introduce the concept of “coded computing”, a novel
computing paradigm that utilizes coding theory to effec-
tively inject and leverage data/computation redundancy
to mitigate several fundamental bottlenecks in large-scale
distributed computing, namely communication bandwidth,
straggler’s (i.e., slow or failing nodes) delay, privacy and
security bottlenecks. More specifically, for MapReduce based
distributed computing structures, we propose the “Coded
Distributed Computing” (CDC) scheme, which injects redun-
dant computations across the network in a structured man-
ner, such that in-network coding opportunities are enabled
to substantially slash the communication load to shuffle
the intermediate computation results. We prove that CDC
achieves the optimal tradeoff between computation and com-
munication, and demonstrate its impact on a wide range of
distributed computing systems from cloud-based datacen-
ters to mobile edge/fog computing platforms. Secondly, to
alleviate the straggler effect that prolongs the executions of
distributed machine learning algorithms, we utilize the ideas
from error correcting codes to develop “Polynomial Codes”
for computing general matrix algebra, and “Lagrange Coded
Computing” (LCC) for computing arbitrary multivariate
polynomials. The core idea of these proposed schemes is to
apply coding to create redundant data/computation scat-
tered across the network, such that completing the overall
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computation task only requires a subset of the network nodes
returning their local computation results. We demonstrate
the optimality of Polynomial Codes and LCC in minimiz-
ing the computation latency, by proving that they require
the least number of nodes to return their results. Finally,
we generalize the LCC scheme to further provide security
and privacy guarantees to the system. In particular, we
demonstrate that with slightly more coding overhead, LCC
protects the system against the largest number of adversar-
ial/malicious workers, and to provide the same level of data
privacy against colluding workers, LCC requires injecting
the least amount of randomness. To illustrate the impact of
coded computing on real world applications and systems,
we implement the proposed coding schemes on cloud-based
distributed computing systems, and significantly improve
the run-time performance of important benchmarks includ-
ing distributed sorting and distributed training of regression
models, over state of the arts.
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Introduction

Recent years have witnessed a rapid growth of large-scale machine
learning and big data analytics, facilitating the developments of data-
intensive applications like voice/image recognition, real-time mapping
services, autonomous driving, social networks, and augmented/virtual
reality. These applications are supported by cloud infrastructures com-
posed of large datacenters. Within a datacenter, a massive amount of
users’ data are stored distributedly on hundreds of thousands of low-end
commodity servers, and any application of big data analytics has to
be performed in a distributed manner within or across datacenters.
This has motivated the fast development of scalable, interpretable, and
fault-tolerant distributed computing frameworks (see, e.g., Dean and
Ghemawat, 2004; Zaharia et al., 2010; Recht et al., 2011; Gemulla
et al., 2011; Zhuang et al., 2013) that efficiently utilize the underlying
hardware resources (e.g., CPUs and GPUs).

In this monograph, we focus on addressing the following three
major performance bottlenecks for large-scale distributed machine learn-
ing/data analytics systems.

• Communication bottleneck: Excessive data shuffling between com-
pute nodes.

3
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• Straggler bottleneck: Delay of computation caused by slow or failing
compute nodes, which are referred to as stragglers.

• Security bottleneck: Vulnerability to eavesdroppers and attackers.

To alleviate these bottlenecks, we take an unorthodox approach by
employing ideas and techniques from coding theory, and propose the
concept of “coded computing”, whose core spirit is described as follows.

Exploiting coding theory to optimally inject and leverage
data/task redundancy in distributed computing systems, creat-
ing coding opportunities to overcome communication, straggler,
and security bottlenecks.

Guided by this core spirit, we propose and evaluate a rich class
of coded distributed computing frameworks, for computation tasks
ranging from general MapReduce primitives to fundamental polynomial
algebra, and for computation systems ranging from conventional cloud-
based datacenters to emerging (mobile) edge/fog computing systems.
In the rest of this chapter, we describe our contributions on utilizing
coded computing to mitigate the communication, straggler, and security
bottlenecks, and discuss related works.

Before proceeding with the overview of coded computing, we would
like to also point out an important remark. In order to enable redundant
computations in coded computing, we need to also redundantly store
the datasets over which the computations are done. This would impose
a certain communication and storage cost to the system. However, in
many applications this cost can be ignored due to the following two
reasons. First, in many computation scenarios we are interested in many
computations over the same dataset (e.g., database query, keyword
search, loss calculation in machine learning, etc). In those cases the
cost of encoding and redundantly storing the dataset in the network
can be amortized over many computations. Second, in many scenarios,
the encoding and storage of the dataset can happen at a different time
than the desired computations. For example, one can use the off-peak
network times to properly encode and store the dataset, so as to be
ready for computations during the peak times.
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Coding for bandwidth reduction

It is well known that communicating intermediate computation results
(or data shuffling) is one of the major performance bottlenecks for
various distributed computing applications, including self-join Ahmad
et al., 2012, TeraSort Guo et al., 2013, and many machine learning
algorithms Chowdhury et al., 2011. For instance, in a Facebook’s Hadoop
cluster, it is observed that 33% of the overall job execution time is spent
on data shuffling Chowdhury et al., 2011. Also as is observed in Zhang
et al., 2013, 70% of the overall job execution time is spent on data
shuffling when running a self-join job on Amazon EC2 clusters. This
bottleneck is becoming worse for training deep neural networks with
millions of model parameters (e.g., ResNet-50 He et al., 2016), where
partial gradients with millions of entries are computed at distributed
computing nodes and passed across the network to update the model
parameters Chilimbi et al., 2014.

Many optimization methods have been proposed to alleviate the
communication bottleneck in distributed computing systems. For ex-
ample, from the algorithm perspective, when the function that reduces
the final result is commutative and associative, it was proposed to
pre-combine intermediate results before data shuffling, cutting off the
amount of data movement Dean and Ghemawat, 2004; Rajaraman and
Ullman, 2011. On the other hand, from the system perspective, optimal
flow scheduling across network paths has been designed to accelerate the
data shuffling process Greenberg et al., 2009; Al-Fares et al., 2010, and
distributed cache memories were utilized to speed up the data transfer
between consecutive computation stages Zhang et al., 2009; Ekanayake
et al., 2010. Recently, motivated by the fact that training algorithms
exhibit tolerance to precision loss of intermediate results, a family of
lossy compression (or quantization) algorithms for distributed learn-
ing systems have been developed to compress the intermediate results
(e.g., gradients), and then the compressed results are communicated to
achieve a smaller bandwidth consumption (see, e.g., Seide et al., 2014;
Alistarh et al., 2017; Wen et al., 2017; Bernstein et al., 2018).

The above mentioned approaches are designed for specific compu-
tations and network structures, and difficult to generalize to handle
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arbitrary computation tasks. To overcome these difficulties, we focus
on a general MapReduce-type distributed computing model Dean and
Ghemawat, 2004, and propose to utilize coding theory to slash the
communication bottleneck in running MapReduce applications. In par-
ticular, in this computing model, each input file is mapped into multiple
intermediate values, one for each of the output functions, and the inter-
mediate values from all input files for each output function are collected
and reduced to the final output result. For this model, we propose a
coded computing scheme, named “coded distributed computing” (CDC),
which trades extra local computations for more network bandwidth. For
some design parameter r, which is termed as “communication load”, the
CDC scheme places and maps each of the input files on r carefully chosen
distributed computing nodes, injecting r times more local computations.
In return, the redundant computations produce side information at the
nodes, which enable the opportunities to create coded multicast packets
during data shuffling that are simultaneously useful for r nodes. That
is, the CDC scheme trades r times more redundant computations for
an r times reduction in the communication load. Furthermore, we theo-
retically demonstrate that this inversely proportional tradeoff between
computation and communication achieved by CDC is fundamental, i.e.,
for a given computation load, no other schemes can achieve a lower
communication load than that achieved by CDC.

Having proposed the CDC framework and characterized its opti-
mal performance in trading extra computations for communication
bandwidth, we also empirically demonstrate its impact on speeding up
practical workloads. In particular, we integrate the principle of CDC
into the widely used Hadoop sorting benchmark, TeraSort Hadoop
TeraSort n.d., developing a novel distributed sorting algorithm, named
CodedTeraSort. At a high level, CodedTeraSort imposes structured
redundancy in the input data, enabling in-network coding opportunities
to significantly slash the load of data shuffling, which is a major bot-
tleneck of the run-time performance of TeraSort. Through extensive
experiments on Amazon EC2 Amazon Elastic Compute Cloud (EC2) n.d.
clusters, we demonstrate that CodedTeraSort achieves 1.97× ∼ 3.39×
speedup over TeraSort, for typical settings of interest. Despite the extra
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overhead imposed by coding (e.g., generation of the coding plan, data
encoding and decoding), the practically achieved performance gain ap-
proximately matches the gain theoretically promised by CodedTeraSort.

Beyond the conventional wireline networks in datacenters, we also
introduce the concept of coded computing to tackle the scenarios of
mobile edge/fog computing, where the communication bottleneck is
even more severe due to the low data rate and the large number of
mobile users. In particular, we consider a wireless distributed computing
platform, which is composed of a cluster of mobile users scattered around
the network edge, connected wirelessly through an access point. Each
user has a limited storage and processing capability, and the users
have to collaborate to satisfy their computational needs that require
processing a large dataset. This ad hoc computing model, in contrast
to the centralized cloud computing model, is becoming increasingly
common in the emerging edge computing paradigm for Internet-of-
Things (IoT) applications Bonomi et al., 2012; Chiang and Zhang,
2016. For this model, following the principle of the CDC scheme, we
propose a coded wireless distributed computing (CWDC) scheme that
jointly designs the local storage and computation for each user, and
the communication schemes between the users. The CWDC scheme
achieves a constant bandwidth consumption that is independent of the
number of users in the network, which leads to a scalable design of the
platform that can simultaneously accommodate an arbitrary number of
users. Moreover, for a more practically important decentralized setting,
in which each user needs to decide its local storage and computation
independently without knowing the existence of any other participating
users, we extend the CWDC scheme to achieve a bandwidth consumption
that is very close to that of the centralized setting.

Coding for straggler mitigation

Other than data shuffling, another major performance bottleneck of
distributed computing applications is the effect of stragglers. That is,
the execution time of a computation consisting of multiple parallel
tasks is limited by the slowest task run on the straggling processor.
These stragglers significantly slow down the overall computations, and
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have been widely observed in distributed computing systems (see, e.g.,
Zaharia et al., 2008; Ananthanarayanan et al., 2013; Dean and Barroso,
2013). For instance, it was experimentally demonstrated in Zaharia
et al., 2008 that this straggler effect can prolong the job execution time
by as much as 5 times.

Conventionally, in the original open-source implementation of
Hadoop MapReduce Apache Hadoop n.d., the stragglers are constantly
detected and the slow tasks are speculatively restarted on other available
nodes. Following this idea of straggler detection, more timely straggler
detection algorithms and better scheduling algorithms have been devel-
oped to further alleviate the straggler effect (see, e.g., Ananthanarayanan
et al., 2010; Zaharia et al., 2008). Apart from straggler detection and
speculative restart, another straggler mitigation technique is to schedule
the clones of the same task (see, e.g., Ananthanarayanan et al., 2013;
Gardner et al., 2015; Lee et al., 2015; Chaubey and Saule, 2015; Shah
et al., 2016). The underlying idea of cloning is to execute redundant
tasks such that the computation can proceed when the results of the
fast-responding clones have returned. Recently, it has been proposed
to utilize error correcting codes for straggler mitigation in distributed
matrix-vector multiplication Lee et al., 2018; Li et al., 2016a; Dutta
et al., 2016; Maity et al., 2018. The main idea is to partition the data
matrix into K batches, and then generate N coded batches using the
maximum-distance-separable (MDS) code Lin and Costello, 2004, and
assign multiplication with each of the coded batches to a worker node.
Benefiting from the “any K of N” property of the MDS code, the
computation can be accomplished as long as any K fastest nodes have
finished their computations, providing the system the robustness to
up to N −K arbitrary stragglers. This coded approach was shown to
significantly outperform the state-of-the-art cloning approaches in strag-
gler mitigation capability, and minimize the the overall computation
latency.

Our first contribution on this topic is the development of optimal
codes, named polynomial codes, to deal with stragglers in distributed
high-dimensional matrix-matrix multiplication. More specifically, we
consider a distributed matrix multiplication problem where we aim to
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compute C = A>B from input matrices A and B. The computation is
carried out using a distributed system with a master node and N worker
nodes that can each stores a fixed fraction of A and B respectively
(possibly in a coded manner). For this problem, we aim to design
computation strategies that achieve the minimum possible recovery
threshold, which is defined as the minimum number of workers that
the master needs to wait for in order to compute C. While the prior
works, i.e., the one dimensional MDS code (1D MDS code) in Lee et al.,
2018, and the product code in Lee et al., 2017 apply MDS codes on
the data matrices, they are sub-optimal in minimizing the recovery
threshold. The main novelty and advantage of the proposed polynomial
code is that, by carefully designing the algebraic structure of the coded
storage at each worker, we create an MDS structure on the intermediate
computations, instead of only the coded data matrices. This allows
polynomial code to achieve order-wise improvement over state of the
arts (see Table 1.1). We also prove the optimality of polynomial code
by showing that it achieves the information-theoretic lower bound on
the recovery threshold. As a by-product, we also prove the optimality
of polynomial code under several other performance metrics considered
in previous literature.

1D MDS code Product code Polynomial code
Recovery threshold Θ(N) Θ(

√
N) Θ(1)

Table 1.1: Comparison of recovery threshold for distributed high-dimensional matrix
multiplication, over a system consisting of a master node, and N worker nodes.

Going beyond matrix algebra, we also study the straggler mitigation
strategies for scenarios where the function of interest is an arbitrary
multivariate polynomial of the input dataset. This significantly broadens
the scope of the problem to cover many computations of interest in ma-
chine learning, such as various gradient and loss-function computations
in learning algorithms and tensor algebraic operations (e.g., low-rank
tensor approximation). In particular, we consider a computation task
for which the goal is to compute a function f over a large dataset
X = (X1, . . . , XK) to obtain K outputs Y1 = f(X1), . . . , YK = f(XK).
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The computation is carried over a system consisting of a master node
and N worker nodes. Each worker i stores a coded dataset X̃i generated
from X, computes f(X̃i), and sends the obtained result to the master.
The master decodes the output Y1, . . . , YK from the computation results
of the group of the fastest workers.

For this setting, a naive repetition scheme would repeat the compu-
tation for each data block Xk onto N/K workers, yielding a recovery
threshold of N −N/K + 1 = Θ(N). We propose the “Lagrange Coded
Computing” (LCC) framework to minimize the recovery threshold. In
particular, denoting the degree of the function f as deg f , LCC promises
the recovery of all output results at the master as soon as it receives com-
putation results from (K−1) deg f +1 workers. That is, LCC achieves a
recovery threshold of (K−1) deg f+1. Note that the recovery threshold
of LCC is Θ(K), which is independent of the total number of workers
N . Hence, as the network expands (i.e., N grows), compared with the
naive repetition scheme, LCC benefits much more from the abundant
computation resources in alleviating the negative effects caused by slow
or failed nodes, which leads to a much lower computation latency. In
fact, we demonstrate through proving a matching information-theoretic
converse that LCC achieves the minimum possible recovery threshold
among all distributed computing schemes.

The key idea of LCC is to encode the input dataset using the
well-known Lagrange interpolation polynomial, in order to create com-
putation redundancy in a novel coded form across the workers. This
redundancy can then be exploited to provide resiliency to stragglers.
Additionally, we emphasize on the following two salient features of the
data encoding of LCC:
• Universal: The data encoding is oblivious of the output function
f . Therefore, the coded data placement can be performed offline
without knowing which operations will be applied on the data.

• Incremental: When new data become available and coded data
batches need to be updated, we only need to encode the new
data and append them to the previously coded batches, instead
of accessing the entire uncoded data and re-encoding them to
update the coded data.
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Finally, we specialize our general theoretical guarantees for LCC
in the context of least-squares linear regression, which is one of the
elemental learning tasks, and demonstrate its performance gain by
optimally suppressing stragglers. Leveraging the algebraic structure of
gradient computations, several strategies have been developed recently
to exploit data and gradient coding for straggler mitigation in the
training process (see, e.g., Lee et al., 2018; Tandon et al., 2017; Maity
et al., 2018; Karakus et al., 2017; Li et al., 2018c). We implement LCC
for regression on Amazon EC2 clusters, and empirically compare its
performance with the conventional uncoded approaches, and two state-
of-the-art straggler mitigation schemes: gradient coding (GC) Tandon
et al., 2017; Halbawi et al., 2017; Raviv et al., 2017; Ye and Abbe,
2018 and matrix-vector multiplication (MVM) based approaches Lee
et al., 2018; Maity et al., 2018. Our experiment results demonstrate
that compared with the uncoded scheme, LCC improves the run-time
by 6.79× ∼ 13.43×. Compared with the GC scheme, LCC improves the
run-time by 2.36× ∼ 4.29×. Compared with the MVM scheme, LCC
improves the run-time by 1.01× ∼ 12.65×.

Coding for secure and private computing

Data privacy has become a major concern in the information age. The
immensity of modern datasets has popularized the use of third-party
cloud services, and as a result, the threat of privacy infringement has
increased dramatically. In order to alleviate this concern, techniques
for private computation are essential Cramer et al., 2015; Bogdanov
et al., 2008; Lindell, 2005; Mohassel and Zhang, 2017. Additionally,
third-party service providers often have an interest in the result of the
computation, and might attempt to alter it for their benefit Blanchard et
al., 2017b; Blanchard et al., 2017a. In particular, we consider a common
and important scenario where a user wishes to disperse computations
over a large network of workers, subject to the following privacy and
security constraints.

• Privacy constraint: Sets of colluding workers cannot infer anything
about the input dataset in the information-theoretic sense.
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• Security constraint: The computation must be accomplished suc-
cessfully even if some workers return purposefully erroneous re-
sults.

The problem of secure and private distributed computing has been
studied extensively from various perspectives in the past, mainly within
the scope of secure multiparty computation (MPC) Cramer et al., 2001;
Halpern and Teague, 2004; Cramer et al., 2015; Ben-Or et al., 1988.
Most notably, the celebrated BGW scheme Ben-Or et al., 1988, which
adapts the Shamir secret sharing scheme Shamir, 1979a to the realm
of computation, has been a reference point for several decades. The
key idea of BGW scheme is to view any computation task as com-
posed by linear and bilinear functions to be handled in multiple rounds.
It applies the Shamir secret sharing scheme to generate coded data
shares with security guarantees, and computes the function on the
coded shares. We generalize the proposed Lagrange Coded Comput-
ing (LCC) scheme designed for straggler mitigation purposes to also
provide security and privacy guarantees to MPC systems. Specifically,
similarly as before, we consider the problem of evaluating a multivariate
polynomial f over dataset X = (X1, . . . , XK). We employ a distributed
computing network with a master and N workers, and aim to compute
Y1 = f(X1), . . . , YK = f(XK). For this computing system, we propose
modifications to the data encoding and computation decoding processes
of LCC, and demonstrate that LCC provides a T -private and A-secure
computation of f (i.e., keeping the dataset private amidst collusion of
any T workers, and the computation secure amidst the presence of A
Byzantine adversarial workers), for any pair (T,A) satisfying

N ≥ (K + T − 1) deg f + 2A+ 1. (1.1)

Furthermore, we also demonstrate that LCC achieves an optimal tradeoff
between privacy and security, and requires a minimal amount of added
randomness to preserve privacy.

In the presence of Byzantine workers, a subset of computation re-
sults received at the master can be arbitrarily erroneous. In order to
correctly recover the computation results, during the decoding pro-
cess, instead of mere polynomial interpolation, the master applies an
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error correcting decoding algorithm for a Reed-Solomon code of dimen-
sion (K − 1) deg(f) + 1 and length N . This allows LCC to tolerate A
malicious workers as long as 2A ≤ N − (K − 1) deg f − 1. Obtaining
information-theoretic privacy against colluding workers, i.e., keeping
small sets of workers oblivious to the dataset does not require altering
the encoding nor decoding algorithm. However, prior to encoding, the
dataset X is padded by T random elements R1, . . . , RT , where T is the
maximum size of sets of workers that cannot infer anything about X.

Table 1.2: Comparison between BGW based designs and LCC. The computational
complexity is normalized by that of evaluating f ; randomness, which refers to the
number of random entries used in encoding functions, is normalized by the length of
Xi.

BGW LCC
Complexity/worker K 1
Frac. data/worker 1 1/K

Randomness KT T

Min. num. of workers 2T + 1 deg f · (K + T − 1) + 1

We note from (1.1) that when N ≥ (K + T − 1) deg f + 2A+ 1, the
LCC scheme simultaneously achieves

1. Resiliency against N − ((K + T − 1) deg f + 2A + 1) straggler
workers that prolong computations;

2. Security against A malicious workers, with no computational
restriction, that deliberately send erroneous data in order to affect
the computation for their benefit; and

3. (Information-theoretic) Privacy of the dataset amidst possible
collusion of up to T workers.

We also note that the number of workers the master needs to wait
for does not scale with the total number of workers N , hence the key
property of LCC is that adding one additional worker can increase its
resiliency to stragglers by 1, or increase its robustness to malicious worker
by 1/2, while maintaining the privacy constraint. Hence, this result
essentially extends the well-known optimal scaling of error-correcting
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codes (i.e., adding one parity can provide robustness against 1 erasure
or 1/2 error in optimal maximum distance separable codes) to the
distributed computing paradigm.

Finally, compared with the state-of-the-art BGW-based designs,
we show that LCC significantly improves the storage, communication,
and secret-sharing overhead needed for secure and private multiparty
computing (see Table 1.2).

Related works

The problem of characterizing the minimum communication for dis-
tributed computing has been previously considered in several settings in
both computer science and information theory literature. In Yao, 1979,
a basic computing model is proposed, where two parities have x and
y and aim to compute a Boolean function f(x, y) by exchanging the
minimum number of bits between them. Also, the problem of minimiz-
ing the required communication for computing the modulo-two sum of
distributed binary sources with symmetric joint distribution was intro-
duced in Korner and Marton, 1979. Following these two seminal works,
a wide range of communication problems in the scope of distributed
computing have been studied (cf. Orlitsky and El Gamal, 1990; Becker
and Wille, 1998; Kushilevitz and Nisan, 2006; Orlitsky and Roche, 2001;
Nazer and Gastpar, 2007; Ramamoorthy and Langberg, 2013).

The idea of efficiently creating and exploiting coded multicasting
for bandwidth reduction was initially proposed in the context of cache
networks in Maddah-Ali and Niesen, 2014b; Maddah-Ali and Niesen,
2014a, and extended in Ji et al., 2016; Karamchandani et al., 2014, where
caches pre-fetch part of the content in a way to enable coding during the
content delivery, minimizing the network traffic. Generally speaking, we
can also view the data shuffling of the considered distributed computing
framework as an instance of the index coding problem Birk and Kol,
2006; Bar-Yossef et al., 2011, in which a central server aims to design a
broadcast message (code) with minimum length to simultaneously satisfy
the requests of all the clients, given the clients’ side information stored in
their local caches. Note that while a randomized linear network coding
approach (see e.g., Ahlswede et al., 2000; Koetter and Medard, 2003;
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Ho et al., 2003) is sufficient to implement any multicast communication
where messages are intended by all receivers, it is generally sub-optimal
for index coding problems where every client requests different messages.
Although the index coding problem is still open in general, for the
considered distributed computing scenario where we are given the
flexibility of designing Map computation (thus the flexibility of designing
side information), we can prove tight lower bounds on the minimum
communication loads, demonstrating the optimality of the proposed
Coded Distributed Computing scheme.

We would like to also point out that the main focus of the index
coding problem/literature is to design the optimal delivery scheme for a
given (often fixed) side information at the nodes. On the other hand, the
key novelty of our scheme/framework is the design of side information
(or redundant computations) at the nodes in order to maximize the
index coding (or coded multicast) opportunities. So, while index coding
focused on the design of best delivery strategies, we focus on the design
of best side information structure. In that sense they are complemen-
tary to each other and we can leverage any of the delivery schemes
developed in the index coding literature (e.g., the schemes based on
local clique cover Shanmugam et al., 2013, partial and fractional clique
cover Birk and Kol, 2006; Agarwal and Mazumdar, 2016, interference
alignment Maleki et al., 2014, and many other schemes Arbabjolfaei
and Kim, 2018) in the shuffling phase.

Other than designing coded computing strategies for bandwidth
reduction, there has recently been a surge of interest in developing coded
computing frameworks for straggler mitigation. Initiated in Lee et al.,
2018, many following works has focused on designing data encoding
strategies, mainly inspired by the concepts of erasure/error correcting
codes for communication systems, to minimize the recovery threshold,
in distributed computation of matrix-vector and matrix-matrix multipli-
cations (e.g., Dutta et al., 2016; Yu et al., 2017b; Fahim et al., 2017; Yu
et al., 2018a; Wang et al., 2018a). Coded computing also finds its applica-
tion in distributed machine learning, specifically for running distributed
stochastic gradient descent (SGD) on a master/worker architecture. For
general machine learning tasks, data encoding is not applicable due to



16 Introduction

the complicated structure of gradient computation (e.g., gradients are
computed numerically using back-propagation for deep neural networks).
In this scenario, “gradient coding” techniques Tandon et al., 2017; Hal-
bawi et al., 2017; Raviv et al., 2017; Ye and Abbe, 2018; Li et al., 2018c
have been designed to code across partial gradients computed from
uncoded data, such that the master can recover the total gradient as
the sum of all partial gradients, after receiving the computation results
from the minimum possible number of workers.

The proposed Lagrange Coded Computing (LCC) scheme improves
and expands these prior works in a few aspects: Generality–LCC sig-
nificantly expands the computation class for which we know how to
design coded computing to go beyond linear and bilinear computations
that have so far been the main research focus. In particular, it can
be applied to more general multivariate polynomial computations that
arise in machine learning applications. Universality–once the data has
been coded, any polynomial up to a certain degree can be computed
distributedly via LCC. In other words, data encoding of LCC can
be universally used for any polynomial computation. This is in stark
contrast to previous task-specific coding techniques in the literature.
Security and privacy–other than straggler mitigation, LCC also extends
the application of coded computing to secure and private computing
for general polynomial computations.

The security and privacy issue of distributed computing has been
extensively studied in the literature of secure multiparty computing
(MPC) and secure machine learning/data mining, Ben-Or et al., 1988;
Cramer et al., 2001; Lindell, 2005; Cramer et al., 2015; Halpern and
Teague, 2004; Huang et al., 2011. As a representative example, we briefly
describe the celebrated BGW MPC scheme Ben-Or et al., 1988. Given
data inputs {Xi}Ki=1, the problem is to compute outputs {f(Xi)}Ki=1
using N workers in a privacy-preserving manner (i.e., colluding workers
cannot infer anything about the dataset using their local data). To do
that, BGW first uses Shamir’s scheme Shamir, 1979a to encode each Xi

as a polynomial Pi(z) = Xi +Zi,1z + . . .+Zi,T z
T , where Zi,j ’s are i.i.d.

uniformly random variables and T is the number of colluding workers
that should be tolerated. Then, each worker ` stores the coded data
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{Pi(α`)}Ki=1, for a distinct α`, and computes {f(Pi(α`))}Ki=1. Hence, for
each i, each worker provides the evaluation of the degree-(deg f · T )
polynomial f(Pi(z)) at a distinct point α`. The polynomial f(Pi(z)) can
be interpolated using computation results from deg f · T + 1 workers,
and f(Xi) is obtained by taking the constant term of f(Pi(z)).1 In the
proposed LCC scheme, instead of hiding Xi’s individually in data encod-
ing, we code across Xi’s together with some added random inputs. This
gives rise to significant reduction on storage overhead, computational
complexity, and the amount of padded randomness. However, under
the same condition, LCC scheme requires N ≥ deg f · (K + T − 1) + 1
number of workers, which is larger than that of the BGW scheme. So, in
some sense LCC achieves reduction in storage overhead, computational
complexity, and the amount of padded randomness, at the expense of
increasing the number of needed workers (or reducing the fraction of
Byzantine workers that can be tolerated). We refer to Table 1.2 for a
detailed comparion between BGW and LCC.

Coding techniques have been recently developed to provide security
and privacy guarantees to distributed computing. Specifically, staircase
codes Bitar et al., 2018 were proposed to combat stragglers in linear
computations (e.g., matrix-vector multiplications) while preserving data
privacy, improving the computation latency of the conventional secure
computing schemes based on secret sharing Shamir, 1979a; McEliece and
Sarwate, 1981. The proposed LCC scheme generalizes the staircase codes
beyond linear computations. Even for the linear case, LCC guarantees
data privacy against T colluding workers by introducing less randomness
than Bitar et al., 2018 (T rather than TK/(K − T )). Beyond linear
computations, a recent work Nodehi and Maddah-Ali, 2018 has combined
ideas from the BGW scheme and the polynomial code Yu et al., 2017b
to form polynomial sharing, a private coded computing scheme for
arbitrary matrix polynomials. However, polynomial sharing inherits the
undesired BGW property of performing a communication round for
every bilinear operation in the polynomial; a feature that drastically

1It is also possible to use the conventional multi-round BGW, which only requires
N ≥ 2T + 1 workers to ensure T -privacy. However, multiple rounds of computation
and communication (Ω(log(deg f)) rounds) are needed, which further increases its
communication overhead.
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reduces communication efficiency, and is circumvented by the one-shot
approach of LCC. DRACO Chen et al., 2018 was proposed as a secure
distributed training algorithm that is robust to Byzantine workers. Since
DRACO is designed for general gradient computations, it employs a
blackbox approach, i.e., the coding is applied on the gradients computed
from uncoded data, but not on the data itself, which is similar to the
gradient coding techniques Tandon et al., 2017; Halbawi et al., 2017;
Raviv et al., 2017; Ye and Abbe, 2018; Li et al., 2018c designed primarily
for stragglers. For this approach, Chen et al., 2018 show that a 2A+ 1
multiplicative factor of redundant computations is needed to be robust
to A Byzantine workers. For the proposed LCC however, the blackbox
approach is disregarded in favor of an algebraic one, and consequently,
a 2A additive factor suffices.



2
Coding for Bandwidth Reduction

In this chapter, we focus on a general distributed computing framework,
motivated by prevalent structures like MapReduce Dean and Ghemawat,
2004 and Spark Zaharia et al., 2010, in which the overall computation
is decomposed into two stages: “Map” and “Reduce”. Firstly in the
Map stage, distributed computing nodes process parts of the input data
locally, generating some intermediate values according to their designed
Map functions. Next, they exchange the calculated intermediate values
among each other (a.k.a. data shuffling), in order to calculate the final
output results distributedly using their designed Reduce functions.

Within this framework, data shuffling often appears to limit the per-
formance of distributed computing applications, including self-join Ah-
mad et al., 2012, TeraSort Guo et al., 2013, and machine learning algo-
rithms Chowdhury et al., 2011. For example, in a Facebook’s Hadoop
cluster, it is observed that 33% of the overall job execution time is spent
on data shuffling Chowdhury et al., 2011. Also as is observed in Zhang
et al., 2013, 70% of the overall job execution time is spent on data
shuffling when running self-join on an Amazon EC2 cluster Amazon
Elastic Compute Cloud (EC2) n.d. This bottleneck becomes even worse
when training deep neural networks (e.g., ResNet-50 He et al., 2016) on

19
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distributed computing systems, where partial gradients with millions of
entries are shuffled across networks to update model parameters Chilimbi
et al., 2014.

As such motivated, we ask this fundamental question that if coding
can help distributed computing in reducing the load of communication
and speeding up the overall computation? Coding is known to be helpful
in coping with the channel uncertainty in telecommunication systems
and also in reducing the storage cost in distributed storage systems and
cache networks. In this chapter, we extend the application of coding to
distributed computing and propose a framework to substantially reduce
the load of data shuffling via coding and some extra computing in the
Map phase.

More specifically, we first formalize a MapReduce-type distributed
computing framework, and define the “computation load” as the amount
of local Map computations performed at distributed computing nodes,
and the “communication load” as the amount of information bits shuffled
between nodes. We characterize a fundamental “inversely proportional”
tradeoff relationship between computation load and communication load.
In particular, we propose a coded computing scheme, named “Coded
Distributed Computing” (CDC), which demonstrates that increasing
the computation load of the Map phase by a factor of r (i.e., evaluating
each Map function at r carefully chosen nodes) can create novel coding
opportunities in the data shuffling phase that reduce the communica-
tion load by the same factor. We also show that CDC is optimal, in
the sense that it achieves the best tradeoff between computation and
communication in the proposed MapReduce framework.

Having theoretically characterized the tradeoff between computation
and communication, we exploit this tradeoff to improve the run-time
performance of practical workloads. Particularly, we apply the principles
of the CDC scheme to TeraSort Hadoop TeraSort n.d., which is a
widely used benchmark in Hadoop MapReduce Apache Hadoop n.d. for
distributedly sorting terabytes of data O’Malley, 2008, and develop a new
distributed sorting algorithm, named CodedTeraSort, which imposes
structured redundancy in data to enable coding opportunities for efficient
data shuffling. We empirically demonstrate that CodedTeraSort speeds
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up the state-of-the-art sorting algorithms by 1.97×- 3.39× in typical
settings of interest.

