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Abstract—This article discusses optimumdesigns of photovoltaic
(PV) systems with battery energy storage system (BESS) by using
real-world data. Specifically, we identify the optimum size of PV
panels, the optimumcapacity ofBESS, and the optimumscheduling
of BESS charging/discharging, such that the long-term overall cost,
including both utility bills and the PV system, is minimized. The
optimization is performed by considering a plethora of parameters,
such as energy usage, energy cost, weather, geographic location, in-
flation, and the cost, efficiency, and aging effects of solar panels and
BESS. To capture the impacts of long-term factors such as aging
effects, inflation, and discounted economic returns, the problem is
formulated as a mixed integer nonlinear programming (MINLP)
problem over the time horizon covering the entire life cycles of
solar panels and BESS of the order of ten years or longer, whereas
almost all existing works on PV system designs consider much
shorter time horizons of the order of days or weeks. The MINLP is
transformed into mixed integer linear programming (MILP) and
solved by branch-and-bound (B&B) algorithm. The complexity of
MILP is high due to the long time horizon. A new low-complexity
algorithm is then proposed by using dynamic programming, where
it is shown that the MINLP problem can be transformed into one
that satisfies Bellman’s principal of optimality. Applying the newly
developed algorithms on real-world data from a commercial user
in San Francisco reveals that the system achieves the break-even
point at the 66th month and achieves a 29.3% reduction in total
system cost.

Index Terms—Battery energy storage system (BESS), demand
charge, dynamic programming (DP), mixed integer nonlinear
programming (MINLP), photovoltaic (PV), time of use (TOU).

I. INTRODUCTION

SOLAR power is a clean, inexpensive, and renewable en-
ergy source that is widely adopted around the world. One

of the most efficient ways to harness solar power is through
photovoltaic (PV) cells, or solar panels, which convert light
directly into electricity using photoelectric effects. The state
of California in the United States of America mandates solar
panels on the roofs of all new homes starting in 2020 [1]. The
growing popularity and constantly increasing demands of solar
energy necessitate optimum designs of PV systems that can
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be seamlessly integrated in power grids and achieve maximum
savings in energy and overall system cost.
The variability, uncertainty, and nonsynchronous generation

of PV power sources impose numerous challenges on the large-
scale and cost-effective deployment of PV systems [2]. The
intermittent and stochastic nature of solar energy creates an
imbalance between energy supplies and demands. Such an im-
balance can be partly compensated by integrating the PV system
with battery energy storage system (BESS). The BESS can store
excessive solar energy during off-peak hours and discharge the
stored energy during high-demand hours, such that both energy
usage and peak demands can be significantly reduced.
There have been growing interests in the optimumdesigns and

scheduling of energy systemswith energy storage devices (ESS).
Most designs aim at minimizing the energy cost or operating
cost through optimum scheduling of energy generation and/or
storage. In [3], the optimum scheduling of a pump-storage
hydropower station is formulated as a mixed integer linear
programming (MILP) problem, where the nonlinearity of power
generation in hydroturbines is approximated by a piecewise
linear function. In [4], the optimum scheduling of distributed
energy resources (DER) is formulated as a linear programming
(LP) problem to reduce operation cost and to shave peak de-
mands. In [5], the optimum scheduling of behind-the-meter
ESS is formulated as a mixed integer nonlinear programming
(MINLP) problem, and the problem is equivalently transformed
into an LP by introducing auxiliary variables. The complexity
of LP-based approaches scales, in general, in polynomial time
with respect to the number of decision variables and constraints.
The complexity could be prohibitively high when the number of
decision variables is large.
Optimum ESS scheduling can also be solved by using dy-

namic programming (DP), which relies on Bellman’s principle
of optimality to decompose the original problem into a sequence
of simpler subproblems in a recursive manner [6]–[11]. In the
optimum designs of ESS systems, the state variables are usually
states of charge of theESS,which often need to be discretized for
an efficient solution [6]. For utility billminimization, the demand
charge introduces a supremum term in the objective function,
which violates Bellman’s principal of optimality necessary for
DP. This problem is solved by using the concept of forward
separable function with augmented state variables in [11], or
multiobjective DP in [9]. The integration of ESS system with
renewable energy sources adds new degrees-of-freedom that
can further improve the efficiency of energy usage. The opti-
mum design of power systems with both ESS and renewable
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energy sources are discussed in [8] and [12], which consider
the interactions of a variety of renewable energy sources and
ESS devices, including PV panels, wind turbines, hydroelectric
plants, pumping stations, etc.
The optimizations in most existing works are performed by

assuming a fixed-sized ESS. In the design of battery-assisted PV
systems, the optimum capacity of BESS and the number of solar
panels are important decision parameters, and their optimum
values are in general not readily available beforehand. The costs
of solar panels and BESS accounts for a large amount of initial
investment. The optimum designs need to ensure that the cost
saving due to ESS and renewable energy sources can outweigh
the system cost in the long run, thus the system cost should be
a critical parameter in the system design. The operation cost
and wear-out cost of the system are included in the formula-
tions in [4], [5], and [8]. However, the initial procurement and
installation costs are not considered in those works.
In addition to system cost, the optimum design should also

