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Abstract

Parker Solar Probe (PSP) observed a large variety of Alfvénic fluctuations in the fast and slow solar wind flow
during its two perihelia. The properties of Alfvénic solar wind turbulence have been studied for decades in the
near-Earth environment. A spectral index of −5/3 or −2 for magnetic field fluctuations has been observed
using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible
magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field-aligned solar wind is
applied to PSP measurements for the first time, which yields two events in the apparently slow solar wind.
The parallel spectra of the magnetic fluctuations in the inertial range show a 

-k 5 3 power law. Probability
distributions of the magnetic field show that these events are not contaminated by intermittent structures, which,
according to previous studies, are known to modify spectral properties. The results presented here are consistent
with spectral predictions from NI MHD theory and further deepen our understanding of the Alfvénic solar wind
turbulence near the Sun.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Spectral index (1553)

1. Introduction

Turbulent fluctuations are highly anisotropic in the solar
wind due to the presence of a large-scale magnetic field
(Matthaeus et al. 1990; Zank & Matthaeus 1992, 1993; Narita
et al. 2010; Zank et al. 2017). The velocity and magnetic field
fluctuations have a shorter correlation length in the direction
perpendicular to the magnetic field than in the parallel
direction, as revealed by the anisotropy of the correlation
function of fluctuations (e.g., Matthaeus et al. 1990; Horbury
et al. 2012). Differentiating between parallel and perpendicular
fluctuations is key to understanding the nature of solar wind
turbulence.

The theory of Alfvénic turbulence of Goldreich & Sridhar
(1995) assumes that the turbulence is in a critically balanced
state. A nonlinearity parameter is introduced as


z ~l

lk̂ v

k vA
,

where vλ is the perturbation in the amplitude of velocity, vA is
the Alfvén velocity, kP and k⊥ are the parallel and perpend-
icular components of the wavevector. Like classical hydro-
dynamic turbulence, use of a constant energy transfer rate
~ ~l l^ v t k vc

2 3 where tc is the cascade time, yields
~l ^

- -v k2 2 3 2 3. Critical balance assumes that the parameter
ζλ∼1 and vA∼vL at the energy injection scale L, which then
implies ~ ~  v Linj A

3 and ~ - -t k vc
1

A
1. This is equivalent to

equating the nonlinear eddy turnover timescale and the linear
Alfvén timescale. It then follows that the scaling ~k

^
-k L2 3 1 3 holds for critically balanced turbulence. Therefore,

the turbulence power spectrum is predicted to be anisotropic
according to critical balance theory, i.e., ( ) µ^ ^

-E k k ;5 3

( ) µ -E k k 2. We note that the critical balance theory of
Goldreich & Sridhar (1995) is limited to the symmetric case
where counter-propagating Alfvén waves have the same energy
flux. However, an attempt to extend the critical balance
conjecture to imbalanced turbulence was made by Lithwick

et al. (2007), finding the same spectral scaling results of 
-k 2

and ^
-k 5 3.

On the other hand, the theory of nearly incompressible
magnetohydrodynamics (NI MHD) suggests that solar wind
turbulence in the plasma beta β (ratio between thermal pressure
and magnetic pressure) ∼1 or <1 regime is a superposition or
“2D + NI/slab” fluctuations, comprising a dominant 2D
component and a minority NI/slab component that includes
both slab and higher-order quasi-2D fluctuations (e.g., Zank &
Matthaeus 1992, 1993; Hunana & Zank 2010; Adhikari et al.
2017; Zank et al. 2017, 2020). Pure 2D turbulence is
characterized by a wavevector strictly perpendicular to the
background magnetic field ^k B0, so that the turbulence
power is zero except where ^k B0. For pure slab turbulence,
the wavevector is strictly parallel to the background magnetic
field k B0. As shown by Zank et al. (2017), the NI MHD
theory gives a perpendicular energy spectrum ( ) µ^ ^

-E k k 5 3

that is derived from the core 2D MHD equations. The parallel
energy spectrum results from the NI corrections and does not
necessarily follows a 

-k 2 power law as critical balance theory
suggests. Based on NI MHD theory, a companion paper by
Zank et al. (2020) discusses the anisotropic turbulence power
spectrum in detail. Their theoretical derivations show that the
turbulence power spectrum in the inertial range can take
different functional forms depending on the parameters related
to different solar wind conditions. In the case of highly
imbalanced turbulence with cross helicity ∣ ∣s ~ 1c or quasi-2D
nonlinear interactions dominate (see their Figure 1), a
Kolmogorov 

-k 5 3 spectrum results.
Turbulence anisotropy in solar wind fluctuations has been

studied using single and multi-spacecraft data (Matthaeus et al.
1990, 2005; Bieber et al. 1996; Milano et al. 2004; Dasso et al.
2005; Ruiz et al. 2011), which is an important factor for the
scattering of energetic particles (Zhao et al. 2017; Fu et al. 2020).
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From Taylor’s hypothesis, the parallel or perpendicular spectrum
can be constructed when the spacecraft velocity is parallel or
perpendicular to the mean magnetic field. Based on a structure
function technique, Tessein et al. (2009) find no dependence of
the spectral index upon the orientation of the mean magnetic
field. Note that the mean magnetic field direction in their study is
estimated across the whole time interval, which is from 1 to 3 hr
in duration, and thus corresponds to the field at the largest
scale. However, Chen et al. (2011) find a parallel spectral index
close to −2 by using multi-spacecraft measurements of Cluster
and a locally averaged magnetic field instead of the global
magnetic field. Horbury et al. (2008) identify a local mean
magnetic field using a wavelet technique, and then calculate the
angle between the local mean magnetic field and the flow
direction θVB, allowing them to separate the data according to
θVB. A spectral index of −5/3 is found for θVB∼900, and −2
for θVB∼00 using a single spacecraft data sets (Horbury et al.
2008; Podesta 2009), which is consistent with critical balance
theory.

Wang et al. (2014) studied the influence of intermittency on
the spectral anisotropy of solar wind turbulence by applying the
wavelet technique to the Wind spacecraft measurements. They
concluded that intermittency might affect the parallel fluctua-
tion spectral index by pushing an intrinsic −5/3 scaling index
toward to −2. The removal of intermittency makes the
turbulence power spectrum less anisotropic. However, Yang
et al. (2017) argue that intermittency affects only the
perpendicular spectrum, and not the parallel spectrum. Wang
et al. (2015) search for time intervals during which the
magnetic field is nearly aligned with or perpendicular to the
radial direction in the fast solar wind observed by Wind. A
standard Fourier spectral analysis is done for each 6 minutes
interval. They find the parallel spectral index is close to −2 for
moderate-amplitude fluctuations, and close to −5/3 for small
amplitude parallel fluctuations.