Having demonstrated the impact of coding on improving the per-
formance of applications run on wired networks like datacenters, we
also introduce the concept of coded computing to tackle the scenarios
of mobile edge/fog computing, where the communication bottleneck
is even more severe due to the low data rate and the large number of
mobile users. In particular, we consider a wireless distributed computing
platform, which is composed of a cluster of memory-limited mobile users
and an access point at the network edge. The users collaborate with each
other through the access point to satisfy their computational needs that
require processing a large dataset. For this platform we propose a coded
wireless distributed computing (CWDC) scheme that jointly designs the
local storage and computation for each user, and the communication
between users through the access point. The CWDC scheme achieves a
constant bandwidth consumption that is independent of the number
of users in the system, which leads to a scalable design of the platform
that can simultaneously accommodate an arbitrary number of users.

Finally, we end this chapter with some related works and open
problems along this research direction.

2.1 A fundamental tradeoff between computation and communi-
cation

In this section, we formulate a general distributed computing framework
motivated by MapReduce, and characterize the optimal tradeoff between
computation and communication within this framework.

2.1.1 Problem formulation: a distributed computing framework

We consider the problem of computingQ arbitrary output functions from
N input files using a cluster of K distributed computing nodes (servers),
for some positive integers Q,N,K ∈ N, with N ≥ K.1 More specifically,

1The motivation for considering simultaneous computation of Q functions is
that we consider a common scenario in which many computation requests (over the
same dataset) are continuously submitted (e.g., database queries, web search, loss
computation in machine learning, etc).
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given N input files w1, . . . , wN ∈ F2F , for some F ∈ N, the goal is
to compute Q output functions φ1, . . . , φQ, where φq : (F2F )N → F2B ,
q ∈ {1, . . . , Q}, maps all input files to an output uq = φq(w1, . . . , wN ) ∈
F2B , for some B ∈ N.

Motivated by MapReduce, we assume that as illustrated in Figure 2.1
the computation of the output function φq, q ∈ {1, . . . , Q} can be
decomposed as follows:

φq(w1, . . . , wN ) = hq(gq,1(w1), . . . , gq,N (wN )), (2.1)

where

• The “Map” functions ~gn = (g1,n, . . . , gQ,n) : F2F → (F2T )Q, n ∈
{1, . . . , N}, maps the input file wn into Q length-T intermediate
values vq,n = gq,n(wn) ∈ F2T , q ∈ {1, . . . , Q}, for some T ∈ N.2

• The “Reduce” functions hq : (F2T )N→F2B , q ∈ {1, . . . , Q}, maps the
intermediate values of the output function φq in all input files into
the output value uq = hq(vq,1, . . . , vq,N ).

Remark 2.1. Note that for every set of output functions φ1, . . . , φQ
such a Map-Reduce decomposition exists (e.g., setting gq,n′s to identity
functions such that gq,n(wn) = wn for all n = 1, . . . , N , and hq to
φq in (2.1)). However, such a decomposition is not unique, and in
the distributed computing literature, there has been quite some work
on developing appropriate decompositions of computations like join,
sorting and matrix multiplication (see, e.g., Dean and Ghemawat, 2004;
Rajaraman and Ullman, 2011), for them to be performed efficiently in
a distributed manner. Here we do not impose any constraint on how
the Map and Reduce functions are chosen (for example, they can be
arbitrary linear or non-linear functions). �

2When mapping a file, we compute Q intermediate values in parallel, one for each
of theQ output functions. The main reason to do this is that parallel processing can be
efficiently performed for applications that fit into the MapReduce framework. In other
words, mapping a file according to one function is only marginally more expensive
than mapping according to all functions. For example, for the canonical Word Count
task, while we are scanning a document to count the number of appearances of one
word, we can simultaneously count the numbers of appearances of other words with
marginally increased computation cost.
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Map Functions Reduce Functions

Figure 2.1: Illustration of a two-stage distributed computing framework. The overall
computation is decomposed into computing a set of Map and Reduce functions.

The above computation is carried out by K distributed comput-
ing nodes, labelled as Node 1, . . . ,Node K. They are interconnected
through a multicast network. Following the above decomposition, the
computation proceeds in three phases: Map, Shuffle and Reduce.
Map Phase: Node k, k ∈ {1, . . . ,K}, computes the Map functions of a
set of filesMk, which are stored on Node k, for some design parameter
Mk ⊆ {w1, . . . , wN}. For each file wn inMk, Node k computes ~gn(wn)=
(v1,n, . . . , vQ,n). We assume that each file is mapped by at least one
node, i.e., ∪

k=1,...,K
Mk = {w1, . . . , wN}.

Definition 2.1 (Computation Load). We define the computation load,
denoted by r, 1 ≤ r ≤ K, as the total number of Map functions
computed across the K nodes, normalized by the number of files N ,
i.e., r ,

∑K

k=1 |Mk|
N . The computation load r can be interpreted as the

average number of nodes that map each file. ♦

Shuffle Phase: Node k, k ∈ {1, . . . ,K}, is responsible for computing
a subset of output functions, whose indices are denoted by a set Wk ⊆
{1, . . . , Q}. We focus on the case Q

K ∈ N, and utilize a symmetric task
assignment across the K nodes to maintain load balance. More precisely,
we require 1) |W1| = · · · = |WK | = Q

K , 2) Wj ∩Wk = ∅ for all j 6= k.

Remark 2.2. Beyond the symmetric task assignment considered in
this chapter, characterizing the optimal computation-communication
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tradeoff allowing general asymmetric task assignments is a challenging
open problem. As the first step to study this problem, the follow-up
work Yu et al., 2017a considers the scenario in which the number of
output functions Q is fixed and the computing resources are abundant
(e.g., number of computing nodesK � Q), it is shown in Yu et al., 2017a
that asymmetric task assignments can do better than the symmetric
ones in optimizing the overall run-time performance. �

To compute the output uq for some q ∈ Wk, Node k needs the
intermediate values that are not computed locally in the Map phase, i.e.,
{vq,n : q ∈ Wk, wn /∈ Mk}. After Node k, k ∈ {1, . . . ,K}, has finished
mapping all the files in Mk, the K nodes proceed to exchange the
needed intermediate values. In particular, each node k creates an input
symbol Xk ∈ F2`k , for some `k ∈ N, as a function of the intermediate
values computed locally during the Map phase, i.e., for some encoding
function ψk : (F2T )Q|Mk| → F2`k at Node k, we have

Xk = ψk ({~gn : wn ∈Mk}) . (2.2)

Having generated the message Xk, Node k multicasts it to all other
nodes.

By the end of the Shuffle phase, each of the K nodes receives
X1, . . . , XK free of error.

Definition 2.2 (Communication Load). We define the communication
load, denoted by L, 0 ≤ L ≤ 1, as L , `1+···+`K

QNT . That is, L represents
the (normalized) total number of bits communicated by the K nodes
during the Shuffle phase.3 ♦

Reduce Phase: Node k, k ∈ {1, . . . ,K}, uses the messagesX1, . . . , XK

communicated in the Shuffle phase, and the local results from the Map
phase {~gn : wn ∈Mk} to construct inputs to the corresponding Reduce

3For notational convenience, we define all variables in binary extension fields.
However, one can consider arbitrary field sizes. For example, we can consider all
intermediate values vq,n, q = 1, . . . , Q, n = 1, . . . , N , to be in the field FpT , for
some prime number p and positive integer T , and the symbol communicated by
Node k (i.e., Xk), to be in the field Fs`k for some prime number s and positive
integer `k, for all k = 1, . . . ,K. In this case, the communication load can be defined
as L , (`1+···+`K ) log s

QNT log p .
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functions of Wk, i.e., for each q ∈ Wk and some decoding function
χqk : F2`1 × · · · × F2`K × (F2T )Q|Mk| → (F2T )N , Node k computes

(vq,1, . . . , vq,N ) = χqk (X1, . . . , XK , {~gn : wn ∈Mk}) . (2.3)

Finally, Node k, k ∈ {1, . . . ,K}, computes the Reduce function
uq = hq(vq,1 . . . vq,N ) for all q ∈ Wk.

We say that a computation-communication pair (r, L) ∈ R2 is feasible
if for any δ > 0 and sufficiently large N , there exist M1, . . . ,MK ,
W1, . . . ,WK , a set of encoding functions {ψk}Kk=1, and a set of decoding
functions {χqk : q ∈ Wk}Kk=1 that achieve a computation-communication
pair (r̃, L̃) ∈ Q2 such that |r − r̃| ≤ δ, |L − L̃| ≤ δ, and Node k can
successfully compute all the output functions whose indices are in Wk,
for all k ∈ {1, . . . ,K}.

Definition 2.3. We define the computation-communication function of
the distributed computing framework

L∗(r) , inf{L : (r, L) is feasible}. (2.4)

L∗(r) characterizes the optimal tradeoff between computation and
communication in this framework. ♦

Example (uncoded scheme). In the Shuffle phase of a simple “un-
coded” scheme, each node receives the needed intermediate values sent
uncodedly by some other nodes. Since a total of QN intermediate values
are needed across the K nodes and rN · QK = rQN

K of them are already
available after the Map phase, the communication load achieved by the
uncoded scheme

Luncoded(r) = 1− r/K. (2.5)

2.1.2 Main Results

Theorem 2.1. The computation-communication function of the dis-
tributed computing framework, L∗(r) is given by

L∗(r) = Lcoded(r) , 1
r · (1−

r
K ), r ∈ {1, . . . ,K}, (2.6)

for sufficiently large T . For general 1 ≤ r ≤ K, L∗(r) is the lower convex
envelop of the above points {(r, 1

r · (1−
r
K )) : r ∈ {1, . . . ,K}}.
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We prove the achievability of Theorem 2.1 by proposing a coded
scheme, named Coded Distributed Computing, in Section 2.1.3. We
demonstrate that no other scheme can achieve a communication load
smaller than the lower convex envelop of the points {(r, 1

r · (1−
r
K )) :

r ∈ {1, . . . ,K}} by proving the converse in Section 2.1.4.

Remark 2.3. Theorem 2.1 exactly characterizes the optimal tradeoff
between the computation load and the communication load in the
considered distributed computing framework. �
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Figure 2.2: Comparison of the communication load achieved by the proposed coded
scheme in Theorem 2.1 with that of the uncoded scheme in (2.5), for Q = 10 output
functions, N = 2520 input files and K = 10 computing nodes.

Remark 2.4. For r ∈ {1, . . . ,K}, the communication load achieved in
Theorem 2.1 is less than that of the uncoded scheme in (2.5) by a
multiplicative factor of r, which equals the computation load and can
grow unboundedly as the number of nodes K increases if e.g., r = Θ(K).
As illustrated in Figure 2.2, while the communication load of the uncoded
scheme decreases linearly as the computation load increases, Lcoded(r)
achieved in Theorem 2.1 is inversely proportional to the computation
load. �

Remark 2.5. While increasing the computation load r causes a longer
Map phase, the coded achievable scheme of Theorem 2.1 maximizes
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the reduction of the communication load using the extra computations.
Therefore, Theorem 2.1 provides an analytical framework to optimally
trading the computation power in the Map phase for more bandwidth
in the Shuffle phase, which helps to minimize the overall execution time
of applications whose performances are limited by data shuffling. In
the next section, we will empirically demonstrate this idea through
experiments on a widely-used practical workload. �

Remark 2.6. In Li et al., 2018b, we also consider a generalization of
the above distributed computing framework, which we call “cascaded
distributed computing framework”, where after the Map phase, each
Reduce function is computed by s > 1 nodes. This generalized model
is motivated by the fact that many distributed computing jobs require
multiple rounds of Map and Reduce executions, where the Reduce
results of the previous round serve as the inputs to the Map functions of
the next round. For the cascaded distributed computing framework, we
generalize our coded computing scheme to achieve the optimal tradeoff
between computation and communication loads. �

2.1.3 Coded Distributed Computing

In this subsection, we formally prove the upper bound in Theorem 2.1
by describing and analyzing the Coded Distributed Computing (CDC)
scheme. Before we present the general CDC scheme, we first illustrate
its key coding ideas via an example.

Illustrative example

We consider a MapReduce-type problem in Figure 2.3 for distributed
computing of Q = 3 output functions, represented by red/circle,
green/square, and blue/triangle respectively, from N = 6 input files,
using K = 3 computing nodes. Nodes 1, 2, and 3 are respectively respon-
sible for final reduction of red/circle, green/square, and blue/triangle
output functions. We first consider the case where no redundancy is
imposed on the computations, i.e., each file is mapped once and compu-
tation load r = 1. As shown in Figure 2.3(a), Node k maps File 2k − 1
and File 2k for k = 1, 2, 3. In this case, each node maps 2 input files
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Figure 2.3: Illustrations of the conventional uncoded distributed computing scheme
with computation load r = 1, and the proposed Coded Distributed Computing
scheme with computation load r = 2, for computing Q = 3 functions from N = 6
inputs on K = 3 nodes.

locally. In Figure 2.3, we represent, for example, the intermediate value
of the red/circle function in File n using a red circle labelled by n, for
all n = 1, . . . , 6. Similar representations follow for the green/square and
the blue/triangle functions. After the Map phase, each node obtains 2
out of 6 required intermediate values to reduce the output function it
is responsible for (e.g., Node 1 knows the red circles in File 1 and File
2). Hence, each node needs 4 intermediate values from the other nodes,
yielding a communication load of 4×3

3×6 = 2
3 .

Now, we demonstrate how the proposed CDC scheme trades the
computation load to slash the communication load via in-network coding.
As shown in Figure 2.3(b), we double the computation load such that
each file is now mapped on two nodes (r = 2). It is apparent that since
more local computations are performed, each node now only requires
2 other intermediate values, and an uncoded shuffling scheme would
achieve a communication load of 2×3

3×6 = 1
3 . However, we can do much

better with coding. As shown in Figure 2.3(b), instead of unicasting
individual intermediate values, every node multicasts a bit-wise XOR,
denoted by ⊕, of 2 locally computed intermediate values to the other
two nodes, simultaneously satisfying their data demands. For example,
knowing the blue/triangle in File 3, Node 2 can cancel it from the
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coded packet sent by Node 1, recovering the needed green/square in
File 1. Therefore, this coding incurs a communication load of 3

3×6 = 1
6 ,

achieving a 2× gain over the uncoded shuffling.

General CDC scheme

We first consider the integer-valued computation load r ∈ {1, . . . ,K},
and then generalize the CDC scheme for any 1 ≤ r ≤ K. When r = K,
every node can map all the input files and compute all the output
functions locally, thus no communication is needed and L∗(K) = 0. In
what follows, we focus on the case where r < K.

We consider sufficiently large number of input files N , and
(K
r

)
(η −

1) < N ≤
(K
r

)
η, for some η ∈ N. We first inject

(K
r

)
η −N empty files

into the system to obtain a total of N̄ =
(K
r

)
η files, which is now a

multiple of of
(K
r

)
. We note that lim

N→∞
N̄
N = 1. Next, we proceed to

present the CDC scheme for a system with N̄ input files w1, . . . , wN̄ .
Map phase design. The N̄ input files are evenly partitioned into

(K
r

)
disjoint batches of size η, each corresponding to a subset T ⊂ {1, . . . ,K}
of size r, i.e.,

{w1, . . . , wN̄} = ∪
T ⊂{1,...,K},|T |=r

BT , (2.7)

where BT denotes the batch of η files corresponding to the subset T .
Given this partition, Node k, k ∈ {1, . . . ,K}, computes the Map

functions of the files in BT if k ∈ T . Or equivalently, BT ⊆Mk if k ∈ T .
Since each node is in

(K−1
r−1

)
subsets of size r, each node computes(K−1

r−1
)
η = rN̄

K Map functions, i.e., |Mk| = rN̄
K for all k ∈ {1, . . . ,K}.

After the Map phase, Node k, k ∈ {1, . . . ,K}, knows the intermediate
values of all Q output functions in the files in Mk, i.e., {vq,n : q ∈
{1, . . . , Q}, wn ∈Mk}.
Coded data shuffling. We focus on the case where the number of the
output functions Q satisfies Q

K ∈ N, and enforce a symmetric assignment
of the Reduce functions such that every node reduces Q

K functions. That
is, |W1| = · · · = |WK | = Q

K , and Wj ∩Wk = ∅ for all j 6= k.
For any subset P ⊂ {1, . . . ,K}, and k /∈ P, we denote the set of

intermediate values needed by Node k and known exclusively by nodes
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whose indices are in P as VkP . More formally:

VkP , {vq,n : q ∈ Wk, wn ∈ ∩
i∈P
Mi, wn /∈ ∪

i/∈P
Mi}. (2.8)

For each subset S ⊆ {1, . . . ,K} of size |S| = r + 1, we perform the
following three steps to shuffle the intermediate results.

• Step 1: data association. For each k ∈ S, VkS\{k} is the set of
intermediate values that are requested by Node k and are computed
from the files in the batch BS\{k}, and they are exclusively known at
all nodes whose indices are in S\{k}. We evenly and arbitrarily split
VkS\{k}, into r disjoint segments {VkS\{k},i : i ∈ S\{k}}, where V

k
S\{k},i

denotes the segment associated with Node i in S\{k} for Node k.
That is, VkS\{k}= ∪

i∈S\{k}
VkS\{k},i.

• Step 2: coded multicast. Each node i, i ∈ S, computes the bit-
wise XOR, denoted by ⊕, of all the segments associated with it in
S, generating a coded segment XSi = ⊕

k∈S\{i}
VkS\{k},i. Then, Node i

multicasts XSi to all other nodes in S \ {i}.

• Step 3: decoding. Having received XSi from Node i, Node k

computes the bit-wise XOR of XSi with its local data segments
{VjS\{j},i : j ∈ S \ {i, k}} to recover VkS\{k},i = ⊕

j∈S\{i,k}
VjS\{j},i ⊕X

S
i .

Having decoded the data segments VkS\{k},i for all i ∈ S \ {k}, Node
k concatenates them to recover VkS\{k}.

After we iterate the above data shuffling process over all subsets
of r + 1 nodes, it is easy to see that for each node k, other than its
locally computed intermediate values, it has recovered all the required
intermediate values, i.e., {VkS\{k} : S ⊆ {1, . . . ,K}, |S| = r + 1, k ∈ S},
to compute the Reduce functions locally.
Communication load. Since the coded segment XSi has a size of
Q
K ·

ηT
r bits for each i ∈ S, there are a total of Q

K ·
ηT
r (r + 1) bits

shuffled across the network in each subset S of size r + 1. Therefore,
the communication load achieved by this coded data shuffling scheme,
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for r ∈ {1, . . . ,K − 1}, is

Lcoded(r) = lim
N→∞

( K
r+1)QK · ηTr (r+1)

QNT = lim
N→∞

N̄(K−r)
NKr

= 1
r · (1−

r
K ) (2.9)

Non-integer valued computation load. For non-integer valued com-
putation load r ≥ 1, we generalize the CDC scheme as follows. We
first expand the computation load r = αr1 + (1 − α)r2 as a convex
combination of r1 , brc and r2 , dre, for some 0 ≤ α ≤ 1. Then we
partition the set of N̄ input files {w1, . . . , wN̄} into two disjoint subsets
I1 and I2 of sizes |I1| = αN̄ and |I2| = (1 − α)N̄ . We next apply
the CDC scheme described above respectively to the files in I1 with a
computation load r1 and the files in I2 with a computation load r2, to
compute each of the Q output functions at the same node. This results
in a communication load of

lim
N→∞

QαN̄Lcoded(r1)T +Q(1− α)N̄Lcoded(r2)T
QNT

= αLcoded(r1) + (1− α)Lcoded(r2), (2.10)

where Lcoded(r) is the communication load achieved by CDC in (2.9)
for integer-valued r.

Using this generalized CDC scheme, for any two integer-valued
computation loads r1 and r2, the points on the line segment connect-
ing (r1, Lcoded(r1)) and (r2, Lcoded(r2)) are achievable. Therefore, for
general 1 ≤ r ≤ K, the lower convex envelop of the achievable points
{(r, Lcoded(r)) : r ∈ {1, . . . ,K}} is achievable. This proves the upper
bound on the computation-communication function in Theorem 2.1.

Remark 2.7. The ideas of efficiently creating and exploiting coded multi-
casting opportunities have been introduced in caching problems Maddah-
Ali and Niesen, 2014b; Maddah-Ali and Niesen, 2014a; Ji et al., 2016.
Through the above description of the CDC scheme, we illustrated how
coding opportunities can be utilized in distributed computing to slash
the load of communicating intermediate values, by designing a particular
assignment of extra computations across distributed computing nodes.
We note that the calculated intermediate values in the Map phase
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mimics the locally stored cache contents in caching problems, providing
the “side information” to enable coding in the following Shuffle phase
(or content delivery). �

Remark 2.8. Generally speaking, we can view the Shuffle phase of the
considered distributed computing framework as an instance of the index
coding problem Birk and Kol, 2006; Bar-Yossef et al., 2011, in which a
central server aims to design a broadcast message (code) with minimum
length to simultaneously satisfy the requests of all the clients, given
the clients’ side information stored in their local caches. Note that
while a randomized linear network coding approach (see, e.g., Ahlswede
et al., 2000; Koetter and Medard, 2003; Ho et al., 2003) is sufficient to
implement any multicast communication where messages are intended
by all receivers, it is generally sub-optimal for index coding problems
where every client requests different messages. Although the index
coding problem is still open in general, for the considered distributed
computing scenario where we are given the flexibility of designing Map
computation (thus the flexibility of designing side information), we
next prove tight lower bounds on the minimum communication load,
demonstrating the optimality of the proposed CDC scheme. �

2.1.4 Optimality of CDC

In this subsection, we prove the lower bound on L∗(r) in Theorem 2.1,
and demonstrate the optimality of CDC in minimizing the communica-
tion load.

For k ∈ {1, . . . ,K}, we denote the set of indices of the files mapped
by Node k as Mk, and the set of indices of the Reduce functions
computed by Node k as Wk. As the first step, we consider the commu-
nication load for a given file assignment M , (M1,M2 . . . ,MK) in
the Map phase. We denote the minimum communication load under
the file assignmentM by L∗M.

We denote the number of files that are mapped at j nodes under a
file assignmentM, as ajM, for all j ∈ {1, . . . ,K}:

ajM =
∑

J⊆{1,...,K}:|J |=j
|( ∩
k∈J
Mk)\( ∪

i/∈J
Mi)|. (2.11)
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Node 1 Node 2 Node 3

Files
1     3
5     6

4     5
6     

2     3
4     6

Files Files

Figure 2.4: A file assignment for N = 6 files and K = 3 nodes.

For example, for the particular file assignment in Figure 2.4, i.e.,
M = ({1, 3, 5, 6}, {4, 5, 6}, {2, 3, 4, 6}), a1

M = 2 since File 1 and File 2
are mapped on a single node (i.e., Node 1 and Node 3 respectively).
Similarly, we have a2

M = 3 (Files 3, 4, and 5), and a3
M = 1 (File 6).

For a particular file assignmentM, we present a lower bound on
L∗M in the following lemma.

Lemma 2.2. L∗M ≥
K∑
j=1

ajM
N ·

K−j
Kj .

Next, we first demonstrate the converse of Theorem 2.1 using
Lemma 2.2, and then give the proof of Lemma 2.2.
Converse Proof of Theorem 2.1. It is clear that the minimum communi-
cation load L∗(r) is lower bounded by the minimum value of L∗M over
all possible file assignments which admit a computation load of r:

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

L∗M. (2.12)

Then by Lemma 2.2, we have

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

K∑
j=1

ajM
N
· K − j
Kj

. (2.13)

For every file assignment M such that |M1| + · · · + |MK | = rN ,
{ajM}Kj=1 satisfy

ajM ≥ 0, j ∈ {1, ...,K}, (2.14)
K∑
j=1

ajM = N, (2.15)

K∑
j=1

jajM = rN. (2.16)
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Then since the function K−j
Kj in (2.13) is convex in j, and by (2.15)

K∑
j=1

ajM
N = 1, (2.13) becomes

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

K −
K∑
j=1

j
ajM
N

K
K∑
j=1

j
ajM
N

(a)= K − r
Kr

, (2.17)

where (a) is due to the requirement imposed by the computation load
in (2.16).

The lower bound on L∗(r) in (2.17) holds for general 1 ≤ r ≤ K.
We can further improve the lower bound for non-integer valued r as
follows. For a particular r /∈ N, we first find the line p+ qj as a function
of 1 ≤ j ≤ K connecting the two points (brc, K−brcKbrc ) and (dre, K−dreKdre ).
More specifically, we find p, q ∈ R such that

p+ qj|j=brc = K − brc
Kbrc

, (2.18)

p+ qj|j=dre = K − dre
Kdre

. (2.19)

Then by the convexity of the function K−j
Kj in j, we have for integer-

valued j = 1, . . . ,K,

K − j
Kj

≥ p+ qj, j = 1, . . . ,K. (2.20)

Then (2.13) reduces to

L∗(r) ≥ inf
M:|M1|+···+|MK |=rN

K∑
j=1

ajM
N
· (p+ qj) (2.21)

= inf
M:|M1|+···+|MK |=rN

K∑
j=1

ajM
N
· p+

K∑
j=1

jajM
N
· q (2.22)

(b)= p+ qr, (2.23)

where (b) is due to the constraints on {ajM}Kj=1 in (2.15) and (2.16).
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Therefore, L∗(r) is lower bounded by the lower convex envelop of
the points {(r, K−rKr ) : r ∈ {1, ...,K}}. This completes the proof of the
converse part of Theorem 2.1. �

We devote the rest of this subsection to the proof of Lemma 2.2.
To prove Lemma 2.2, we develop a lower bound on the number of bits
communicated by any subset of nodes, by induction on the size of the
subset.
Proof of Lemma 2.2. For q ∈ {1, ..., Q}, n ∈ {1, ..., N}, we let Vq,n be i.i.d.
random variables uniformly distributed on F2T . We let the intermediate
values vq,n be the realizations of Vq,n. For some Q ⊆ {1, . . . , Q} and
N ⊆ {1, . . . , N}, we define

VQ,N , {Vq,n : q ∈ Q, n ∈ N}. (2.24)

Since each message Xk is generated as a function of the intermediate
values that are computed at Node k, we have for all k ∈ {1, ...,K},

H(Xk|V:,Mk
) = 0, (2.25)

where we use “:” to denote the set of all possible indices.
The validity of the shuffling scheme requires that for all k ∈

{1, ...,K}, the following equation holds:

H(VWk,:|X:, V:,Mk
) = 0. (2.26)

For a subset S ⊆ {1, ...,K}, we define

YS , (VWS ,:, V:,MS ), (2.27)

which contains all the intermediate values required by the nodes in S
and all the intermediate values known locally by the nodes in S after
the Map phase.

For any subset S ⊆ {1, . . . ,K} and a file assignmentM, we denote
the number of files that are exclusively mapped by j nodes in S as aj,SM :

aj,SM ,
∑

J⊆S:|J |=j
|( ∩
k∈J
Mk)\( ∪

i/∈J
Mi)|, (2.28)

and the message symbols communicated by the nodes whose indices are
in S as

XS , {Xk : k ∈ S}. (2.29)
Then we prove the following claim.
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Claim 2.2.1. For any subset S ⊆ {1, ...,K}, we have

H(XS |YSc) ≥ T
|S|∑
j=1

aj,SM
Q

K
· |S| − j

j
, (2.30)

where Sc , {1, . . . ,K}\S denotes the complement of S. �

We prove Claim 2.2.1 by induction.
a. If S = {k} for any k ∈ {1, . . . ,K}, obviously

H(Xk|Y{1,...,K}\{k}) ≥ 0 = Ta
1,{k}
M

Q

K
· 1− 1

1 . (2.31)

b. Suppose the statement is true for all subsets of size S0.
For any S ⊆ {1, ...,K} of size |S| = S0 + 1 and any k ∈ S, we have

H(XS |YSc) = 1
|S|

∑
k∈S

H(XS , Xk|YSc) (2.32)

≥ 1
|S|

∑
k∈S

H(XS |Xk, YSc) + 1
|S|

H(XS |YSc). (2.33)

From (2.33), we have

H(XS |YSc) ≥
1

|S| − 1
∑
k∈S

H(XS |Xk, YSc) (2.34)

≥ 1
S0

∑
k∈S

H(XS |Xk, V:,Mk
, YSc) (2.35)

= 1
S0

∑
k∈S

H(XS |V:,Mk
, YSc). (2.36)

Due to the decodability criterion at Node k, for each k ∈ S, the
term on the RHS of (2.36) can be written as

H(XS |V:,Mk
, YSc) = H(XS , VWk,:|V:,Mk

, YSc) (2.37)
= H(VWk,:|V:,Mk

, YSc) +H(XS |VWk,:, V:,Mk
, YSc). (2.38)
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The first term on the RHS of (2.38) can be lower bounded as follows.

H(VWk,:|V:,Mk
, YSc) = H(VWk,:|V:,Mk

, VWSc ,:, V:,MSc ) (2.39)
(a)= H(VWk,:|V:,Mk

, V:,MSc ) (2.40)
(b)=

∑
q∈Wk

H(V{q},:|V{q},Mk∪MSc ) (2.41)

(c)= Q

K
T

S0∑
j=0

a
j,S\{k}
M ≥ Q

K
T

S0∑
j=1

a
j,S\{k}
M , (2.42)

where (a) is due to the independence of intermediate values and the
fact that Wk ∩ WSc = ∅ (different nodes calculate different output
functions), (b) is due to the independence of intermediate values, and
(c) is due to the independence of the intermediate values and the fact
that |Wk| = Q

K .

The second term on the RHS of (2.38) can be lower bounded by the
induction assumption:

H(XS |VWk,:, V:,Mk
, YSc) = H(XS\{k}|Y(S\{k})c) (2.43)

≥ T
S0∑
j=1

a
j,S\{k}
M

Q

K
· S0 − j

j
. (2.44)

Thus by (2.36), (2.38), (2.42) and (2.44), we have

H(XS |YSc) ≥
1
S0

∑
k∈S

(
T

S0∑
j=1

a
j,S\{k}
M

Q

K
+ T

S0∑
j=1

a
j,S\{k}
M

Q

K
· S0 − j

j

)
(2.45)

= T

S0

∑
k∈S

S0∑
j=1

a
j,S\{k}
M

Q

K
· S0
j

= T
S0∑
j=1

Q

K
· 1
j

∑
k∈S

a
j,S\{k}
M .

(2.46)
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By the definition of aj,SM , we have the following equations.

∑
k∈S

a
j,S\{k}
M =

∑
k∈S

N∑
n=1

1(file n is only mapped by some nodes

in S\{k})·1(file n is mapped by j nodes) (2.47)

=
N∑
n=1

1(file n is only mapped by j nodes in S) ·
∑
k∈S

1(file

n is not mapped by Node k) (2.48)

=
N∑
n=1

1(file n is only mapped by j nodes in S)(|S| − j)

(2.49)

=aj,SM (S0 + 1− j). (2.50)

Applying (2.50) to (2.46) yields

H(XS |YSc) ≥ T
S0+1∑
j=1

aj,SM
Q

K
· S0 + 1− j

j
. (2.51)

c. Thus for all subsets S ⊆ {1, ...,K}, the following equation holds:

H(XS |YSc) ≥ T
|S|∑
j=1

aj,SM
Q

K
· |S| − j

j
, (2.52)

which proves Claim 2.2.1.
Then by Claim 2.2.1, let S = {1, ...,K} be the set of all K nodes,

L∗M ≥
H(XS |YSc)
QNT

≥
K∑
j=1

ajM
N
· K − j
Kj

. (2.53)

This completes the proof of Lemma 2.2. �

2.2 Empirical evaluations of coded distributed computing

In this section, we apply the Coded Distributed Computing (CDC)
scheme proposed in the previous section to a widely-used distributed
sorting algorithm, TeraSort Hadoop TeraSort n.d., developing a coded
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distributed sorting algorithm CodedTeraSort. While the run-time per-
formance of TeraSort is known to be severely limited by the data
shuffling time between distributed computing nodes (see, e.g., Guo
et al., 2013; Zhang et al., 2013), CodedTeraSort injects and leverages
extra local computations to trade for a substantially smaller band-
width consumption, hence significantly improving the overall run-time
performance over TeraSort.