consider aging effects of the devices, where the efficiencies
and/or capacities of both solar panels and batteries degrade
gradually over time [13]. To accurately model the aging effects,
the optimization needs to be performed over a time horizon over
the entire life cycles of batteries and solar panels. However,
the time horizon in many existing works are one day [14], and
multiday costs are obtained by multiplying the daily cost by the
number of days [12], [15]. A 24-month dataset is used in [16],
but with the assumption that the battery is fully charged at the
beginning of each day. Thus, the optimization horizon is still
within one day. In [3] and [5], the time horizon is extended
to one month. A one-year optimization horizon is considered
in [17] without considering the aging effects. In [18], the design
is performed over a three-year optimization period, which is
still shorter than the device life cycles, and it only considers the
battery cycling aging effects.
In this article, we propose to perform optimum designs of

battery-assisted PV systems by including system costs, aging
effects of batteries and solar panels, inflation of electricity
costs, and discounted long-term returns as design parameters.
Unlike most previous works with short optimization horizons
and nonaging models, the proposed research considers cycling
aging and calendar aging of the batteries and solar panels. The
optimum designs of the system are determined by a plethora
of parameters, such as the load and weather data, utility rates,
the cost of system procurement, installation, and maintenance,
inflation rates, discounted long-term returns, and the charg-
ing/discharging schedules. The objective of the design is to
minimize the long-term total cost of the system, including both
system cost and utility cost in an engineering economic model,
subject to physical limits of the batteries and solar panels, such
as finite capacity, finite charging/discharging rates, efficiency
depreciation over time, etc. In order to model and quantify the
impacts of aging effects, the optimization time horizon covers a
duration of ten years corresponding to the life cycles of batteries
and solar panels. The problem is formulated as an MINLP
with the number of optimization variables proportional to the
optimization time horizon. Two solutions to the problems are
proposed—one is based on MILP, and the other one is based on

DP. The MILP-based solution can obtain the globally optimum
solution with the help of the branch-and-bound (B&B) algo-
rithm. However, the complexity of MILP-based solution grows
in polynomial time with respect to the optimization horizon,
and it becomes prohibitively high over long time horizons. The
DP-based solution can achieve a balanced tradeoff between
accuracy and complexity. Comparisons between the MILP-
and DP-based solutions demonstrate that the DP-based solution
can achieve similar performance as the MILP-based solution,
but with a complexity that is only linear in optimization time
horizon. The optimum designs are applied to real-world data
from a large hotel in San Francisco [19], and it is shown that
employing BESS in a PV system can achieve significant cost
savings over PV-only system or conventional systems with no
renewable energy sources.
The rest of this article is organized as follows. The system

model and problem formulation are given in Section II. The
MILP- and DP-based solutions are proposed in Sections III and
IV, respectively. Section V presents the results obtained from
case studies with real-world data. Finally, Section VI concludes
this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the model of the solar energy
system. Based on the system model, the optimum design is
formulated as an MINLP.

A. Battery Model

The time is divided into short nonoverlapping windows with
duration τ each, e.g., τ = 1 h. The state of charge (SOC), or the
energy stored in the battery, can be described by the following
difference equation:

s(i+ 1) = s(i) + qc(i)γe − qd(i)

γe
(1)

where i is the time window index, s(i) denotes the energy stored
in the battery at the beginning of the ith time window, qc(i)
and qd(i) are the energy charged to and discharged from the
battery at timewindow i, respectively, and γe denotes the energy
efficiency, which represents the energy loss in the battery. We
have γe = γinv

√
γbatt, where γinv is the inverter efficiency and

γbatt is the battery round-trip efficiency [20].
Due to the physical limits of the battery, the average charging

and discharging rates at any time window are limited by the
number of batteries and the physical limit of each battery as

0 ≤ qc(i) ≤ nbQcτ ∀i ∈ H (2)

0 ≤ qd(i) ≤ nbQdτ ∀i ∈ H (3)

wherenb is the number of batteries,Qc andQd are themaximum
charging and discharging power of a single battery, respectively,
andH = {1, 2, . . . , H} is the time horizon under consideration,
with H being the total number of time windows.
In addition to the charging and discharging limits, the SOC at

any time is limited by the total capacities of the battery as

0 ≤ s(i) ≤ nbS[ 1− α · (m− 1)0.75 − β
√
m− 1] (4)
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whereS is the initial battery capacity, or themaximumenergy, of
a single battery,α and β are the calendar aging and cycling aging
coefficients of the battery described in months, respectively,
and m is the age of the battery in months [21]. The aging
coefficient models the phenomenon that the battery capacity
becomes smaller over a long period of time.

B. Power From the Grid

Denote qnet(i) as the energy bought from the utility at time
window i. Then, we have

qnet(i) = qld(i)− qsol(i) + qc(i)− qd(i) (5)

where qld(i) denotes the actual load at timewindow i, and qsol(i)
denotes the PV energy collected from the solar panels at time
window i. The PV energy can be modeled as

qsol(i) = nsq0(i)γ
m−1
s (6)

where ns is the number of solar panels, q0(i) is the PV energy
collected by a single panel at time window i, γs is the efficiency
of the solar panel described in months,m is the age of the solar
panel in months. The solar panel efficiency describes the aging
effect of the solar panel over time.