Recently, Telloni et al. (2019) extended the Wang et al.
(2015) study to longer time intervals (>1 hr) to improve
statistics. A thorough search is performed on 12 yr of Wind
measurements and 17 highly magnetic field-aligned intervals
with low magnetic compressibility were identified. Telloni
et al. (2019) find that the unidirectionally propagating Alfvén
waves in the fast solar wind exhibit a Kolmogorov-like 

-k 5 3

spectrum during periods of strong turbulence. These features
are inconsistent with critical balance theory, which requires
counter-propagating Alfvén waves with equal energy. How-
ever, such a Kolmogorov-like 

-k 5 3 spectrum can be described
by the NI MHD turbulence model of Zank et al. (2017) since
the dominant quasi-2D fluctuations couple with slab (counter-
propagating Alfvén waves) turbulence in a “passive scalar”
sense that leads to a 

-k 5 3 spectrum (see Zank et al. 2020). It is
also confirmed by Adhikari et al. (2019, 2020) that the
nonlinear terms for the slab turbulence transport equation do
not become zero in the presence of unidirectional Alfvén
waves.

The NASA Parker Solar Probe (PSP; Fox et al. 2016)
mission, launched on 2018 August 12, has now approached
closer to the surface of the Sun than any other spacecraft, and
has been providing information of the deeper inner heliosphere.
Close to the Sun, the interplanetary magnetic field is more
likely to be radial, as suggested by the simple spiral magnetic
field model of Parker. Thus PSP provides an opportunity to
explore the properties of the field-aligned solar wind

turbulence. In this work, we present a precise analysis of the
parallel magnetic field fluctuations in the inner heliosphere
using PSP measurements. Data from PSP/Electromagnetic
Fields Investigation (FIELDs; Bale et al. 2016) and PSP/Solar
Wind Electrons Alphas and Protons (SWEAP; Kasper et al.
2016) instruments near PSPʼs first (2018 November 6, ∼35 Re)
and second perihelion (2019 April 4, ∼35 Re) are analyzed.
The outline of this paper is as follows. Section 2 presents the

search criteria for unidirectional parallel magnetic fluctuations,
followed by a description of the Hilbert spectral analysis (HSA)
technique used to study the spectral properties. Section 3 shows
results from selected intervals with a corresponding discussion.
Section 4 provides a summary and conclusions.

2. Analysis Technique

2.1. Data Selection

Following Wang et al. (2015) and Telloni et al. (2019), we
search for intervals with rigorous parallel fluctuations kP in PSP
measurements. According to Taylor’s hypothesis, the fre-
quency spectrum can be converted to the wavenumber
spectrum assuming ·w = k U, where = -U U Usw sc is the
velocity of the solar wind flow relative to the spacecraft. Unlike
measurements near 1 au, the spacecraft velocity of PSP could
be large, especially near perihelion, so the spacecraft velocity
should not be neglected. To find parallel fluctuations, we first
calculate the angle between the magnetic field and flow
velocity measured in the spacecraft frame θVB to determine the
degree of field alignment. The following PSP plasma and
magnetic field data were considered for the analysis: ∼0.22 s
resolution plasma data in the spacecraft frame of reference
(only available near perihelion), including solar wind bulk
velocity and proton number density, measured by SWEAP SPC
instrument, and downsampled magnetic field measurements
with the same cadence of ∼0.22 s from the FIELDs
magnetometer. We require that (i) the magnetic field and flow
velocity are aligned within 20° (i.e., 0�θVB�20° or
160°�θVB�180°) for each data point in the interval, so
that both the global and local mean magnetic field are oriented
along the velocity field; (ii) the intervals should have a
minimum length of at least 20 minutes (∼5500 samples for the
data with a cadence of ∼0.22 s) to ensure a continuous
Alfvénic solar wind fluctuation; (iii) the intervals are
characterized by low magnetic compressibility (�0.2), which
is defined as the ratio between the power in the magnetic field
magnitude fluctuations and the total power in the magnetic field
fluctuations (Bavassano et al. 1982); (iv) the bad data or
missing data in the interval should be no more than 20%. These
criteria guarantee that the selected intervals are mostly
populated by the undisturbed Alfvénic kP fluctuations.
As noted by various studies (e.g., Bale et al. 2019; Kasper

et al. 2019; Dudok de Wit et al. 2020; Horbury et al. 2020),
PSP observed a number of magnetic switchback structures near
the Sun. These structures are characterized by a deflection or
even reversal in the magnetic field direction, accompanied by a
deflection in flow velocity. The duration of magnetic switch-
backs ranges from seconds to hours (e.g., Dudok de Wit et al.
2020; McManus et al. 2020). The prevailing magnetic switch-
backs make the angle θVB jump up and down, although the
mean of θVB is mostly parallel or anti-parallel depending on the
polarity of the magnetic field. Therefore, the occurrence of
purely parallel fluctuations satisfying the above four criteria is
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relatively rare, especially near perihelion. Telloni et al. (2019)
also required that the intervals should be in the fast solar wind,
but we do not impose this restriction on our study. The solar

wind plasma observed by PSP during the first two orbits
comprises mostly low-speed streams (�550 km s−1). The high-
speed streams have short periods, large fluctuations, and many

Table 1
List of the Alfvénic Field-aligned Intervals

Date Start Time End Time Duration Distance Vsw ∣ ∣B qá ñVB CB

(UT) (UT) (minutes) (au) (km s−1) (nT) (°)

2018 Nov 3 04:15:35 04:38:36 23 0.194 251 73 172 0.04
2019 Apr 4 05:18:35 06:01:22 43 0.167 310 100 171 0.07

Note. Vsw is the averaged solar wind speed in the RTN frame, θVB is the angle between the local magnetic field and the flow direction, ∣ ∣B is the averaged magnetic field
magnitude, and CB is the averaged magnetic compressibility.

Figure 1. Solar wind parameters on 2018 November 3. Panels from top to bottom show the flow velocity components, magnetic field components, and the angle
between magnetic field and velocity vectors. The shaded area shows the selected interval. The blue dashed line shows the threshold of θVB (160°) used in this study to
select intervals.
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switchbacks, which makes it difficult to find purely parallel
fluctuation intervals.