2.2.1 Execution time of Coded Distributed Computing

For a MapReduce application whose overall response time is composed
of the time spent executing the Map tasks, denoted by Tmap, the time
spent shuffling intermediate values, denoted by Tshuffle, and the time
spent executing the Reduce tasks, denoted by Treduce, we have

Ttotal, MR = Tmap + Tshuffle + Treduce. (2.54)

Using CDC, we can leverage r× more computations in the Map
phase, in order to reduce the communication load by the same multi-
plicative factor, where r ∈ N is a design parameter that can be optimized
to minimize the overall execution time. Hence, CDC promises that we
can achieve the overall execution time of

Ttotal, CDC ≈ rTmap + 1
rTshuffle + Treduce, (2.55)

for any 1 ≤ r ≤ K, where K is the total number of nodes on which the
distributed computation is executed. To minimize the above execution
time, one would choose

r∗ =
⌊√

Tshuffle
Tmap

⌋
or
⌈√

Tshuffle
Tmap

⌉
,

resulting in execution time of

T ∗total, CDC ≈ 2
√
TshuffleTmap + Treduce. (2.56)

2.2.2 TeraSort

TeraSort O’Malley, 2008 is a conventional algorithm for distributed
sorting of a large amount of data. The input data to be sorted is in the
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format of key-value (KV) pairs, meaning each input KV pair consists of
a key and a value. For example, the domain of the keys can be 10-byte
integers, and the domain of the values can be arbitrary strings. TeraSort
aims to sort the input data according to their keys, e.g., sorting integers.
A TeraSort algorithm run over K nodes, whose indices are denoted by
a set K = {1, . . . ,K}, is comprised of the following five components.
File placement. Let F denote the entire KV pairs to be sorted. They
are split into K disjoint input files, denoted by F{1}, . . . , F{K}. File F{k}
is assigned to and locally stored at Node k.
Key domain partitioning. The key domain of the KV pair, denoted
by P , is split into K ordered partitions, denoted by P1, . . . , PK . Specif-
ically, for any p ∈ Pi and any p′ ∈ Pi+1, it holds that p < p′ for all
i ∈ {1, . . . ,K − 1}. For example, when P = [0, 100] and K = 4, the
partitions can be P1 = [0, 25), P2 = [25, 50), P3 = [50, 75), P4 = [75, 100].
Node k is responsible for sorting all KV pairs in the partition Pk, for
all k ∈ K.
Map stage. Each node hashes each KV pair in the locally stored file
F{k} to the partition its key falls into. For each of the K key partitions,
the hashing procedure on the file F{k} generates an intermediate value
that contains the KV pairs in F{k} whose keys belong to that partition.

More specifically, we denote the intermediate value of the partition
Pj from the file F{k} as I

j
{k}, and the hashing procedure on the file F{k}

is defined as {
I1
{k}, . . . , I

K
{k}

}
← Hash

(
F{k}

)
.

Shuffle stage. The intermediate value Ik{j} calculated at Node j, j 6= k,
is unicast to Node k from Node j, for all k ∈ K. Since the intermediate
value Ik{k} is computed locally at Node k in the Map stage, by the end of
the Shuffle stage, Node k knows all intermediate values

{
Ik{1}, . . . , I

k
{K}

}
of the partition Pk from all K files.
Reduce stage. Node k locally sorts all KV pairs whose keys fall into
the partition Pk, for all k ∈ K. Specifically, it sorts all intermediate
values in the partition Pk into a sorted list Qk as follows

Qk ← Sort
({
Ik{1}, . . . , I

k
{K}

})
.
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Table 2.1: Performance of TeraSort sorting 12GB data with K = 16 nodes and
100 Mbps network speed

Map Pack Shuffle Unpack Reduce Total
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
1.86 2.35 945.72 0.85 10.47 961.25

Performance evaluation

We performed an experiment on Amazon EC2 to sort 12GB of data by
running TeraSort on 16 nodes. The breakdown of the total execution
time is shown in Table 2.1.

We observe from Table 2.1 that for a conventional TeraSort exe-
cution, 98.4% of the total execution time was spent in data shuffling,
which is 508.5× of the time spent in the Map stage. This motivates us to
develop a coded distributed sorting algorithm, named CodedTeraSort,
which integrates the coding technique of CDC into TeraSort to trade
extra computation time to significantly reduce the communication time,
as shown in (2.55).

2.2.3 Coded TeraSort

We describe the CodedTeraSort algorithm, which is developed by inte-
grating the coding techniques of the CDC into the TeraSort algorithm.
Structured redundant file placement. For some parameter r ∈
{1, . . . ,K}, we first split the entire input KV pairs into N =

(K
r

)
input

files. Unlike the file placement of TeraSort, CodedTeraSort places each
of the N input files repetitively on r distinct nodes.

We label an input file using a unique subset S of K with size |S| = r,
i.e., the N input files are denoted by

{FS : S ⊆ K, |S| = r}. (2.57)

We repetitively place an input file FS on each of the r nodes in S,
and hence each node now stores Nr/K =

(K−1
r−1

)
files. As illustrated in

a simple example in Figure 2.5 for K = 4 and r = 2, the file F{2,3} is
placed on Nodes 2 and 3. Node 2 has files F{1,2}, F{2,3}, F{2,4}.
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As is done in the TeraSort, the key domain of the input KV pairs
is split into K ordered partitions P1, . . . , PK , and Node k is responsible
for sorting all KV pairs in the partition Pk in the Reduce stage, for all
k ∈ K.

Node 1 Node 2 Node 3 Node 4

1
28

51
78

8
30

52
80

12
34

53
83

17
45

69
90

23
47

72
99

16
39

64
87

Figure 2.5: An illustration of the structured redundant file placement in
CodedTeraSort with K = 4 nodes and r = 2.

Map stage. Each node repeatedly performs the Map stage operation
of TeraSort described above, on each input file placed on that node.
Only relevant intermediate values generated in the Map stage are kept
locally for further processing. In particular, out of the K intermediate
values

{
I1
S , . . . , I

K
S

}
generated from file FS , only IkS and

{
IiS : i ∈ K\S

}
are kept at Node k. This is because that the intermediate value IiS ,
required by Node i ∈ S\{k} in the Reduce stage, is already available at
Node i after the Map stage, so Node k does not need to keep them and
send them to the nodes in S\{k}. For example, as shown in Figure 2.6,
Node 1 does not keep the intermediate value I2

{1,2} for Node 2. However,
Node 1 keeps I1

{1,2}, I
3
{1,2}, I

4
{1,2}, which are required by Nodes 1, 3, and

4 in the Reduce stage.

Node 1

1
28

51
78

8
30

52
80

12
34

53
83

Hash

Hash

Hash

Intermediate values at Node 1

Figure 2.6: An illustration of the Map stage at Node 1 in CodedTeraSort with
K = 4, r = 2 and the key partitions [0, 25), [25, 50), [50, 75), [75, 100].
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Encoding to create coded packets. The role of the encoding process
is to exploit the structured data redundancy to create coded multicast
packets that are simultaneously useful for multiple nodes, thus saving
the load of communicating intermediate values. Specifically, in every
subsetM⊆ K of |M| = r + 1 nodes, the encoding operation proceeds
as follows.

• For each t ∈M, the intermediate value ItM\{t}, which is know at
all nodes inM\{t}, is evenly and arbitrarily split into r segments,
i.e.,

ItM\{t} = {ItM\{t},k : k ∈M\{t}}, (2.58)

where ItM\{t},k denotes the segment corresponding to Node k.

• For each k ∈M, we generate the coded packet of Node k inM,
denoted by EM,k, by XORing all segments corresponding to Node
k inM, 4 i.e.,

EM,k = ⊕
t∈M\{k}

ItM\{t},k. (2.59)

By the end of the Encoding stage, for each k ∈ K, Node k has
generated

(K−1
r

)
coded packets, i.e., {EM,k : k ∈M, |M| = r + 1}.

In Figure 2.7, we consider a scenario with r = 2, and illustrate the
encoding process in the subsetM = {1, 2, 3}. Exploiting the particular
structure imposed in the stage of file placement, each node creates a
coded packet that contains data segments useful for the other 2 nodes.
Multicast shuffling. After all coded packets are created at the K
nodes, the multicast shuffling process takes place within each subset
of r + 1 nodes. Specifically, within each groupM⊆ K of |M| = r + 1
nodes, each Node k ∈M multicasts its coded packet EM,k to the other
nodes inM\{k}. This coded packet is simultaneously useful for all of
these r nodes.
Decoding. Having received the coded packet EM,u from Node u,
Node k ∈ M\{u} performs the decoding process by XORing the
data segments {ItM\{t},u : t ∈ M\{u, k}} with EM,u to recover the

4All segments are zero-padded to the length of the longest one.



44 Coding for Bandwidth Reduction

Server 1 Server 2 Server 3

Known

Encode

Multicast
Shuffle

Decode

Figure 2.7: An illustration of the encoding process within a multicast group
M = {1, 2, 3}.

desired segment IkM\{k},u. Similarly, Node k recovers all data segments
{IkM\{k},u : u ∈ M\{k}} from the received coded packets in M, and
merge them back to obtain a required intermediate value IkM\{k}.
Reduce. After the Decoding stage, Node k has obtained all KV pairs in
the partition Pk, for all k ∈ K. In this final stage, Node k, k = 1, . . . ,K,
performs the Reduce process as in the TeraSort algorithm, sorting the
KV pairs in partition Pk locally.

2.2.4 Experiments

We imperially demonstrate the performance gain of CodedTeraSort
through experiments on Amazon EC2 clusters. In this subsection, we
first present the choices we have made for the implementation. Then, we
describe experiment setup. Finally, we discuss the experiment results.

Implementation Choices

Data format. All input KV pairs are generated from TeraGen Hadoop
TeraSort n.d. in the standard Hadoop package. Each input KV pair
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consists of a 10-byte key and a 90-byte value. A key is a 10-byte unsigned
integer, and the value is an arbitrary string of 90 bytes. The KV pairs
are sorted based on their keys, using the standard integer ordering.
Platform and library. We choose Amazon EC2 as the evaluation plat-
form. We implement both TeraSort and CodedTeraSort algorithms in
C++, and use Open MPI library Open MPI: Open Source High Perfor-
mance Computing n.d. for communications among EC2 instances.

Coordinator

Worker 1 Worker 2 Worker K...

Amazon EC2

Worker 3

Figure 2.8: The coordinator-worker system architecture.

System architecture. As shown in Figure 2.8, we employ a system
architecture that consists of a coordinator node and K worker nodes,
for some K ∈ N. Each node is run as an EC2 instance. The coordinator
node is responsible for creating the key partitions and placing the
input files on the local disks of the worker nodes. The worker nodes
are responsible for distributedly executing the stages of the sorting
algorithms.
In-memory processing. After the KV pairs are loaded from the local
files into the workers’ memories, all intermediate data that are used
for encoding, decoding and local sorting are persisted in the memories,
and hence there is no disk I/O involved during the executions of the
algorithms.

In the TeraSort implementation, each node sequentially steps
through Map, Pack, Shuffle, Unpack, and Reduce stages. In the Reduce
stage, the standard sort std::sort is used to sort each partition locally.
To better interpret the experiment results, we add the Pack and the
Unpack stages to separate the time of serialization and deserialization
from the other stages. The Pack stage serializes each intermediate value
to a continuous memory array to ensure that a single TCP flow is
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Node 1 Node 2 Node 3 Node 4

time

Node 1 Node 2 Node 3 Node 4

time

(a) serial unicast (b) serial multicast

Figure 2.9: (a) Serial unicast in the Shuffle stage of TeraSort; a solid arrow repre-
sents a unicast. (b) Serial multicast in the Multicast Shuffle stage of CodedTeraSort;
a group of solid arrows starting at the same node represents a multicast.

created for each intermediate value (which may contain multiple KV
pairs) when MPI_Send is called5. The Unpack stage deserializes the
received data to a list of KV pairs. In the Shuffle stage, intermediate
values are unicast serially, meaning that there is only one sender node
and one receiver node at any time instance. Specifically, as illustrated in
Figure 2.9(a), Node 1 starts to unicast to Nodes 2, 3, and 4 back-to-back.
After Node 1 finishes, Node 2 unicasts back-to-back to Nodes 1, 3, and
4. This continues until Node 4 finishes.

In the CodedTeraSort implementation, each node sequentially steps
through CodeGen, Map, Encode, Multicast Shuffling, Decode, and Re-
duce stages. In the CodeGen (or code generation) stage, firstly, each
node generates all file indices, as subsets of r nodes. Then each node
uses MPI_Comm_split to initialize

( K
r+1
)
multicast groups each contain-

ing r + 1 nodes on Open MPI, such that multicast communications
will be performed within each of these groups. The serialization and
deserialization are implemented respectively in the Encode and the
Decode stages. In Multicast Shuffling, MPI_Bcast is called to multicast
a coded packet in a serial manner, so only one node multicasts one of
its encoded packets at any time instance. Specifically, as illustrated in
Figure 2.9(b), Node 1 multicasts to the other 2 nodes in each multicast
group Node 1 is in. For example, Node 1 first multicasts to Node 2 and 3

5Creating a TCP flow per KV pair leads to inefficiency from overhead and
convergence issue.
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Table 2.2: Sorting 12 GB data with K = 16 nodes and 100 Mbps network speed

CodeGen Map Pack/Encode Shuffle Unpack/Decode Reduce Total Time Speedup
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

TeraSort: – 1.86 2.35 945.72 0.85 10.47 961.25
CodedTeraSort: r = 3 6.06 6.03 5.79 412.22 2.41 13.05 445.56 2.16×
CodedTeraSort: r = 5 23.47 10.84 8.10 222.83 3.69 14.40 283.33 3.39×

Table 2.3: Sorting 12 GB data with K = 20 nodes and 100 Mbps network speed

CodeGen Map Pack/Encode Shuffle Unpack/Decode Reduce Total Time Speedup
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

TeraSort: – 1.47 2.00 960.07 0.62 8.29 972.45
CodedTeraSort: r = 3 19.32 4.68 4.89 453.37 1.87 9.73 493.86 1.97×
CodedTeraSort: r = 5 140.91 8.59 7.51 269.42 3.70 10.97 441.10 2.20×

in the group {1, 2, 3}. After Node 1 finishes, Node 2 starts multicasting
in the same manner. This process continues until Node 4 finishes.

Experiment Setup

We conduct experiments using the following configurations to evaluate
the performance of CodedTeraSort and TeraSort on Amazon EC2:

• The coordinator runs on a r3.large instance with 2 processors, 15
GB memory, and 32 GB SSD.

• Each worker node runs on an m3.large instance with 2 processors,
7.5 GB memory, and 32 GB SSD.

• The incoming and outgoing traffic rates of each instance are
limited to 100 Mbps.6

• 12 GB of input data (equivalently 120 M KV pairs) is sorted.

2.2.5 Results

The breakdowns of the execution times with K = 16 workers and
K = 20 workers are shown in Tables 2.2 and 2.3 respectively. We
observe an overall 1.97×-3.39× speedup of CodedTeraSort as compared

6This is to alleviate the effects of the bursty behaviors of the transmission rates
in the beginning of some TCP sessions. The rates are limited by traffic control
command tc tc - show / manipulate traffic control settings n.d.
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with TeraSort. From the experiment results we make the following
observations:

• For CodedTeraSort, the time spent in the CodeGen stage is
proportional to

( K
r+1
)
, which is the number of multicast groups.

• The Map time of CodedTeraSort is approximately r times higher
than that of TeraSort. This is because that each node hashes
r times more KV pairs than that in TeraSort. Specifically, the
ratios of the CodedTeraSort’s Map time to the TeraSort’s Map
time from Table 2.2 are 6.03/1.86 ≈ 3.2 and 10.84/1.86 ≈ 5.8,
and from Table 2.3 are 4.68/1.47 ≈ 3.2 and 8.59/1.47 ≈ 5.8.

• While CodedTeraSort theoretically promises a factor of more
than r× reduction in shuffling time, the actual gains observed
in the experiments are slightly less than r. For example, for an
experiment with K = 16 nodes and r = 3, as shown in Table
2.2, the speedup of the Shuffle stage is 945.72/412.22 ≈ 2.3 < 3.
This phenomenon is caused by the following two factors. 1) Open
MPI’s multicast API (MPI_Bcast) has an inherent overhead per
multicast group, for instance, a multicast tree is constructed before
multicasting to a set of nodes. 2) Using the MPI_Bcast API, the
time of multicasting a packet to r nodes is higher than that of
unicasting the same packet to a single node. In fact, as measured
in Lee et al., 2018, the multicasting time increases logarithmically
with r.

• The sorting times in the Reduce stage of both algorithms depend
on the available memories of the nodes. CodedTeraSort inherently
has a higher memory overhead, e.g., it requires persisting more
intermediate values in the memories than TeraSort for coding
purposes, hence its local sorting process takes slightly longer. This
can be observed from the Reduce column in Tables 2.2 and 2.3.

Further, we observe the following trends from both tables:
Impact of redundancy parameter r: As r increases, the shuffling

time reduces substantially by approximately r times. However, the Map
execution time increases linearly with r, and more importantly the
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CodeGen time increases as
( K
r+1
)
. Hence, for small values of r (r < 6) we

observe overall reduction in execution time, and the speedup increases.
However, as we further increase r, the CodeGen time will dominate the
execution time, and the speedup decreases. Hence, in our evaluations,
we have limited r to be at most 5.7

Impact of worker number K: As K increases, the speedup decreases.
This is due to the following two reasons. 1) The number of multicast
groups, i.e.,

( K
r+1
)
, grows exponentially with K, resulting in a longer

execution time of the CodeGen process. 2) When more nodes participate
in the computation, for a fixed r, less amount of KV pairs are hashed
at each node locally in the Map stage, resulting in less locally available
intermediate values and a higher communication load.

2.3 Extension to wireless distributed computing

Having theoretically and empirically demonstrated how coding can help
to overcome the communication bottlenecks and significantly improve
the performance of applications hosted over wireline networks like data-
centers, we also extend the idea of coded computing into mobile edge
computing, in which mobile users participating in the computation
exchange intermediate computation results via the underlying wire-
less links. In the mobile edge computing scenario, the communication
bottleneck becomes much worse due to much lower data rates of wire-
less networks, which significantly delays the overall computation. We
demonstrate in this section that coding can exploit the rather abundant
computation resources in the network to create redundant computa-
tions, and trade these redundant computations for substantial reduction
on the bandwidth requirement. This technology will enable a scalable
mobile computing platform that can accommodates a large number of
users with a fixed communication bandwidth.

7The redundancy parameter r is also limited by the total storage avail-
able at the nodes. Since for a choice of redundancy parameter r, each piece
of input KV pairs should be stored at r nodes, we can not increase r beyond
total available storage at the worker nodes

input size .
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2.3.1 System model

We consider a system that has K mobile users. As illustrated in Fig-
ure 2.10, all users are connected wirelessly to an access point (e.g., a
cellular base station or a Wi-Fi router). The uplink channels of the K
users towards the access point are orthogonal to each other, and the
signals transmitted by the access point on the downlink are received by
all the users.

Uplink

Downlink

files

Dataset

Input

Output

Input

Output Input

Output

Access Point

User 1

User 2

User Kfiles

files

Figure 2.10: A wireless distributed computing system.

The system has a dataset (e.g., a feature repository of objects in a
image recognition application) that is evenly partitioned into N files
w1, . . . , wN ∈ F2F , for some N,F ∈ N. Each user k has a length-D input
dk ∈ F2D (e.g., user’s image in the image recognition application) to
process using the N files. To do that, as shown in Figure 2.10, User k
needs to compute

φ( dk︸︷︷︸
input

;w1, . . . , wN︸ ︷︷ ︸
dataset

), (2.60)

where φ : F2D × (F2F )N → F2B is an output function that maps the
input dk to an output result (e.g., the returned result after processing
the image) of length B ∈ N.

We assume that every mobile user has a local memory that can
store up to µ fractions of the dataset (i.e., µN files), for some constant
parameter µ. We focus on the case where 1

K ≤ µ < 1, such that each
user does not have enough storage for the entire dataset, but the entire



2.3. Extension to wireless distributed computing 51

dataset can be stored collectively across all the users. We denote the
set of indices of the files stored by User k as Uk. The selections of
Uks are design parameters, and we denote the design of U1, . . . ,UK as
dataset placement. The dataset placement is performed in prior to the
computation (e.g., users download parts of the feature repository when
installing the image recognition application).

Remark 2.9. The employed physical-layer network model is rather
simple and one can do better using a more detailed model and more
advanced techniques. However we note that any wireless medium can
be converted to our simple model using (1) TDMA on uplink; and
(2) broadcast at the rate of weakest user on downlink. Since our goal
is to introduce a “coded” framework for scalable wireless distributed
computing, we decide to abstract out the physical layer and focus on
the amount of data needed to be communicated. �

Distributed computing model. Motivated by prevalent distributed
computing structures like MapReduce Dean and Ghemawat, 2004 and
Spark Zaharia et al., 2010, we assume that the computation for input
dk can be decomposed as

φ(dk;w1, . . . , wN ) = h(g1(dk;w1), . . . , gN (dk;wN )), (2.61)

where

• The “Map” functions gn(dk;wn) : F2D × F2F → F2T , n ∈
{1, . . . , N}, k ∈ {1, . . . ,K}, maps the input dk and the file wn
into an intermediate value vk,n=gn(dk;wn)∈F2T , for some T ∈N,

• The “Reduce” function h : (F2T )N → F2B maps the inter-
mediate values for input dk in all files into the output value
φ(dk;w1, . . . , wN ) = h(vk,1, . . . , vk,N ), for all k ∈ {1, . . . ,K}.

We focus on the applications in which the size of the users’ inputs
is much smaller than the size of the computed intermediate values,
i.e., D � T . As a result, the overhead of disseminating the inputs is
negligible, and we assume that the users’ inputs d1, . . . , dK are known
at each user before the computation starts.
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Remark 2.10. The above assumption holds for various wireless dis-
tributed computing applications. For example, in a mobile navigation
application, an input is simply the address of the intended destination.
The computed intermediate results contain all possible routes between
the two end locations, from which the fastest one is computed for the
user. Similarly, for a set of “filtering” applications like image recognition
(or similarly augmented reality) and recommendation systems, the in-
puts are light-weight queries (e.g., the feature vector of an image) that
are much smaller than the filtered intermediate results containing all
attributes of related information. For example, an input can be multiple
words describing the type of restaurant a user is interested in, and the
intermediate results returned by a recommendation system application
can be a list of relevant information that include customers’ comments,
pictures, and videos of the recommended restaurants. �

Following the decomposition in (2.61), the overall computation
proceeds in three phases: Map, Shuffle, and Reduce.
Map phase: User k, k ∈ {1, . . . ,K}, computes the Map functions of
d1, . . . , dK based on the files in Uk. For each input dk and each file wn
in Uk, User k computes gn(dk, wn) = vk,n.
Shuffle phase: Users exchange the needed intermediate values via
the access point they all wirelessly connect to. As a result, the Shuffle
phase breaks into two sub-phases: uplink communication and downlink
communication.

On the uplink, user k creates a message Wk as a function of the
intermediate values computed locally, i.e.,

Wk = ψk ({vk,n : k ∈ {1, . . . ,K}, n ∈ Uk}) , (2.62)

and communicates Wk to the access point.

Definition 2.4 (Uplink Communication Load). We define the uplink
communication load, denoted by Lu, as the total number of bits in all
uplink messages W1, . . . ,WK , normalized by the number of bits in the
N intermediate values required by a user (i.e., NT ). ♦

We assume that the access point does not have access to the dataset.
Upon decoding all the uplink messages W1, . . . ,WK , the access point
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generates a message X from the decoded uplink messages, i.e.,

X = ρ(W1, . . . ,WK), (2.63)

and then broadcasts X to all users on the downlink.

Definition 2.5 (Downlink Communication Load). We define the down-
link communication load, denoted by Ld, as the number of bits in the
downlink message X, normalized by NT . ♦

Reduce phase: User k, k ∈ {1, . . . ,K}, uses the locally computed
results {~gn : n ∈ Uk} and the decoded downlink message X to construct
the inputs to the corresponding Reduce function, and calculates the
output value φ(dk;w1, . . . , wN ) = h(vk,1, . . . , vk,N ).
Example (uncoded scheme). As a benchmark, we consider an un-
coded scheme, where each user receives the needed intermediate values
sent uncodedly by some other users and forwarded by the access point,
achieving the communication loads

Luncoded
u (µ) = Luncoded

d (µ) = µK · ( 1
µ − 1). (2.64)

The above communication loads of the uncoded scheme grow with
the number of users K, overwhelming the limited spectral resources.
In this section, we argue that by utilizing coding at the users and the
access point, we can accommodate any number of users with a constant
communication load. Particularly, we propose in the next subsection
a scalable coded wireless distributed computing (CWDC) scheme that
achieves minimum possible uplink and downlink communication load
simultaneously, i.e.,

Lcoded
u = Loptimum

u ≈ 1
µ − 1, (2.65)

Lcoded
d = Loptimum

d ≈ 1
µ − 1. (2.66)

2.3.2 The proposed CWDC scheme

We present the proposed CWDC scheme for the wireless distributed
computing system. We first consider the storage size µ ∈ { 1

K ,
2
K , . . . , 1}
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such that µK ∈ N. We assume that N is sufficiently large such that
N =

( K
µK

)
η for some η ∈ N. 8

Dataset placement and Map phase execution. We evenly parti-
tion the indices of the N files into

( K
µK

)
disjoint batches, each containing

the indices of η files. We denote a batch of file indices as BT , which is
labelled by a unique subset T ⊂ {1, . . . ,K} of size |T | = µK. As such
defined, we have

{1, . . . , N}={i : i ∈ BT , T ⊂ {1, . . . ,K}, |T | = µK}. (2.67)

User k, k ∈ {1, . . . ,K}, stores locally all the files whose indices are in
BT if k ∈ T . That is,

Uk = ∪
T :|T |=µK,k∈T

BT . (2.68)

As a result, each of the N files is stored by µK distinct users.
Uplink communication. For any subset W ⊂ {1, . . . ,K}, and any
k /∈ W, we denote the set of intermediate values needed by User k and
known exclusively by users in W as VkW . More formally:

VkW , {vk,n : n ∈ ∩
i∈W
Ui, n /∈ ∪

i/∈W
Ui}. (2.69)

For all subsets S ⊆ {1, . . . ,K} of size µK + 1:

1. For each User k ∈ S, VkS\{k} is the set of intermediate values that
are requested by User k and are in the files whose indices are
in the batch BS\{k}, and they are exclusively known at all users
whose indices are in S\{k}. We evenly and arbitrarily split VkS\{k},
into µK disjoint segments {VkS\{k},i : i ∈ S\{k}}, where V

k
S\{k},i

denotes the segment associated with User i in S\{k} for User k.
That is, VkS\{k}= ∪

i∈S\{k}
VkS\{k},i.

2. User i, i ∈ S, sends the bit-wise XOR, denoted by ⊕, of all the
segments associated with it in S, i.e., User i sends the coded
segment WSi , ⊕

k∈S\{i}
VkS\{k},i.

8For small number of files N <
(
K
µK

)
, we can apply the coded wireless distributed

computing scheme to a smaller subset of users, achieving a part of the gain in
reducing the communication load.
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Since the coded message WSi contains η
µKT

9 bits for all i ∈ S, there
are a total of (µK+1)η

µK T bits communicated on the uplink in every subset
S of size µK + 1. Therefore, the uplink communication load achieved
by this coded scheme is

Lcoded
u (µ) = ( K

µK+1)(µK+1)·η·T
µK·NT = 1

µ − 1, µ ∈ { 1
K ,

2
K , . . . , 1}. (2.70)

Downlink communication. For all subsets S ⊆ {1, . . . ,K} of size
µK + 1, the access point computes µK random linear combinations of
the uplink messages generated based on the subset S:

CSj ({WSi : i ∈ S}), j = 1, . . . , µK, (2.71)

and multicasts them to all users in S.
Since each linear combination contains η

µKT bits, the coded scheme
achieves a downlink communication load

Lcoded
d (µ)= ( K

µK+1)η·T
NT = µK

µK+1 ·(
1
µ − 1), µ ∈ { 1

K ,
2
K , . . . , 1}. (2.72)

After receiving the random linear combinations CS1 , . . . , CSµK , User i,
i ∈ S, cancels all segments she knows locally, i.e., ∪

k∈S\{i}
{VkS\{k},j : j ∈

S\{k}}. Consequently, User i obtains µK random linear combinations
of the required µK segments {V iS\{i},j : j ∈ S\{i}}.

When µK is not an integer, we can first expand µ = αµ1 +(1−α)µ2
as a convex combination of µ1 , bµKc/K and µ2 , dµKe/K. Then we
partition the set of the N files into two disjoint subsets I1 and I2 of
sizes |I1| = αN and |I2| = (1− α)N . We next apply the above coded
scheme respectively to the files in I1 and I2, yielding the following
communication loads.

Lcoded
u (µ) = α( 1

µ1
− 1) + (1− α)( 1

µ2
− 1), (2.73)

Lcoded
d (µ) = α µ1K

µ1K+1 · (
1
µ1
− 1) + (1− α) µ2K

µ2K+1 · (
1
µ2
− 1). (2.74)

Hence, for general storage size µ, CWDC achieves the following
communication loads.

Lcoded
u (µ) = Conv( 1

µ − 1), (2.75)

Lcoded
d (µ) = Conv( µK

µK+1 · (
1
µ − 1)), (2.76)

9Here we assume that T is sufficiently large such that T
µK
∈ N.
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where Conv(f(µ)) denotes the lower convex envelop of the points
{(µ, f(µ)) :µ ∈ { 1

K ,
2
K , ..., 1}} for function f(µ).

We summarize the performance of the proposed CWDC scheme in
the following theorem.

Theorem 2.3. For a wireless distributed computing application with a
dataset of N files, and K users that each can store µ ∈ { 1

K ,
2
K , . . . , 1}

fraction of the files, the proposed CWDC scheme achieves the following
uplink and downlink communication loads for sufficiently large N .

Lcoded
u (µ) = 1

µ − 1, (2.77)

Lcoded
d (µ) = µK

µK+1 · (
1
µ − 1). (2.78)

For general 1
K ≤ µ ≤ 1, the achieved loads are as stated in (2.75) and

(2.76).

Remark 2.11. Theorem 2.3 implies that, for large K, Lcoded
u (µ) ≈

Lcoded
d (µ) ≈ 1

µ − 1, which is independent of the number of users. Hence,
we can accommodate any number of users without incurring extra
communication load, and the proposed scheme is scalable. The reason
for this phenomenon is that, as more users joint the network, with
an appropriate dataset placement, we can create coded multicasting
opportunities to reduce the communication loads by a factor that scales
linearly with K. Such phenomenon was also observed in the context of
cache networks (see e.g., Maddah-Ali and Niesen, 2014b). �

Remark 2.12. As illustrated in Figure 2.11, the proposed CWDC
scheme utilizes coding at the mobile users and the access point to
reduce the uplink and downlink communication load by a factor of µK
and µK+1 respectively, which scale linearly with the aggregated storage
size of the system. �

Remark 2.13. Compared with distributed computing over wired servers
where we only need to design one data shuffling scheme between servers
in Section 2.1, here in the wireless setting we jointly design uplink
and downlink shuffling schemes, which minimize both the uplink and
downlink communication loads. �
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Figure 2.11: Comparison of the communication loads achieved by the uncoded
scheme with those achieved by the proposed CWDC scheme, for a network of K = 20
users. Here the storage size µ ≥ 1

K
= 0.05 such that the entire dataset can be stored

across the users.

2.3.3 Optimality of the proposed CWDC scheme

In this subsection, we demonstrate in the following theorem, that the
proposed CWDC scheme achieves the minimum uplink and downlink
communication loads using any scheme.

Theorem 2.4. For a wireless distributed computing application using
any dataset placement and communication schemes that achieve an
uplink load Lu and a downlink load Ld, Lu and Ld are lower bounded
by Lcoded

u (µ) and Lcoded
d (µ) as stated in Theorem 2.3 respectively.

Remark 2.14. Using Theorem 2.3 and 2.4, we have completely charac-
terized the minimum achievable uplink and downlink communication
loads, using any dataset placement, uplink and downlink communication
schemes. This implies that the proposed CWDC scheme simultaneously
minimizes both uplink and downlink communication loads required to
accomplish distributed computing, and no other scheme can improve
upon it. This also demonstrates that there is no fundamental tension
between optimizing uplink and downlink communication in wireless
distributed computing. �

For a dataset placement U = {Uk}Kk=1, we denote the minimum
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possible uplink and downlink communication loads, achieved by any
uplink-downlink communication scheme to accomplish wireless dis-
tributed computing, by L∗u(U) and L∗d(U) respectively. We next prove
Theorem 2.4 by deriving lower bounds on L∗u(U) and L∗d(U) respectively.

Lower bound on L∗u(U)

For a given dataset placement U , we denote the number of files that
are stored at j users as ajU , for all j ∈ {1, . . . ,K}, i.e.,

ajU =
∑

J⊆{1,...,K}:|J |=j
|( ∩
k∈J
Uk)\( ∪

i/∈J
Ui)|. (2.79)

For any U , it is clear that {ajU}Kj=1 satisfy

K∑
j=1

ajU = N, (2.80)

K∑
j=1

jajU = µNK. (2.81)

We start the proof with the following lemma, which characterizes
a lower bound on L∗u(U) in terms of the distribution of the files in the
dataset placement U , i.e., a1

U , . . . , a
K
U .

Lemma 2.5. L∗u(U) ≥
K∑
j=1

ajU
N ·

K−j
j .

Lemma 2.5 can be proved following the similar steps in the proof
of Lemma 2.2 in Section 2.1, after replacing the downlink broadcast
message X with the uplink unicast messages W1, . . . ,WK in conditional
entropy terms (since X is a function of W1, . . . ,WK).

Next, since the function K−j
j in Lemma 2.5 is convex in j, and by

(2.80) that
K∑
j=1

ajU
N = 1 and (2.81), we have

L∗u(U) ≥
K−

K∑
j=1

j
a
j
U
N

K∑
j=1

j
a
j
U
N

= K−µK
µK = 1

µ − 1. (2.82)
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We can further improve the lower bound in (2.82) for a particular µ
such that µK /∈ N. For a given storage size µ, we first find two points
(µ1,

1
µ1
− 1) and (µ2,

1
µ2
− 1), where µ1 , bµKc/K and µ2 , dµKe/K.