C. Objective Function

The total cost of the system consists three parts—energy
charge, power or demand charge, and system cost.
1) Energy Charge: Time of use (TOU) is a rate plan that

is determined by both the amount of energy bought from the
utility and the time when the energy is consumed. Despite
slight differences in the rate between utilities, most TOU plans
divide days into peak hours, part-peak hours, and off-peak hours.
Similarly, weeks are divided intoweekdays andweekends; years
are divided into summer months and winter months.
Define the set of peak hours, part-peak hours, and off-peak

hours asHpk,Hpp, andHop, respectively. Denote the electricity
cost during these three sets of hours as Ppk, Ppp, and Pop,
respectively. Considering the effects of inflation, the unit price
($/kWh) at time window i is given by

P (i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ppk

(
1 + r

� i−1
W �

infl

)
, i ∈ Hpk

Ppp

(
1 + r

� i−1
W �

infl

)
, i ∈ Hpp

Pop

(
1 + r

� i−1
W �

infl

)
, i ∈ Hop

(7)

where rinfl is the annual inflation rate of electricity cost, W is
the total number of windows in one year, and the floor operator
�a� returns the largest integer that is less than or equal to a.
Define Hm as the set of time window indices that belong to

the mth month, and assume there are M months in the time
horizonH, that is,H =

⋃M
m=1 Hm. The energy charge with the

given TOU is

CE =

M∑

m=1

∑

i∈Hm

P (i)max
(
qnet(i), 0

)
. (8)

2) Demand Charge: The demand charge is proportional
to the highest average power in each month. Considering

the effects of inflation, denote the demand charge at the
mth month

Dmax(m) = D0 ·
(
1 + r

�m−1
12 �

infl

)
(9)

where D0 is the initial demand charge in the unit of $/kW.
The total demand charge can be calculated as

CD =

M∑

m=1

Dmax(m) max
i∈Hm

qnet(i)

τ
. (10)

3) System Cost: The costs of solar panels and batteries in-
clude the costs for product procurement, installation, and main-
tenance. It is assumed that the total cost is proportional to the
number of solar panels and batteries as

CS = Psns + Pbnb (11)

where Ps and Pb are the unit costs (including procurement and
installation) of solar panels and batteries, respectively, and ns

and nb are the number of solar panels and batteries, respectively.

D. Problem Formulation

The objective of the problem is to minimize the long-term
total cost of the system by identifying the optimum number
of solar panels and batteries required for the system. The op-
timum identification of the solar panels and batteries depends
on the charging and discharging schedule; thus, the charging
and discharging rates qc(i) and qd(i), for all i ∈ H, will also be
considered as optimization variables.
Since the optimum design is performed off-line before system

installation, the load information qld(i) and the solar energy
qsol(i) are unknown during the design phase. However, the
optimum design can be performed by using known historical
data given that the load and weather for a given location do
not change dramatically from year to year [5]. Thus, the known
historical data of qld(i) and qsol(i) are used in the optimumdesign
as in [5].
Based on the abovementioned models and analysis, the

optimization problem can be formulated as

(P1) min . CE + CD + CS (12)

s.t. (1)−(6) (13)

ns, nb ∈ Z+ (14)

ns ≤ Ns (15)

nb ≤ Nb (16)

where Z+ is the set of nonnegative integers, Ns and Nb are
the maximum number of solar panels and batteries allowed in
the system, respectively, and the optimization is performed with
respect to the following variables: {qc(i), qd(i)}i∈H, ns, and nb.
The values of Ns and Nb are usually determined by the area of
installation.
The abovementioned problem is an MINLP problem. The

nonlinearity comes from the maximum term in both the energy
chargeCE in (8) and the demand chargeCD in (10). The problem
is in general NP-hard.
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III. MIXED INTEGER LINEAR PROGRAMMING

In this section, we transform (P1) into an equivalent MILP
problem [13], which can be optimally solved by using the B&B
algorithm [22].
Since the nonlinearity in (P1) comes from the maximum term

in theobjective function,wecan equivalently convert it to a linear
objective function by introducing new variables [23]. Define
two new variables qnet+ (i) and qnetmax(m) with the following new
constraints:

qnet(i) ≤ qnet+ (i) ∀i ∈ H (17)

qnet(i) ≤ qnetmax(m) ∀i ∈ Hm (18)

qnet+ (i) ≥ 0 ∀i ∈ H (19)

qnetmax(m) ≥ 0 ∀m ∈ M (20)

where M = {m|Hm ⊆ H} is the set of indices of months in
the optimization time horizon.
Based on the abovementioned definition and constraints, the

energy charge and demand charge can be upper bounded, re-
spectively, by

C̄E =

M∑

m=1

∑

i∈Hm

P (i)qnet+ (i) (21)

C̄D =
1

τ

M∑

m=1

Dmax(m)qnetmax(m). (22)

The MINLP problem (P1) can now be equivalently converted
to a new problem as

(P2) min C̄E + C̄D + CS (23)

s.t. (1)−(6), (14)−(20) (24)

where the optimization variables are: {qc(i), qd(i), qnet+ (i)}i∈H,
{qnetmax(m)}m∈M, ns, and nb. Compared to (P1), (P2) has
two new groups of optimization variables, {qnet+ (i)}i∈H and
{qnetmax(m)}m∈M. The energy and demand charges in (P1) are
replaced in (P2) with their respective upper bounds, which are
linear functions of the optimization variables. As a result, the
nonlinearity in (P1) is removed and (P2) is an MILP.
The equivalence between (P1) and (P2) is established in the

following lemma.
Lemma 1: The optimum solution to (P2) is also the optimum

solution to (P1).
Proof: Denote the optimum cost functions from (P1) and

(P2) as C∗
E + C∗

D + C∗
S and C̄†

E + C̄†
D + C†

S, respectively. Since
CE ≤ C̄E and CD ≤ C̄D by definition, we have C∗

E ≤ C̄†
E and

C∗
D ≤ C̄†

D.
Next, we will show that C∗

E = C̄†
E and C∗

D = C̄†
D by using

contradiction. Assume C∗
E < C̄†

E and C∗
D < C̄†

D, then we can
always make C̄†

E and C̄†
D smaller by letting

qnet+ (i) = max(0, qnet(i)) (25)

qnetmax(m) = max
i∈Hm

qnet(i) (26)

while keeping all other variables unchanged to satisfy all con-
straints. Thus, we must have C∗