2.2. Hilbert Spectral Analysis

Similar to Telloni et al. (2019), we use a HSA along with the
standard Fourier spectral analysis. The HSA is based on the
Hilbert–Huang transformation (HHT), and has the advantage of
analyzing nonlinear and non-stationary data without on a priori
base (Huang et al. 2008, 2011). Recently, HSA has been
applied successfully to study the properties of solar wind
turbulence in the inertial and kinetic ranges (e.g., Carbone et al.
2018; Telloni et al. 2019). The first step is to decompose the
signal (each component of the magnetic field BR, BT, and BN in
this work) into a finite number of intrinsic mode functions fj(t)
(IMFs), where each IMF fj(t) ( j=1, 2, ..., k) satisfies the
conditions (i) the number of extrema and zero crossings differ
by at most 1; (ii) at any point, the mean value of the envelope

defined by the local maxima and the envelope defined by the
local minima is 0. Therefore, ( ) ( )å f= += =B t r ti R T N j

k
j, , 1

,
and r(t) is a residual that describes the mean variation. The
procedure of obtaining IMFs from an arbitrary time-series
signal is known as empirical mode decomposition (EMD),
which is based on a sifting process. The IMFs thus obtained are
narrow banded. The effects of pseudo-harmonics or artifacts in
the vicinity of sharp data transitions can be eliminated by using
the EMD technique. Once the IMFs are obtained, the Hilbert
transform  can be applied to each IMF. The analytic signal
with the HHT is then defined as

( ) ( ) ˜ ( ) ( ) ( )f f= + = qZ t t i t A t e ,j j j j
i tj

where

˜ ( ) ( ( ))
( )

òf f
p

f

t
t= =

--¥

¥
t t PV

t

t
d

1
,j j

j

Figure 2. Left panel: the Fourier PSD of the BR, BT, and BN components of the magnetic field for the selected interval shown in Figure 1. A Kolmogorov f−5/3

spectrum is displayed as a reference. The dashed vertical line identifies the proton gyrofrequency =
p

fp
qB

m2 p
. Right panel: the frequency-dependent magnetic

compressibility, defined by the ratio of the power in the fluctuations of the magnetic field magnitude and the total power in the magnetic field fluctuations.

Figure 3. Left panel: Fourier power spectra of the normalized cross helicity σc and normalized residual energy σr for the interval selected in Figure 1. Right panel: the
trace power spectrum (black curve) of velocity fluctuations and the spectrum of the velocity magnitude fluctuations (red curve). The spectra are analyzed for the ∼5 Hz
cadence plasma velocity data in a ∼23 minutes interval. The blue vertical dashed line identifies the frequency at which the velocity spectrum begins to flatten and
where noise may become important (Parashar et al. 2020).
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in which PV indicates the principal value of the singular

integral, ( ) ˜f f= +A tj j j
2 2

is the instantaneous amplitude,

and ⎜ ⎟
⎛
⎝

⎞
⎠( )

˜
q =

f

f
t arctanj

j

j
is the phase function. The instantaneous

frequency can then be calculated by the time derivative of θj(t),
i.e.,

( )w
q

=t
d

dt
.j
j

Therefore, a total of k of the IMFs fj(t), j=1, 2, K, k with the
analytic signals Zj(t) correspond to k instantaneous amplitudes
Aj(t) and frequencies ωj(t). Although the instantaneous ampl-
itude depends on time only, we may treat it as a function of
both the instantaneous frequency and time Aj(t)=A(ωj(t), t).
This frequency-time distribution of the amplitude is defined as
the Hilbert spectrum ( ) ( )w wºH t A t, , . The square of the
Hilbert spectrum divided by frequency H2(ω, t)/ω corresponds
to the usual spectral density.

The Hilbert spectrum is similar to the wavelet spectrogram
(e.g., Zhao et al. 2020) in the sense that both are functions of
time and frequency. The major difference is that the wavelet
bases are preselected, while the HSA is adaptive to the data.
Since the Hilbert spectrum is expressed in the instantaneous
frequency, there is no limit on the frequency resolution.

3. Results

Two intervals, listed in Table 1, that satisfy our criteria are
selected from 20 days of data that have high-resolution (∼0.22s)
plasma data (2018 November 1–10 and 2019 April 1–10. Each
of the two intervals is located in a slow solar wind region with
relatively low magnetic fluctuations. Some characteristic para-
meters related to each interval are listed as well.

As an example, we present a complete analysis of the first
interval. Results from the second interval exhibit similar

spectral properties to the first so we do not present the full
analysis to avoid redundancy. The magnetic power spectra for
the second interval are shown at the end of this section.
Figure 1 displays a 5 hr time-series plot of the varying flow
speed and magnetic field components from 2018 November 3
02:00 UT to 2018 November 3 07:00 UT measured by the
PSP/SWEAP and PSP/FIELDS instruments. Both the magn-
etic field and flow speed have a cadence of ∼0.22 s. Panels
from top to bottom display the time evolution of the three
components of the solar wind speed VR, VT, and VN, magnetic
field components BR, BT, and BN, and the angle θVB between
magnetic field and flow speed vectors. Although the flow near
perihelion is in the slow solar wind region, the magnetic field
and flow velocity vectors are correlated on average, consistent
with a generally Alfvénic flow. However, due to the prevailing
spikes caused by magnetic switchbacks or other subtle
structures, the time profile of angle θVB jumps up and down,
ensuring that criterion (i) is not easily satisfied. The interval
dated from 04:15:35 to 04:38:36 UT on 2018 November 3 is
selected and is the pink shaded area in each panel of Figure 1.
This interval possesses the strict field-aligned characteristics of
our criteria. Some parameters in this interval are summarized in
Table 1.
The magnetic compressibility of this interval can be seen

from Figure 2, where the standard Fourier power spectral
densities (PSD) of the three magnetic field components BR, BT,
and BN are shown in the left panel. The PSD of a signal x(t) is
calculated by the Fourier transform of the autocorrelation
function of the signal (e.g., Leamon et al. 1998; Zhao et al.
2019): ( ) ( ( ) ( ) )t t= á + ñP x x x t . A Kolmogorov f−5/3

spectrum is displayed for reference. The proton gyrofrequency
fp is calculated using the mean magnetic field in the interval.
We find all three magnetic field components exhibit a
Kolmogorov-like f−5/3 spectrum. The fluctuations are con-
tained mostly in the T and N components, which suggests
primarily nearly incompressible fluctuations in the interval
since the mean magnetic field is approximately along the

Figure 4. Left panel shows the various IMFs fi (i=1, 2, K, 10) and the residual trend from the EMD procedure for the BR component during the selected interval in
Figure 1. Right panel shows the Fourier PSD as a function of frequency. The yellow curve represents the PSD of the original signal of BR and the others represent the
individual PSDs of ten different IMFs f1, f2,K, f10.
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R direction. This can be further seen from the right panel of
Figure 2, which shows the frequency-dependent magnetic
compressibility, defined as (∣ ∣)

( ) ( ) ( )
=

+ +
CB

P B

P B P B P BR T N
, where the

numerator represents the power in the magnetic field amplitude
fluctuations and the denominator represents the total power in
the magnetic field fluctuations. Note that there is an enhance-
ment of wave power near the proton gyrofrequency fp, which is
consistent with PSP observations in the quiet solar wind
conditions (Bale et al. 2019) and indicates a transition from
large MHD inertial range turbulence to kinetic range
turbulence. This further confirms that the interval we selected
does not contain switchback or magnetic jet structures. The
magnetic compressibility increases at high frequencies, as
expected for kinetic range turbulence, but remains at a
relatively low value (less than 0.2), thus suggesting the
Alfvénic nature of the fluctuations.