Then we find the line p+ qt connecting these two points as a function
of t, 1

K ≤ t ≤ 1, for some constants p, q ∈ R. We note that p and q are
different for different µ and

p+ qt|t=µ1 = 1
µ1
− 1, (2.83)

p+ qt|t=µ2 = 1
µ2
− 1. (2.84)

Then by the convexity of the function 1
t − 1, the function 1

t − 1
cannot be smaller then the function p+ qt at the points t = 1

K ,
2
K , . . . , 1.

That is, for all t ∈ { 1
K , . . . , 1},

1
t
− 1 ≥ p+ qt. (2.85)

By Lemma 2.5, we have

L∗u(U) ≥
K∑
j=1

ajU
N
· K − j

j
(2.86)

=
∑

t= 1
K
,...,1

atKU
N
·
(1
t − 1

)
(2.87)

≥
∑

t= 1
K
,...,1

atKU
N
· (p+ qt) (2.88)

= p+ qµ, (2.89)

Therefore, for general 1
K ≤ µ ≤ 1, L∗u(U) is lower bounded by the

lower convex envelop of the points {(µ, 1
µ − 1) : µ ∈ { 1

K ,
2
K , ..., 1}}.

Lower bound on L∗d(U)

The lower bound on the minimum downlink communication load L∗d(U)
can be proved following the similar steps of lower bounding the min-
imum uplink communication load L∗u(U), after making the following
enhancements to the downlink communication system:



60 Coding for Bandwidth Reduction

• We consider the access point as the (K+ 1)th user who has stored
all N files and has a virtual input to process. Thus the enhanced
downlink communication system has K + 1 users, and the dataset
placement for the enhanced system

Ū , {U ,UK+1}, (2.90)

where UK+1 is equal to {1, . . . , N}.

• We assume that every one of the K + 1 users can broadcast to
the rest of the users, where the broadcast message is generated
by mapping the locally stored files.

Apparently the minimum downlink communication load of the sys-
tem cannot increase after the above enhancements. Thus the lower
bound on the minimum downlink communication load of the enhanced
system is also a lower bound for the original system.

Then we can apply the same arguments in the proof of Lemma 2.5
to the enhanced downlink system of K + 1 users, obtaining a lower
bound on L∗d(U), as described in the following corollary:

Corollary 2.6. L∗d(U) ≥
K∑
j=1

ajU
N ·

K−j
j+1 .

Proof. Applying Lemma 2.5 to the enhanced downlink system yields

L∗d(Ū) ≥
K+1∑
j=1

ajŪ
N
· K + 1− j

j
≥

K+1∑
j=2

ajŪ
N
· K + 1− j

j
(2.91)

=
K∑
j=1

aj+1
Ū
N
· K − j
j + 1 . (2.92)

Since the access point has stored every file, aj+1
Ū = ajU , for all

j ∈ {1, . . . ,K}. Therefore, (2.92) can be re-written as

L∗d(U) ≥ L∗d(Ū) ≥
K∑
j=1

ajU
N
· K − j
j + 1 . (2.93)

�
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Then following the same arguments as in the proof for the minimum
uplink communication load, we have

L∗d(U) ≥ K−µK
µK+1 = µK

µK+1 · (
1
µ − 1). (2.94)

For general 1
K ≤ µ ≤ 1, L∗d(U) is lower bounded by the lower convex

envelop of the points {(µ, µK
µK+1( 1

µ − 1)) : µ ∈ { 1
K ,

2
K , ..., 1}}.

This completes the proof of Theorem 2.4.

2.4 Related works and open problems

The problem of characterizing the minimum communication for dis-
tributed computing has been previously considered in several settings
in both computer science and information theory communities. In Yao,
1979, a basic computing model is proposed, where two parities have
x and y and aim to compute a boolean function f(x, y) by exchang-
ing the minimum number of bits between them. Also, the problem of
minimizing the required communication for computing the modulo-two
sum of distributed binary sources with symmetric joint distribution was
introduced in Korner and Marton, 1979. Following these two seminal
works, a wide range of communication problems in the scope of dis-
tributed computing have been studied (see, e.g., Orlitsky and El Gamal,
1990; Becker and Wille, 1998; Kushilevitz and Nisan, 2006; Orlitsky and
Roche, 2001; Nazer and Gastpar, 2007; Ramamoorthy and Langberg,
2013). The key differences distinguishing the setting in this chapter from
most of the prior ones are 1) We focus on the flow of communication in
a general MapReduce distributed computing framework, rather than
the structures of the functions or the input distributions. 2) We do not
impose any constraint on the numbers of output results, input data
files and computing nodes (they can be arbitrarily large), 3) We do not
assume any special property (e.g., linearity) of the computed functions.

The idea of efficiently creating and exploiting coded multicasting
was initially proposed in the context of cache networks in Maddah-
Ali and Niesen, 2014b; Maddah-Ali and Niesen, 2014a, and extended
in Ji et al., 2016; Karamchandani et al., 2014, where caches pre-fetch
part of the content in a way to enable coding during the content
delivery, minimizing the network traffic. In this monograph, we focus
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on the tradeoff between computation and communication in distributed
computing. We demonstrate that the coded multicasting opportunities
exploited in the caching problems also exist in the data shuffling of
distributed computing frameworks, which can be created by a strategy
of repeating the computations of the Map functions specified by the
proposed scheme.

There are many follow-up works after the formulation and the
characterization of the optimal computation-communication tradeoff
in Li et al., 2015; Li et al., 2018b. In Li et al., 2016b, the proposed Coded
Distributed Computing (CDC) was utilized in multi-stage computations
that consist of executing a series of MapReduce jobs described by a
directed acyclic graph, individually minimizing the communication load
within each stage. When the Reduce functions are linear, it was shown
in Li et al., 2018a that the pre-combining technique (see, e.g., Dean
and Ghemawat, 2004) can be combined with CDC to further reduce
the bandwidth requirement. When the distributed computing nodes
have heterogeneous storage/processing capabilities, or the flexibility of
asymmetric computations for the output functions, the optimal task
allocation and coded communication schemes were studied in Yu et al.,
2017a; Reisizadeh et al., 2017; Kiamari et al., 2017; Ezzeldin et al., 2017.
Recent works Konstantinidis and Ramamoorthy, 2018; Woolsey et al.,
2018 also studied a new tradeoff between the number of files and the
load of communication, under the MapReduce distributed computing
framework. Compared with CDC scheme, the new coded computing
schemes require exponentially less number of files (or splits of the entire
dataset), at the cost of slightly increased communication load.

In another closely related line of works, coded data shuffling schemes
were designed to efficiently move data batches between distributed
worker, in order to improve the statistical efficiency of distributed
iterative algorithms (see, e.g., Lee et al., 2018; Song et al., 2017; Attia
and Tandon, 2016; Wan et al., 2018). In this setting, at the beginning of
each iteration, the data stored in the local cache memories of the workers
are exploited to create coded multicast packets for data shuffling. By
the end of the iteration, the workers update their local caches such that
efficient multicasting opportunities are enabled in the next iteration.
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Finally, we end this chapter with some open problems along the
direction of coding for bandwidth reduction.

Heterogeneous networks with asymmetric tasks. It is common
to have computing nodes with heterogeneous storage, processing and
communication capacities within computer clusters. In addition, pro-
cessing different parts of the dataset can generate intermediate results
with different sizes (e.g., performing data analytics on highly-clustered
graphs). For computing over heterogeneous nodes, one solution is to
break the more powerful nodes into multiple smaller virtual nodes that
have homogeneous capability, and then apply the proposed CDC scheme
for the homogeneous setting. When intermediate results have different
sizes, the proposed coding scheme still applies, but the coding opera-
tions are not symmetric as in the homogeneous case. Alternatively, we
can employ a low-complexity greedy approach, in which we assign the
Map tasks to maximize the number of multicasting opportunities that
simultaneously deliver useful information to the largest possible number
of nodes. As mentioned before, some preliminary studies along this
direction have been performed to obtain the solutions for some special
cases (see, e.g., Yu et al., 2017a; Reisizadeh et al., 2017; Kiamari et al.,
2017; Ezzeldin et al., 2017). Nevertheless, systematically characterizing
the optimal resource allocation strategies and coding schemes for general
heterogeneous networks with asymmetric tasks remains an interesting
open problem.

Multi-stage computation tasks. Unlike simple computation tasks
like Grep, Join and Sort, many distributed computing applications con-
tain multiples stages of MapReduce computations, whose computation
logic can be expressed as a directed acyclic graph. In order to speed
up multi-stage computation tasks using codes, while one straightfor-
ward approach is to apply the proposed CDC scheme for the cascaded
distributed computing framework to compute each stage locally, we
expect to achieve a higher reduction in bandwidth consumption and
response time by globally designing codes for the entire task graph and
accounting for interactions between consecutive stages. A preliminary
exploration along this direction was recently presented in Li et al.,
2016b.
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Optimal code design for underlying algebra. In many machine
learning applications, the Reduce function has specific algebraic proper-
ties that can be exploited in coded computing to substantially reduce
the communication load. For example, many Reduce functions in the
existing MapReduce frameworks are linear, as they essentially provide
an average or a linear summary of the corresponding intermediate
computations. As a preliminary work, a coded distributed computing
scheme, named “compressed coded distributed computing” (compressed
CDC), was proposed in Li et al., 2018a, which incorporates the pre-
combining compression techniques into the CDC scheme to further
reduce the communication load for linear Reduce functions. Along this
direction, it is of great interest to study the optimal task assignment
and communication schemes for general non-linear Reduce functions,
such as thresholds (max, min, etc) and polynomials that are for example
used in distributed training.
Large-scale graph analytics. There is an increasing interest in ex-
ecuting complex analyses over very large graphs. Examples include
graph-theoretic problems in social networks (e.g., targeted advertising
and studying the spread of information), bioinformatics (e.g., study of
the interactions between various components in a biological system), and
networks (e.g., network analysis for intelligence and surveillance. Popu-
lar distributed graph computing frameworks, such as Pregel Malewicz
et al., 2010 and GraphLab Low et al., 2012, can be viewed as decompos-
ing the intermediate computations in such a way that they only depend
on the neighbors at each node (see Figure 2.12(a)). This is commonly
referred to as “think like a vertex” computation model, which makes
the parallel computations very efficient by leveraging graph topology to
reduce the communication load at each iteration of the algorithm.

More formally, we can consider an undirected graph G = (V, E),
where for each graph node v ∈ {1, 2, . . . , |V|}, a file wv is associated
with the node. Let N ∗(v) denote the neighbourhood of node v (including
v). We can then model the computation at each vertex v as

φv(WN ∗(v)) = hv({gv,j(wj) : wj ∈ WN ∗(v)}), (2.95)

where the Map function gv,j(wj) maps the input file wj into an interme-
diate value, and the Reduce function hv(.) maps the intermediate values
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Figure 2.12: a) An overview of “think like a vertex” approach taken in common
parallel graph computing frameworks, in which the intermediate computations only
depend on the neighbors at each node Distributed Algorithms and Optimization
Lecture Notes n.d. ; b) Illustration of the fundamental trade-off curve between
communication load L and storage size at each server m in parallel graph processing.

of the neighboring nodes of v into the final output value φv. We note
that a key difference between eq. (2.95) and the general MapReduce
computation in eq. (2.1) is that the computations at each node now
only depend on the neighboring nodes according to the graph topology.

Based on the above abstraction of the computation model, an inter-
esting problem is to design the optimal allocation of the subset of nodes
(or data) to each available server and the coding for data shuffling, such
that the amount of communication between servers is minimized. More
specifically, let us denote the number of available servers by K and
assume that the maximum number of nodes that can be assigned to one
server or the storage size is denoted by m. Our goal is to characterize the
fundamental trade-off curve between communication load and storage
size (L,m) for an arbitrary graph, and how coding can help in achieving
this fundamental limit (see Figure 2.12(b)). A preliminary exploration
for random graphs was recently presented in Prakash et al., 2018.



3
Coding for Straggler Mitigation

Straggling machines cause a major performance bottleneck as distributed
computing applications continue to scale out (see, e.g., Zaharia et al.,
2008; Ananthanarayanan et al., 2013; Dean and Barroso, 2013). It was
recently proposed to use techniques from coding theory to alleviate the
effect of stragglers in large-scale data analytics, especially performed
over low-end machines on shared platforms like Amazon EC2. The key
idea is to inject and leverage redundant computation tasks into the
cluster, such that the overall computation task can be accomplished
without waiting for the results from the unknown stragglers, hence
significantly reducing the overall computation latency.

As a motivating example of this concept, we consider a distributed
matrix-vector multiplication problem, which underlies many distributed
machine learning algorithms. Given a data matrix A and a target vector
x, the goal is to compute the product Ax distributedly over 3 workers.
The conventional way of doing this is to first partition the matrix A into
3 sub-matrices A1, A2, and A3, such that A = [A1; A2; A3], and then
compute Aix at worker i. Using this approach, the overall computation
time is limited by the slowest worker, and can be indefinitely long if
one worker becomes irresponsive. Utilizing the idea of erasure coding,
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<latexit sha1_base64="IOCUexrRaEMHIL0q+OjETlBs/7M=">AAACLnicbVBNS8NAEN3Urxq/oh69rBZBEUpSBPVWFcSjgrFCU8pmO6lLN5uwu5GW0H/kxb/iRUTFqz/Dba1FrQMLb96bx868MOVMadd9tgpT0zOzc8V5e2FxaXnFWV27VkkmKfg04Ym8CYkCzgT4mmkON6kEEoccamHndKDX7kAqlogr3UuhEZO2YBGjRBuq6ZwFIbSZyMOYaMm6/TwII3zcb3pdHAQ74y7Y3As2v7vKrhFBtMYm2246JbfsDgtPAm8ESmhUF03nMWglNItBaMqJUnXPTXUjJ1IzyqFvB5mClNAOaUPdQEFiUI18eG8fbxumhaNEmic0HrI/HTmJlerFoZk0G96qv9qA/E+rZzo6bORMpJkGQb8+ijKOdYIH4eEWk0A17xlAqGRmV0xviSRUm4gHIXh/T54EfqV8VPYu90vVk1EaRbSBttAO8tABqqJzdIF8RNE9ekQv6NV6sJ6sN+v9a7RgjTzr6FdZH595nqen</latexit><latexit sha1_base64="IOCUexrRaEMHIL0q+OjETlBs/7M=">AAACLnicbVBNS8NAEN3Urxq/oh69rBZBEUpSBPVWFcSjgrFCU8pmO6lLN5uwu5GW0H/kxb/iRUTFqz/Dba1FrQMLb96bx868MOVMadd9tgpT0zOzc8V5e2FxaXnFWV27VkkmKfg04Ym8CYkCzgT4mmkON6kEEoccamHndKDX7kAqlogr3UuhEZO2YBGjRBuq6ZwFIbSZyMOYaMm6/TwII3zcb3pdHAQ74y7Y3As2v7vKrhFBtMYm2246JbfsDgtPAm8ESmhUF03nMWglNItBaMqJUnXPTXUjJ1IzyqFvB5mClNAOaUPdQEFiUI18eG8fbxumhaNEmic0HrI/HTmJlerFoZk0G96qv9qA/E+rZzo6bORMpJkGQb8+ijKOdYIH4eEWk0A17xlAqGRmV0xviSRUm4gHIXh/T54EfqV8VPYu90vVk1EaRbSBttAO8tABqqJzdIF8RNE9ekQv6NV6sJ6sN+v9a7RgjTzr6FdZH595nqen</latexit><latexit sha1_base64="IOCUexrRaEMHIL0q+OjETlBs/7M=">AAACLnicbVBNS8NAEN3Urxq/oh69rBZBEUpSBPVWFcSjgrFCU8pmO6lLN5uwu5GW0H/kxb/iRUTFqz/Dba1FrQMLb96bx868MOVMadd9tgpT0zOzc8V5e2FxaXnFWV27VkkmKfg04Ym8CYkCzgT4mmkON6kEEoccamHndKDX7kAqlogr3UuhEZO2YBGjRBuq6ZwFIbSZyMOYaMm6/TwII3zcb3pdHAQ74y7Y3As2v7vKrhFBtMYm2246JbfsDgtPAm8ESmhUF03nMWglNItBaMqJUnXPTXUjJ1IzyqFvB5mClNAOaUPdQEFiUI18eG8fbxumhaNEmic0HrI/HTmJlerFoZk0G96qv9qA/E+rZzo6bORMpJkGQb8+ijKOdYIH4eEWk0A17xlAqGRmV0xviSRUm4gHIXh/T54EfqV8VPYu90vVk1EaRbSBttAO8tABqqJzdIF8RNE9ekQv6NV6sJ6sN+v9a7RgjTzr6FdZH595nqen</latexit><latexit sha1_base64="IOCUexrRaEMHIL0q+OjETlBs/7M=">AAACLnicbVBNS8NAEN3Urxq/oh69rBZBEUpSBPVWFcSjgrFCU8pmO6lLN5uwu5GW0H/kxb/iRUTFqz/Dba1FrQMLb96bx868MOVMadd9tgpT0zOzc8V5e2FxaXnFWV27VkkmKfg04Ym8CYkCzgT4mmkON6kEEoccamHndKDX7kAqlogr3UuhEZO2YBGjRBuq6ZwFIbSZyMOYaMm6/TwII3zcb3pdHAQ74y7Y3As2v7vKrhFBtMYm2246JbfsDgtPAm8ESmhUF03nMWglNItBaMqJUnXPTXUjJ1IzyqFvB5mClNAOaUPdQEFiUI18eG8fbxumhaNEmic0HrI/HTmJlerFoZk0G96qv9qA/E+rZzo6bORMpJkGQb8+ijKOdYIH4eEWk0A17xlAqGRmV0xviSRUm4gHIXh/T54EfqV8VPYu90vVk1EaRbSBttAO8tABqqJzdIF8RNE9ekQv6NV6sJ6sN+v9a7RgjTzr6FdZH595nqen</latexit>

Straggler

encode decode
Ax<latexit sha1_base64="RO6cYrfACKeKVgW8JodK6KbfrRk=">AAAB9XicbVDLTsMwENzwLOVV4MjFokLiVCUICY4FLhyLRB9SGyrHdVqrthPZDlBF+Q8uHECIK//Cjb/BTXOAlpFWO5rZldcTxJxp47rfztLyyuraemmjvLm1vbNb2dtv6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2Mr6d++4EqzSJ5ZyYx9QUeShYygo2V7tNeEKLLLG9PWb9SdWtuDrRIvIJUoUCjX/nqDSKSCCoN4VjrrufGxk+xMoxwmpV7iaYxJmM8pF1LJRZU+2l+dYaOrTJAYaRsSYNy9fdGioXWExHYSYHNSM97U/E/r5uY8MJPmYwTQyWZPRQmHJkITSNAA6YoMXxiCSaK2VsRGWGFibFBlW0I3vyXF0nrtOa5Ne/2rFq/KuIowSEcwQl4cA51uIEGNIGAgmd4hTfn0Xlx3p2P2eiSU+wcwB84nz8Q15I3</latexit><latexit sha1_base64="RO6cYrfACKeKVgW8JodK6KbfrRk=">AAAB9XicbVDLTsMwENzwLOVV4MjFokLiVCUICY4FLhyLRB9SGyrHdVqrthPZDlBF+Q8uHECIK//Cjb/BTXOAlpFWO5rZldcTxJxp47rfztLyyuraemmjvLm1vbNb2dtv6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2Mr6d++4EqzSJ5ZyYx9QUeShYygo2V7tNeEKLLLG9PWb9SdWtuDrRIvIJUoUCjX/nqDSKSCCoN4VjrrufGxk+xMoxwmpV7iaYxJmM8pF1LJRZU+2l+dYaOrTJAYaRsSYNy9fdGioXWExHYSYHNSM97U/E/r5uY8MJPmYwTQyWZPRQmHJkITSNAA6YoMXxiCSaK2VsRGWGFibFBlW0I3vyXF0nrtOa5Ne/2rFq/KuIowSEcwQl4cA51uIEGNIGAgmd4hTfn0Xlx3p2P2eiSU+wcwB84nz8Q15I3</latexit><latexit sha1_base64="RO6cYrfACKeKVgW8JodK6KbfrRk=">AAAB9XicbVDLTsMwENzwLOVV4MjFokLiVCUICY4FLhyLRB9SGyrHdVqrthPZDlBF+Q8uHECIK//Cjb/BTXOAlpFWO5rZldcTxJxp47rfztLyyuraemmjvLm1vbNb2dtv6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2Mr6d++4EqzSJ5ZyYx9QUeShYygo2V7tNeEKLLLG9PWb9SdWtuDrRIvIJUoUCjX/nqDSKSCCoN4VjrrufGxk+xMoxwmpV7iaYxJmM8pF1LJRZU+2l+dYaOrTJAYaRsSYNy9fdGioXWExHYSYHNSM97U/E/r5uY8MJPmYwTQyWZPRQmHJkITSNAA6YoMXxiCSaK2VsRGWGFibFBlW0I3vyXF0nrtOa5Ne/2rFq/KuIowSEcwQl4cA51uIEGNIGAgmd4hTfn0Xlx3p2P2eiSU+wcwB84nz8Q15I3</latexit><latexit sha1_base64="RO6cYrfACKeKVgW8JodK6KbfrRk=">AAAB9XicbVDLTsMwENzwLOVV4MjFokLiVCUICY4FLhyLRB9SGyrHdVqrthPZDlBF+Q8uHECIK//Cjb/BTXOAlpFWO5rZldcTxJxp47rfztLyyuraemmjvLm1vbNb2dtv6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2Mr6d++4EqzSJ5ZyYx9QUeShYygo2V7tNeEKLLLG9PWb9SdWtuDrRIvIJUoUCjX/nqDSKSCCoN4VjrrufGxk+xMoxwmpV7iaYxJmM8pF1LJRZU+2l+dYaOrTJAYaRsSYNy9fdGioXWExHYSYHNSM97U/E/r5uY8MJPmYwTQyWZPRQmHJkITSNAA6YoMXxiCSaK2VsRGWGFibFBlW0I3vyXF0nrtOa5Ne/2rFq/KuIowSEcwQl4cA51uIEGNIGAgmd4hTfn0Xlx3p2P2eiSU+wcwB84nz8Q15I3</latexit>

Worker 2 

A1x
<latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit><latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit><latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit><latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit>

A2x
<latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit><latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit><latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit><latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit>

(A1+A2)x
<latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit><latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit><latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit><latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit>

A1x
<latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit><latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit><latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit><latexit sha1_base64="H8lvXAbQngpHu5uYJJp/a6FfO40=">AAAB+XicbZDLSsNAFIZP6q3WW9Slm8EiuCqJCLqsunFZwV6gDWEynbRDJ5MwMymWkDdx40IRt76JO9/GaZqFtv4w8PGfczhn/iDhTGnH+bYqa+sbm1vV7drO7t7+gX141FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLmb17tTKhWLxaOeJdSL8EiwkBGsjeXbdjYIQnST+24BT7lv152GUwitgltCHUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w2SBVNMJngEe0bFDiiysuKy3N0ZpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsGomBHf5y6vQuWi4TsN9uKw3b8s4qnACp3AOLlxBE+6hBW0gMIVneIU3K7NerHfrY9FascqZY/gj6/MHtkGTDA==</latexit>

A2x
<latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit><latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit><latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit><latexit sha1_base64="69n1vxvo80NjqjOAiLno21V35k4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1gEVyUpgi6rblxWsBdoQ5hMJ+3QySTMTIol5E3cuFDErW/izrdxmmahrT8MfPznHM6ZP0g4U9pxvq219Y3Nre3KTnV3b//g0D467qg4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNzN690plYrF4lHPEupFeCRYyAjWxvJtOxsEIbrJ/UYBT7lv15y6UwitgltCDUq1fPtrMIxJGlGhCcdK9V0n0V6GpWaE07w6SBVNMJngEe0bFDiiysuKy3N0bpwhCmNpntCocH9PZDhSahYFpjPCeqyWa3Pzv1o/1eG1lzGRpJoKslgUphzpGM1jQEMmKdF8ZgATycytiIyxxESbsKomBHf5y6vQadRdp+4+XNaat2UcFTiFM7gAF66gCffQgjYQmMIzvMKblVkv1rv1sWhds8qZE/gj6/MHt8yTDQ==</latexit>

(A1+A2)x
<latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit><latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit><latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit><latexit sha1_base64="NjA8+zSigK4P1WgZO509x/j3g0Y=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl8whTITRDkGPUy8eJ7gXWEtJs3QLS9OSpOIou3rxq3jxoIhXv4E3v41ZV0E3/xD45f88D8nz92NGpbKsL6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o6tpvXNHhKQRv1XjmLghGnAaUIyUtjwTVlPHD+DFxLOd8olT/rnVjzO6n3hmxapZmeAi2DlUQK6mZ346/QgnIeEKMyRlz7Zi5aZIKIoZmZScRJIY4REakJ5GjkIi3TTbZAKPtNOHQST04Qpm7u+JFIVSjkNfd4ZIDeV8bWr+V+slKjh3U8rjRBGOZw8FCYMqgtNYYJ8KghUba0BYUP1XiIdIIKx0eCUdgj2/8iK06zXbqtk3p5XGZR5HERyAQ1AFNjgDDXANmqAFMHgAT+AFvBqPxrPxZrzPWgtGPrMP/sj4+AZRTZgw</latexit>

Figure 3.1: Coded matrix-vector multiplication. Each worker stores a coded sub-
matrix of the data matrix A. During computation, the master can recover the final
result using the results of any 2 out of the 3 workers.

as shown in Figure 3.1, a master node partitions the matrix into two
sub-matrices A1 and A2, and creates a coded sub-matrix A1 + A2,
and gives each of these three sub-matrices to one of the workers for
computation. Now, the master can recover the desired computation
from the results of any 2 out of the 3 workers. For example as shown
in Figure 3.1, the missing result A2x can be recovered by subtracting
the result of worker 1 from that of worker 3. This example illustrates
that by introducing 50% redundant computations, we can now tolerate
a single straggler. For a general matrix-vector multiplication problem
distributedly executed over n workers, it was proposed in Lee et al.,
2018 to first partition the matrix into k sub-matrices, for some k < n,
and then use an (n, k) MDS code (e.g., Reed-Solomon code) to generate
n coded sub-matrices, each of which is stored on a worker. During the
computation process, each worker multiplies its local sub-matrix with
the target vector and returns the result to the master. Due to the “k
out of n” property of the (n, k) MDS code, the master can recover the
overall computation result using the results from the fastest k worker,
protecting the system from as many as n− k stragglers.

While repeating computation tasks has been demonstrated to be an
effective approach in straggler mitigation (see, e.g., Ananthanarayanan
et al., 2013; Wang et al., 2014; Gardner et al., 2015; Joshi et al., 2017),
many recent works have been focusing on characterizing the optimal
codes to combat the straggler’s effect of distributed linear algebraic
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computations like matrix-vector and matrix-matrix multiplication. For
a problem of multiplying a matrix with a long vector, a sparse code
was designed in Dutta et al., 2016 such that only a subset of the entries
of the vector are needed for local computations, while still maintaining
the robustness to a certain number of stragglers. In the problem of
distributed matrix-matrix multiplication where we want to compute the
multiplication of two large matrices A and B over distributed workers,
each of whom can only store a part of A and B, product code was
proposed in Lee et al., 2017 to separately encode A and B using MDS
codes, and then each worker is assigned to compute the product of a
coded sub-matrix of A and a coded sub-matrix of B. Using the product
code, the master needs to wait for a much less number of workers before
it can recover the final multiplication results, compared with schemes
that only code one of the two matrices. Finally, in Reisizadeh et al.,
2017; Aktas et al., 2018, the optimal task/resource allocation (i.e., where
and when to launch the redundant coded tasks) was studied to minimize
the overall computation latency.

In this chapter, we first consider a distributed matrix-matrix multi-
plication problem, and propose an optimal coded computation scheme,
named “polynomial code” to achieve the minimum possible recovery
threshold, which is defined as the number of workers the master needs
to wait for before recovering the overall computation result. Next, we
go beyond matrix algebra, and consider distributed computing of an
arbitrary multivariate polynomial over a dataset. For this problem,
we propose “Lagrange Coded Computing” (LCC), which leverages the
well-known Lagrange interpolation polynomial to create computation
redundancy in a novel coded form across the workers, and achieves the
minimum recovery threshold during job execution. We apply LCC to
a fundamental machine learning task – least-squares regression, where
the gradient computed in each iteration of the gradient descent al-
gorithm is a quadratic function of the training data. For the task of
training a regression model on big data, we empirically demonstrate
a 2.36×∼12.65× latency reduction over state-of-the-art straggler mit-
igation techniques. Finally, we end this chapter by discussing coded
computation schemes for more general computation tasks (e.g., training
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neural networks), and some open problems along this research direction.

3.1 Optimal coding for matrix multiplications

In this section, we develop “polynomial code” for distributedly comput-
ing large-scale matrix-matrix multiplication. We show that the proposed
polynomial code requires the minimum number of workers returning
their computation results, and this number does not scale with the
network size.

3.1.1 System model, problem formulation, and main result

We consider a problem of matrix multiplication with two input matrices
A ∈ Fs×rq and B ∈ Fs×tq , for some integers r, s, t and a sufficiently large
finite field Fq. We are interested in computing the product C , AᵀB in
a distributed computing environment with a master node and N worker
nodes, where each worker can store 1

m fraction of A and 1
n fraction of

B, for some parameters m,n ∈ N+ (see Figure 3.2). We assume at least
one of the two input matrices A and B is tall (i.e. s ≥ r or s ≥ t),
because otherwise the output matrix C would be rank inefficient and
the problem is degenerated.

. . . 

. . . 

. . . 

Figure 3.2: Overview of the distributed matrix multiplication framework. Coded
data are initially stored distributedly at N workers according to data assignment.
Each worker computes the product of the two stored matrices and returns it to the
master. By carefully designing the computation strategy, the master can decode
given the computing results from a subset of workers, without having to wait for the
stragglers (worker 1 in this example).
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Specifically, each worker i can store two matrices Ãi ∈ Fs×
r
m

q and
B̃i ∈ Fs×

t
n

q , computed based on arbitrary functions of A and B respec-
tively. Each worker can compute the product C̃i , Ãᵀi B̃i, and return it
to the master. The master waits only for the results from a subset of
workers, before proceeding to recover (or compute) the final output C
given these products using certain decoding functions.1

Problem formulation

Given the above system model, we formulate the distributed matrix
multiplication problem based on the following terminology: We define
the computation strategy as the 2N functions, denoted by

f = (f0, f1, ..., fN−1), g = (g0, g1, ..., gN−1), (3.1)

that are used to compute each Ãi and B̃i. Specifically,

Ãi = fi(A), B̃i = gi(B), ∀ i ∈ {0, 1, ..., N − 1}. (3.2)

For any integer k, we say a computation strategy is k-recoverable if the
master can recover C given the computing results from any k workers.
We define the recovery threshold of a computation strategy, denoted
by k(f , g), as the minimum integer k such that computation strategy
(f , g) is k-recoverable.

Using the above terminology, we define the following concept:

Definition 3.1. For a distributed matrix multiplication problem of
computing AᵀB using N workers that can each store 1

m fraction of
A and 1

n fraction of B, we define the optimum recovery threshold,
denoted by K∗, as the minimum achievable recovery threshold among
all computation strategies, i.e.

K∗ , min
f ,g

k(f , g). (3.3)

State-of-the-art schemes. There have been two computing schemes
proposed earlier for this problem that leverage ideas from coding theory.

1Note that we consider the most general model and do not impose any constraints
on the decoding functions. However, any good decoding function should have relatively
low computation complexity.
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The first one, referred to as one dimensional MDS code (1D MDS code),
was introduced in Lee et al., 2018 and extended in Lee et al., 2017. The
1D MDS code, as illustrated before in Figure 3.1, injects redundancy
in only one of the input matrices using maximum distance separable
(MDS) codes Singleton, 1964. In general, one can show that the 1D
MDS code achieves a recovery threshold of

K1D-MDS , N −
N

n
+m = Θ(N). (3.4)

An alternative computing scheme was recently proposed in Lee
et al., 2017 for the case of m = n, referred to as the product code,
which instead injects redundancy in both input matrices. This coding
technique has also been proposed earlier in the context of Fault Tolerant
Computing in Huang and Abraham, 1984; Jou and Abraham, 1986. As
shown in Figure 3.3, product code aligns workers in an

√
N−by−

√
N

layout. The matrix A is divided along the columns into m submatrices,
encoded using an (

√
N,m) MDS code into

√
N coded matrices, and then

assigned to the
√
N columns of workers. Similarly

√
N coded matrices

of B are created and assigned to the
√
N rows. Given the property

of MDS codes, the master can decode an entire row after obtaining
any m results in that row; likewise for the columns. Consequently,
the master can recover the final output using a peeling algorithm,
iteratively decoding the MDS codes on rows and columns until the
output C is completely available. For example, if the 5 computing
results Aᵀ1B0, Aᵀ1B1, (A0 + A1)ᵀB1, Aᵀ0(B0 + B1), and Aᵀ1(B0 + B1)
are received as demonstrated in Figure 3.3, the master can recover
the needed results by computing Aᵀ0B1 = (A0 + A1)ᵀB1 − Aᵀ1B1 then
Aᵀ0B0 = Aᵀ0(B0 +B1)−Aᵀ0B1. In general, one can show that the product
code achieves a recovery threshold of

Kproduct , 2(m− 1)
√
N − (m− 1)2 + 1 = Θ(

√
N), (3.5)

which significantly improves over K1D-MDS.