E = C̄†
E and C∗

D = C̄†
D, and the

equality is achieved when (25) and (26) are satisfied. That is,
(25) and (26) give the optimum values of qnet+ (i) and qnetmax(m)
in (P2).
Substituting the optimum values of qnet+ (i) and qnetmax(m) given

in (25) and (26) into (P2), we can see that (P2) is exactly the same
as (P1). Thus, the optimum solutions to the two problems are
equivalent. This completes the proof. �
TheMILPproblem in (P2) is still nonconvex due to the integer

constraints. The MILP can be optimally solved by using the
B&B algorithm [22], which performs systematic enumeration of
subsets (branches) of the feasible region by iteratively dividing
the current branch into two branches based on solutions of re-
laxed integer linear program in the current branch. The solutions
in each branch are compared to the estimated upper and lower
bounds of the optimal value, and a branch is discarded if it cannot
outperform the best result found so far by the algorithm.
The B&B algorithm can obtain the globally optimum solution

to (P2) with a complexity that is much lower than exhaustive
search. The calculation in each branch requires solving an LP
problem.
To accurately account for the aging effects of the battery

and solar panel, the optimization needs to be performed over
the entire life cycle of the battery and/or solar panels. As a
result, the optimization time horizon is in the order of years
or longer. For example, if the expected life cycle of a battery
is ten years and we use 1-h windows, then there are a total of
H = 87 648 hours andM = 120 months if we include two leap
years. As a result, the total number of optimization variables
are 3H +M + 2 = 263 066. Even though LP can be solved
in polynomial time, the large number of optimization variables
makes the complexity extremely high and requires very long
optimization time. In the B&B algorithm, relaxed LP needs
to be performed in each branch, and this further improves the
computation complexity.

IV. LOW-COMPLEXITY SOLUTION WITH DP

In this section, we propose to solve (P1) by developing a
low-complexity algorithm with the help of DP.
The optimization variables in (P1) include the charg-

ing/discharging schedule {qc(i), qd(i)}i∈H and the number of
batteries and solar panels ns and nb. In order to implement
DP, (P1) is decomposed into two subproblems by separating
the dynamic variables {qc(i), qd(i)}i∈H and static variables
{ns, nb} as

(P1a) min
{qc(i),qd(i)}i∈H

CED � CE(ns, nb) + CD(ns, nb)

s.t. (1)−(6)

(P1b) min
{ns,nb}

C∗
ED(ns, nb) + CS(ns, nb)

s.t. ns, nb ∈ Z+

ns ≤ Ns

nb ≤ Nb

where C∗
ED(ns, nb) is the optimum solution to (P1a), given ns

and nb.
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In (P1a), we first fix the static variables ns and nb, and
minimize the energy and demand charges by identifying the
optimum dynamic variables {qc(i), qd(i)}i∈H. Under a fixed
ns and nb, the cost of battery and solar panels are fixed, so
CS is excluded from the objective function in (P1a). In the
objective function, the energy and demand charges are expressed
as explicit functions of ns and nb. With the optimum scheduling
obtained from (P1a), we can then identify the optimum values of
ns and nb in (P1b). (P1a) can be solved by using DP, and (P1b)
can be solved through coordinate descent with binary search.

A. Solving (P1a) With DP

DP is based on Bellman’s principle of optimality, which states
that the state and decision at the current moment fully determine
the optimum policy in the future. However, Bellman’s principle
of optimality cannot be readily applied to (P1a), mainly due to
the form of the demand charge CD in its objective function.
In the calculation of the objective function, the summation in

CE is performed in the time scale of small time windows (e.g.,
hours), yet the summation in CD is performed in the time scale
of months, and the maximum operator in CD is performed over
all the timewindowswithin amonth. Suchmaximum operations
cannot be readily described by the Bellman equation. Thus, we
need to transform the calculation ofCD such that it has the same
time scale as the calculation of CE, and then, transform (P1a)
into an equivalent problem that satisfies Bellman’s principle of
optimality.
Denote the indices of the first and last time windows inHm as

im1 and im2, respectively. Then, we define a new state variable
φ
(m)
i as

φ
(m)
i =

⎧
⎪⎨

⎪⎩

0, i < im1

max(φ
(m)
i−1 , q

net(i)), i ∈ Hm

maxi∈Hm
qnet(i), i > im2

. (27)

Based on the abovementioned definition, the demand charge
in themth month can be calculated as

C
(m)
D =

Dmax(m)

τ

∑

i∈Hm

(
φ
(m)
i − φ

(m)
i−1

)
. (28)

The total demand charge can then be calculated as

CD =

M∑

m=1

C
(m)
D =

1

τ

M∑

m=1

Dmax(m)
∑

i∈Hm

(
φ
(m)
i − φ

(m)
i−1

)
.