To further understand the nature of the fluctuations, we have
also evaluated the Fourier spectra of the normalized cross

helicity σc and normalized residual energy σr. The normalized
cross helicity · ( )s = á ñ á ñ + á ñu b u b2c

2 2 and normalized
residual energy ( )s = á ñ - á ñu br

2 2 /( )á ñ + á ñu b2 2 are calculated
from the fluctuating velocity field u and fluctuating magnetic
field b (expressed in Alfvén units). The magnitudes of σc and σr
are often used to quantify the Alfvénicity of solar wind
turbulence. Unidirectional Alfvén waves usually have a typical
∣ ∣sc close to 1 and σr close to zero. In the left panel of Figure 3,
we show the Fourier power spectra of σc and σr for the interval
selected in Figure 1. The right panel shows the trace power
spectrum (black curve) of the velocity fluctuations and the
spectrum of the velocity magnitude fluctuations (red curve). The
trace power spectrum is calculated as the sum of the spectra of
three velocity components, which is an order of magnitude larger
than the velocity amplitude spectrum. The blue vertical dashed
lines in both panels identifies the frequency at which the velocity
spectrum starts to flatten and noise becomes important (Parashar
et al. 2020; Vech et al. 2020). For the ∼5 Hz cadence plasma

Figure 5. Hilbert spectra for the selected interval dated from 04:15:35 to 04:38:36 UT on 2018 November 3. The top panel shows the shifted time series of magnetic
field components BR, BT, and BN. The bottom three panels show contour plots of the Hilbert power spectrograms of BR, BT, and BN as a function of time and frequency.
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velocity data, the noise floor is around 0.06Hz (Parashar et al.
2020). In the MHD inertial range down to the noise floor, the
velocity fluctuation spectrum basically follows f−1.5, and the
normalized cross helicity σcand residual energy σr stay fairly
constant with σc;0.8 and σr;0. The magnitude of σc usually
indicates the alignment between magnetic and velocity fluctua-
tions, and σr represents the energy difference between them. It is
evident that the residual energy σr shows a monotonic reduction
in magnetic fluctuation dominance as smaller scales, i.e., kinetic
scales, are approached. That σc∼1 and σr∼0 in the inertial
range confirms that the selected field-aligned interval is
dominated by unidirectional Alfvénic fluctuations.

Besides the standard Fourier analysis, we also perform an
HSA on the magnetic field fluctuations in the selected intervals.
The principal advantage of HSA is that the basis functions are
derived from the signal itself. In contrast to traditional
decomposition methods where the basis functions are fixed,
the EMD is adaptive and not restricted to stationary data. The
data set may be analyzed without introducing spurious
harmonics or artifacts near sharp data transitions, which could
appear when using classical Fourier filtering or high-order
moments analysis. As described in Section 2.2, the process of
developing time and frequency-dependent power spectra using
HHTs consist of three steps. We first need to decompose each
magnetic field component into its IMFs. An example of the
EMD for the BR component is shown in the left panel of
Figure 4. During the EMD procedure, a total of 10 IMFs f1, f2,
K, f10 and a residual trend res. are obtained for the BR

component. The original signal BR is equal to the sum of these
10 IMFs and the residual trend res. The IMFs are narrow-
banded signals in certain frequency ranges. The first IMF f1
captures the smallest local variation of the signal and
corresponds to the highest frequency. Once f1 is found, it is
subtracted from the signal, leaving a smoother residual with a
lower frequency. The process then restarted with the residual to
obtain a next IMF until there are no maxima or minima in the
residual. The last IMF f10 corresponds to the lowest frequency
signal and is the smoothest compared to the other IMFs. This is
illustrated in the right panel of Figure 4, where we perform the
standard Fourier spectral analysis on each IMF of the BR

component. The yellow curve represents the PSD of the
original signal BR and the other curves represent the individual
PSD of ten different IMFs f1,K, f10. The superposition of
these IMF spectra yields the power spectrum of BR. The figure
shows that each IMF has its peak power at a different
frequency range with f1 corresponding to the highest
frequency and f10 the lowest. Modes fi(t) (2�i�8) lie in
the inertial range, and the first IMF f1 (black curve) captures
the small-scale dynamics. Large-scale modes f9(t) and f10(t)
are associated with the energy injection range in the turbulent
cascade. The EMD procedure allows us to remove these small-
scale and large-scale contributions from spectra in the inertial
range.
After the IMFs are determined, the second step consists of

calculating the Hilbert transform for each IMF mode and the
corresponding analytic signal Z(t). Figure 5 shows the results of
the HSA on the same interval. The top panel shows the shifted
time evolution of three magnetic field components BR, BT, and
BN. The bottom three panels show contour plots of the Hilbert
spectrograms H2(ω, t)/ω of BR, BT, and BN as a function of time
and frequency. Unlike the Fourier or wavelet method that has a
preselected frequency range, the frequency range in the Hilbert
spectrogram is data adaptive and time dependent. In Figure 5,
we set the minimum frequency to 10−3 Hz when plotting. Note
that the minimum frequency of the spectrogram may be larger
than 10−3 Hz, which can be seen at the bottom-right corner of
the BN panel and the bottom-left corner of the BR panel. The
spectrograms show clearly that (i) the magnetic fluctuation
power decreases with increasing frequency at all time as
expected; (ii) for a given frequency, the fluctuations along the
BT and BN directions are larger than in the BR component, and
the fluctuation intensity is slightly greater in the BN component
than in the BT component; (iii) a modulation in the amplitude of
the maximum power is notable for the BT and BN components
at around 10−1 Hz, and the BR component varies relatively
smoothly from low to high frequencies, which may be due to
the inherent fluctuations in BT and BN. To summarize, the
dominant fluctuation energy during this interval resides in the
transverse directions, which is consistent with the Fourier
power spectrum shown in Figure 2. The spectrograms suggest

Figure 6. Left panel shows a comparison of the Fourier power spectra (solid curves) and the Hilbert marginal spectra (solid circles) for three magnetic field
components during the same interval in Figure 1. The dashed vertical line identifies the proton gyrofrequency. A Kolmogorov-like f−5/3 power-law spectrum is
displayed for reference. The right panel shows the relation between power-law indices ζ(q) in the structure functions and the order q of the structure function for BR,
BT, and BN respectively. The power-law exponents of the second-order structure functions of each component are listed.
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that the fluctuations of all three magnetic field components do
not exhibit rapid variations, thus indicating that the analyzed
period is fairly quiet.