Main Result

Our main result, which demonstrates that the optimum recovery thresh-
old can be far less than what the above two schemes achieve, is stated



72 Coding for Straggler Mitigation

Figure 3.3: Product code Lee et al., 2017 in an example with N = 9 workers that
can each store half of A and half of B.

in the following theorem:

Theorem 3.1. For a distributed matrix multiplication problem of com-
puting AᵀB using N workers that can each store 1

m fraction of A and
1
n fraction of B, the minimum recovery threshold K∗ is

K∗ = mn. (3.6)

Furthermore, there is a computation strategy, referred to as the polyno-
mial code, that achieves the above K∗ while allowing efficient decoding
at the master node, i.e., with complexity equal to that of polynomial
interpolation given mn points.

We prove Theorem 3.1 in the next subsection, where we first describe
the proposed polynomial code that achieves a recovery thresholdKpoly =
mn, and then develop an information theoretic converse demonstrating
that K∗ is lower bounded by mn.

Remark 3.1. Compared to the state of the art Lee et al., 2018; Lee
et al., 2017, the polynomial code provides order-wise improvement in
terms of the recovery threshold. Specifically, the recovery thresholds
achieved by 1D MDS code Lee et al., 2018; Lee et al., 2017 and product
code Lee et al., 2017 scale linearly with N and

√
N respectively, while

the proposed polynomial code actually achieves a recovery threshold
that does not scale with N . Furthermore, polynomial code achieves the
optimal recovery threshold.



3.1. Optimal coding for matrix multiplications 73

Remark 3.2. The polynomial code not only improves the state of the
art asymptotically, but also gives strict and significant improvement for
any parameter values of N , m, and n (See Figure 3.4 for example).

Figure 3.4: Comparison of the recovery thresholds achieved by the proposed poly-
nomial code and the state of the arts (1D MDS code Lee et al., 2018 and product
code Lee et al., 2017), where each worker can store 1

10 fraction of each input matrix.
The polynomial code attains the optimum recovery threshold K∗, and significantly
improves the state of the art.

Remark 3.3. As we will discuss in Section 3.1.2, decoding polynomial
code can be mapped to a polynomial interpolation problem, which
can be solved in time almost linear to the input size Kedlaya and
Umans, 2011. This is enabled by carefully designing the computing
strategies at the workers, such that the computed products form a Reed-
Solomon code Roth, 2006 , which can be decoded efficiently using any
polynomial interpolation algorithm or Reed-Solomon decoding algorithm
that provides the best performance depending on the problem scenario
(e.g., Baktir and Sunar, 2006).

3.1.2 Polynomial code and its optimality

In this subsection, we formally describe the polynomial code and its
decoding process. We then prove its optimality with an information
theoretic converse, which completes the proof of Theorem 3.1. Finally, we
demonstrate the optimality of polynomial code under other performance
metrics.
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Motivating example

Figure 3.5: Example using polynomial code, with N = 5 workers that can each store
half of each input matrix. (a) Computation strategy: each worker i stores A0 + iA1
and B0 + i2B1, and computes their product. (b) Decoding: master waits for results
from any 4 workers, and decodes the output using fast polynomial interpolation
algorithm.

We start by demonstrating the key ideas of polynomial code through
a motivating example. Consider a distributed matrix multiplication task
of computing C = AᵀB using N = 5 workers that can each store half
of the matrices (see Figure 3.5). We evenly divide each input matrix
along the column side into 2 submatrices:

A = [A0 A1], B = [B0 B1]. (3.7)

Given this notation, we essentially want to compute the following 4
uncoded components:

C = AᵀB =
[
Aᵀ0B0 Aᵀ0B1
Aᵀ1B0 Aᵀ1B1

]
. (3.8)

Now we design a computation strategy to achieve the optimum recovery
threshold of 4. Suppose elements of A,B are in F7, let each worker
i ∈ {0, 1, ..., 4} store the following two coded submatrices:

Ãi = A0 + iA1, B̃i = B0 + i2B1. (3.9)

To prove that this design gives a recovery threshold of 4, we need to
design a valid decoding function for any subset of 4 workers. Without
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loss of generality, we assume that the master receives the computation
results from workers 1, 2, 3, and 4, as shown in Figure 3.5.

According to the designed computation strategy, we have
C̃1
C̃2
C̃3
C̃4

 =


10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43



Aᵀ0B0
Aᵀ1B0
Aᵀ0B1
Aᵀ1B1

 . (3.10)

The coefficient matrix in the above equation is Vandermonde, and hence
invertible since its parameters 1, 2, 3, 4 are distinct in F7. So one way
to recover C is to directly invert equation (3.10). However, directly
computing this inverse using the classical inversion algorithm might
be expensive in more general cases. Quite interestingly, the decoding
process can also be viewed as a polynomial interpolation problem (or
equivalently, decoding a Reed-Solomon code subject to erasures).

Specifically, in this example each worker i returns

C̃i = Ãᵀi B̃i = Aᵀ0B0 + iAᵀ1B0 + i2Aᵀ0B1 + i3Aᵀ1B1, (3.11)

which is essentially the value of the following polynomial at point x = i:

h(x) , Aᵀ0B0 + xAᵀ1B0 + x2Aᵀ0B1 + x3Aᵀ1B1. (3.12)

Hence, recovering C using computation results from 4 workers is equiv-
alent to interpolating a degree-3 polynomial given its values at 4 points,
and we will later show that this can be performed with almost-linear
complexity.

General polynomial code

Now we proceed to present the polynomial code in a general setting
that achieves the optimum recovery threshold stated in Theorem 3.1
for any parameter values of N , m, and n. First of all, we evenly divide
each input matrix along the column side into m and n submatrices
respectively, i.e.,

A = [A0 A1 ... Am−1], B = [B0 B1 ... Bn−1], (3.13)
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We then assign each worker i ∈ {0, 1, ..., N − 1} a distinct number in
Fq, denoted by xi. Under this setting, we define the following class of
computation strategies.

Definition 3.2. Given parameters α, β ∈ N, we define the (α, β)-
polynomial code as

Ãi =
m−1∑
j=0

Ajx
jα
i , B̃i =

n−1∑
j=0

Bjx
jβ
i , ∀ i ∈ {0, 1, ..., N − 1}.

(3.14)

In an (α, β)-polynomial code, each worker i essentially computes

C̃i = Ãᵀi B̃i =
m−1∑
j=0

n−1∑
k=0

AᵀjBkx
jα+kβ
i . (3.15)

In order for the master to recover the output given any mn results (i.e.
achieve the optimum recovery threshold), we carefully select the design
parameters α and β, while making sure that no two terms in the above
formula has the same exponent of x. One such choice is (α, β) = (1,m),
i.e,

Ãi =
m−1∑
j=0

Ajx
j
i , B̃i =

n−1∑
j=0

Bjx
jm
i . (3.16)

Hence, each worker essentially computes the value of the following
degree mn− 1 polynomial at point x = xi:

h(x) ,
m−1∑
j=0

n−1∑
k=0

AᵀjBkx
j+km, (3.17)

where the coefficients are exactly the mn uncoded components of C.
Since all xi’s are selected to be distinct, recovering C given results
from any mn workers is essentially interpolating h(x) using mn distinct
points. Since h(x) has degree mn − 1, the output C can always be
uniquely decoded.

In terms of complexity, this decoding process can be viewed
as interpolating degree mn − 1 polynomials of Fq for rt

mn times.
It is well known that polynomial interpolation of degree k has a



3.1. Optimal coding for matrix multiplications 77

complexity of O(k log2 k log log k) Kedlaya and Umans, 2011. There-
fore, decoding polynomial code also only requires a complexity of
O(rt log2(mn) log log(mn)). Furthermore, this complexity can be re-
duced by simply swapping in any faster polynomial interpolation algo-
rithm or Reed-Solomon decoding algorithm.

Remark 3.4. We can naturally extend polynomial code to the scenario
where input matrix elements are real or complex numbers. In practical
implementation, to avoid handling large elements in the coefficient
matrix, we can first quantize input values into numbers of finite digits,
embed them into a finite field that covers the range of possible values of
the output matrix elements, and then directly apply polynomial code.
By embedding into finite fields, we avoid large intermediate computing
results, which effectively saves storage and computation time, and
reduces numerical errors.

Optimality of polynomial code for recovery threshold

So far we have constructed a computing scheme that achieves a recovery
threshold of mn, which upper bounds K∗. To complete the proof of
Theorem 3.1, here we establish a matching lower bound through an
information theoretic converse.

We need to prove that for any computation strategy, the master
needs to wait for at least mn workers in order to recover the output.
Recall that at least one of A and B is a tall matrix. Without loss of
generality, assume A is tall (i.e. s ≥ r). Let A be an arbitrary fixed
full-rank matrix and B be sampled from Fs×tq uniformly at random. It
is easy to show that C = AᵀB is uniformly distributed on Fr×tq . This
means that the master essentially needs to recover a random variable
with entropy of H(C) = rt log2 q bits. Note that each worker returns
rt
mn elements of Fq, providing at most rt

mn log2 q bits of information.
Consequently, using a cut-set bound around the master, we can show
that at least mn results from the workers need to be collected, and thus
we have K∗ ≥ mn.

Remark 3.5 (Random linear code). We conclude this subsection by
noting that, another computation design is to let each worker store two
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random linear combinations of the input submatrices. Although this
design can achieve the optimal recovery threshold with high probability,
it creates a large coding overhead and requires high decoding complexity
(e.g., O(m3n3 +mnrt) using the classical inversion decoding algorithm).
Compared to random linear code, the proposed polynomial code achieves
the optimum recovery threshold deterministically, with a significantly
lower decoding complexity.

Optimality of polynomial code for other performance metrics

In the previous subsection, we proved that polynomial code is optimal in
terms of the recovery threshold. As a by-product, we can prove that it is
also optimal in terms of some other performance metrics. In particular,
we consider the following three metrics considered in prior works, and
establish the optimality of polynomial code for each of them.
Computation latency is considered in models where the computation
time Ti of each worker i is a random variable with a certain probability
distribution (e.g, Lee et al., 2018; Lee et al., 2017). The computation
latency is defined as the amount of time required for the master to
collect enough information to decode C.

Theorem 3.2. For any computation strategy, the computation latency
T is always no less than the latency achieved by polynomial code,
denoted by Tpoly. Namely,

T ≥ Tpoly. (3.18)

Proof sketch. We know that by the converse proof of Theorem 3.1 that
using an arbitrary computation strategy, in order for the master to
recover the output matrix C at time T , it has to receive the computation
results from at least mn worker. However, using the polynomial code,
the matrix C can be recovered as soon as mn workers return their
results. Therefore, we have T ≥ Tpoly.

Probability of failure given a deadline is defined as the probability
that the master does not receive enough information to decode C at
any time t Dutta et al., 2017.
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Corollary 3.3. For any computation strategy, let T denote its computa-
tion latency, and let Tpoly denote the computation latency of polynomial
code. We have

P(T > t) ≥ P(Tpoly > t) ∀ t ≥ 0. (3.19)

Corollary 3.3 directly follows from Theorem 3.2 since (3.18) implies
(3.19) .
Communication load is another important metric in distributed
computing (e.g. Li et al., 2015; Li et al., 2018b; Yu et al., 2017a),
defined as the minimum number of bits needed to be communicated in
order to complete the computation.

Theorem 3.4. Polynomial code achieves the minimum communication
load for distributed matrix multiplication, which is given by

L∗ = rt log2 q. (3.20)

Proof. Recall that in the converse proof of Theorem 3.1, we have shown
that if the input matrices are sampled based on a certain distribution,
then decoding the output C requires that the entropy of the entire
message received by the server is at least rt log2 q. Consequently, it
takes at least rt log2 q bits deliver such messages, which lower bounds
the minimum communication load.

On the other hand, the polynomial code requires delivering rt ele-
ments in Fq in total, which achieves this minimum communication load.
Hence, the minimum communication load L∗ equals rt log2 q.

Remark 3.6. While polynomial codes provide the optimal design, with
respect to the above metrics, for straggler mitigation in distributed
matrix multiplication, one can also consider other metrics and variations
of the problem setting for which the problem is still not completely solved.
One variation is “approximate distributed matrix multiplication”, which
has been studied in Gupta et al., 2018; Jahani-Nezhad and Maddah-
Ali, 2019. Another variation is coded computing in heterogeneous and
dynamic network settings, which has been studied in Reisizadeh et al.,
2017; Reisizadeh et al., 2019; Narra et al., 2019; Mallick et al., 2019;
Yang et al., 2019; Ferdinand and Draper, 2018.
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3.2 Optimal coding for polynomial evaluations

In this section, we go beyond matrix algebra to study the impact of
coding on minimizing the recovery threshold in distributed computation
of arbitrary multivariate polynomials.

3.2.1 Problem formulation and motivating examples

We consider a problem of evaluating a function f over a dataset X =
(X1, . . . , XK). In particular, each Xi is an element in a vector space V
over a field F, and the goal is to compute Y1 , f(X1), . . . , YK , f(XK)
given the function f : V→ U, where U is a vector space over the same
field F. The function f can be any multivariate polynomial with vector
coefficients, and we define the degree of the chosen f , denoted by deg f ,
as the total degree of the polynomial.2

The computation is carried out in a distributed system consist-
ing of a master and N workers. Each worker has already stored a
fraction of the dataset prior to the computation, in a possibly coded
manner. Specifically, for each i ∈ [N ] , {1, . . . , N}, worker i stores
X̃i , gi(X1, . . . , XK), where gi : VK → V is the encoding function
of worker i. We focus on the class of linear encoding strategies, mean-
ing that each X̃i is a linear combination of X1, . . . , XK . This class
of encoding designs guarantees low encoding complexity and simple
implementation.

During the computation, each worker i computes Ỹi , f(X̃i), and
returns the result back to the master upon its completion. The master
only waits for a fastest subset of workers, until all the final outputs
Y1, . . . , YK can be decoded from the available results by computing
their linear combinations.3 Similarly as before, we define the recovery

2The total degree of a polynomial f is the maximum among all the total degrees of
its monomials. In the case where F is finite, we resort to the canonical representation
of polynomials, in which the individual degrees within each term is no more than
(|F| − 1).

3Note that if the number of workers is too small, obviously no valid computation
design exists unless f is a constant. Hence, in the rest of this section we focus on
meaningful cases where N is large enough such that there is a valid computation
design for at least one non-trivial function f (i.e., N ≥ K).
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threshold as the minimum number of responses that guarantees the
completion of the computation task.

This computation model suites the common scenario where a func-
tion of interest is of the form F (X1, . . . , Xk) = g(f(X1), . . . , f(Xk)),
where f is a “hard to compute” function and g is an “easy to compute”
one. This is in accordance with common distributed computing tasks
like matrix multiplication, the MapReduce algorithm, and gradient
computation.

Based on this setting, the coded computing problem is then formu-
lated as designing the optimal encoding of the dataset (i.e., designing
gi’s) over which workers carry out their computations, in order to achieve
the minimum recovery threshold, denoted by K∗.

The above computation framework encapsulates many computation
tasks of interest, which we highlight in the following examples.
Linear computation. Consider the computation scenario of matrix-
vector multiplication A~b, for some dataset A = {Ai}Ki=1 and some
vector ~b. This scenario naturally arises in many machine learning al-
gorithms, such as each iteration of linear regression. Our formulation
covers this setting by letting V be the space of matrices of certain
dimensions over F, U be the space of vectors of a certain length over F,
Xi be Ai, and f(Xi) = Xi ·~b for all i ∈ [K]. Coded computing for such
linear computations has also been studied in Lee et al., 2018; Dutta
et al., 2016; Karakus et al., 2017; Wang et al., 2018b.
Bilinear computation. Another computation task of interest, is to
evaluate the element-wise products {Ai·Bi}Ki=1 given two lists of matrices
{Ai}Ki=1 and {Bi}Ki=1. This computation is the key building block for
various algorithms, such as fast matrix multiplication in distributed
systems Yu et al., 2017b; Fahim et al., 2017; Yu et al., 2018b. Our
formulation covers this setting by letting V be the space of pairs of two
matrices of certain dimensions, U be the space of matrices of dimension
which equals that of the product of the pairs of matrices, Xi = (Ai, Bi),
and f(Xi) = Ai ·Bi for all i ∈ [K].
General Tensor algebra. Beyond bilinear operations, distributed
computations of multivariate polynomials of larger degree, such as
general tensor algebraic functions (i.e. functions composed of inner
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products, outer products, and tensor contractions) Renteln, 2013, also
arise in practice. A specific example is to compute the coordinate
transformation of a third-order tensor field at K locations, where given
a list of matrices {Q(i)}Ki=1 and a list of third order tensors {T (i)}Ki=1
with matching dimension on each index, the goal is to compute another
list of tensors, denoted by {T ′(i)}Ki=1, of which each entry is defined
as T ′(i)j′k′`′ ,

∑
j,k,`

T
′(i)
jk`Q

(i)
jj′Q

(i)
kk′Q

(i)
``′ . Our formulation covers all functions

within this class by letting V the space of input tensors, U the space of
output tensors, Xi be the inputs, and f be the tensor function.
Gradient computation. Another general class of functions arises from
gradient decent algorithms and their variants, which are the workhorse
of today’s learning tasks. The computation task for this class of functions
is to consider one iteration of the gradient decent algorithm, and to eval-
uate the gradient of the empirical risk ∇LS(h) , avgz∈S ∇`h(z), given
a hypothesis h : Rd → R, a respective loss function `h : Rd+1 → R, and
a training set S ⊆ Rd+1, where d is the number of features. In practice,
this computation is carried out by partitioning S into K subsets {Si}Ki=1
of equal sizes, evaluating the partial gradients {∇LSi(h)}Ki=1 distribut-
edly, and computing the final result using ∇LS(h) = avgi∈[K]∇LSi(h).
We present a specific example of applying this computing model to
least-squares regression problems in Section 3.2.5.

3.2.2 Main results and comparison with prior works

We characterize the minimum possible recovery threshold for the above
distributed computing problem in the following theorem.

Theorem 3.5. For the above described problem of distributedly evalu-
ating a multivariate polynomial f : V→ U on a dataset of K inputs by
using N workers, the minimum recovery threshold is given by

K∗ = (K − 1) deg f + 1

when N ≥ K deg f − 1, and K∗ = N − bN/Kc+ 1 otherwise.
We propose a coded computing scheme, named “Lagrange Coded

Computing” to achieve this minimum value.
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To prove Theorem 3.5, we present the proposed Lagrange Coded
Computing (LCC) scheme and characterize its recovery threshold in the
next subsection. Moreover, we complete the proof by demonstrating the
optimality of Lagrange Coded Computing through a matching converse
in Section 3.2.4.

Remark 3.7. LCC generalizes several previously studied scenarios. For
example, having V = U and f the identity function reduces to the well-
studied case of distributed storage, in which Theorem 3.5 is well-known
(e.g., the Singleton bound Roth, 2006, Theorem 4.1). Further, as previ-
ously mentioned, f can correspond to matrix-vector and matrix-matrix
multiplication, in which the special cases of Theorem 3.5 are known
as well Lee et al., 2018; Yu et al., 2018b. However, LCC substantially
generalizes the state of the arts to any computation that can be rep-
resented as an arbitrary multivariate polynomial of the input dataset,
including many computation scenarios of interest in machine learning.

Remark 3.8. The key idea of LCC is to encode the input dataset
using the well-known Lagrange polynomial. In particular, the encoding
functions (i.e., gi’s) amount to evaluations of a Lagrange polynomial
of degree K − 1 at N distinct points. Hence, the computations at the
workers amount to evaluations of a composition of that polynomial with
the desired function f . Therefore, K∗ may simply be seen as the number
of evaluations that are necessary and sufficient in order to interpolate
the composed polynomial, that is later evaluated at certain point to
finalize the computation.

Remark 3.9. LCC has a number of additional properties of interest.
First, the proposed encoding is identical to all multivariate polynomials,
which allows pre-encoding of the data without knowing the identity
of the computing task. In other words, data encoding of LCC can
be universally used for any polynomial computation. This is in stark
contrast to previous task specific coding techniques in the literature.
Furthermore, workers apply the same computation as if no coding
took place; a feature that reduces computational costs, and prevents
ordinary servers from carrying the burden of outliers. Second, decoding
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and encoding build upon polynomial interpolation and evaluation, and
hence efficient off-the-shelf subroutines can be used.

3.2.3 Lagrange Coded Computing

Illustrative example

Consider a problem of evaluating the quadratic function f(Xi) =
X>i (Xiw − y), where the input Xi’s are real matrices with certain
dimensions, and w, y are constant vectors with matching lengths. This
function naturally appears in gradient computing problems, given that
each f(Xi) is the gradient of a commonly used quadratic loss function
(Xiw − y)2 (with respect to w).

We demonstrate Lagrange Coded Computing (LCC) in the scenario
where the input data X is partitioned into K = 2 batches, and the
computing system has N = 5 workers. Note that the conventional
uncoded repetition design only achieves a recovery threshold of 4. This
is since in uncoded repetition one essentially must have X̃1 = X̃2 = X1
and X̃3 = X̃4 = X̃5 = X2, and clearly, the computation cannot be
completed from the results of workers 3, 4, and 5. However, optimal
recovery threshold of 3 is attainable by LCC.

As mentioned earlier, the main idea of LCC is to encode data using
a Lagrange polynomial u. To this end, let u(z) ,X1 · z−2

1−2 +X2 · z−1
2−1 =

z(X2 −X1) + 2X1 −X2, and observe that u(1) = X1 and u(2) = X2.
Then, node i stores u(i), i.e.,(

X̃1, . . . , X̃5
)

= (X1,X2) ·
(

1 0 −1 −2 −3
0 1 2 3 4

)
.

Note that when applying f over its stored data, each worker essen-
tially evaluates a linear combination of 6 possible terms: four quadratic
X>i Xjw and two linear X>i y. However, the master only wants two
specific linear combinations of them:X>1 (X1w−y) andX>2 (X2w−y).
Interestingly, LCC optimally aligns the computation of the workers in
a sense that the linear combinations returned by the workers belong
to a subspace of only 3 dimensions, which can be recovered from the
computing results of any 3 workers, while containing the two needed
linear combinations.
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More specifically, each worker i evaluates the polynomial

f(u(z))=(z(X2 −X1)+2X1 −X2)>((z(X2 −X1)+2X1−X2)w−y)

at z = i. Since f(u(z)) is a quadratic polynomial, it can be determined
given the computation results from any three nodes. Furthermore,
after decoding the polynomial f(u(z)), the master can obtain f(X1)
and f(X2) by evaluating it at z = 1 and z = 2.

General description

When the number of workers is small (i.e, N < K deg f − 1), the opti-
mum recovery threshold K∗ = N − bN/Kc+ 1 can be easily achieved
by uncoded repetition design – that is, by replicating every Xi be-
tween bN/Kc and dN/Ke times, it is readily verified that every set
of N−bN/Kc+1 computation results contains at least one copy of f(Xi)
for every i. Hence, we focus on the case where N ≥ K deg f − 1.

First, we select any K distinct elements β1, . . . , βK from F, and
find a polynomial u : F→ V of degree K − 1 such that u(βi) = Xi for
any i ∈ [K] = {1, . . . ,K}. This is simply accomplished by letting u be
the respective Lagrange interpolation polynomial u(z) ,

∑
j∈[K]Xj ·∏

k∈[K]\{j}
z−βk
βj−βk . We then select N distinct elements α1, . . . , αN from

F, and encode the input variables by letting X̃i = u(αi) for any i ∈ [N ].
That is,

X̃i = gi(X) = u(αi) ,
K∑
j=1

Xj ·
∏

k∈[K]\{j}

αi − βk
βj − βk

. (3.21)

When each worker i computes Ỹi = f(X̃i), it is essentially evaluating
the composition of the two polynomials f and u at point αi (i.e.,
f(u(αi))). Note that the composition f(u(z)) is also a polynomial,
whose degree is (K − 1) deg f . Hence, any (K − 1) deg f + 1 workers
return the evaluations of this polynomial at (K − 1) deg f + 1 points,
and thus it is recoverable.

Finally, the master aims to recover f(u(βi)) = f(Xi) for all i ∈ [K],
which is possible given that f(u(z)) is determined.
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Remark 3.10. Note that by choosing {βi}Ki=1 = {αi}Ki=1, the first K
workers exactly compute the K required results respectively. This pro-
vides a systematic coding design in the sense that the first K workers
are the systematic nodes and the rest of the N −K workers are parity
nodes.

Remark 3.11. In our construction, the only restriction imposed on the
underlying field is that we need to be able to select N distinct elements
{αi}i∈[N ]. Hence, LCC can be applied over any infinite field or any finite
field with at least N elements.

Remark 3.12. In terms of encoding and decoding complexities, the
decoding process of LCC is essentially computing the Lagrange in-
terpolation for the polynomial f ◦ u at K points. This interpolation
can be efficiently computed with an almost linear complexity (i.e.,
O(K∗ log2K∗ log logK∗) linear operations in U), using fast polynomial
arithmetic algorithms Kedlaya and Umans, 2011. Similar to the polyno-
mial code, this decoding complexity can be reduced by simply swapping
in any faster interpolation algorithm or Reed-Solomon decoding algo-
rithm.

3.2.4 Optimality of Lagrange Coded Computing

While the analysis of the proposed Lagrange Coded Computing scheme
provides an upper bound on the minimum recovery threshold K∗, we
now complete the proof of Theorem 3.5 by establishing a matching
lower bound of K∗ for any polynomial function f : V→ U.

The proof consists of two steps. In Step 1, we prove the converse
for the special case where f is a multilinear function (i.e., f is linear in
each variable, where the rest of the variables are fixed). Then in Step 2,
we generalize this result to arbitrary polynomial functions, by proving
that for any function f , there exists a multilinear function with the
same degree and a recovery threshold no greater than K∗.

For Step 1, we consider the scenario where (1) the domain V of
the function f is in the form of V = Wd for some vector space W
and some d ∈ N+, and (2) f is a non-zero function of input Xi =
(Xi,1, Xi,2, ..., Xi,d) ∈Wd, and is multilinear with respect to the elements
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Xi,1, Xi,2, ..., Xi,d. In this scenario, we develop a lower bound on the
minimum recovery threshold as stated in the following lemma.

Lemma 3.6. For any multilinear function f of degree deg f ∈ N+, its
minimum recovery threshold is lower bounded by (K − 1) deg f + 1
when N ≥ K deg f − 1, and lower bounded by N − bN/Kc+ 1 when
N < K deg f − 1. Moreover, this recovery threshold cannot be further
reduced even if we allow arbitrary decoding functions.

We present the proof of Lemma 3.6 in Appendix A. The main idea
is to show that for any computing strategy that tries to operate at
a recovery threshold smaller than the lower bound stated in Lemma
3.6, there would be scenarios where all available computing results are
degenerated (i.e., constants), while the computing results needed by the
master are variable, thus violating the decodability requirement.

Next in Step 2, we prove the matching converse for any polynomial
function. Given any function f with degree d, we first construct a
non-zero, multilinear function f ′ with the same degree. Then we let
K∗f (K,N) denote the minimum recovery threshold for function f , and
prove K∗f (K,N) ≥ K∗f ′(K,N), by constructing a computation design
of f ′ that is based on a computation design of f and achieves the same
recovery threshold. The construction and its properties are stated in
the following lemma, whose proof can be found in Yu et al., 2018c,
Appendix E.

Lemma 3.7. Given any function f of degree d, let f ′ be a map from
Vd → U such that f ′(Z1, ..., Zd) =

∑
S⊆[d] (−1)|S|f(

∑
j∈S Zj) for any

{Zj}j∈[d] ∈ Vd. Then f ′ is multilinear with respect to the d inputs.
Moreover, if the characteristic of the base field F is 0 or greater than d,
then f ′ is non-zero.

Given Lemma 3.7, it suffices to prove that f ′ cannot have a greater
recovery threshold than f , i.e. K∗f (K,N) ≥ K∗f ′(K,N) for any K and
N . We prove this fact by constructing computing schemes for f ′ given
any design for f , which achieve the same recovery threshold.

Note that f ′ is defined as a linear combination of functions
f(
∑
j∈S Zj), each of which is a composition of a linear map and f .
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Given the linearity assumption of the encoding design, any computation
scheme of f can be directly applied to any of these functions, achieving
the same recovery threshold. Since the decoding functions are linear, the
same scheme also applies to linear combinations of them, which includes
f ′. Hence, the minimum recovery threshold of f ′ is upper bounded by
the recovery threshold of any computing design of f , which indicates
K∗f (K,N) ≥ K∗f ′(K,N).

To conclude, using the matching converse we proved in Lemma 3.6
for multilinear functions, we showed that the same converse holds in
general. This completes the proof of Theorem 3.5.

3.2.5 Application of LCC to accelarate least-squares regression

we demonstrate a practical application of LCC in accelerating dis-
tributed least-squares linear regression, whose gradient computation is
a quadratic function of the input dataset, hence matching well the LCC
framework. We also experimentally demonstrate its performance gain
over state-of-the-art straggler mitigation schemes via experiments on
AWS EC2 clusters.

Distributed gradient descent for regression problems

We focus on linear regression problems with a least-squares objective.
Given a training dataset consisting of m feature inputs xi ∈ Rd and
labels yi ∈ R we wish to find the coefficients w ∈ Rd of a linear function
x 7→ 〈x,w〉 that best fits this training data. Minimizing the empirical
risk leads to the following optimization problem

min
w∈Rd

L(w) = 1
m

m∑
i=1

(x>i w − yi)2 = 1
m
||Xw − y||2. (3.22)

Here, X = [x1 x2 · · · xm]> ∈ Rm×d is the feature matrix and y =
[y1 y2 · · · ym]> ∈ Rm is the output vector obtained by concatenating
the input features and output labels, respectively.

Many nonlinear regression problems can also be written in the form
above. In particular, consider the problem of finding the best function



3.2. Optimal coding for polynomial evaluations 89

h belonging to a hypothesis class H that fits the training data

min
h∈H
L(h) = 1

m

m∑
i=1

(h(xi)− yi)2. (3.23)

Such nonlinear regression problems can often be cast in the form (3.22),
and be solved efficiently using the so called kernalization trick Schölkopf
et al., 2001. However, for simplicity of exposition we focus on the simpler
instance (3.22).

A popular approach to solve the above problem is via gradient
descent (GD). In particular, GD iteratively refines the weight vector
w by moving along the negative gradient direction via the following
updates

w(t+1) = w(t) − η(t)∇L(w(t)) = w(t) − η(t) 2
m
X>(Xw(t) − y). (3.24)

Here, η(t) is the learning rate in the tth iteration.

worker 1

worker 2

worker n

master

Figure 3.6: An illustration of a master/worker architecture for data-parallel dis-
tributed linear regression.

When the size of the training data is too large to store/process on
a single machine, the GD updates can be calculated in a distributed
fashion over many computing nodes. As illustrated in Figure 3.6, we
consider a computing architecture that consists of a master node and n
worker nodes. Using a naive data-parallel distributed regression scheme,
we first partition the input data matrix X into n equal-sized sub-
matrices such that X = [X1 · · · Xn−1]>, where each sub-matrix Xj ∈
Rd×

m
n contains m

n input data points, and is stored on worker j. Within
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each iteration of the GD procedure, the master broadcasts the current
weight vector w to all the workers. Upon receiving w, each worker j
computes XjX

>
j w, and returns it to the master. The master waits

for the results from all workers and sums them up to obtain the full
gradient

X>Xw =
n−1∑
j=0

XjX
>
j w. (3.25)

Then, the master uses this gradient to update the weight vector via
(3.24). 4

Coded computation schemes and their recovery thresholds

The above naive uncoded scheme requires the master to wait for results
from all the workers. Therefore, even a single straggler can significantly
delay the iteration. One way to combat stragglers is through redundant
data storage/processing. For example, each worker, instead of 1, stores
and processes 1 < r ≤ n sub-matrices. Then, we can partition the
n sub-matrices into n

r batches of size r, and repeatedly store each
batch on r workers. Utilizing this storage/computation redundancy,
in the worst case, the master needs the results returned from the
fastest n − r + 1 workers to compute the final gradient. In general,
for a given storage/computation load, we can design optimal coding
techniques to minimize the number of workers the master needs to wait
for before recovering the gradient. Motivated by this idea, we consider a
general distributed regression framework with an input feature matrix
X = [X1 · · · Xn]> and n workers. Each worker j stores r (potentially
coded) sub-matrices locally. In each iteration, each worker performs local
computation utilizing the received weight vectorw and the locally stored
data. The master waits for the results from a subset N ⊆ [n] of workers,
and uses them to compute the gradient in (3.25). For this framework, a
coded computation scheme consists of the following elements.

• Computation/storage parameter. We characterize the computa-
tion/storage load at each worker via a parameter r ∈ [n]. Specifically,
4Since the value of X>y does not vary across iterations, it only needs to be

computed once. We assume that it is available at the master for weight updates.
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each worker stores some data generated from the feature matrix X
whose size is r

n -fraction of the size of X.

• Encoding functions. We encode the data stored at the workers
via a set of n encoding functions ρ = (ρ1, . . . , ρn) where ρj is the
encoding function of worker j. Each ρj maps the input data X into
r coded sub-matrices X̃j,1, . . . , X̃j,r ∈ Rd×

m
n which are locally stored

at worker j. In particular, each X̃j,k, is a linear combination of the
sub-matrices X1, . . . ,Xn, i.e.,

X̃j,k =
n∑
i=1

aj,k,iXi. (3.26)

Here, the coefficients aj,k,i are specified by the encoding function ρj
of worker j.