(29)

From (27), we have

CD =
1

τ

M∑

m=1

Dmax(m)
∑

i∈Hm

max(0, qnet(i)− φ
(m)
i−1 ). (30)

The cost function in (P1a) can then be rewritten as

CE + CD =

M∑

m=1

∑

i∈Hm

[

P (i)max(0, qnet(i))

+
Dmax(m)

τ
max(0, qnet(i)− φ

(m)
i−1 )

]

. (31)

The cost function in (31) can help us convert (P1a) into an
equivalent problem that satisfies Bellman’s principal of opti-
mality. For the optimization problem, the action variable at
i ∈ Hm is a(i) = {qc(i), qd(i)}, and the state variables are
β(i) = {S(i), φ(m)

i−1 }. To facilitate analysis, for i ∈ Hm, define

r(β(i), a(i)) = P (i)max(0, qnet(i))

+
Dmax(m)

τ
max(0, qnet(i)− φ

(m)
i−1 ) (32)

With the abovementioned definition, (P1a) can be equiva-
lently converted to

(P3) min
{qc(i),qd(i)}i∈H

M∑

m=1

∑

i∈Hm

r(β(i), a(i))

s.t. (1)−(6), (27).

In (P3), the cost function is decomposed as the summation of
r(β(i), a(i)), which depends solely on the current state variable
β(i) and action variable a(i). Constraints (1) and (27) describe
the evolution of the state variables; constraints (2)–(6) specify
the boundaries of the state and action variables. Thus, (P3) sat-
isfies Bellman’s principal of optimality. The Bellman equation
of (P3) can be written as

V0(β(0)) = min
{qc(0),qd(0)}

r(β(0), a(0))= 0

Vi(β(i)) = min
{qc(i),qd(i)}

[r(β(i), a(i))

+ Vi−1(β(i− 1))] , 1 ≤ i ≤ H. (33)

Specifically, the objective is to find at each time window
i, the optimum value function Vi(β(i)) that corresponds to
the optimum cost in the time horizon between [1, i]. In the
abovementioned notation, β(0) denotes the initial state at t = 0
and J = VH(β(H)) is the optimal cost from the initial state to
the finial state.
The optimum schedule qc(i) and qd(i) can be obtained by

solving the Bellman equation in (33) through forward recursion
based on the following equations:

(sβ(i), aβ(i)) = argmin
(s,a)∈Ωβ(i)

[r(β(i), a) + Vi−1(s)] (34)

where Ωβ(i) is the space that contains all state and action pairs
(s, a) such that we can reach state β(i) from β(i− 1) = s by
taking action a. At time i, aβ(i) gives the optimum action to
reach state β(i) by minimizing the accumulated cost from the
initial state to the current state β(i); correspondingly, sβ(i) is
the state preceding β(i) with the action aβ(i). Then, the value
function Vi(β(i)) can be updated by

Vi(β(i)) = r(β(i), aβ(i)) + Vi−1(sβ(i)). (35)

However, there is, in general, no closed-form solution to
the Bellman equation for arbitrary state β(i). We can numer-
ically solve the Bellman equation by using algorithms such
as relative value iteration algorithm (RVIA) [24], the Viterbi
algorithm [25], or the Bellman–Ford algorithm [26]. The im-
plementation of these algorithms requires the discretization of
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the continuous state variables and action variables. A larger
discretization step size can reduce the complexity at the cost of
lower precision, and vice versa. The tradeoffs between complex-
ity and accuracy have been studied in [27]–[30]. The impacts of
the discretization step are studiedwith numerical examples in the
next section, and it will be shown that an appropriate discretiza-
tion step can be chosen to achieve negligible approximation
errors while maintaining the low complexity of the algorithm.
The action space contains two variables qc(i) and qd(i). Thus,

the size of the action space grows quadratically with the number
of discretization levels of the charging/discharging action. Since
the complexity of the DP algorithm is directly proportional to
the size of the action and state spaces, we propose to reduce
the dimension of the action space by replacing the two action
variables qc(i) and qd(i) in (P3) with a single variable qnet(i) as

(P4) min
{qnet(i)}i∈H

M∑

m=1

∑

i∈Hm

r(β(i), qnet(i))

s.t. (1)−(6), (27).

The equivalence between (P3) and (P4) is established in the
following lemma.

Lemma 2: The optimum solution to (P4) is also the optimum
solution to (P3).

Proof: For a given pair {qc(i), qd(i)}, qnet(i) is uniquely
determined according to (5). On the other hand, for a given
qnet(i), wemay havemultiple {qc(i), qd(i)}. To prove the equiv-
alence between (P3) and (P4), it is sufficient to show that the
optimum {qc(i), qd(i)} for (P3) can be uniquely determined
by the optimum {qnet(i)} for (P4), that is, there is a bijective
relationship between the optimum solutions between (P3) and
(P4).
Assume that there are two different pairs of action variables,

a1(i) = (qc1(i), qd1(i)) and a2(i) = (qc2(i), qd2(i)), which
provide the same transition from β(i− 1) to β(i) in the dis-
cretized state space. By definition

qc1(i)γe− qd1(i)

γe
= qc2(i)γe − qd2(i)

γe
= S(i)−S(i− 1) (36)

then, we have

(qc1(i)− qc2(i))γe =
qd1(i)− qd2(i)

γe
. (37)

Without loss of generality, assume qc1(i) > qc2(i). Given the
fact that 0 < γe < 1, we have

qc1(i)− qc2(i) > qd1(i)− qd2(i)

qc1(i)− qd1(i) > qc2(i)− qd2(i)

qnet1 (i) > qnet2 (i).