For convenience, the third step is to integrate the Hilbert
spectrum H(ω, t) over time to obtain the marginal spectrum

( ) ( )òw w=h H t dt,
T

0
, which represents the energy of the

signal and can be compared with the standard Fourier
spectrum. To perform the integration, we first preselect a range
of fixed frequencies and interpolate the Hilbert spectrum onto
these frequencies at each time. Then we can simply average the

Hilbert spectrum over time to get the marginal spectrum. The
left panel of Figure 6 compares the standard Fourier power
spectra (curves) and the Hilbert marginal spectra (dots) for BR,
BT and BN for the same interval in Figure 5. Both Fourier and
Hilbert spectra for the BN component are multiplied by a factor
of 10, and the BR component is divided by a factor of 3 for
presentation purposes. A Kolmogorov power-law spectrum
with an index of −5/3 is displayed for reference. The spectra
of the three magnetic field components calculated by both
methods follows a power-law shape and are consistent with

Figure 7. The pdfs of the Br, Bt, and Bn components at three different time lags: 0.007 s (top row), 2 s (middle row), and 200 s (bottom row). The Gaussian distribution
is displayed as a reference. The flatness F and standard deviation σ for BR, BT and BN are listed in the figure. The timescale τ=200 s lies in the inertial range, τ=2 s
is within the kinetic range, and τ=0.007 s is in the instrument noise floor.
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each other. For this kP fluctuation interval, a power-law fit in
the frequency range 0.01 Hz�f�0.5 Hz gives the spectral
exponent of the BR component as ∼−1.55±0.02, the BT

component as ∼−1.60±0.05, and the BN component
∼−1.64±0.02. The spectral indices of the three components
are far from the “critical balance” theory prediction of f−2 for
kP fluctuations. In the right panel of Figure 6, we use the
structure function method to diagnose the possible influence of
intermittency in the interval. The qth-order structure function is
defined as ( ) ∣ ( ) ( )∣t t= á + - ñS x t x tq

q for the time-series
signal x(t). The Kolmogorov phenomenological theory sug-
gests that the structure function follows a power law with the
inertial range time lag τ, i.e., Sq(τ)∼τ ζ( q). In the absence of
intermittency, the power-law index depends linearly on the
order of structure function ζ(q)=q/3 (blue dashed line).
However, this is rarely observed in experiments due to the
presence of intermittency, especially for order q>3.
The maximum order qmax can be estimated with a given
number N of data points (Dudok de Wit 2004). The empirical
criterion log(N)− 1 is usually used to evaluate qmax. Structure
functions of order larger than qmax cannot be determined
accurately (Bruno & Carbone 2013). We calculate the structure
functions of various orders up to 3 and perform a power-law
fitting to each of them. This is not equivalent to directly
fitting the fluctuating power spectrum, which corresponds only
to the second-order structure function. We have chosen the
range of time lag τ over which the structure functions exhibit a
power-law shape. The relation between the power-law indices
ζ(q) and the order of the structure function q for BR (red dots),
BT (green dots), and BN (blue dots) in the selected interval are
shown in the figure. For a stationary signal, the Fourier power
spectrum P( f )∼f−α corresponds to a power law in the
second-order structure function S2(τ)∼τα−1. As shown in the
figure, if q=2, the second-order structure function would
satisfy S2(τ)∼τ0.56±0.06 for the BR component, τ0.61±0.03 for
the BT component, and τ0.63±0.03 for the BN component. The
spectral indices for all three components obtained by using the
structure function method (a ~ - 1.56 0.06r

s for BR, a ~ -t
s

1.61 0.03 for BT, and a ~ - 1.61 0.03t
s for BN) are

approximately consistent with the Fourier power spectrum
and Hilbert marginal spectrum.

Besides the structure function method, the distribution of the
time series of the magnetic field components can also be used
as a indicator of the intermittency. Intermittent structures are
often found to possess non-Gaussian distributions. Figure 7
plots the probability density function (pdf) constructed from the
time series of the three magnetic field components (BR, BT, and
BN) with the resolution of ∼0.007 s. The horizontal axis has
been normalized by the standard deviation. The solid curve
illustrates the standard Gaussian distribution as a reference. We
have chosen three different time lags of the magnetic field
increments to compute the pdfs at different timescales. The top
row shows the pdfs at the smallest timescale of 0.007 s, which
corresponds to the smallest time lag, i.e., the resolution of the
data. The pdfs for all three components at this timescale follow
the Gaussian distribution very well. We have also listed the
flatness of the distributions, defined as ( ¯)= á - ñF x x 4

( ¯)á - ñx x 2 2, for each magnetic field component in the figure.
The standard Gaussian distribution has a flatness of F=3. The
flatness at the smallest timescale is 3 for all three components,
which is caused by the instrument noise. The middle row plots
the pdfs at an intermediate timescale of ∼2 s, which
corresponds to the approach of the kinetic scale. Clear tail
distributions are exhibited showing the deviation from the
Gaussian distribution. The flatness is 4.67 for BR, 7.12 for BT,
and 8.4 for BN. This is a signature of strong intermittent events
(Wang et al. 2014). The bottom row shows the pdfs at the
timescale of 200 s, corresponding to the inertial range scale.
Comparing to the kinetic scale (middle row), the pdfs are closer
to Gaussian at the larger inertial range scale and the tails are
less pronounced. The flatness for three components are
Fr=3.15, Ft=3.1, and Fn=3.59, all close to 3 in this case.
Figure 8 shows the dependence of the flatness of pdfs on the

timescale τ. For timescale τ3 s or frequency f0.33 Hz,
the flatness decreases with the increase of timescale or the
decrease of frequency scale. At timescales larger than ∼50 s,
the flatness is close to 3, suggesting that the intermittency is
small in the inertial range, with which we are mostly
concerned. The relatively large flatness for BN in the inertial
range indicates that there may be some intermittent structures in
the BN component. As shown in Figure 5, there are some
obvious ramp-cliff structures (e.g., around 4:20) in Bn field.
These structures are customary in traditional passive scalar
turbulence, and usually affect the scaling exponents resulting in
a higher level of intermittency (Bruno et al. 2007; Iyer et al.
2018). For the intermediate timescale region 0.6�τ�3, the
flatness for all three components increase, and PDFs deviate
from normal distribution, which is due to the approach of the
small kinetic scales. At even smaller timescales (much higher
frequency scales), the flatness decreases and is close to 3 again.
This is probably due to instrumental noise that is approximately
Gaussian distribution.
For completeness, the left panel of Figure 9 shows the