• Computation functions. Each worker uses the r encoded sub-
matrices along with the weight vector w received from the master to
perform its computation. We use φj : Rd×

m
n
×r × Rd → R`j to denote

this mapping whose output is an arbitrary length-`j vector that is
computed locally at worker j using X̃j,1, . . . , X̃j,r and w.

• Decoding function. The master uses a decoding function ψ :
×
j∈N

R`j → Rd to map the computation results of the available workers

in N to the desired computation X>Xw.

Definition 3.3. We define the recovery threshold of a computation
scheme S with a computation/storage load r at each worker, denoted
by KS(r), as the minimum number of workers the master needs to wait
to accomplish the gradient computation.

Consider a distributed linear regression task executed on n workers
with a local computation/storage load r each. We are interested in
finding the minimum recovery threshold achieved among all computation
schemes along with the corresponding scheme. This optimal recovery
threshold can be formally defined as

K∗(r) := min
S
KS(r). (3.27)
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State-of-the-art schemes. Proposed in Tandon et al., 2017, and
extended in Halbawi et al., 2017; Raviv et al., 2017; Ye and Abbe,
2018; Li et al., 2018c, the gradient coding (GC) schemes code across
partial gradients computed from uncdoed data batches to mitigate
stragglers for general distributed machine learning problems. In this
case, GC schemes achieve a recovery threshold of KGC(r) = n− r + 1.
To see this first note that each worker stores r uncoded sub-matrices.
For example, using the cyclic repetition scheme in Tandon et al., 2017,
worker j storesXj , . . . ,Xj+r−1 locally, and sends a liner combination of
the computation results XjX

>
j w, . . . ,Xj+r−1X

>
j+r−1w to the master,

who can recover the final result X1X
>
1 w + · · ·+XnX

>
n w by linearly

combining the messages received from any subsets of n− r + 1 workers.
On the other hand, the matrix-vector multiplication based (MVM)

scheme proposed in Lee et al., 2018 takes a different decomposition of the
computation X>Xw from (3.25). Specifically, the overall computation
consists of two rounds. In the first round, an intermediate vector z =
Xw is computed distributedly and decoded at the master. In the
second round, the master re-distributes z to the workers and has them
collaboratively compute the final result X>z. Each worker stores coded
data generated using MDS codes from X and X> respectively. MVM
achieves a recovery threshold of KMVM(r) = d2n

r e in each round, when
the storage is evenly split between rounds. It was recently proposed
in Maity et al., 2018 to use one round of matrix-vector multiplication
to compute the gradient, given that the second moment of the feature
matrix X>X is known in prior. However, since we focus on the cases
where the input X is very large, storing X and computing X>X on a
single machine is prohibitive.

Applying LCC to minimize recovery threshold

We note that above gradient computation framework can be cast to
the computation model in Section 3.2.1. To do that, we group the
sub-matrices into K=dnr e data blocks such that X = [X̄1 · · · X̄K ]>.
Then the gradient computation (3.25) reduces to computing the sum
of a degree-2 polynomial f(X̄k) = X̄kX̄

>
k w, evaluated over K data

blocks X̄1, . . . , X̄K .
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Now, we can directly apply LCC to minimize the recovery threshold
in each iteration. We first generate the coded matrix X̃i stored at
worker i as a linear combination of X̄1, . . . , X̄K as in (3.21). Each
worker i computes f(X̃i) = X̃iX̃

>
i w, and sends it to the master.

Based on Theorem 3.5 the master can recover f(X̄1), . . . , f(X̄K) and
the gradient by summing them up after receiving the results from
2(K − 1) + 1 = 2dnr e − 1 workers. We state this result in the following
corollary.

Corollary 3.8. Consider the above distributed linear regression problem
and assume it is executed over n workers, each storing 2 ≤ r ≤ n coded
sub-matrices. In this setting, LCC achieves a recovery threshold of
KLCC(r)=2dnr e−1. Furthermore, the recovery threshold achieved by
LCC is within a factor two of the minimum possible recovery threshold
K∗(r) achievable by any algorithm. That is

1
2KLCC(r) < K∗(r) ≤ KLCC(r) = 2dnr e − 1, (3.28)

When r = 1, LCC reduces to the uncoded scheme where each
worker j computes XjX

>
j w. The achievability part directly comes from

the recovery threshold of LCC. As for the converse part, Since here
we consider a more general scenario where workers can execute any
computation on the data (not necessarily matrix-matrix multiplication),
the lower bound in Theorem 3.5 no longer holds. we refer the interested
readers to Li et al., 2018d for the proof of a new lower bound on K∗(r)
that is no less than half of KLCC(r).

Remark 3.13. We note that LCC is also directly applicable for non-
linear regression problems using kernel methods. To do that, we simply
replace the data matrix X with the kernel matrix K, whose entry
Kij = k(xi,xj) is some kernel function of the data points xi and xj .

Comparison with state of the arts. Compared with the gradient
coding (GC) schemes (see, e.g., Tandon et al., 2017; Halbawi et al.,
2017; Raviv et al., 2017), LCC directly codes across the raw data before
computation, further reducing the recovery threshold by about r/2
times. While the amount of computation and communication at each
worker is the same for GC and LCC, LCC is expected to finish much
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faster due to its much smaller recovery threshold. However, GC schemes
are applicable for more general learning problems where the gradient
can be arbitrary functions of the data.

Compared with the matrix-vector multiplication based (MVM)
scheme in Lee et al., 2018, LCC completes each iteration in only one
round of computation and communication, with a smaller recovery
threshold than that of MVM in each round (assuming even storage
split between two rounds). However, MVM requires less amount of
computation at each worker than LCC. While LCC has each worker
send a dimension-d vector in each iteration, each MVM worker sends
two vectors whose sizes are respectively proportional to m and d.

Experiments on AWS EC2

We run distributed linear regression on Amazon EC2 clusters, and
empirically compare the performance of the proposed LCC scheme with
the conventional uncoded scheme for which there is no data redundancy
among the workers, the GC scheme (specifically, the cyclic repetition
scheme in Tandon et al., 2017), and the MVM scheme in Lee et al.,
2018.
Setup. We train a linear regression model using Nesterov’s accelerated
gradient descent over a distributed computing system, where the mas-
ter and worker nodes are implemented on t2.micro instances using
Python. Message passing between instances are impelmendted using
MPI4py Dalcin et al., 2011. In each iteration, each worker sends its
computation result back to the master asynchronously using Isend().
Data.We create synthetic datasets ofm training samples by 1) sampling
a true weight vector w∗ whose components are i.i.d. and uniformly
distributed on [0, 1], and 2) sampling each input point xi of d features
from a normal mixture distribution 1

2 ×N (µ1, I) + 1
2 ×N (µ2, I), where

µ1 = 1.5
d w

∗ and µ2 = −1.5
d w∗, and computing its output label yi =

x>i w
∗. For each dataset, we run GD for 100 iterations over n = 40

workers. We consider different dimensions of input matrix X as listed
in the following scenarios.

• Scenario 1 & 2: (m, d) = (8000, 7000).
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• Scenario 3: (m, d) = (160000, 500).

We let the system run with naturally occurring stragglers in scenario
1. To mimic the effect of slow/failed workers, we artificially introduce
stragglers in scenarios 2 and 3, by imposing a 0.5 seconds delay on each
worker with probability 5% in each iteration.

To implement LCC, we set the βi parameters to 1, ..., nr , and the αi
parameters to 0, . . . , n− 1. To avoid numerical instability due to large
entries of the decoding matrix, we can embed input data into a large
finite field, and apply LCC in it with exact computations. However in
all of our experiments the gradients are calculated correctly without
carrying out this step.
Results. For the uncoded scheme, each worker stores and processes
r = 1 data batch. For the GC and LCC schemes, we select the optimal
r subject to the memory size of the t2.micro instance to minimize
the total run-time. For MVM, we further optimized the run-time over
the computation/storage assigned between two rounds of matrix-vector
multiplications. We plot the run-time performance in all three scenarios
in Figure 3.7, and also list the breakdowns of their run-times in Tables 3.1
to 3.3. The computation time was measured as the summation of the
maximum local processing time among all non-straggling workers, over
100 iterations. The communication time is computed as the difference
between the total run-time and the computation time.
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Figure 3.7: Run-time comparison of LCC with other three schemes: conven-
tional uncoded, GC, and MVM.

Based on the experimental results, we draw the following conclusions.

• LCC achieves the least run-time in all scenarios. In particular, LCC
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Table 3.1: Breakdowns of the run-times in scenario one.

schemes # batches/ recovery communication computation total
worker (r) threshold time time run-time

uncoded 1 40 24.125 s 0.237 s 24.362 s
GC 10 31 6.033 s 2.431 s 8.464 s

MVM Rd. 1 5 8 1.245 s 0.561 s 1.806 s
MVM Rd. 2 5 8 1.340 s 0.480 s 1.820 s
MVM total 10 - 2.585 s 1.041 s 3.626 s

LCC 10 7 1.719 s 1.868 s 3.587 s

Table 3.2: Breakdowns of the run-times in scenario two.

schemes # batches/ recovery communication computation total
worker (r) threshold time time run-time

uncoded 1 40 7.928 s 44.772 s 52.700 s
GC 10 31 14.42 s 2.401 s 16.821 s

MVM Rd. 1 5 8 2.254 s 0.475 s 2.729 s
MVM Rd. 2 5 8 2.292 s 0.586 s 2.878 s
MVM total 10 - 4.546 s 1.061 s 5.607 s

LCC 10 7 2.019 s 1.906 s 3.925 s

Table 3.3: Breakdowns of the run-times in scenario three.

schemes # batches/ recovery communication computation total
worker (r) threshold time time run-time

uncoded 1 40 0.229 s 41.765 s 41.994 s
GC 10 31 8.627 s 2.962 s 11.589 s

MVM Rd. 1 5 8 3.807 s 0.664 s 4.471 s
MVM Rd. 2 5 8 52.232 s 0.754 s 52.986 s
MVM total 10 - 56.039 s 1.418 s 57.457 s

LCC 10 7 1.962 s 2.597 s 4.541 s
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speeds up the uncoded scheme by 6.79×-13.43×, the GC scheme by
2.36-4.29×, and the MVM scheme by 1.01-12.65×.

• In scenarios 1 & 2 where the number of inputs m is close to the
number of features d, LCC achieves a similar performance as MVM.
However, when we have much more data points in scenario 3, LCC
finishes substantially faster than MVM by as much as 12.65×. The
main reason for this subpar performance is that MVM requires large
amounts of data transfer from workers to the master in the first
round and from master to workers in the second round (both are
proportional to m). However, the amount of communication from
each worker or master is proportional to d for all other schemes, which
is much smaller than m in scenario 3.

3.3 Related works and open problems

Unified coding. So far, we have demonstrated how coded computing
techniques can inject and leverage redundant computations to minimize
the load of communication, and the effect of stragglers, respectively.
Moving beyond these individual improvements, we have recently pro-
posed in Li et al., 2016a a unified coded framework for distributed
computing with straggling servers, by introducing a tradeoff between
“latency of computation” and “load of communication” for some linear
computation tasks. We showed that the Coded Distributed Computing
(CDC) scheme in Chapter 2 that repeats the intermediate computations
to create coded multicasting opportunities to reduce communication
load, and the coded scheme of Lee et al., 2018 that generates redundant
intermediate computations to combat straggling servers can be viewed
as special instances of the proposed framework, by considering two
extremes of this tradeoff: minimizing either the load of communication
or the latency of computation individually. The key idea of this unified
coding scheme is to apply redundant CDC data placement on MDS-
coded data blocks. Then, by tuning the coding rate of the MDS code and
the number of redundant computations for each intermediate task, we
can systematically operate at any point on the latency-load tradeoff to
optimize the run-time performance of distributed computing tasks. We
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also proved an information-theoretic lower bound on the latency-load
tradeoff, which was shown to be within a constant multiplicative gap
from the achieved tradeoff at the two end points.
Gradient coding.While coded computing schemes have been designed
to speed up fundamental algebraic computations like matrix multipli-
cation and polynomial evaluation, directly adopting these schemes in
general machine learning algorithms is often not applicable since the
gradient computation may not have any algebraic structure, or can
only be evaluated numerically. One of the most important learning algo-
rithms is the stochastic gradient descent (SGD), which is currently the
most widely used training method in supervised learning. Recently, a
coding method named “gradient coding” (GC) was proposed in Tandon
et al., 2017, and extended in Halbawi et al., 2017; Raviv et al., 2017;
Ye and Abbe, 2018, to mitigate stragglers in running distributed SGD.
We use the following simple example to illustrate the idea of GC.

Figure 3.8(a) illustrates a naive way of distributing the computation
of the gradient on three workers. The three workers have disjoint parti-
tions of the data stored locally (D1,D2,D3) and all share the current
model. For i = 1, 2, 3, Worker i computes the gradient of the model on
examples in partition Di, denoted by gi. The three gradient vectors are
then communicated to a master node which computes the full gradient
by summing these vectors g1 + g2 + g3 and updates the model with a
gradient step. The new model is then sent to the workers and the system
moves to the next iteration. This setup is, however, subject to delays
introduced by stragglers because the master has to wait for outputs of
all three workers before computing g1 + g2 + g3.

Figure 3.8(b) illustrates one way to resolve this problem by replicat-
ing data across machines as shown, and sending linear combinations of
the associated gradients. As shown in Figure 3.8(b), each data partition
is replicated twice using a specific placement policy. Each worker is
assigned to compute two gradients on their assigned two data partitions.
For instance, Worker 1 computes vectors g1 and g2, and then sends
1
2g1+g2. Interestingly, g1+g2+g3 can be constructed from any two out of
these three vectors. For instance, g1 + g2 + g3 = 2

(
1
2g1 + g2

)
− (g2 − g3).

Therefore, such a scheme is robust to one straggler. This gradient cod-
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<latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit><latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit><latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit><latexit sha1_base64="yh0qm7WaE59MB6XFPVowDMmLFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGi/YA2lM12ki7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZIphi2WiER1A6pRcIktw43AbqqQxoHATjC+nfmdJ1SaJ/LRTFL0YxpJHnJGjZUeokF9UKm6NXcOskq8glShQHNQ+eoPE5bFKA0TVOue56bGz6kynAmclvuZxpSyMY2wZ6mkMWo/n586JedWGZIwUbakIXP190ROY60ncWA7Y2pGetmbif95vcyE137OZZoZlGyxKMwEMQmZ/U2GXCEzYmIJZYrbWwkbUUWZsemUbQje8surpF2veW7Nu7+sNm6KOEpwCmdwAR5cQQPuoAktYBDBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A/M/jZA=</latexit>

g3
<latexit sha1_base64="a26MgRSJqhxU/OloBGZ3gwsuh3g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK1hbaUDbbTbp0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5GN1O//cS1EYl6wHHK/ZhGSoSCUbTSfdQ/71drbt2dgSwTryA1KNDsV796g4RlMVfIJDWm67kp+jnVKJjkk0ovMzylbEQj3rVU0ZgbP5+dOiEnVhmQMNG2FJKZ+nsip7Ex4ziwnTHFoVn0puJ/XjfD8MrPhUoz5IrNF4WZJJiQ6d9kIDRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJo9ndc+te3cXtcZ1EUcZjuAYTsGDS2jALTShBQwieIZXeHOk8+K8Ox/z1pJTzBzCHzifP/TDjZE=</latexit><latexit sha1_base64="a26MgRSJqhxU/OloBGZ3gwsuh3g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK1hbaUDbbTbp0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5GN1O//cS1EYl6wHHK/ZhGSoSCUbTSfdQ/71drbt2dgSwTryA1KNDsV796g4RlMVfIJDWm67kp+jnVKJjkk0ovMzylbEQj3rVU0ZgbP5+dOiEnVhmQMNG2FJKZ+nsip7Ex4ziwnTHFoVn0puJ/XjfD8MrPhUoz5IrNF4WZJJiQ6d9kIDRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJo9ndc+te3cXtcZ1EUcZjuAYTsGDS2jALTShBQwieIZXeHOk8+K8Ox/z1pJTzBzCHzifP/TDjZE=</latexit><latexit sha1_base64="a26MgRSJqhxU/OloBGZ3gwsuh3g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK1hbaUDbbTbp0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5GN1O//cS1EYl6wHHK/ZhGSoSCUbTSfdQ/71drbt2dgSwTryA1KNDsV796g4RlMVfIJDWm67kp+jnVKJjkk0ovMzylbEQj3rVU0ZgbP5+dOiEnVhmQMNG2FJKZ+nsip7Ex4ziwnTHFoVn0puJ/XjfD8MrPhUoz5IrNF4WZJJiQ6d9kIDRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJo9ndc+te3cXtcZ1EUcZjuAYTsGDS2jALTShBQwieIZXeHOk8+K8Ox/z1pJTzBzCHzifP/TDjZE=</latexit><latexit sha1_base64="a26MgRSJqhxU/OloBGZ3gwsuh3g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK1hbaUDbbTbp0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5GN1O//cS1EYl6wHHK/ZhGSoSCUbTSfdQ/71drbt2dgSwTryA1KNDsV796g4RlMVfIJDWm67kp+jnVKJjkk0ovMzylbEQj3rVU0ZgbP5+dOiEnVhmQMNG2FJKZ+nsip7Ex4ziwnTHFoVn0puJ/XjfD8MrPhUoz5IrNF4WZJJiQ6d9kIDRnKMeWUKaFvZWwIdWUoU2nYkPwFl9eJo9ndc+te3cXtcZ1EUcZjuAYTsGDS2jALTShBQwieIZXeHOk8+K8Ox/z1pJTzBzCHzifP/TDjZE=</latexit>

D3
<latexit sha1_base64="FYOQJGkBJdMVBmZSPRknyJ/AZx4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bZ33itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5VvXcqnd/Uald53EU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we/cY1u</latexit><latexit sha1_base64="FYOQJGkBJdMVBmZSPRknyJ/AZx4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bZ33itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5VvXcqnd/Uald53EU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we/cY1u</latexit><latexit sha1_base64="FYOQJGkBJdMVBmZSPRknyJ/AZx4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bZ33itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5VvXcqnd/Uald53EU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we/cY1u</latexit><latexit sha1_base64="FYOQJGkBJdMVBmZSPRknyJ/AZx4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bZ33itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5VvXcqnd/Uald53EU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we/cY1u</latexit>

D2
<latexit sha1_base64="vlVSmWn4zGhMB+QrTTZLmNMSyjk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiHjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO97Y1t</latexit><latexit sha1_base64="vlVSmWn4zGhMB+QrTTZLmNMSyjk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiHjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO97Y1t</latexit><latexit sha1_base64="vlVSmWn4zGhMB+QrTTZLmNMSyjk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiHjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO97Y1t</latexit><latexit sha1_base64="vlVSmWn4zGhMB+QrTTZLmNMSyjk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiHjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QO97Y1t</latexit>

g1 + g2 + g3
<latexit sha1_base64="mLFx8bEbk/1pEFumT1VF5BM/GJA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBZBEEpSBT0WvXisYD8gDWGz3aRLN7thdyKU0p/hxYMiXv013vw3btsctPXBwOO9GWbmRZngBlz32ymtrW9sbpW3Kzu7e/sH1cOjjlG5pqxNlVC6FxHDBJesDRwE62WakTQSrBuN7mZ+94lpw5V8hHHGgpQkksecErCSn4TeRRI2bF2G1Zpbd+fAq8QrSA0VaIXVr/5A0TxlEqggxviem0EwIRo4FWxa6eeGZYSOSMJ8SyVJmQkm85On+MwqAxwrbUsCnqu/JyYkNWacRrYzJTA0y95M/M/zc4hvggmXWQ5M0sWiOBcYFJ79jwdcMwpibAmhmttbMR0STSjYlCo2BG/55VXSadQ9t+49XNWat0UcZXSCTtE58tA1aqJ71EJtRJFCz+gVvTngvDjvzseiteQUM8foD5zPH5y6kCY=</latexit><latexit sha1_base64="mLFx8bEbk/1pEFumT1VF5BM/GJA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBZBEEpSBT0WvXisYD8gDWGz3aRLN7thdyKU0p/hxYMiXv013vw3btsctPXBwOO9GWbmRZngBlz32ymtrW9sbpW3Kzu7e/sH1cOjjlG5pqxNlVC6FxHDBJesDRwE62WakTQSrBuN7mZ+94lpw5V8hHHGgpQkksecErCSn4TeRRI2bF2G1Zpbd+fAq8QrSA0VaIXVr/5A0TxlEqggxviem0EwIRo4FWxa6eeGZYSOSMJ8SyVJmQkm85On+MwqAxwrbUsCnqu/JyYkNWacRrYzJTA0y95M/M/zc4hvggmXWQ5M0sWiOBcYFJ79jwdcMwpibAmhmttbMR0STSjYlCo2BG/55VXSadQ9t+49XNWat0UcZXSCTtE58tA1aqJ71EJtRJFCz+gVvTngvDjvzseiteQUM8foD5zPH5y6kCY=</latexit><latexit sha1_base64="mLFx8bEbk/1pEFumT1VF5BM/GJA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBZBEEpSBT0WvXisYD8gDWGz3aRLN7thdyKU0p/hxYMiXv013vw3btsctPXBwOO9GWbmRZngBlz32ymtrW9sbpW3Kzu7e/sH1cOjjlG5pqxNlVC6FxHDBJesDRwE62WakTQSrBuN7mZ+94lpw5V8hHHGgpQkksecErCSn4TeRRI2bF2G1Zpbd+fAq8QrSA0VaIXVr/5A0TxlEqggxviem0EwIRo4FWxa6eeGZYSOSMJ8SyVJmQkm85On+MwqAxwrbUsCnqu/JyYkNWacRrYzJTA0y95M/M/zc4hvggmXWQ5M0sWiOBcYFJ79jwdcMwpibAmhmttbMR0STSjYlCo2BG/55VXSadQ9t+49XNWat0UcZXSCTtE58tA1aqJ71EJtRJFCz+gVvTngvDjvzseiteQUM8foD5zPH5y6kCY=</latexit><latexit sha1_base64="mLFx8bEbk/1pEFumT1VF5BM/GJA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBZBEEpSBT0WvXisYD8gDWGz3aRLN7thdyKU0p/hxYMiXv013vw3btsctPXBwOO9GWbmRZngBlz32ymtrW9sbpW3Kzu7e/sH1cOjjlG5pqxNlVC6FxHDBJesDRwE62WakTQSrBuN7mZ+94lpw5V8hHHGgpQkksecErCSn4TeRRI2bF2G1Zpbd+fAq8QrSA0VaIXVr/5A0TxlEqggxviem0EwIRo4FWxa6eeGZYSOSMJ8SyVJmQkm85On+MwqAxwrbUsCnqu/JyYkNWacRrYzJTA0y95M/M/zc4hvggmXWQ5M0sWiOBcYFJ79jwdcMwpibAmhmttbMR0STSjYlCo2BG/55VXSadQ9t+49XNWat0UcZXSCTtE58tA1aqJ71EJtRJFCz+gVvTngvDjvzseiteQUM8foD5zPH5y6kCY=</latexit>

(a) Naive synchronous gradient descent.
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D1, D2
<latexit sha1_base64="t6Bdi9qCc9ZYFeD3ADzTljfG5ZY=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9Fe/BYwX5AG8Jmu2mXbjZhdyKU0h/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl3321lb39jc2i7sFHf39g8OS0fHLZNkmvEmS2SiOyE1XArFmyhQ8k6qOY1Dydvh6G7mt5+4NiJRjzhOuR/TgRKRYBSt1K4H3mU9qAalsltx5yCrxMtJGXI0gtJXr5+wLOYKmaTGdD03RX9CNQom+bTYywxPKRvRAe9aqmjMjT+Znzsl51bpkyjRthSSufp7YkJjY8ZxaDtjikOz7M3E/7xuhtGNPxEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZW0qhXPrXgPV+XabR5HAU7hDC7Ag2uowT00oAkMRvAMr/DmpM6L8+58LFrXnHzmBP7A+fwB2nKOlQ==</latexit><latexit sha1_base64="t6Bdi9qCc9ZYFeD3ADzTljfG5ZY=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9Fe/BYwX5AG8Jmu2mXbjZhdyKU0h/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl3321lb39jc2i7sFHf39g8OS0fHLZNkmvEmS2SiOyE1XArFmyhQ8k6qOY1Dydvh6G7mt5+4NiJRjzhOuR/TgRKRYBSt1K4H3mU9qAalsltx5yCrxMtJGXI0gtJXr5+wLOYKmaTGdD03RX9CNQom+bTYywxPKRvRAe9aqmjMjT+Znzsl51bpkyjRthSSufp7YkJjY8ZxaDtjikOz7M3E/7xuhtGNPxEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZW0qhXPrXgPV+XabR5HAU7hDC7Ag2uowT00oAkMRvAMr/DmpM6L8+58LFrXnHzmBP7A+fwB2nKOlQ==</latexit><latexit sha1_base64="t6Bdi9qCc9ZYFeD3ADzTljfG5ZY=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9Fe/BYwX5AG8Jmu2mXbjZhdyKU0h/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl3321lb39jc2i7sFHf39g8OS0fHLZNkmvEmS2SiOyE1XArFmyhQ8k6qOY1Dydvh6G7mt5+4NiJRjzhOuR/TgRKRYBSt1K4H3mU9qAalsltx5yCrxMtJGXI0gtJXr5+wLOYKmaTGdD03RX9CNQom+bTYywxPKRvRAe9aqmjMjT+Znzsl51bpkyjRthSSufp7YkJjY8ZxaDtjikOz7M3E/7xuhtGNPxEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZW0qhXPrXgPV+XabR5HAU7hDC7Ag2uowT00oAkMRvAMr/DmpM6L8+58LFrXnHzmBP7A+fwB2nKOlQ==</latexit><latexit sha1_base64="t6Bdi9qCc9ZYFeD3ADzTljfG5ZY=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY9Fe/BYwX5AG8Jmu2mXbjZhdyKU0h/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl3321lb39jc2i7sFHf39g8OS0fHLZNkmvEmS2SiOyE1XArFmyhQ8k6qOY1Dydvh6G7mt5+4NiJRjzhOuR/TgRKRYBSt1K4H3mU9qAalsltx5yCrxMtJGXI0gtJXr5+wLOYKmaTGdD03RX9CNQom+bTYywxPKRvRAe9aqmjMjT+Znzsl51bpkyjRthSSufp7YkJjY8ZxaDtjikOz7M3E/7xuhtGNPxEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZW0qhXPrXgPV+XabR5HAU7hDC7Ag2uowT00oAkMRvAMr/DmpM6L8+58LFrXnHzmBP7A+fwB2nKOlQ==</latexit>

D2, D3
<latexit sha1_base64="jDQcrZTYuEb2BXiE29/o5QTSah0=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuixaA8eK9gPaJclm2bb0CS7JFmhLP0RXjwo4tXf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHN/N/M4TVZrF8tFMEuoLPJQsYgQbK3UaQe2iEVwG5YpbdedAq8TLSQVyNIPyV38Qk1RQaQjHWvc8NzF+hpVhhNNpqZ9qmmAyxkPas1RiQbWfzc+dojOrDFAUK1vSoLn6eyLDQuuJCG2nwGakl72Z+J/XS01042dMJqmhkiwWRSlHJkaz39GAKUoMn1iCiWL2VkRGWGFibEIlG4K3/PIqadeqnlv1Hq4q9ds8jiKcwCmcgwfXUId7aEILCIzhGV7hzUmcF+fd+Vi0Fpx85hj+wPn8Ad1+jpc=</latexit><latexit sha1_base64="jDQcrZTYuEb2BXiE29/o5QTSah0=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuixaA8eK9gPaJclm2bb0CS7JFmhLP0RXjwo4tXf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHN/N/M4TVZrF8tFMEuoLPJQsYgQbK3UaQe2iEVwG5YpbdedAq8TLSQVyNIPyV38Qk1RQaQjHWvc8NzF+hpVhhNNpqZ9qmmAyxkPas1RiQbWfzc+dojOrDFAUK1vSoLn6eyLDQuuJCG2nwGakl72Z+J/XS01042dMJqmhkiwWRSlHJkaz39GAKUoMn1iCiWL2VkRGWGFibEIlG4K3/PIqadeqnlv1Hq4q9ds8jiKcwCmcgwfXUId7aEILCIzhGV7hzUmcF+fd+Vi0Fpx85hj+wPn8Ad1+jpc=</latexit><latexit sha1_base64="jDQcrZTYuEb2BXiE29/o5QTSah0=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuixaA8eK9gPaJclm2bb0CS7JFmhLP0RXjwo4tXf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHN/N/M4TVZrF8tFMEuoLPJQsYgQbK3UaQe2iEVwG5YpbdedAq8TLSQVyNIPyV38Qk1RQaQjHWvc8NzF+hpVhhNNpqZ9qmmAyxkPas1RiQbWfzc+dojOrDFAUK1vSoLn6eyLDQuuJCG2nwGakl72Z+J/XS01042dMJqmhkiwWRSlHJkaz39GAKUoMn1iCiWL2VkRGWGFibEIlG4K3/PIqadeqnlv1Hq4q9ds8jiKcwCmcgwfXUId7aEILCIzhGV7hzUmcF+fd+Vi0Fpx85hj+wPn8Ad1+jpc=</latexit><latexit sha1_base64="jDQcrZTYuEb2BXiE29/o5QTSah0=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuixaA8eK9gPaJclm2bb0CS7JFmhLP0RXjwo4tXf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NZxqghtkZjHqhtiTTmTtGWY4bSbKIpFyGknHN/N/M4TVZrF8tFMEuoLPJQsYgQbK3UaQe2iEVwG5YpbdedAq8TLSQVyNIPyV38Qk1RQaQjHWvc8NzF+hpVhhNNpqZ9qmmAyxkPas1RiQbWfzc+dojOrDFAUK1vSoLn6eyLDQuuJCG2nwGakl72Z+J/XS01042dMJqmhkiwWRSlHJkaz39GAKUoMn1iCiWL2VkRGWGFibEIlG4K3/PIqadeqnlv1Hq4q9ds8jiKcwCmcgwfXUId7aEILCIzhGV7hzUmcF+fd+Vi0Fpx85hj+wPn8Ad1+jpc=</latexit>