Based on (32), we have

r(β(i), a1(i)) > r(β(i), a2(i)). (38)

Then, according to (34), a1(i) cannot be the optimum solution.
Thus, an optimum qnet(i) corresponds to one unique pair of
(qc(i), qd(i)). This abovementioned analysis proves the bijective

Algorithm 1:Modified Bellman–Ford Algorithm.
Input: Step size q, discretized state space B, discretized

action space A, cost function r(s, a) ∀s ∈ B, a ∈ A.
1: Initialization: set the initial state β(0) = 0, the initial

value function V0(β(0)) = 0.
2: for i = 1 toH do
3: for β(i) ∈ B do
4: Find the optimal (previous state, action) pair that

can reach β(i)

(sβ(i), aβ(i)) = argmin
(s,a)∈Ωβ(i)

[r(β(i), a) + Vi−1(s)]

5: Compute the value function

Vi(β(i)) = r(β(i), aβ(i)) + Vi−1(sβ(i))

6: end for
7: end for
8: Identify the optimum ending state

β∗(H) = argminβ(H)∈B VH(β(H))
9: Identify the optimum actions and states at each

iteration by tracing back from the the optimum ending
state

a∗(i−1) = aβ∗(i), β
∗(i−1) = sβ∗(i), for i = H, . . . , 2

Output: Optimum policy a∗(i), for i = 1, . . . , H − 1.

relationship between the optimum qnet(i) and (qc(i), qd(i)). This
completes the proof. �
Based on the equivalence between (P3) and (P4), we can

solve (P4) by using the scalar variable qnet(i) as the action
variable during the numerical solution of the Bellman equation
with (34) and (35). The Bellman equation is solved with a
modified Bellman–Ford algorithm, and the details are given in
Algorithm 1.

B. Solving (P1b) With Coordinate Descent (CD)

The CD algorithm is used to solve the optimum values of
nb and ns by using the results of the DP algorithm in the
previous subsection. The CD algorithm is implemented by using
relaxed integer programming (RIP) of (P1), where we remove
the integer constraint nb, ns ∈ Z+. The integer-relaxed version
of (P1) forms a convex problem, because it contains only linear
and maximum operators of the optimization variables: ns, nb,
and {qc(i), qd(i)}i∈H.
The CD algorithm is summarized in Algorithm 2. In the algo-

rithm, C∗
ED(ns, nb) is the optimum solution to (P1a) according

to Algorithm 1.
Since the integer-relaxed version of (P1) is convex, it is convex

in each individual variable. Thus, CD can be performed to
identify the integer-relaxed optimum solution of ns and nb by
successively minimizing along coordinate directions. In each it-
eration,wefix the value of one variable and identify the optimum
value of the other. Given the fact that the objective function is
convex in ns and nb, the optimization in each direction can be
performed by using binary search. The implementation of binary
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Algorithm 2: CD Algorithm to Compute nb and ns.
Input: Step size q.
1: Initialization: Iteration counter k ← 0, and

n
(0)
b ← Nb, n

(0)
s ← Ns.

2: repeat
3: Identify the value of n(k+1)

s : Using binary search to
solve

n(k+1)
s = argmin

ns

{
C∗

ED

(
ns, n

(k)
b

)
+ Psns + Pbn

(k)
b

}

4: Identify the value of n(k+1)
b : Using binary search to

solve

n
(k+1)
b = argmin

nb

{
C∗

ED

(
n(k+1)
s , nb

)

+Psn
(k+1)
s + Pbnb

}

5: k ← k + 1.
6: until |n(k+1)

b − n
(k)
b | < 1 and |n(k+1)

s − n
(k)
s | < 1.

7: Rounding the solution n†
s = n

(k+1)
s and n†

b = n
(k+1)
b

to their nearest integer values.
Output: The optimal size n†

b and n†
s, the total cost

C∗
ED(n

†
s, n

†
b) + Psn

†
s + Pbn

†
b

search requires an upper bound on the values of nb and ns, and
both can be upper bounded by the area of installation as in (15)
and (16).
Due to the convexity of the integer-relaxed optimization prob-

lem, the CD algorithm will converge to the integer-relaxed opti-
mum solutions upon convergence. Denote the optimum solution
to the integer-relaxed optimization problem as n†

s and n
†
b. Then,

the integer solution can be obtained by rounding n†
s and n†

b to
their nearest integer values. It should be noted that the final
integer solution might be suboptimum due to rounding of the
solution of RIP.

V. CASE STUDIES

Case studies are performed in this section to demonstrate
the performance of the optimum designs of PV system with
BESS. The designs are performed by using load data from a
public database provided by the Office of Energy Efficiency and
Renewable Energy (EERE) at the U.S. Department of Energy
(DOE) [19]. The database provides hourly load data in one year
from different types of buildings at various locations. The data
from a large hotel building in San Francisco in 2004 are used
in this article. The energy provided by solar panels is estimated
by using the PVWatts calculator [31] from National Renewable
Energy Laboratory (NREL). The utility charges are calculated
by using the TOU rate (P (i), D0) of Pacific Gas and Electric
Company (PG&E) in Table I, along with the time division in
Table II [32]. The size of the time window is set at τ = 1 h. The
inflation rate of electricity cost is rinfl = 2%.