Fourier power spectra (curves) and the Hilbert marginal spectra
(dots) of BR, BT, and BN during the second interval listed in
Table 1. Similar to Figure 6, the spectra of each magnetic field
component calculated by both methods are consistent with each
other. For this interval, a power-law fitting in the inertial
range gives the spectral index of the BR component as
∼−1.62±0.03, the BT component as ∼−1.65±0.02, and the
BN component as ∼−1.57±0.03. The right panel shows the
comparison between the scaling exponents ζ(q) of the qth-order
structure function and the theoretical scaling exponent q/3 (in

Figure 8. Dependence of the flatness of pdfs on the timescale τ. The Br, Bt, and
Bn components are plotted as red, green, and blue dots, respectively.
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the absence of intermittency) for each magnetic field component.
As shown in the right panel, ζ(q) (dots with error bar) of the
three components are basically aligned with q/3 (blue dashed
line), indicating weak intermittency in this interval. The scaling
exponents of the second-order structure functions for three
components are listed in the figure, i.e., ( )t t~ S R2

0.6 0.03,
( )t t~ ST2

0.67 0.02, and ( )t t~ S N2
0.58 0.03. The spectral

indices inferred from the second-order structure functions
(−1.6± 0.03 for the BR component, −1.67± 0.02 for the BT
component, and −1.58± 0.03 for the BN component) are
basically consistent with those obtained by directly fitting the
fluctuating power spectrum.

4. Conclusions

In this paper, we investigated turbulent fluctuations in the
field-aligned solar wind flow using PSP data. We performed a
systematic search based on the angle between the solar wind
flow velocity and magnetic field θVB. Due primarily to the
presence of frequent magnetic switchbacks, field-aligned
events are rare. We note that the relative amplitude of magnetic
fluctuations in our event are on the order of ∣ ∣ ∣ ∣dB B0 ; 0.2. In
this case, a rigorous parallel fluctuation should satisfy the
condition θVB< (∣ ∣ ∣ ∣)d ~ B Barctan 110 . Although our event
selection criterion is θVB�20°, the average angle between
field and flow is within 9° during both selected events.
Therefore, the two identified events satisfy the parallel
fluctuation condition reasonably well. Because of the presence
of numerous magnetic switchbacks, a longer interval with
parallel fluctuations is not available. However, we caution that
although we are sampling with the magnetic field almost
aligned to the solar wind vector, a small contamination by
perpendicular fluctuations cannot be excluded a priori.
Observations at 1 au suggest that Alfvénic fluctuations are
most common in fast solar wind streams. By contrast, the two
intervals we identified within 0.2 au are associated with the
slow solar wind.

Different spectral analysis techniques are applied to the
identified events, including the standard Fourier spectrum,
Hilbert spectrum, and structure function. For both events,
spectral analysis suggests a Kolmogorov-like f−5/3 power
law for the magnetic field power spectra. The critical balance
theory of Goldreich & Sridhar (1995) predicts a 

-k 2 parallel

power-law spectrum. Previous 1 au observational studies of the
solar wind have reported contradicting results regarding the
spectrum, with both 

-k 2 and 
-k 5 3 spectra apparently observed

(e.g., Horbury et al. 2008; Telloni et al. 2019). Our analysis
provides further evidence closer to the Sun that the spectrum
for what appears to be unidirectionally propagating Alfvén
waves is 

-k 5 3. This is inconsistent with both critical balance
and weak MHD turbulence theory. It should be noted that the
critical balance theory provided by Goldreich & Sridhar (1995)
requires counter-propagating Alfvén waves, i.e., cross helicity
σc∼0, while we find unidirectional Alfvénic fluctuations
(σc∼1) in both events. However, Lithwick et al. (2007)
extended the critical balance conjecture to include imbalanced
turbulence. The results presented here are therefore not
consistent with the critical balance predictions.
We also quantified the level of intermittency in the observed

events as previous studies suggest that the presence of
intermittent structures can strongly affect the turbulence power
spectrum (e.g., Li et al. 2011; Wang et al. 2014). The scaling
exponents of the qth-order structure functions of the three
magnetic field components in both intervals are compatible
with the theoretical scaling exponents q/3 (which holds in the
absence of intermittency). In addition, probability distributions
constructed from the magnetic field difference show that the
pdfs are approximately Gaussian in the inertial range and no
clear tail was found. All of these characteristics indicate that
intermittency is weak in the selected intervals. By examining
the level of intermittency, we stress that the −5/3 scaling index
in the interval is not caused by current sheets and other
intermittent structures, but instead is the intrinsic spectral index
of kP fluctuations.
Finally, we point out that a possible explanation of the

observed 
-k 5 3 spectrum in unidirectional Alfvénic fluctua-

tions emerges from the NI MHD theory. Zank et al. (2017)
show that the perpendicular power spectrum follows a ^

-k 5 3

power law, which is the same as the critical balance prediction,
but is due to 2D structures instead of the interaction of Alfvén
waves. The parallel power spectrum is given by the NI
corrections to the core 2D MHD equations. For highly
imbalanced turbulence (∣ ∣s ~ 1c ), the NI MHD theory admits
a Kolmogorov-like 

-k 5 3 inertial range spectrum. From an
observational perspective, we note that Wang et al. (2015)

Figure 9. Same as for Figure 6, but for the second interval in Table 1. The spectra in the left panel have been shifted for presentation purpose.
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found a 
-k 5 3 scaling for weak turbulent fluctuations, which

seems to be the case in our study. For moderate-amplitude
fluctuations of ∣ ∣ ∣ ∣ dB B 0.40 , they found a 

-k 2 scaling,
which is consistent with critical balance theory. However,
Telloni et al. (2019) found that parallel fluctuations exhibit a
−5/3 scaling even in the strong turbulence regime with
∣ ∣ ∣ ∣ –d B B 0.3 0.40 . In the companion paper of Adhikari et al.
(2020), the exact spectral shape does not depend on the
amplitude of the fluctuations, but the relation between the
transition wavenumber kt (defined in Zank et al. 2020),
perpendicular wavenumber k⊥, and parallel wavenumber kP.
In their study, the parallel fluctuation spectra satisfy a −2
scaling only when =k̂ k kt

1 2 3 2. A detailed theoretical study
on the nature of solar wind turbulence anisotropy is presented
in Zank et al. (2020), which focuses on the turbulence power
spectra of different forms in the framework of the NI MHD
theory.