D3, D1
<latexit sha1_base64="xYHiuvtOLymkUM7bJzaMLh7GFx4=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJKooMeiPXisYD+gDWGz3bRLN5uwOxFK6Y/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDf1W09cG5GoRxyl3I9pX4lIMIpWatWCy/Na4AWlsltxZyDLxMtJGXLUg9JXt5ewLOYKmaTGdDw3RX9MNQom+aTYzQxPKRvSPu9YqmjMjT+enTshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtGNPxYqzZArNl8UZZJgQqa/k57QnKEcWUKZFvZWwgZUU4Y2oaINwVt8eZk0LyqeW/EersrV2zyOAhzDCZyBB9dQhXuoQwMYDOEZXuHNSZ0X5935mLeuOPnMEfyB8/kD2/6Olg==</latexit><latexit sha1_base64="xYHiuvtOLymkUM7bJzaMLh7GFx4=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJKooMeiPXisYD+gDWGz3bRLN5uwOxFK6Y/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDf1W09cG5GoRxyl3I9pX4lIMIpWatWCy/Na4AWlsltxZyDLxMtJGXLUg9JXt5ewLOYKmaTGdDw3RX9MNQom+aTYzQxPKRvSPu9YqmjMjT+enTshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtGNPxYqzZArNl8UZZJgQqa/k57QnKEcWUKZFvZWwgZUU4Y2oaINwVt8eZk0LyqeW/EersrV2zyOAhzDCZyBB9dQhXuoQwMYDOEZXuHNSZ0X5935mLeuOPnMEfyB8/kD2/6Olg==</latexit><latexit sha1_base64="xYHiuvtOLymkUM7bJzaMLh7GFx4=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJKooMeiPXisYD+gDWGz3bRLN5uwOxFK6Y/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDf1W09cG5GoRxyl3I9pX4lIMIpWatWCy/Na4AWlsltxZyDLxMtJGXLUg9JXt5ewLOYKmaTGdDw3RX9MNQom+aTYzQxPKRvSPu9YqmjMjT+enTshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtGNPxYqzZArNl8UZZJgQqa/k57QnKEcWUKZFvZWwgZUU4Y2oaINwVt8eZk0LyqeW/EersrV2zyOAhzDCZyBB9dQhXuoQwMYDOEZXuHNSZ0X5935mLeuOPnMEfyB8/kD2/6Olg==</latexit><latexit sha1_base64="xYHiuvtOLymkUM7bJzaMLh7GFx4=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJKooMeiPXisYD+gDWGz3bRLN5uwOxFK6Y/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDf1W09cG5GoRxyl3I9pX4lIMIpWatWCy/Na4AWlsltxZyDLxMtJGXLUg9JXt5ewLOYKmaTGdDw3RX9MNQom+aTYzQxPKRvSPu9YqmjMjT+enTshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtGNPxYqzZArNl8UZZJgQqa/k57QnKEcWUKZFvZWwgZUU4Y2oaINwVt8eZk0LyqeW/EersrV2zyOAhzDCZyBB9dQhXuoQwMYDOEZXuHNSZ0X5935mLeuOPnMEfyB8/kD2/6Olg==</latexit>

g1/2 + g2
<latexit sha1_base64="XnDuGoECqAoZkcEYg/KWnDdsbGE=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSIIQk2KoMeiF48V7Ie0IWy2m3Tp7ibsboQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOVMG9f9dlZW19Y3Nktb5e2d3b39ysFhWyeZIrRFEp6obog15UzSlmGG026qKBYhp51wdDv1O09UaZbIBzNOqS9wLFnECDZWeowD76J+Hgf1oFJ1a+4MaJl4BalCgWZQ+eoPEpIJKg3hWOue56bGz7EyjHA6KfczTVNMRjimPUslFlT7+ezgCTq1ygBFibIlDZqpvydyLLQei9B2CmyGetGbiv95vcxE137OZJoZKsl8UZRxZBI0/R4NmKLE8LElmChmb0VkiBUmxmZUtiF4iy8vk3a95rk17/6y2rgp4ijBMZzAGXhwBQ24gya0gICAZ3iFN0c5L8678zFvXXGKmSP4A+fzByTAj08=</latexit><latexit sha1_base64="XnDuGoECqAoZkcEYg/KWnDdsbGE=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSIIQk2KoMeiF48V7Ie0IWy2m3Tp7ibsboQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOVMG9f9dlZW19Y3Nktb5e2d3b39ysFhWyeZIrRFEp6obog15UzSlmGG026qKBYhp51wdDv1O09UaZbIBzNOqS9wLFnECDZWeowD76J+Hgf1oFJ1a+4MaJl4BalCgWZQ+eoPEpIJKg3hWOue56bGz7EyjHA6KfczTVNMRjimPUslFlT7+ezgCTq1ygBFibIlDZqpvydyLLQei9B2CmyGetGbiv95vcxE137OZJoZKsl8UZRxZBI0/R4NmKLE8LElmChmb0VkiBUmxmZUtiF4iy8vk3a95rk17/6y2rgp4ijBMZzAGXhwBQ24gya0gICAZ3iFN0c5L8678zFvXXGKmSP4A+fzByTAj08=</latexit><latexit sha1_base64="XnDuGoECqAoZkcEYg/KWnDdsbGE=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSIIQk2KoMeiF48V7Ie0IWy2m3Tp7ibsboQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOVMG9f9dlZW19Y3Nktb5e2d3b39ysFhWyeZIrRFEp6obog15UzSlmGG026qKBYhp51wdDv1O09UaZbIBzNOqS9wLFnECDZWeowD76J+Hgf1oFJ1a+4MaJl4BalCgWZQ+eoPEpIJKg3hWOue56bGz7EyjHA6KfczTVNMRjimPUslFlT7+ezgCTq1ygBFibIlDZqpvydyLLQei9B2CmyGetGbiv95vcxE137OZJoZKsl8UZRxZBI0/R4NmKLE8LElmChmb0VkiBUmxmZUtiF4iy8vk3a95rk17/6y2rgp4ijBMZzAGXhwBQ24gya0gICAZ3iFN0c5L8678zFvXXGKmSP4A+fzByTAj08=</latexit><latexit sha1_base64="XnDuGoECqAoZkcEYg/KWnDdsbGE=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSIIQk2KoMeiF48V7Ie0IWy2m3Tp7ibsboQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOVMG9f9dlZW19Y3Nktb5e2d3b39ysFhWyeZIrRFEp6obog15UzSlmGG026qKBYhp51wdDv1O09UaZbIBzNOqS9wLFnECDZWeowD76J+Hgf1oFJ1a+4MaJl4BalCgWZQ+eoPEpIJKg3hWOue56bGz7EyjHA6KfczTVNMRjimPUslFlT7+ezgCTq1ygBFibIlDZqpvydyLLQei9B2CmyGetGbiv95vcxE137OZJoZKsl8UZRxZBI0/R4NmKLE8LElmChmb0VkiBUmxmZUtiF4iy8vk3a95rk17/6y2rgp4ijBMZzAGXhwBQ24gya0gICAZ3iFN0c5L8678zFvXXGKmSP4A+fzByTAj08=</latexit>

g2 � g3
<latexit sha1_base64="fMIuEbKs3N7CkdXoXJRg6jKr6n0=">AAAB7nicbVBNS8NAEJ2tX7V+VT16WSyCF0tSBT0WvXisYD+gDWGz3aRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglRwbRznG5XW1jc2t8rblZ3dvf2D6uFRRyeZoqxNE5GoXkA0E1yytuFGsF6qGIkDwbrB+G7md5+Y0jyRj2aSMi8mkeQhp8RYqRv5jYvIv/SrNafuzIFXiVuQGhRo+dWvwTChWcykoYJo3Xed1Hg5UYZTwaaVQaZZSuiYRKxvqSQx014+P3eKz6wyxGGibEmD5+rviZzEWk/iwHbGxIz0sjcT//P6mQlvvJzLNDNM0sWiMBPYJHj2Ox5yxagRE0sIVdzeiumIKEKNTahiQ3CXX14lnUbdderuw1WteVvEUYYTOIVzcOEamnAPLWgDhTE8wyu8oRS9oHf0sWgtoWLmGP4Aff4ASkSO3g==</latexit><latexit sha1_base64="fMIuEbKs3N7CkdXoXJRg6jKr6n0=">AAAB7nicbVBNS8NAEJ2tX7V+VT16WSyCF0tSBT0WvXisYD+gDWGz3aRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglRwbRznG5XW1jc2t8rblZ3dvf2D6uFRRyeZoqxNE5GoXkA0E1yytuFGsF6qGIkDwbrB+G7md5+Y0jyRj2aSMi8mkeQhp8RYqRv5jYvIv/SrNafuzIFXiVuQGhRo+dWvwTChWcykoYJo3Xed1Hg5UYZTwaaVQaZZSuiYRKxvqSQx014+P3eKz6wyxGGibEmD5+rviZzEWk/iwHbGxIz0sjcT//P6mQlvvJzLNDNM0sWiMBPYJHj2Ox5yxagRE0sIVdzeiumIKEKNTahiQ3CXX14lnUbdderuw1WteVvEUYYTOIVzcOEamnAPLWgDhTE8wyu8oRS9oHf0sWgtoWLmGP4Aff4ASkSO3g==</latexit><latexit sha1_base64="fMIuEbKs3N7CkdXoXJRg6jKr6n0=">AAAB7nicbVBNS8NAEJ2tX7V+VT16WSyCF0tSBT0WvXisYD+gDWGz3aRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglRwbRznG5XW1jc2t8rblZ3dvf2D6uFRRyeZoqxNE5GoXkA0E1yytuFGsF6qGIkDwbrB+G7md5+Y0jyRj2aSMi8mkeQhp8RYqRv5jYvIv/SrNafuzIFXiVuQGhRo+dWvwTChWcykoYJo3Xed1Hg5UYZTwaaVQaZZSuiYRKxvqSQx014+P3eKz6wyxGGibEmD5+rviZzEWk/iwHbGxIz0sjcT//P6mQlvvJzLNDNM0sWiMBPYJHj2Ox5yxagRE0sIVdzeiumIKEKNTahiQ3CXX14lnUbdderuw1WteVvEUYYTOIVzcOEamnAPLWgDhTE8wyu8oRS9oHf0sWgtoWLmGP4Aff4ASkSO3g==</latexit><latexit sha1_base64="fMIuEbKs3N7CkdXoXJRg6jKr6n0=">AAAB7nicbVBNS8NAEJ2tX7V+VT16WSyCF0tSBT0WvXisYD+gDWGz3aRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzglRwbRznG5XW1jc2t8rblZ3dvf2D6uFRRyeZoqxNE5GoXkA0E1yytuFGsF6qGIkDwbrB+G7md5+Y0jyRj2aSMi8mkeQhp8RYqRv5jYvIv/SrNafuzIFXiVuQGhRo+dWvwTChWcykoYJo3Xed1Hg5UYZTwaaVQaZZSuiYRKxvqSQx014+P3eKz6wyxGGibEmD5+rviZzEWk/iwHbGxIz0sjcT//P6mQlvvJzLNDNM0sWiMBPYJHj2Ox5yxagRE0sIVdzeiumIKEKNTahiQ3CXX14lnUbdderuw1WteVvEUYYTOIVzcOEamnAPLWgDhTE8wyu8oRS9oHf0sWgtoWLmGP4Aff4ASkSO3g==</latexit>

g1/2 + g3
<latexit sha1_base64="7GGcL/KptU1uZfAI6wFaLNJkjA8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEOpuFfRY9OKxgv2QdlmyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmhQln2rjut1NYWV1b3yhulra2d3b3yvsHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH8w4ob7AA8kiRrCx0uMg8M5rZ4PgIihX3Ko7A1omXk4qkKMRlL96/ZikgkpDONa667mJ8TOsDCOcTkq9VNMEkxEe0K6lEguq/Wx28ASdWKWPoljZkgbN1N8TGRZaj0VoOwU2Q73oTcX/vG5qoms/YzJJDZVkvihKOTIxmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtkQvMWXl0mrVvXcqnd/Wanf5HEU4QiO4RQ8uII63EEDmkBAwDO8wpujnBfn3fmYtxacfOYQ/sD5/AEmRI9Q</latexit><latexit sha1_base64="7GGcL/KptU1uZfAI6wFaLNJkjA8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEOpuFfRY9OKxgv2QdlmyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmhQln2rjut1NYWV1b3yhulra2d3b3yvsHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH8w4ob7AA8kiRrCx0uMg8M5rZ4PgIihX3Ko7A1omXk4qkKMRlL96/ZikgkpDONa667mJ8TOsDCOcTkq9VNMEkxEe0K6lEguq/Wx28ASdWKWPoljZkgbN1N8TGRZaj0VoOwU2Q73oTcX/vG5qoms/YzJJDZVkvihKOTIxmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtkQvMWXl0mrVvXcqnd/Wanf5HEU4QiO4RQ8uII63EEDmkBAwDO8wpujnBfn3fmYtxacfOYQ/sD5/AEmRI9Q</latexit><latexit sha1_base64="7GGcL/KptU1uZfAI6wFaLNJkjA8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEOpuFfRY9OKxgv2QdlmyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmhQln2rjut1NYWV1b3yhulra2d3b3yvsHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH8w4ob7AA8kiRrCx0uMg8M5rZ4PgIihX3Ko7A1omXk4qkKMRlL96/ZikgkpDONa667mJ8TOsDCOcTkq9VNMEkxEe0K6lEguq/Wx28ASdWKWPoljZkgbN1N8TGRZaj0VoOwU2Q73oTcX/vG5qoms/YzJJDZVkvihKOTIxmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtkQvMWXl0mrVvXcqnd/Wanf5HEU4QiO4RQ8uII63EEDmkBAwDO8wpujnBfn3fmYtxacfOYQ/sD5/AEmRI9Q</latexit><latexit sha1_base64="7GGcL/KptU1uZfAI6wFaLNJkjA8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEOpuFfRY9OKxgv2QdlmyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmhQln2rjut1NYWV1b3yhulra2d3b3yvsHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH8w4ob7AA8kiRrCx0uMg8M5rZ4PgIihX3Ko7A1omXk4qkKMRlL96/ZikgkpDONa667mJ8TOsDCOcTkq9VNMEkxEe0K6lEguq/Wx28ASdWKWPoljZkgbN1N8TGRZaj0VoOwU2Q73oTcX/vG5qoms/YzJJDZVkvihKOTIxmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtkQvMWXl0mrVvXcqnd/Wanf5HEU4QiO4RQ8uII63EEDmkBAwDO8wpujnBfn3fmYtxacfOYQ/sD5/AEmRI9Q</latexit>

g1 + g2 + g3 (from any 2)
<latexit sha1_base64="7vGXXkCiVHA7iXmLNAv+0giZFg8=">AAACEXicbVDLSgMxFM3UV62vqks3wVaoCGWmCrosunFZwT6gLUMmzbShmcyQ3BHL0F9w46+4caGIW3fu/BvT6Sy0euBeDufcS3KPFwmuwba/rNzS8srqWn69sLG5tb1T3N1r6TBWlDVpKELV8YhmgkvWBA6CdSLFSOAJ1vbGVzO/fceU5qG8hUnE+gEZSu5zSsBIbrEydB18goduLe2nuAfsHuIowRVfhQEmcoLLtfLx1C2W7KqdAv8lTkZKKEPDLX72BiGNAyaBCqJ117Ej6CdEAaeCTQu9WLOI0DEZsq6hkgRM95P0oik+MsoA+6EyJQGn6s+NhARaTwLPTAYERnrRm4n/ed0Y/It+wmUUA5N0/pAfCwwhnsWDB1wxCmJiCKGKm79iOiKKUDAhFkwIzuLJf0mrVnXsqnNzVqpfZnHk0QE6RBXkoHNUR9eogZqIogf0hF7Qq/VoPVtv1vt8NGdlO/voF6yPb2igmj4=</latexit><latexit sha1_base64="7vGXXkCiVHA7iXmLNAv+0giZFg8=">AAACEXicbVDLSgMxFM3UV62vqks3wVaoCGWmCrosunFZwT6gLUMmzbShmcyQ3BHL0F9w46+4caGIW3fu/BvT6Sy0euBeDufcS3KPFwmuwba/rNzS8srqWn69sLG5tb1T3N1r6TBWlDVpKELV8YhmgkvWBA6CdSLFSOAJ1vbGVzO/fceU5qG8hUnE+gEZSu5zSsBIbrEydB18goduLe2nuAfsHuIowRVfhQEmcoLLtfLx1C2W7KqdAv8lTkZKKEPDLX72BiGNAyaBCqJ117Ej6CdEAaeCTQu9WLOI0DEZsq6hkgRM95P0oik+MsoA+6EyJQGn6s+NhARaTwLPTAYERnrRm4n/ed0Y/It+wmUUA5N0/pAfCwwhnsWDB1wxCmJiCKGKm79iOiKKUDAhFkwIzuLJf0mrVnXsqnNzVqpfZnHk0QE6RBXkoHNUR9eogZqIogf0hF7Qq/VoPVtv1vt8NGdlO/voF6yPb2igmj4=</latexit><latexit sha1_base64="7vGXXkCiVHA7iXmLNAv+0giZFg8=">AAACEXicbVDLSgMxFM3UV62vqks3wVaoCGWmCrosunFZwT6gLUMmzbShmcyQ3BHL0F9w46+4caGIW3fu/BvT6Sy0euBeDufcS3KPFwmuwba/rNzS8srqWn69sLG5tb1T3N1r6TBWlDVpKELV8YhmgkvWBA6CdSLFSOAJ1vbGVzO/fceU5qG8hUnE+gEZSu5zSsBIbrEydB18goduLe2nuAfsHuIowRVfhQEmcoLLtfLx1C2W7KqdAv8lTkZKKEPDLX72BiGNAyaBCqJ117Ej6CdEAaeCTQu9WLOI0DEZsq6hkgRM95P0oik+MsoA+6EyJQGn6s+NhARaTwLPTAYERnrRm4n/ed0Y/It+wmUUA5N0/pAfCwwhnsWDB1wxCmJiCKGKm79iOiKKUDAhFkwIzuLJf0mrVnXsqnNzVqpfZnHk0QE6RBXkoHNUR9eogZqIogf0hF7Qq/VoPVtv1vt8NGdlO/voF6yPb2igmj4=</latexit><latexit sha1_base64="7vGXXkCiVHA7iXmLNAv+0giZFg8=">AAACEXicbVDLSgMxFM3UV62vqks3wVaoCGWmCrosunFZwT6gLUMmzbShmcyQ3BHL0F9w46+4caGIW3fu/BvT6Sy0euBeDufcS3KPFwmuwba/rNzS8srqWn69sLG5tb1T3N1r6TBWlDVpKELV8YhmgkvWBA6CdSLFSOAJ1vbGVzO/fceU5qG8hUnE+gEZSu5zSsBIbrEydB18goduLe2nuAfsHuIowRVfhQEmcoLLtfLx1C2W7KqdAv8lTkZKKEPDLX72BiGNAyaBCqJ117Ej6CdEAaeCTQu9WLOI0DEZsq6hkgRM95P0oik+MsoA+6EyJQGn6s+NhARaTwLPTAYERnrRm4n/ed0Y/It+wmUUA5N0/pAfCwwhnsWDB1wxCmJiCKGKm79iOiKKUDAhFkwIzuLJf0mrVnXsqnNzVqpfZnHk0QE6RBXkoHNUR9eogZqIogf0hF7Qq/VoPVtv1vt8NGdlO/voF6yPb2igmj4=</latexit>

(b) Gradient coding: The vector g1 + g2 +
g3 is in the span of any two.

Figure 3.8: Illustration of gradient coding.

ing technique makes the computation robust to stragglers albeit at a
computational overhead compared to the naive scheme, while keeping
the communication load the same.

In general GC schemes require processing s+ 1 data batches at each
worker in order for the system to tolerate s stragglers. We also note
that in contrast to the previously proposed Lagrange Coded Comput-
ing scheme that codes over data batches, the GC schemes code over
partial gradients computed from uncoded data, hence it is applicable
to arbitrary loss functions whose gradients may not have any alge-
braic structure or can only be computed numerically (e.g., deep neural
networks).

Finally, we end this chapter with some of the open problems and
future directions for designing straggler-resilient coded computing sys-
tems.
Low-complexity algorithms for coded matrix multiplication.
While the naive multiplication of an M × N matrix A by an N × L
matrix B has complexity O(MNL), there is a rich literature that has
discovered low complexity implementations, especially if the matrices
are restricted to a certain class. When the entries of matrix A come
from a bounded alphabet A (e.g., A is the adjacency matrix of a degree-
bounded graph in common graph algorithms like pagerank, or Laplacian
matrix calculation), the product AB can be computed via the four
Russians algorithm Ullman et al., 1974; Liberty and Zucker, 2009 using
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O(MNL log2 |A|/ log2N) operations - an improvement of a factor of
log2N as compared to the naive approach for small alphabet. There are
some unique challenges for the use of the four Russians method in coded
distributed matrix multiplication due to the fact that the alphabet size
of good codes tends to be large. Consider a concrete example where
A = {0, 1}, and B is a N × 1 vector. Surprisingly, a back-of-the envelop
calculation reveals that natural application of MDS codes to the case of
binary multiplication has the same per-node computational complexity
as replication O(MN(s+1)

n log2 N
), for a fixed straggler tolerance s. This is

because the alphabet size of a parity matrix, say
∑m
i=1 giAi, can be as

large as 2m, so the computational complexity of multiplying with B is
O( MN

log2 N
), whereas an uncoded computation has complexity O( MN

m log2 N
).

Motivated by this observation, we propose to answer the following
question: For a matrix multiplication where the matrix entries come
from a bounded alphabet A, what is the the optimal trade-off between
straggler tolerance and the per-node computational complexity. There
have been several recent works along this direction in Haddadpour and
Cadambe, 2018; Tang et al., 2019.

Developing “master-less” systems for efficient and straggler-
resilient matrix multiplication. Current state of the art in coded
computing largely assumes availability of master/fusion nodes that
distribute and collect data, and perform encoding/decoding compu-
tations. In practice, however, often all nodes are identical, and no
single node may be able to store all the data or perform all the encod-
ing/decoding operations (see e.g., Jeong et al., 2018). Distributed and
parallel computing literature has developed efficient matrix multiplica-
tion algorithms for decentralized architectures, for example, the Scalable
Universal Matrix Multiplication Algorithm (SUMMA) Van De Geijn
and Watts, 1997, which is implemented in linear algebra libraries such
as ScaLAPACK Blackford et al., 1997, PLAPACK Alpatov et al., 1997,
PB-BLAS Choi et al., 1996, and Elemental Poulson et al., 2013. A signif-
icant challenge that SUMMA overcomes is to limit the communication
cost in decentralized architectures. The theoretical basis for practical
algorithms like SUMMA comes from the study of their completion
time over a distributed computing model Demmel et al., 2012; Ballard
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et al., 2014 of n fully connected nodes, where message transmission time
involves a fixed start up time plus a time that is proportional to the
length of the message. The completion time for matrix multiplication
in SUMMA is approximately optimal in this model Ballard et al., 2014.
The main idea of SUMMA is that it cleverly schedules the operations
performed by the nodes to minimize the amount of time spent waiting
for data and message communication and startup costs, minimizing the
overall completion time. SUMMA, however, is not robust to stragglers or
failures. As such motivated, we propose to solve the following problem:
Develop a matrix multiplication algorithm over n nodes that is robust
to s stragglers, and minimizes the completion time in the model of
Ballard et al., 2014. In order to emulate the fusion node’s decode/repair
functionality over the master-less decentralized systems, one may refer
to related designs for locally recoverable and regenerating codes in the
distributed storage literature. Also, it would be interesting to try to
develop lower bounds on the completion time using the techniques for
proving straggler-aware bounds in Dutta et al., 2016; Yu et al., 2017b.

Gradient coding for partial stragglers. Previous works of gradi-
ent coding for distributed learning relied on a simplified assumption:
straggling machines perform no work i.e. fail catastrophically or simply
do not respond to requests. In reality, this rarely happens: machines
are simply slower because of an OS update, moving of virtualization
resources across servers or other issues relating to pooled computing
resources. Furthermore a machine may be a straggler for some iterations
of the learning process but not for others. This allows us to design
methods for iterative learning not one round at a time, but considering
the iterative nature of the whole training process jointly.

One way to tackle this problem is to use a layering of different
gradient codes designed for different numbers of stragglers. Each data
batch of gradient descent can be partitioned into smaller partitions
and combinations of gradient codes can provide good intermediate
performance. A good way to explain our future vision for this problem
is through erasure codes: In classic MDS erasure coding k data blocks
are encoded into n blocks with the guarantee that if someone collects
any k from the encoded blocks they can reconstruct all the original data.
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However, even if k − 1 blocks are recovered, there is no guarantee of
recovery. Of course, one could make a systematic MDS code and have
some intermediate performance from the systematic blocks, but it is
highly nontrivial to improve on that. For example, one could ask that
any k/2 blocks suffice to recover a good fraction of the original data
and also recover everything from any k blocks.

This problem is sometimes called intermediate performance for
erasure codes, see e.g., Sanghavi, 2007; Kim and Lee, 2009; Dimakis et
al., 2007 and the related growth codes Kamra et al., 2006. The problem
we are proposing here is intermediate performance for gradient codes:
For example, create a code to ensure that a full gradient is recovered if
any n−s−`1 machines each process 2k1 blocks, and `1 partial stragglers
process some k2 blocks. In this example we assumed a slowdown factor
of 2. Finding the fundamental limits and designing optimal gradient
codes for such systems are interesting research problems. Some progress
has been made on this direction in Ferdinand and Draper, 2018; Narra
et al., 2019.
Gradient coding that produce approximate gradients. Another
way to alleviate the computational overhead of gradient coding can be
by relaxing the requirement of exactly recovering the full gradient (or
of any batch involved in a particular iteration). In other words, one
could try to design n sparse vectors {b1, b2, . . . , bn} such that the span
of any (n− s) contains a vector close to the all 1s vector 1. This gives
rise to the following open problem. Thinking of the n vectors as rows
of a matrix B, and given some constant ε > 0, one form of stating this
problem requires constructing the matrix B such that any submatrix of
(n− s) rows, say B′, satisfies ‖B′x− 1‖2 ≤ ε for some vector x. This
question has been recently studied in Raviv et al., 2017; Charles et al.,
2017; Wang et al., 2019b; Wang et al., 2019a. However, the question
of whether these approaches are optimal is still open. Furthermore,
the problem stated as such is agnostic to the actual gradient being
approximated. It is conceivable that building data dependent encoders
that exploit gradients from the previous iteration could lead to better
approximations of the current gradient for the same computational cost.
Beyond polynomial computations. Polynomial computation is the
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most general class of computations for which we know the optimal
design for coded computing via Lagrange coding. Extending the state-
of-the-art in coded computing to go beyond polynomial computations is
a very important and challenging research direction, which is expected
to impact various application domains (in particular, machine learning,
in which non-linear threshold functions are common). There have been
some work on this direction in Kosaian et al., 2018; Dutta et al., 2019;
Yang et al., 2017; So et al., 2019, however the problem still remains
largely unsolved.



4
Coding for Security and Privacy

In the previous chapters, we have demonstrated the role of coding in
reducing the bandwidth requirement, and alleviating the stragglers’ de-
lay, for distributed computing applications. In this chapter, we focus on
addressing another two major concerns of the information age - security
and privacy. The security concern in distributed computation is having
Byzantine (or malicious) workers with no computational restriction,
who can deliberately send erroneous data to affect the computation for
their benefit. Examples for such scenarios include the one described
in Blanchard et al., 2017b, where it is shown that a single malicious
server in a distributed execution of gradient descent can cause arbitrary
bias in the resulting hypothesis. In addition to security challenges, dis-
tributed computation and learning schemes are susceptible to privacy
infringement. Since such computations are commonly performed by
using third party cloud services, the concern for personal data leakage
is growing. Therefore, in some cases it is crucial to keep the workers
oblivious to the actual data they are processing.

Security and privacy have been the main research focus in the
literature of multiparty computing (MPC) and secure/private machine
learning (see, e.g., Ben-Or et al., 1988; Cramer et al., 2001; Halpern
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and Teague, 2004; Cramer et al., 2015; Mohassel and Zhang, 2017). In
this chapter, we demonstrate how coding theory can help to maintain
security and privacy in multiparty computing and distributed learning.
Specifically, we first demonstrate that how we can extend the Lagrange
Coded Computing framework proposed in the previous chapter to
provide MPC systems with security and privacy guarantees. We also
compare LCC with state-of-the-art MPC schemes (e.g., the celebrated
BGW scheme for secure/private MPC Ben-Or et al., 1988), and illustrate
the substantial reduction in the amount of randomness, storage overhead,
and computational complexity achieved by LCC.

Second, we demonstrate the application of coded computing for
privacy-preserving machine learning. In particular, we consider an appli-
cation scenario in which a data-owner (e.g., a hospital) wishes to train
a logistic regression model by offloading the large volume of data (e.g.,
healthcare records) and computationally-intensive training tasks (e.g.,
gradient computations) to N machines over a cloud platform, while
ensuring that any collusions between T out of N workers do not leak
information about the dataset. We then discus a recently proposed
scheme So et al., 2019 that leverages coded computing for this problem.
We finally end this chapter with a discussion on some related works and
open problems.

4.1 Secure and private multiparty computing

We consider the problem of evaluating a multivariate polynomial f : V→
U over a dataset X = (X1, . . . , XK), where V and U are vector spaces of
dimensions M and L, respectively, over the finite field1 Fq. We assume
a distributed computing environment with a master and N workers (see
Figure 4.1), and the goal is to compute Y1 , f(X1), . . . , YK , f(XK)
given function f . We define the degree of the chosen f , denoted by
deg f , as the total degree of the polynomial.

In this setting each worker has already stored a fraction of the dataset
prior to computation, in a possibly coded manner. Specifically, for i ∈

1While the results about security hold for any large enough field, privacy is well
defined only over finite ones.
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Figure 4.1: An illustration of coded computing in the presence of malicious workers
(m1, ... , mA) who wish to affect the computation for their own benefit, and sets
of colluding workers (c1, ... , cT ) who wish to know the dataset X. The master
encodes the dataset {Xj}Kj=1 to {X̃i}Ni=1, and sends X̃i to worker i. In turn, the
workers compute f(X̃i) and send the result back to the master. The master needs to
retrieve {f(Xi)}Ki=1 in the presence of at most A malicious workers, and maintain
the perfect privacy of the dataset in the face of up to T colluding workers.
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[N ] (where [N ] , {1, . . . , N}), worker i stores X̃i , gi(X1, . . . , XK , Z),
where gi is the encoding function of that worker, and Z is a random
variable. We restrict our attention to linear encoding functions, which
guarantee low encoding complexity and simple implementation. Specifi-
cally, each X̃i is a linear combination of X1, . . . , XK , Z.

Upon starting computation, each worker i ∈ [N ] computes Ỹi ,
f(X̃i) and returns the result to the master. The master waits for all
workers and then decodes outputs Y1, . . . , YK using a decoding function
given these results.

The procedure described above must satisfy two additional require-
ments. First, the workers must remain oblivious to the content of the
dataset, even if up to T of them collude, where T is the privacy param-
eter of the system. Formally, for every T ⊆ [N ] of size at most T , we
must have that2

I(X; X̃T ) = 0 (4.1)

where I is mutual information, X̃T represents the encoded dataset that
is stored at the workers in T , and X is seen as chosen uniformly at
random. A scheme which guarantees privacy against T colluding workers
is called T -private.

In addition to privacy, the computing scheme should provide security,
i.e., robustness against malicious workers. Formally, the master must be
able to obtain true values of Y1, . . . , YK even if up to A workers return
arbitrarily erroneous results, where A is the security parameter of the
system. A scheme that guarantees security against A malicious workers
is called A-secure.
Uncoded repetition scheme. For this setting, a naive uncoded
scheme simply replicates each uncoded data block Xi onto multiple
workers. By replicating each Xi between bN/Kc and dN/Ke times, it
can tolerate at most A adversaries when 2A ≤ bN/Kc − 1. However,
uncoded repetition does not support the privacy requirement.

2Equivalently, equation (4.1) requires that X̃T and X are independent. Under
this condition, the input data X still appears uniformly random after the colluding
workers learn X̃T , which guarantees the privacy.



108 Coding for Security and Privacy

4.1.1 LCC for secure and private multiparty computing

We star with an illustrative example of how LCC scheme that we
described in the previous chapter can be utilized for secure and private
MPC.

Illustrative Example

Consider the function f(Xi) = X2
i , where input Xi’s are

√
M ×

√
M

square matrices for some square integer M . We demonstrate LCC
in the scenario where the input data X is partitioned into K = 2
batches X1 and X2, and the computing system has N = 7 workers. In
addition, the scheme guarantees perfect privacy against any individual
worker (i.e., T = 1), and is robust against any single malicious worker
(i.e., A = 1).

The gist of LCC is picking a uniformly random matrix Z of the same
dimensions as the Xi’s, and to encode (X1, X2, Z) using a Lagrange
interpolation polynomial u. To this end, assume that the underlying
field Fq = F11, let

u(z) ,X1 ·
(z − 2)(z − 3)
(1− 2)(1− 3) +X2 ·

(z − 1)(z − 3)
(2− 1)(2− 3)+

Z · (z − 1)(z − 2)
(3− 1)(3− 2) ,

and observe that u(1) = X1 and u(2) = X2. Then, fix distinct {αi}7i=1
in F11 such that {αi}7i=1 ∩ [2] = ∅, and have workers 1, . . . , 7
store u(α1), . . . , u(α7), i.e.,(

X̃1, . . . , X̃7
)

= (X1, X2, Z) · U

where U ∈ F3×7
11 satisfies Ui,j =

∏
`∈[3]\{i}

αj−`
i−` for (i, j) ∈ [3]× [7].

First, notice that for every j ∈ [7], worker j sees X̃j , which is a
linear combination of X1 and X2 masked by addition of λ · Z for some
nonzero λ ∈ F11; since Z is uniformly random, this guarantees perfect
privacy for T = 1. Next, worker j computes f(X̃j) = f(u(αj)), which
is an evaluation of the composition polynomial f(u(z)), with degree at
most 4, at αj .
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Normally, a polynomial of degree 4 can be interpolated from 5 eval-
uations at distinct points. However, the presence of A = 1 malicious
worker requires the master to employ a Reed-Solomon decoder, and have
two additional evaluations at distinct points (in general, two additional
evaluations for every malicious worker). Finally, after decoding polyno-
mial f(u(z)), the master can obtain f(X1) and f(X2) by evaluating it
at z = 1 and z = 2.

General Description

To start, we first select anyK+T distinct elements β1, . . . , βK+T from F,
and find a polynomial u : F→ V of degreeK+T−1 such that u(βi) = Xi

for any i ∈ [K], and u(βi) = Zi for i ∈ {K + 1, . . . ,K + T}, where
all Zi’s are chosen uniformly at random from V. This is accomplished
by letting u be the respective Lagrange interpolation polynomial

u(z) ,
∑
j∈[K]

Xj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

+
K+T∑
j=K+1

Zj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

.

(4.2)

We then select N distinct elements α1, . . . , αN from F such
that {αi}Ni=1 ∩ {βj}Kj=1 = ∅, and encode the input variables by let-
ting X̃i = u(αi) for any i ∈ [N ]. That is, the input variables are
encoded as

X̃i = u(αi) = (X1, . . . , XK , ZK+1, . . . , ZK+T ) · Ui, (4.3)

where U ∈ F(K+T )×N
q is the encoding matrix Ui,j ,

∏
`∈[K+T ]\{i}

αj−β`
βi−β` ,

and Ui is its i’th column.
Next we briefly sketch the proof of T -privacy, which relies on the fact

that the bottom T ×N submatrix U bottom of U is an MDS matrix (i.e.,
every T × T submatrix of U bottom is invertible). Hence, for a colluding
set of workers T ⊆ [N ] of size T , their encoded data X̃T satisfies X̃T =
XU topT + ZU bottomT , where Z , (ZK+1, . . . , ZK+T ), and U topT ∈ FK×Tq ,
U bottomT ∈ FT×Tq are the top and bottom sub-matrices which correspond
to the columns in U that are indexed by T .
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Now, the fact that U bottom is MDS implies that U bottomT is invertible,
and hence

Z = (X̃T −XU topT ) · (U bottomT )−1.