The batteries are modeled by using Tesla Powerwall, which
has a charging/discharging rate of Qc = Qd = 5 kW, and a
capacity ofS = 13.5 kWh, at a price ofPb = $5900 each. Based

TABLE I
TOU RATE IN SAN FRANCISCO

TABLE II
TIMES OF THE YEAR AND TIMES OF THE DAY

on the datasheet [33] and calculation, the energy efficiency of
the batteries is γe = 94%. According to the warranty on the
datasheet, the calendar aging coefficient is α = 0.0036 and the
cycling aging coefficient is β = 0.0155. The initial SOC of
battery in the system is 0.
The price of a 10-kW solar panel is set at Ps = $6400,

including the price of products and installation. A maximum of
Ns = 120 panels can be installed on the hotel rooftop limited by
the area. Similarly, it is assumed that a maximum of Nb = 100
batteries can be installed in the system. The storage efficiency
for solar panels described in a month is set at γs = 99.96% [34].
To evaluate the profitability, the savings in monthly bills are

discounted with an annual interest rate (rintr) of 4% to calculate
the net present value (NPV) up to theM th month

NPV =
M∑

m=1

Csaving(m) · (1 + rintr)
�m−1

12 �. (39)

The break-even point is defined as the month up to which the
NPV of savings covers the total system cost for the first time.

A. One-Year Results With MILP

We first study the optimum designs of the PV system with
MILP. Due to the high complexity of MILP, the design is
restricted to a time horizon of one year. Optimum designs with
longer time horizons will be performed by using DP and CD
later this section. Due to the short time horizon, the unit prices
for solar panels and batteries are prorated to one year in the
cost function. That is, based on the assumption of a ten-year life
cycle of the solar panels and batteries, the unit price used in the
cost function in the one-year study is obtained by dividing their
actual prices by a factor of ten. The optimization is performed
by solving the MILP defined in (P2). The optimization results
indicate that the optimum performance can be achieved by using
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TABLE III
ANNUAL UTILITY BILL UNDER DIFFERENT CONFIGURATIONS

Fig. 1. Snap shot of one-day energy usage on July 1st.

n∗
b = 90 Tesla Powerwall batteries and n∗

s = 120 10 kW solar
panels in the PV system. The total saving in annual utility bills
after optimization are shown in Table III. For reference, we
also compare the performance of a system with solar panels
but without batteries. The proposed optimum design of the
battery-assisted PV system can achieve a 41.2% reduction in
utility bills. For the PV-only system, the savings in utility bill
drops to 27.2%.
Fig. 1 shows a snapshot of energy usage on a single day, July

1st, with or without the proposed PV system. The top figure
shows the net load qnet(i), which is the actual amount of energy
bought from the utility at the ith hour; the bottom figure shows
the battery SOC s(i). Both are shown as functions of the hour of
the day. Throughout the day, the proposed system with both PV
and battery has the lowest net load, followed by the PV-only and
conventional systems, respectively. The largest energy saving is
achieved between 10:00 and 16:00, where the net load drops to
zero because the generated solar energy exceeds the actual load.
During this time period, the extra energy is charged to the battery.
During the evening hours between 19:00 and 24:00, the battery
is gradually discharged in the proposed system, whichmaintains
a steady net load at 450 kWh. The battery is depleted at 24:00
because of the low energy usage after that. On the other hand,
for the conventional or PV-only systems, the load is peaked at

780 kW at 21:00. Therefore, a considerable amount of energy is
saved with the proposed optimum design.
Fig. 2(a) and (b) shows one-week snapshots of energy usage

during the first week of June and December, respectively. Due
to the relatively mild weather in San Francisco, the loads in
June and December are similar. There are usually two peaks
in one day—the early one is around 08:00 and the later one is
around 20:00. The loads with PV in summer are much lower
than that in winter especially on the early peak. The integration
of solar and PV can achieve significant peak shaving. In both
months, the peak of the original load is around 780 kW, and it is
shaved to 480 and 510 kW in June and December, respectively.
Even though employingPVwithout batteries can achieve similar
performance as the battery-integrated PV system during day
time, the omission of batteries results in the same peak as the
conventional system in the evening hours, when the energy
demand is the highest.
Both figures have a significant peak shaving phenomenon

after using batteries. The difference between the peaks of PV-
only and battery-integrated PV systems corresponds to batteries’
discharging rate. In these twofigures, the load difference is about
300 kW, which is smaller than the maximum discharging rate
of 90 Tesla Powerwall batteries. The area between the curves
of battery-integrated PV system and PV-only system is equal to
the amount of energy discharged from the batteries.

B. Comparison Between Results From MILP and DP

Next, we compare the results obtained from MILP and DP
in terms of both accuracy and complexity. Due to the high
complexity ofMILP, the comparison is performed by optimizing
the system over a time horizon of one year. Since DP relies on
discretization of the battery capacity and RIP is employed in
CD, the results in DP are suboptimum compared to their MILP
counterparts.
Fig. 3 shows monthly bills in a year with optimizations per-

formed by using MILP and DP, respectively. In DP, the battery
capacity is discretized by using a step size of q = 10 kWh.
Both MILP and DP obtain the same optimization results for the
number of Tesla Powerwall batteries n∗

b = 90, and the number
of 10 kW solar panels n∗

s = 120. The scheduling results of DP
and MILP are different due to the discretization approximation
employed by DP. The results obtained from DP and MILP are
very close to each other. It should be noted that the bills obtained
by MILP in some months are higher than those from DP, but the
results from MILP always yield the lowest annual bill, which is
the objective function of MILP.
We can increase the precision of DP by reducing the step size

q, at the cost of a higher complexity. Thus, the tradeoff between
accuracy and complexity of DP can be adjusted by tuning the
discretization step size q. Table IV shows the percentage error of
the DP results compared to theMILP results under different step
sizes q. The percentage error increases in q as expected. Using a
step size of q = 10kWhor less can ensure that the approximation
error is below 3%. With 90 Tesla Powerwall batteries and
q = 10 kWh, the battery capacity is discretized into 90×
13.5/10 = 121 states.
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Fig. 2. Snap shots of one-week energy usage in the first weeks of June and December, respectively. (a) First week of June. (b) First week of December.