We acknowledge the partial support of an NSF EPSCoR RII-
Track-1 Cooperative Agreement OIA-1655280, and partial
support from an NSF/DOE Partnership in Basic Plasma
Science and Engineering via NSF grant PHY-1707247, and a
NASA Parker Solar Probe contract SV4-84017. We thank the
NASA Parker Solar Probe SWEAP team led by J. Kasper and
FIELDS team led by S. D. Bale for use of data. D.T. was
partially supported by the Italian Space Agency (ASI) under
contract I/013/12/0. F.C. was partially supported by the ERA-
PLANET program (www.era-planet.eu) (Contract.no. 689443)
within the IGOSP project (www.igosp.eu).

ORCID iDs

L.-L. Zhao https://orcid.org/0000-0002-4299-0490
G. P. Zank https://orcid.org/0000-0002-4642-6192
L. Adhikari https://orcid.org/0000-0003-1549-5256
D. Telloni https://orcid.org/0000-0002-6710-8142
F. Carbone https://orcid.org/0000-0002-3559-5273

References

Adhikari, L., Zank, G. P., Hunana, P., et al. 2017, ApJ, 841, 85
Adhikari, L., Zank, G. P., & Zhao, L.-L. 2019, ApJ, 876, 26
Adhikari, L., Zank, G. P., Zhao, L. L., et al. 2020, ApJ, submitted

Bale, S. D., Badman, S. T., Bonnell, J. W., et al. 2019, Natur, 576, 237
Bale, S. D., Goetz, K., Harvey, P. R., et al. 2016, SSRv, 204, 49
Bavassano, B., Dobrowolny, M., Fanfoni, G., et al. 1982, SoPh, 78, 373
Bieber, J. W., Wanner, W., & Matthaeus, W. H. 1996, JGR, 101, 2511
Bruno, R., & Carbone, V. 2013, LRSP, 10, 2
Bruno, R., Carbone, V., Chapman, S., et al. 2007, PhPl, 14, 032901
Carbone, F., Sorriso-Valvo, L., Alberti, T., et al. 2018, ApJ, 859, 27
Chen, C. H. K., Mallet, A., Yousef, T. A., et al. 2011, MNRAS, 415, 3219
Dasso, S., Milano, L. J., Matthaeus, W. H., et al. 2005, ApJL, 635, L181
Dudok de Wit, T. 2004, PhRvE, 70, 055302
Dudok de Wit, T., Krasnoselskikh, V. V., Bale, S. D., et al. 2020, ApJS,

246, 39
Fox, N. J., Velli, M. C., Bale, S. D., et al. 2016, SSRv, 204, 7
Fu, S., Zhao, L., Zank, G. P., et al. 2020, SCPMA, 63, 219511
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Horbury, T. S., Forman, M., & Oughton, S. 2008, PhRvL, 101, 175005
Horbury, T. S., Wicks, R. T., & Chen, C. H. K. 2012, SSRv, 172, 325
Horbury, T. S., Woolley, T., Laker, R., et al. 2020, ApJS, 246, 45
Huang, Y. X., Schmitt, F. G., Hermand, J.-P., et al. 2011, PhRvE, 84,

016208
Huang, Y. X., Schmitt, F. G., Lu, Z. M., et al. 2008, EL, 84, 40010
Hunana, P., & Zank, G. P. 2010, ApJ, 718, 148
Iyer, K. P., Schumacher, J., Sreenivasan, K. R., et al. 2018, PhRvL, 121,

264501
Kasper, J. C., Abiad, R., Austin, G., et al. 2016, SSRv, 204, 131
Kasper, J. C., Bale, S. D., Belcher, J. W., et al. 2019, Natur, 576, 228
Leamon, R. J., Smith, C. W., Ness, N. F., et al. 1998, JGR, 103, 4775
Li, G., Miao, B., Hu, Q., et al. 2011, PhRvL, 106, 125001
Lithwick, Y., Goldreich, P., & Sridhar, S. 2007, ApJ, 655, 269
Matthaeus, W. H., Dasso, S., Weygand, J. M., et al. 2005, PhRvL, 95, 231101
Matthaeus, W. H., Goldstein, M. L., & Roberts, D. A. 1990, JGR, 95, 20673
McManus, M. D., Bowen, T. A., Mallet, A., et al. 2020, ApJS, 246, 67
Milano, L. J., Dasso, S., Matthaeus, W. H., et al. 2004, PhRvL, 93, 155005
Narita, Y., Sahraoui, F., Goldstein, M. L., et al. 2010, JGR, 115, A04101
Parashar, T. N., Goldstein, M. L., Maruca, B. A., et al. 2020, ApJS, 246, 58
Podesta, J. J. 2009, ApJ, 698, 986
Ruiz, M. E., Dasso, S., Matthaeus, W. H., et al. 2011, JGR, 116, A10102
Telloni, D., Carbone, F., Bruno, R., et al. 2019, ApJ, 887, 160
Tessein, J. A., Smith, C. W., MacBride, B. T., et al. 2009, ApJ, 692, 684
Vech, D., Kasper, J. C., Klein, K. G., et al. 2020, ApJS, 246, 52
Wang, X., Tu, C., He, J., et al. 2014, ApJL, 783, L9
Wang, X., Tu, C., He, J., et al. 2015, ApJL, 810, L21
Yang, L., He, J., Tu, C., et al. 2017, ApJ, 846, 49
Zank, G. P., Adhikari, L., Hunana, P., et al. 2017, ApJ, 835, 147
Zank, G. P., & Matthaeus, W. H. 1992, JGR, 97, 17189
Zank, G. P., & Matthaeus, W. H. 1993, PhFl, A5, 257
Zank, G. P., Nakanotani, M., Zhao, L.-L., Adhikari, L., & Telloni, D. 2020,

ApJ, submitted
Zhao, L.-L., Adhikari, L., Zank, G. P., et al. 2017, ApJ, 849, 88
Zhao, L. L., Zank, G. P., Adhikari, L., et al. 2020, ApJS, 246, 26
Zhao, L.-L., Zank, G. P., Chen, Y., et al. 2019, ApJ, 872, 4

11

The Astrophysical Journal, 898:113 (11pp), 2020 August 1 Zhao et al.