Therefore, for every dataset X and every observed encoding X̃T , there
exists a unique value for the randomness Z by which the encoding of X
equals X̃T ; a statement equivalent to the definition of T -privacy.

Following the encoding of (4.3), each worker i applies f on X̃i

and sends the result back to the master. Hence, the master obtains N
evaluations, at most A of which are incorrect, of the polynomial f(u(z)).
Since deg f(u(z)) ≤ deg f · (K + T − 1), and N ≥ (K + T − 1) deg(f) +
2A + 1, the master can obtain all coefficients of f(u(z)) by applying
Reed-Solomon decoding. Having this polynomial, the master evaluates
it at βi for every i ∈ [K] to obtain f(u(βi)) = f(Xi). This results in
the following theorem for LCC.

Theorem 4.1. Given a number of workers N and a dataset X =
(X1, . . . , XK), LCC scheme provides an A-secure, and T -private com-
putation of {f(Xi)}Ki=1 for any polynomial f , as long as

(K + T − 1) deg f + 2A+ 1 ≤ N, (4.4)

for any field Fq that is sufficiently large (i.e., q ≥ N +K).

Remark 4.1. This construction is applicable over every finite field
with q ≥ K + N . Moreover, disregarding the privacy constraint (i.e.,
setting T = 0) provides an A-secure scheme over infinite fields as well.

Remark 4.2. Note that LHS of inequality (4.4) is independent of the
number of workers N , hence the key property of LCC is that adding
1 worker can increase its security to malicious workers by 1/2, while
keeping the privacy constraint T the same. This result essentially ex-
tends the well-known optimal scaling of error-correcting codes (i.e.,
adding one parity can provide robustness against one erasure or 1/2
error in optimal maximum distance separable codes) to the distributed
computing paradigm.
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4.1.2 Optimality of LCC for secure and private MPC

We now discuss the optimality of LCC by proving Theorem 4.2 (optimal
security) and Theorem 4.3 (optimal randomness), stated below.

Theorem 4.2 (Optimal security). For any multilinear function f , security
can be provided against at most A = b(N − (K − 1)deg f − 1)/2c
adversaries when N ≥ Kdeg f − 1, and A = bN/2K − 1/2c adversaries
when N < Kdeg f − 1.

Compared with the result in Theorem 4.1 (for the case of T = 0),
Theorem 4.2 demonstrates that the LCC scheme provides the optimal
security, by protecting against maximum possible number of adversaries.

Proof of Theorem 4.2

We prove Theorem 4.2 by connecting the adversary tolerance problem
to the straggler mitigation problem described in Section 3.2.1, using
the extended concept of Hamming distance for coded computing.

As the first step, we define the Hamming distance of a (possibly
random) linear encoding scheme, denoted by d, as the maximum integer,
such that for any two distinct instances of input X that also generate
distinct outputs, and for any two possible realizations of the N encoding
functions, the encoded data differ for at least d workers.

It was shown in Yu et al., 2018a that this Hamming distance behaves
similar to its counterpart in classical coding theory: an encoding scheme
can tolerate S stragglers and A adversarial workers (erroneous results)
whenever S + 2A ≤ d− 1. Therefore, for any encoding scheme that is
A secure, it has a Hamming distance of at least 2A+ 1. Consequently,
it can tolerate up 2A stragglers. Now recall from Lemma 3.6 that to
recover a multilinear function f of degree deg f , the maximum number
of stragglers any linear encoding scheme can tolerate is upper bounded
by N − (K − 1) deg f − 1 when N ≥ K deg f − 1, and upper bounded
by bN/Kc − 1 when N < K deg f − 1. Hence, a computation scheme
exists only if A ≤ (N − (K − 1) deg f − 1)/2 when N ≥ K deg f − 1,
and A ≤ N/2K − 1/2 when N < K deg f − 1.
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To guarantee T -privacy, the LCC scheme pads the dataset X with
additional T random entries before coding; and this amount of random-
ness is shown to be minimal.

Theorem 4.3 (Optimal randomness). Any computing scheme that uni-
versally achieves the (T,A) tradeoff in (4.4)3 for all linear functions f
must use an amount of randomness no less than that of LCC.

Proof of Theorem 4.3

To prove Theorem 4.3, we demonstrate that LCC uses the minimum
possible randomness among all linear encoding schemes that achieve
the security-privacy tradeoff stated in Theorem 4.1 for linear f . Since
the identity map is included in the class of linear functions, one can
employ previous results regarding private storage to establish a lower
bound on the required amount of randomness.

The proof is based on the result in Huang, 2017, Chapter 3. In
what follows, an (n, k, r, z)Ftq secure RAID scheme is a storage scheme
over Ftq (where Fq is a field with q elements) in which k message symbols
are coded into n storage servers, such that the k message symbols are
reconstructible from any n−r servers, and any z servers are information
theoretically oblivious to the message symbols. Further, such a scheme
is assumed to use v random entries as keys, and by Huang, 2017,
Proposition 3.1.1, must satisfy n− r ≥ k + z.

Theorem 4.4. Huang, 2017, Theorem 3.2.1 A linear rate-
optimal (n, k, r, z)Ftq secure RAID scheme uses at least zt keys
over Fq (i.e., v ≥ z).

Clearly, in our scenario V can be seen as FdimV
q for some q. Further,

by setting N = n, T = z, and t = dimV, it follows from Theorem 4.4
that any encoding scheme which guarantees information theoretic pri-
vacy against sets of T colluding workers must use at least T random
entries {Zi}i∈[T ].

3That is, when two sides of (4.4) are equal.
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4.1.3 Comparison with prior works on multiparty computing

Providing security and privacy for multiparty computing (MPC) and
machine learning systems is an extensively studied topic. To illustrate
the significant role of LCC in secure and private computing, let us
consider the celebrated BGW MPC scheme Ben-Or et al., 1988. 4

Given inputs {Xi}Ki=1, BGW first uses Shamir’s scheme Shamir,
1979a to encode the dataset in a privacy-preserving manner as Pi(z) =
Xi + Zi,1z + . . . + Zi,T z

T for every i ∈ [K], where Zi,j ’s are i.i.d.
uniformly random variables and T is the number of colluding workers
that should be tolerated. The key distinction between the data encoding
of BGW scheme and LCC is that we instead use Lagrange polynomials
to encode the data. This results in significant reduction in the amount of
randomness needed in data encoding (BGW needs KT zi,j ’s while as we
describe in the next section, LCC only needs T amount of randomness).

The BGW scheme will then store {Pi(α`)}Ki=1 to worker ` for ev-
ery ` ∈ [N ], given some distinct values α1, . . . , αN . The computation
is then carried out by evaluating f over all stored coded data at the
nodes. In the LCC scheme, on the other hand, each worker ` only needs
to store one encoded data X̃` and compute f(X̃`). This gives rise to
the second key advantage of LCC, which is a factor of K in storage
overhead and computation complexity at each worker.

After computation, each worker ` in the BGW scheme has essentially
evaluated the polynomials {f(Pi(z))}Ki=1 at z = α`, whose degree is at
most deg f ·T . Hence, if no adversary appears (i.e, A = 0), the master can
recover all required results f(Pi(0))’s, through polynomial interpolation,
as long as N ≥ deg f ·T + 1 workers participated in the computation. It
is also possible to use the conventional multi-round BGW, which only
requires N ≥ 2T + 1 workers to ensure T -privacy. However, multiple
rounds of computation and communication (Ω(log(deg f)) rounds) are
needed, which further increases its communication overhead. Note that
under the same condition, LCC scheme requiresN ≥ deg f ·(K+T−1)+1
number of workers, which is larger than that of the BGW scheme.

4Conventionally, the BGW scheme operates in a multi-round fashion, requiring
significantly more communication overhead than one-shot approaches. For simplicity
of comparison, we present a modified one-shot version of BGW.
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Hence, in overall comparison with the BGW scheme, LCC results in
a factor of K reduction in the amount of randomness, storage overhead,
and computation complexity, while requiring more workers to guarantee
the same level of privacy. This is summarized in Table 4.1.5

Table 4.1: Comparison between BGW based designs and LCC. The computational
complexity is normalized by that of evaluating f ; randomness, which refers to the
number of random entries used in encoding functions, is normalized by the length of
Xi.

BGW LCC
Complexity/worker K 1
Frac. data/worker 1 1/K

Randomness KT T

Min. num. of workers 2T + 1 deg f · (K + T − 1) + 1

4.2 Privacy preserving machine learning

We now illustrate an application of coded computing, in particular LCC,
for privacy-preserving machine learning. We consider a scenario in which
a data-owner (e.g., a hospital) wishes to train a logistic regression model
by offloading the large volume of data (e.g., healthcare records) and
computationally-intensive training tasks (e.g., gradient computations)
to N machines over a cloud platform, while ensuring that any collusions
between T out of N workers do not leak information about the dataset.

We illustrate a recently proposed scheme, named CodedPri-
vateML So et al., 2019, that leverages coded computing for this problem.
CodedPrivateML has three salient features:

1. it provides strong information-theoretic privacy guarantees for
both the training dataset and model parameters.

2. it enables fast training by distributing the training computation
load effectively across several workers.

3. it secret shares the dataset and model parameters using coding
and information theory principles, which significantly reduces the

5A BGW scheme was also proposed in Ben-Or et al., 1988 for secure MPC,
however for a substantially different setting. Similarly, a comparison can be made by
adapting it to our setting, leading to similar results, which we omit for brevity.
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worker 1 worker N

Dataset: X = (X1, . . . ,XK)

master

W̃
(t)
1 W̃

(t)
N

X̃1 X̃N

. . .

T colluding workers
Figure 4.2: The distributed coded training setup.

training time.

4.2.1 The CodedPrivateML Framework

We consider the training of a logistic regression model6. The dataset
is given by a matrix X = [xT1 · · ·xTm]T ∈ Rm×d of m data points with
d features and a label vector y ∈ {0, 1}m. Model parameters (weights)
w ∈ Rd are obtained by minimizing the cross entropy function,

C(w) = 1
m

m∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (4.5)

where ŷi = g(xi ·w) ∈ (0, 1) is the estimated probability of label i being
equal to 1 and g(z) = 1/(1 + e−z) is the sigmoid function. Problem
(4.5) can be solved via gradient descent, through an iterative process
that updates the weights in the opposite direction of the gradient
∇C(w) = 1

mX>(g(X×w)− y). The update function is given by,

w(t+1) = w(t) − η

m
X>(g(X×w(t))− y) (4.6)

where w(t) holds the estimated parameters from iteration t, η is the
learning rate, and g(·) operates element-wise.

We consider a master-worker distributed compute architecture shown
in Figure 4.2, where the master offloads the gradient computations in

6Analysis applies to linear regression with minor modifications.
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(4.6) to N workers. In doing so, the master also wants to protect the
privacy of the dataset against any potential collusions between up to T
workers, where T is the privacy parameter of the system. Initially, the
dataset is partitioned intoK submatrices X = [X>1 · · ·X>K ]>. Parameter
K ∈ N reflects the amount of parallelization (computation load at each
worker is proportional to 1/K-th of the dataset). The master then
creates N encoded matrices, {X̃i}i∈[N ], by combining the K parts of the
dataset with some random matrices to preserve privacy, and sends X̃i

to worker i. At iteration t, master also creates an encoded matrix W̃(t)
i

to secret share the current estimate of the weights w(t) with worker
i ∈ [N ], as they can also leak substantial information about the dataset
Melis et al., 2019.

The coding strategy should ensure that any subset of T workers can
not learn any information, in the information-theoretic sense, about the
dataset. Formally, for every subset of workers T ⊆ [N ] with |T | ≤ T ,
we need I

(
X; X̃T ,

{
W̃(t)
T
}
t∈[J ]

)
= 0 where I is the mutual information,

J is the number of iterations, and X̃T ,
{
W̃(t)
T
}
t∈[J ] is the collection of

coded matrices stored at workers in T .
At each iteration, worker i ∈ [N ] performs its computation locally

using X̃i and W̃(t)
i and sends the result back to the master. After

receiving the results from a sufficient number of workers, the master
recovers X>g(X × w(t)) =

∑K
k=1 X>k g(Xk × w(t)) and updates the

weights using (4.6).
CodedPrivateML consists of the following four main phases.

Phase 1: Quantization. In order to guarantee information-theoretic
privacy, one has to mask the dataset and weights in a finite field F
using uniformly random matrices, so that the added randomness can
make each data point appear equally likely. In contrast, the dataset
and weights for the training task are defined in the domain of real
numbers. Our solution to handle the conversion between the real and
finite domains is through the use of stochastic quantization. Accordingly,
in the first phase of our system, master quantizes the dataset and weights
from the real domain to the domain of integers, and then embeds them
in a field Fp of integers modulo a prime p. The quantized version of the
dataset X is given by X. The quantization of the weight vector w(t),
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on the other hand, is represented by a matrix W(t), where each column
holds an independent stochastic quantization of w(t). This structure will
be important for the convergence of the model. Parameter p is selected
to be sufficiently large to avoid wrap-around in computations. Its value
depends on the bitwidth of the machine as well as the number of additive
and multiplicative operations. For example, in a 64-bit implementation,
we select p = 33554393 (the largest prime with 25 bits) as explained in
our experiments.
Phase 2: Encoding and Secret Sharing. In the second phase, the
master partitions the quantized dataset X into K submatrices and
encodes them using the LCC approach that we discussed in the previous
section. It then sends to worker i ∈ [N ] a coded submatrix X̃i ∈ F

m
K
×d

p .
As we disccused before, this encoding ensures that the coded matrices
do not leak any information about the true dataset, even if T workers
collude. In addition, the master has to ensure the weight estimations
sent to the workers at each iteration do not leak information about the
dataset. This is because the weights updated via (4.6) carry information
about the whole training set, and sending them directly to the workers
may breach privacy. In order to prevent this, at iteration t, master also
quantizes the current weight vector w(t) to the finite field and encodes
it again using Lagrange coding.
Phase 3: Polynomial Approximation and Local Computation.
In the third phase, each worker performs the computations using its
local storage and sends the result back to the master. We note that
the workers perform the computations over the encoded data as if
they were computing over the true dataset. That is, the structure of
the computations are the same for computing over the true dataset
versus computing over the encoded dataset. A major challenge is that
LCC is designed for distributed polynomial computations. However,
the computations in the training phase are not polynomials due to the
sigmoid function. We overcome this by approximating the sigmoid with
a polynomial of a selected degree r. This allows us to represent the
gradient computations in terms of polynomials that can be computed
locally by each worker.
Phase 4: Decoding and Model Update. The master collects the
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results from a subset of fastest workers and decodes the gradient. Then,
the master converts the gradient from finite to real domain, updates the
weight vector, and secret shares it with the workers for the next round.

Based on this design, we can obtain the following theoretical guar-
antees for the convergence and privacy of CodedPrivateML. We refer
to So et al., 2019 for the details.

Lemma 4.5. Let p(t) , 1
mX>(ḡ(X,W(t))− y) be the gradient compu-

tation using quantized weights W(t) and degree-r polynomial approxi-
mation in CodedPrivateML. Then,
• (Unbiasedness) Vector p(t) is an asymptotically unbiased estimator
of the true gradient. E[p(t)] = ∇C(w(t)) + ε(r), and ε(r)→ 0 as
r →∞ where expectation is taken over the quantization errors,
• (Variance bound) E

[
‖p(t) − E[p(t)]‖22

]
≤ 1

2−2lwm2 ‖X ‖2F , σ2

where ‖ · ‖2 and ‖ · ‖F denote the l2-norm and Frobenius norm,
respectively.

Theorem 4.6. Consider the training of a logistic regression model in
a distributed system with N workers with dataset X = (X1, . . . ,XK),
initial weights w(0), and constant step size η = 1/L where L , 1

4‖X‖
2
2.

For any N ≥ (2r + 1)(K + T − 1) + 1, CodedPrivateML guarantees,
• (Convergence) E[C( 1

J

∑J
t=0 w(t))] − C(w∗) ≤ ‖w(0)−w∗ ‖2

2ηJ +ησ2 in J

iterations, with σ2 from Lemma 4.5,
• (Privacy) X remains information-theoretically private against any
T colluding workers, i.e., I

(
X; X̃T , {W̃(t)

T }t∈[J ]
)

= 0, ∀T ⊂ [N ],
|T | ≤ T ,
Theorem 4.6 reveals an important trade-off between privacy (T )

and parallelization (K), that is, each additional worker can be utilized
either for more privacy or a faster training.

4.2.2 Experimental Evaluation of CodedPrivateML

The performance of CodedPrivateML had been experimentally demon-
strated in So et al., 2019 over Amazon EC2 Cloud Platform for training
a logistic regression model for image classification. In particular, Cod-
edPrivateML has been used for training the logistic regression model
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from (4.5) for binary image classification on the CIFAR-10 Krizhevsky
and Hinton, 2009 and GISETTE Guyon et al., 2005 datasets to experi-
mentally examine two things: the accuracy of CodedPrivateML and the
performance gain in terms of training time over two MPC-based bench-
marks. The first one is based on the well-known BGW protocol Ben-Or
et al., 1988, whereas the second one is a more recent protocol from
Beerliova-Trubiniova and Hirt, 2008; Damgård and Nielsen, 2007 that
trade-offs offline calculations for a more efficient implementation. Both
baselines utilize Shamir’s secret sharing scheme Shamir, 1979b where
the dataset is secret shared among the N workers.

CodedPrivateML parameters. There are several system param-
eters in CodedPrivateML that should be set. Given that a 64-bit im-
plementation was used in So et al., 2019, the field size was selected to
be p = 33554393, which is the largest prime with 25 bits to avoid an
overflow on intermediate multiplications.

One needs to also set the parameter r, the degree of the polynomial
for approximating the sigmoid function. Both r = 1 and r = 2 was
soncisdered in So et al., 2019, and it was empirically observed that the
degree one approximation achieves good accuracy. Finally, one needs
to select T (privacy threshold) and K (amount of parallelization) in
CodedPrivateML. As stated in Theorem 4.6, these parameters should
satisfy N ≥ (2r + 1)(K + T − 1) + 1. Given the choice of r = 1, two
cases can be considered:

• Case 1 (maximum parallelization). All resources allocated for
parallelization (faster training) by setting K = bN−1

3 c, T = 1,

• Case 2 (equal parallelization & privacy). Resources split almost
equally between parallelization & privacy, i.e., T = bN−3

6 c,K =
bN+2

3 c − T .

With these parameters, the training time of CodedPrivateML has
been measured while increasing the number of workers N gradually. The
results are demonstrated in Figure 4.3, which shows the comparison of
CodedPrivateML with the [BH08] protocol from Beerliova-Trubiniova
and Hirt, 2008, which was the faster of the two benchmarks. In particular,
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(a) CIFAR-10 (for accuracy 81.35% with 50 iterations)

(b) GISETTE (for accuracy 97.50% with 50 iterations)
Figure 4.3: Performance gain of CodedPrivateML over the MPC baseline ([BH08]
from Beerliova-Trubiniova and Hirt, 2008). The plot shows the total training time
for different number of workers N .



4.2. Privacy preserving machine learning 121

(a) CIFAR-10 dataset, binary classification between car and plain images
(using 9019 samples for training and 2000 samples for testing).

(b) GISETTE dataset, binary classification between digits 4 and 9
images (using 6000 samples for training and 1000 samples for testing).

Figure 4.4: Comparison of the accuracy of CodedPrivateML (demonstrated for
Case 2 and N = 50 workers) vs conventional logistic regression that uses the sigmoid
function without quantization.
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Table 4.2: (CIFAR-10) Breakdown of total runtime for N = 50.

Protocol Enc. time Comm. time Comp. time Total

MPC using [BGW88] 202.78s 31.02s 7892.42s 8127.07s
MPC using [BH08] 201.08s 30.25s 1326.03s 1572.34s
CodedPrivateML (Case 1) 59.93s 4.76s 141.72s 229.07s
CodedPrivateML (Case 2) 91.53s 8.30s 235.18s 361.08s

we make the following observations. 7

• CodedPrivateML provides substantial speedup over the MPC base-
lines, in particular, up to 4.4× and 5.2× with the CIFAR-10 and
GISETTE datasets, respectively, while providing the same privacy
threshold as the benchmarks (T = bN−3

6 c for Case 2). Table 4.2
demonstrates the breakdown of the total runtime with the CIFAR-
10 dataset for N = 50 workers. In this scenario, CodedPrivateML
provides significant improvement in all three categories of dataset
encoding and secret sharing; communication time between the work-
ers and the master; and the computation time. Main reason for this
is that, in the MPC baselines, the size of the data processed at each
worker is one third of the original dataset, while in CodedPrivateML
it is 1/K-th of the dataset. This reduces the computational overhead
of each worker while computing matrix multiplications as well as
the communication overhead between the master and workers. We
also observe that a higher amount of speedup is achieved as the
dimension of the dataset becomes larger (CIFAR-10 vs. GISETTE
datasets), suggesting CodedPrivateML to be well-suited for data-
intensive training tasks where parallelization is essential.

• The total runtime of CodedPrivateML decreases as the number of
workers increases. This is again due to the parallelization gain of
CodedPrivateML (i.e., increasing K while N increases). This is not
achievable in conventional MPC baselines, since the size of data
processed at each worker is constant for all N .

7For N = 10, all schemes have similar performance because the total amount
of data stored at each worker is one third of the size of whole dataset (K = 3 for
CodedPrivateML and G = 3 for the benchmark).
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• CodedPrivateML provides up to 22.5× speedup over the BGW pro-
tocol Ben-Or et al., 1988, as shown in Table 4.2 for the CIFAR-10
dataset with N = 50 workers. This is due to the fact that BGW
requires additional communication between the workers to execute a
degree reduction phase for every multiplication operation.

Figure 4.5: Convergence of CodedPrivateML (demonstrated for Case 2 and N = 50
workers) vs conventional logistic regression (using the sigmoid function without
polynomial approximation or quantization).

The accuracy and convergence of CodedPrivateML was also experi-
mentally analyzed in So et al., 2019. Figure 4.4(a) illustrates the test
accuracy of the binary classification problem between plane and car
images for the CIFAR-10 dataset. With 50 iterations, the accuracy
of CodedPrivateML with degree one polynomial approximation and
conventional logistic regression are 81.35% and 81.75%, respectively.
Figure 4.4(b) shows the test accuracy for binary classification between
digits 4 and 9 for the GISETTE dataset. With 50 iterations, the accu-
racy of CodedPrivateML with degree one polynomial approximation
and conventional logistic regression has the same value of 97.5%. Hence,
CodedPrivateML has comparable accuracy to conventional logistic re-
gression while being privacy preserving.

Figure 4.5 presents the cross entropy loss for CodedPrivateML versus
the conventional logistic regression model for the GISETTE dataset. The
latter setup uses the sigmoid function and no polynomial approximation,
in addition, no quantization is applied to the dataset or the weight
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vectors. We observe that CodedPrivateML achieves convergence with
comparable rate to conventional logistic regression, while being privacy
preserving.

4.3 Related works and open problems

The security and privacy issue has been extensively studied in the
literature of secure multiparty computing and distributed machine
learning/data mining Ben-Or et al., 1988; Cramer et al., 2001; Lindell,
2005; Cramer et al., 2015; Mohassel and Zhang, 2017. For instance, the
celebrated BGW scheme Ben-Or et al., 1988 employs Shamir’s scheme
Shamir, 1979a to privately share intermediate results between parties. As
we have elaborated in Section 4.1, the proposed LCC scheme significantly
improves the BGW in the required storage overhead, computational
complexity, and the amount of injected randomness (Table 4.1).

There have also been several other recent works have on coded com-
puting under privacy and security constraints. Extending the research
works on secure storage (see, e.g., Pawar et al., 2011; Shah et al., 2011;
Rawat et al., 2014), staircase codes Bitar et al., 2018 have been proposed
to combat stragglers in linear computations (e.g., matrix-vector multi-
plications) while preserving data privacy, which was shown to reduce
the computation latency of the schemes based on classical secret sharing
strategies Shamir, 1979a; McEliece and Sarwate, 1981. The proposed
Lagrange Coded Computing scheme in this chapter generalizes the stair-
case codes beyond linear computations. Even for the linear case, LCC
guarantees data privacy against T colluding workers by introducing less
randomness than Bitar et al., 2018 (T rather than TK/(K − T )).

Beyond linear computations, a secure coded computing scheme was
proposed in Yang and Lee, 2019 to achieve data security for distributed
matrix-matrix multiplication. Leveraging the polynomial code proposed
in Yu et al., 2017b, the secure computing scheme in Yang and Lee, 2019
achieves the order-optimal recovery threshold, while preserving data
privacy at each worker (i.e., T = 1). For computing more general class
of matrix polynomials, Nodehi and Maddah-Ali, 2018 has combined
ideas from the BGW scheme and Yu et al., 2017b to form the so-called
polynomial sharing, a private coded computation scheme for arbitrary
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matrix polynomials. However, polynomial sharing inherits the undesired
BGW property of performing a communication round for every linear
and every bilinear operation in the polynomial; a feature that drastically
increases the communication overhead, and is circumvented by the one-
shot approach of LCC.

DRACO Chen et al., 2018 was proposed as a secure distributed
training algorithm that is robust to Byzantine faults. Since DRACO
is designed for general gradient computations, it employs a blackbox
approach, i.e., the coding is applied on the gradients computed from
uncoded data, but not on the data itself, which is similar to the gradient
coding techniques Tandon et al., 2017; Halbawi et al., 2017; Raviv
et al., 2017; Ye and Abbe, 2018; Li et al., 2018c designed primarily
for stragglers. Hence, the inherent algebraic structure of the gradients
is ignored. For this approach, Chen et al., 2018 show that a 2A + 1
multiplicative factor of redundant computations is necessary to be robust
to A Byzantine workers. For the proposed LCC however, the blackbox
approach is disregarded in favor of an algebraic one, and consequently,
a 2A additive factor suffices.

We end this section by highlighting a few other interesting directions
for future research.
Extension to real-field computations. Most of the works that we
have described so far rely on quantizing the data into a finite field, so that
the coded computing approaches for secure and private computing can
then be employed. These approaches, however, can result in substantial
accuracy losses due to quantization, fixed-point representation of the
data, and computation overflows (see e.g., Fahim and Cadambe, 2019).
An important research direction would be to develop coded computing
techniques for secure and private computing in the real-field domain.
Application to deep neural network training. Another barrier in
the theory of secure and private computing and machine learning is
their efficient generalization to non-polynomial computations. Many non-
linear threshold functions that arise in machine learning, in particular
rectified linear unit (ReLU) functions in deep neural networks, cannot be
approximated well with low degree polynomials. Therefore, finding new
coded computing approaches that enable secure and private computing
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for such classes of computations would be of great interest.
Application to large-scale federated learning. Another interesting
application of coding for secure and private computing would be the
federated learning problem that has attracted a lot of attention recently.
Federated learning is an emerging approach that enables model training
over a large volume of decentralized data residing in mobile devices,
while protecting the privacy of the individual users McMahan et al.,
2017; Bonawitz et al., 2016; Bonawitz et al., 2017; Kairouz et al., 2019. A
major bottleneck in scaling secure federated learning to a large number
of users is the overhead of secure model aggregation across many users.
An interesting direction is understand the role of coded computing
for efficient, scalable, and secure model aggregation in large federated
systems. Some promising work in this direction is initiated in So et al.,
2020.
Application to blockchain systems. Secure, private, and verifiable
computing are also of great importance in decentralized blockchain
systems. Today’s blockchain designs suffer from a trilemma claiming
that no blockchain system can simultaneously achieve decentralization,
security, and performance scalability. For current blockchain systems, as
more nodes join the network, the efficiency of the system (computation,
communication, and storage) stays constant at best. A leading idea
for enabling blockchains to scale efficiency is the notion of sharding:
different subsets of nodes handle different portions of the blockchain,
thereby reducing the load for each individual node. However, existing
sharding proposals achieve efficiency scaling by compromising on trust -
corrupting the nodes in a given shard will lead to the permanent loss of
the corresponding portion of data. Coded computing can provide an
effective approach for overcoming such barriers in distributed systems.
Coded computing can also provide new approaches for dealing with the
issues of computation verification and data availability in decentralized
blockchain systems. Several recent works in these directions have been
initiated in Li et al., 2018e; Yu et al., 2020; Sahraei and Avestimehr,
2019; Kadhe et al., 2019; Sahraei et al., 2019; Mitra and Dolecek, 2019;
Choi et al., 2019.
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A
Proof of Lemma 3.6

Lower bound on the recovery threshold of
computing multilinear functions

Before we start the proof, we letK∗f (K,N) denote the minimum recovery
threshold given the function f , the number of computations K, and the
number of workers N .

We now proceed to prove Lemma 3.6 by induction.
(a) When d = 1, then f is a linear function, and we aim to prove

K∗f (K,N) ≥ K. Assuming the opposite, we can find a computation
design such that for a subset N of at most K − 1 workers, there is
a decoding function that computes all f(Xi)’s given the results from
workers in N .

Because the encoding functions are linear, we can thus find a non-
zero vector (a1, ..., aK) ∈ FK such that when Xi = aiV for any V ∈ V,
the coded variable X̃i stored by any worker in N equals 0. This leads
to a fixed output from the decoder. On the other hand, because f is
assumed to be non-zero, the computing results {f(Xi)}i∈[K] is variable
for different values of V , which leads to a contradiction. Hence, we have
K∗f (K,N) ≥ K.

(b) Suppose we have a matching converse for any multilinear function
with d = d0. We now prove the lower bound for any non-zero multilinear
function f of degree d0 + 1. The proof idea is to construct a multilinear
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function f ′ with degree d0 based on function f , and to lower bound the
minimum recovery threshold of f using that of f ′. More specifically,
this is done by showing that given any computation design for function
f , a computation design can also be developed for the corresponding
f ′, which achieves a recovery threshold that is related to that of the
scheme for f .

In particular, for any non-zero function f(Xi,1, Xi,2, ..., Xi,d0+1),
we can find V ∈ V, such that f(Xi,1, Xi,2, ..., Xi,d0 , V ) as a function
of (Xi,1, Xi,2, ..., Xi,d0) is non-zero. We define f ′(Xi,1, Xi,2, ..., Xi,d0) =
f(Xi,1, Xi,2, ..., Xi,d0 , V ), which is a multilinear function with degree d0.
Given parameters K and N , we now develop a computation strategy for
f ′ for a dataset of K inputs and a cluster of N ′ , N−K workers, which
achieves a recovery threshold of K∗f (K,N)− (K − 1). We construct this
computation strategy based on an encoding strategy of f that achieves
the recovery threshold K∗f (K,N). Because the encoding functions are
linear, we consider the encoding matrix, denoted by G ∈ FK×N , and
defined as the coefficients of the encoding functions X̃i =

∑K
j=1XjGji.

Following the same arguments we used in the d = 1 case, the left null
space of G must be {0}. Consequently, the rank of G equals K, and we
can find a subset K of K workers such that the corresponding columns
of G form a basis of FK . We construct a computation scheme for f ′
with N ′ , N − K workers, each of whom stores the coded version
of (Xi,1, Xi,2, . . . , Xi,d0) that is stored by a unique respective worker in
[N ] \ K in the computation scheme of f .

Now it suffices to prove that the above construction achieves a
recovery threshold of K∗f (K,N) − (K − 1). Equivalently, we need to
prove that given any subset S of [N ]\K of size K∗f (K,N) − (K − 1),
the values of f(Xi,1, Xi,2, ..., Xi,d0 , V ) for i ∈ [K] are decodable from
the computing results of workers in S.

We now exploit the decodability of the computation design for
function f . For any j ∈ K, the set S ∪ K\{j} has size K∗f (K,N).
Consequently, for any vector a = (a1, ..., aK) ∈ FK , by letting Xi,d0+1 =
aiV , we have that {aif(Xi,1, Xi,2, ..., Xi,d0 , V )}i∈[K] is decodable given
the computing results from workers in S ∪ K\{j}. Moreover, for any
j ∈ [K], let a(j) ∈ FK be a non-zero vector that is orthogonal to all
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columns of G with indices in K\{j}, workers in K\{j} would store 0
for the Xi,d0+1 entry, and return constant 0 due to the multilinearity
of f . Consequently, any {a(j)

i f(Xi,1, Xi,2, ..., Xi,d0 , V )}i∈[K] is decodable
from the computing results from workers in S.

Because columns of G with indices in K form a basis of
FK , the vectors a(j) for j ∈ K also from a basis. Consequently,
f ′(Xi,1, Xi,2, ..., Xi,d0), which equals f(Xi,1, Xi,2, ..., Xi,d0 , V ), is also de-
codable given results from workers in S for any i ∈ [K]. On the other
hand, note that the computing results for each worker in S given each
a(j) can also be computed using the results from the same workers
when computing f ′. Hence, the decoder for function f ′ can first recover
the computing results for workers in S for function f , and then pro-
ceed to decoding the final result. Thus we have completed the proof of
decodability.

To summarize, we have essentially proved thatK∗f (K,N)−(K−1) ≥
K∗f ′(K,N − K) when N ≥ 2K, and K∗f (K,N) − (K − 1) > N − K
otherwise. Hence, we verify that the converse bound for K∗f (K,N) holds
for any function f with degree d0 + 1 given the above result and the
induction assumption.

(c) Thus, the converse bound in Lemma 3.6 holds for any d ∈ N+.
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