Fig. 3. Comparison of monthly electricity bill with different scheduling
approaches (q = 10 kWh).

TABLE IV
ERROR OF DP FOR DIFFERENT STEP SIZE

Fig. 4 compares the complexity of MILP and DP algorithm
as a function of the number of months in the optimization
horizon. The complexity is measured as the amount of time
(in seconds) required to solve the optimization problem. All
optimizations are performed on a workstation with a 6-core
Intel Core i7-5820 K CPU operating at 3.3 GHz and 32 GB
of random access memory (RAM). The complexity of MILP
scales exponentially with m, the number of months in the time
horizon. The complexity quickly becomes prohibitively high
when the optimization horizon is long. On the other hand, the

Fig. 4. Time to run the MILP and DP (q = 10, 50, and 100 kWh).

complexity of DP scales linearly with the number of months
in the optimization horizon. The slope of the linearly scaled
complexity increases as the step size q decreases. For a time
horizon of 20 months, the optimization time required by MILP
and DP with q = 10 kWh is 500.5 and 1833.0 s, respectively.
The complexity difference will further increase over longer time
horizons.

C. Ten-Year Results With DP

In this subsection, optimizations are performed over a time
horizon of ten years with the DP algorithm, and this corresponds
to H = 87 648 h. A period of ten years is roughly on the
same time scale as the life cycle of solar panels and batteries.
Consequently, results obtained by optimizing over a ten-year
time horizon can be better tuned based on the aging effects of the
solar panels and batteries. However, the complexity of MILP is
prohibitively high over a ten-year period, therefore, only results
from DP are shown. In DP, the step size is set at q = 10 kWh to
achieve a balanced tradeoff between complexity and accuracy.
Based on the optimization results, n∗

b = 96 Tesla Powerwall
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TABLE V
UTILITY AND SYSTEM COST UNDER TEN-YEAR HORIZON

batteries and n∗
s = 120 10 kW solar panels are required for the

PV system. Compared to the one-year optimization results, six
more Tesla Powerwall batteries are required to compensate for
the decrease in both efficiency and storage capacity. The number
of solar panels remains unchanged at the maximum number
allowed by the area of the installation site.
The total utility bills under different system configurations

over the ten-year period are shown in Table V. The correspond-
ing system costs are also shown in the table. Ifwe do not consider
the system cost, the battery-assisted PV system and PV-only
system achieve a 48.1% and 28.2% reduction in the total utility
bills, respectively. The savings are substantial and much greater
than the cost of solar panels and/or batteries. The battery-assisted
PVsystemand thePV-only systemachieve the break-even points
at the 66th and 51st month, respectively.
In addition, the battery-assisted PV system significantly out-

performs the PV-only system, and the extra savings in utility
bill due to the addition of batteries far exceed the cost of
batteries. For example, the battery-assisted PV system costs
$566 400 more than the PV-only system, yet it can achieve an
additional $1 410 514 saving in the ten-year utility bill. The total
costs, which include both utility bill and system cost, of the
battery-assisted PV and PV-only systems are $4 999 809 and
$5 843 923, respectively, which are 29.3% and 17.3% lower than
the total cost of the system without PV.
The impacts of the cost of batteries and solar panels are studied

in Figs. 5 and 6. Fig. 5 shows the optimumnumber of solar panels
as a function of the PV unit price, under various values of BESS
unit price. When the PV unit price is low, e.g., under $4000 per
panel, then the system always selects the maximum number of
solar panels allowed by the system to take advantage of low-cost
solar energy. The optimum number of solar panels decreases
as the PV unit price increases. Under a given PV unit price, a
higher battery unit price results inmore solar panels, because the
system needs more solar energy to compensate for the smaller
battery capacity due to higher batter cost. Similar trends are also
observed for the optimum number of batteries, which decreases
in battery unit price but increases in PV unit price.
Fig. 6 demonstrates the impacts of PV and battery prices on

the total ten-year cost of the system. Under a given battery unit
price, the total ten-year cost increases almost linearly with the

Fig. 5. Change of solar panels under different unit price.

Fig. 6. Change of total cost under different unit price of the battery and
solar panel.

PV unit price. The rate of increasing is not affected by the battery
unit price. A similar linear relationship is also observed between
the total cost and battery unit price under a fixed PV unit price.

VI. CONCLUSION

The optimum designs of PV systems with BESSs were stud-
ied in this article. In order to accurately model and quantify
the impacts of aging effects of solar panels and batteries, the
optimum designs were performed over a long time horizon
covering the entire life cycles of the battery-assisted PV sys-
tems. MILP- and DP-based methods have been proposed to
solve the optimization problem. The MILP-based solution can
obtain the globally optimumsolution, butwith prohibitively high
complexity over long optimization time horizon. The DP-based
solution provided a balanced tradeoff between accuracy and
complexity. Case studies with real-world data demonstrated that
employing batteries in a PV system can achieve significant peak

Authorized licensed use limited to: University of Arkansas. Downloaded on July 31,2020 at 21:40:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI AND WU: OPTIMUM INTEGRATION OF SOLAR ENERGY WITH BATTERY ENERGY STORAGE SYSTEMS 11

shaving and energy saving.Over a ten-year period, the total costs
of a battery-assisted PV system and PV-only system are 29.3%
and 17.3% lower than a conventional system without PV.
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