http://www.era-planet.eu
http://www.igosp.eu
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://orcid.org/0000-0002-3559-5273
https://doi.org/10.3847/1538-4357/aa6f5d
https://ui.adsabs.harvard.edu/abs/2017ApJ...841...85A/abstract
https://doi.org/10.3847/1538-4357/ab141c
https://ui.adsabs.harvard.edu/abs/2019ApJ...876...26A/abstract
https://doi.org/10.1038/s41586-019-1818-7
https://ui.adsabs.harvard.edu/abs/2019Natur.576..237B/abstract
https://doi.org/10.1007/s11214-016-0244-5
https://ui.adsabs.harvard.edu/abs/2016SSRv..204...49B/abstract
https://doi.org/10.1007/BF00151617
https://ui.adsabs.harvard.edu/abs/1982SoPh...78..373B/abstract
https://doi.org/10.1029/95JA02588
https://ui.adsabs.harvard.edu/abs/1996JGR...101.2511B/abstract
https://doi.org/10.12942/lrsp-2013-2
https://ui.adsabs.harvard.edu/abs/2013LRSP...10....2B/abstract
https://doi.org/10.1063/1.2711429
https://ui.adsabs.harvard.edu/abs/2007PhPl...14c2901B/abstract
https://doi.org/10.3847/1538-4357/aabcc2
https://ui.adsabs.harvard.edu/abs/2018ApJ...859...27C/abstract
https://doi.org/10.1111/j.1365-2966.2011.18933.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.3219C/abstract
https://doi.org/10.1086/499559
https://ui.adsabs.harvard.edu/abs/2005ApJ...635L.181D/abstract
https://doi.org/10.1103/PhysRevE.70.055302
https://ui.adsabs.harvard.edu/abs/2004PhRvE..70e5302D/abstract
https://doi.org/10.3847/1538-4365/ab5853
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...39D/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...39D/abstract
https://doi.org/10.1007/s11214-015-0211-6
https://ui.adsabs.harvard.edu/abs/2016SSRv..204....7F/abstract
https://doi.org/10.1007/s11433-019-9423-3
https://ui.adsabs.harvard.edu/abs/2019SCPMA..63u9511F/abstract
https://doi.org/10.1086/175121
https://ui.adsabs.harvard.edu/abs/1995ApJ...438..763G/abstract
https://doi.org/10.1103/PhysRevLett.101.175005
https://ui.adsabs.harvard.edu/abs/2008PhRvL.101q5005H/abstract
https://doi.org/10.1007/s11214-011-9821-9
https://ui.adsabs.harvard.edu/abs/2012SSRv..172..325H/abstract
https://doi.org/10.3847/1538-4365/ab5b15
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...45H/abstract
https://doi.org/10.1103/PhysRevE.84.016208
https://ui.adsabs.harvard.edu/abs/2011PhRvE..84a6208H/abstract
https://ui.adsabs.harvard.edu/abs/2011PhRvE..84a6208H/abstract
https://doi.org/10.1209/0295-5075/84/40010
https://ui.adsabs.harvard.edu/abs/2008EL.....8440010H/abstract
https://doi.org/10.1088/0004-637X/718/1/148
https://ui.adsabs.harvard.edu/abs/2010ApJ...718..148H/abstract
https://doi.org/10.1103/PhysRevLett.121.264501
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121z4501I/abstract
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121z4501I/abstract
https://doi.org/10.1007/s11214-015-0206-3
https://ui.adsabs.harvard.edu/abs/2016SSRv..204..131K/abstract
https://doi.org/10.1038/s41586-019-1813-z
https://ui.adsabs.harvard.edu/abs/2019Natur.576..228K/abstract
https://doi.org/10.1029/97JA03394
https://ui.adsabs.harvard.edu/abs/1998JGR...103.4775L/abstract
https://doi.org/10.1103/PhysRevLett.106.125001
https://ui.adsabs.harvard.edu/abs/2011PhRvL.106l5001L/abstract
https://doi.org/10.1086/509884
https://ui.adsabs.harvard.edu/abs/2007ApJ...655..269L/abstract
https://doi.org/10.1103/PhysRevLett.95.231101
https://ui.adsabs.harvard.edu/abs/2005PhRvL..95w1101M/abstract
https://doi.org/10.1029/JA095iA12p20673
https://ui.adsabs.harvard.edu/abs/1990JGR....9520673M/abstract
https://doi.org/10.3847/1538-4365/ab6dce
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...67M/abstract
https://doi.org/10.1103/PhysRevLett.93.155005
https://ui.adsabs.harvard.edu/abs/2004PhRvL..93o5005M/abstract
https://doi.org/10.1029/2009JA014742
https://ui.adsabs.harvard.edu/abs/2010JGRA..115.4101N/abstract
https://doi.org/10.3847/1538-4365/ab64e6
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...58P/abstract
https://doi.org/10.1088/0004-637X/698/2/986
https://ui.adsabs.harvard.edu/abs/2009ApJ...698..986P/abstract
https://doi.org/10.1029/2011JA016697
https://ui.adsabs.harvard.edu/abs/2011JGRA..11610102R/abstract
https://doi.org/10.3847/1538-4357/ab517b
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..160T/abstract
https://doi.org/10.1088/0004-637X/692/1/684
https://ui.adsabs.harvard.edu/abs/2009ApJ...692..684T/abstract
https://doi.org/10.3847/1538-4365/ab60a2
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...52V/abstract
https://doi.org/10.1088/2041-8205/783/1/L9
https://ui.adsabs.harvard.edu/abs/2014ApJ...783L...9W/abstract
https://doi.org/10.1088/2041-8205/810/2/L21
https://ui.adsabs.harvard.edu/abs/2015ApJ...810L..21W/abstract
https://doi.org/10.3847/1538-4357/aa7e7c
https://ui.adsabs.harvard.edu/abs/2017ApJ...846...49Y/abstract
https://doi.org/10.3847/1538-4357/835/2/147
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..147Z/abstract
https://doi.org/10.1029/92JA01734
https://ui.adsabs.harvard.edu/abs/1992JGR....9717189Z/abstract
https://doi.org/10.1063/1.858780
https://ui.adsabs.harvard.edu/abs/1993PhFlA...5..257Z/abstract
https://doi.org/10.3847/1538-4357/aa932a
https://ui.adsabs.harvard.edu/abs/2017ApJ...849...88Z/abstract
https://doi.org/10.3847/1538-4365/ab4ff1
https://ui.adsabs.harvard.edu/abs/2020ApJS..246...26Z/abstract
https://doi.org/10.3847/1538-4357/aafcb2
https://ui.adsabs.harvard.edu/abs/2019ApJ...872....4Z/abstract

	1. Introduction
	2. Analysis Technique
	2.1. Data Selection
	2.2. Hilbert Spectral Analysis

	3. Results
	4. Conclusions
	References



