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ABSTRACT Low latency change detection aims to minimize the detection delay of an abrupt change
in probability distributions of a random process, subject to certain performance constraints such as the
probability of false alarm (PFA). In this paper, we study the low latency detection of bearing faults of
direct-drive wind turbines (WT), by analyzing the statistical behaviors of stator currents generated by the
WT in real-time. It is discovered that the presence of fault will affect the statistical distribution of WT
stator current amplitude at certain frequencies. Since the signature of a fault can appear in one of the
multiple possible frequencies, we need to monitor the signals on multiple frequencies simultaneously, and
each possible frequency is denoted as a candidate. Based on the unique properties of WT bearing faults,
we propose a new multi-candidate low latency detection algorithm that can combine the statistics of signals
from multiple candidate frequencies. The new algorithm does not require a separate training phase, and it
can be directly applied to the stator current data and perform online detection of various possible bearing
faults. The theoretical performance of the proposed algorithm is analytically identified in the form of upper
bounds of the PFA and average detection delay (ADD). The algorithm allows flexible parametric adjustment
of the tradeoff between PFA and ADD.

INDEX TERMS Bearing fault, fault detection, quickest change detection, wind turbine.

I. INTRODUCTION
Wind is one of the top sources of renewable energy. Wind
turbines (WTs) usually operate in harsh environments, and
hence, are more susceptible to failures compared to other
type of energy generators [1]. WT fault diagnosis and pre-
diction are highly important for the wind power industry.
WT faults could be caused by exhaustion or manufacturing
defect, and they will cause unexpected outage and result in
economic loss. One way to minimize this loss is to predict
and detect a malfunction before critical damage is done. With
this taken into consideration, online methods that can detect
fault in real-time have a clear advantage over offline methods.
In addition, online diagnosis methods allow automatic remote
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monitoring of theWT operation conditions, and this is crucial
for WT located in remote areas.

WTs are complex systems with multiple subsystems. Each
subsystem may be subject to several different types of faults.
A comprehensive survey of WT subsystem faults and meth-
ods of WT fault diagnosis can be found in [1], [2]. Accord-
ing to [3]–[6], bearing faults constitute a significant part
of failures in WT. The study of this type of failure is not
new [3], [7]–[11]. The most commonly used type of bearings
is the ball bearing [1]. Bearing faults can be classified into
four groups: inner race, outer race, cage and rollers faults.
Many defects start with the fault of bearings.

Different methods are used to identify WT compartments
failures, including analyzing mechanical vibrations, acous-
tic emission, temperature, oil parameters, and electrical sig-
nals. Electrical signals, such as current signal, are avail-
able remotely, do not require additional sensors, and can be
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analyzed in real-time [12]. Since faults of a bearing are asso-
ciated with mechanical defects, they introduce excitations
at particular frequencies [7], [13]. For some bearings, these
excitations can be captured by electrical signals [14].

Many bearing fault diagnosis methods have been
developed in the literature, such as threshold-based met-
hod [13], [15], wavelet-based method [16], [17], and max-
imum likelihood fault detection [18]. Some existing works
model the WT operation states as a Markov process, where
the states of the Markov process are used to represent
various stages of faults or degradations. The observed
data can be used to identify the bearing state [19], [20].
Another category of fault detectionmethods resort tomachine
learning or AI-based algorithms such as artificial neural net-
works (ANN), support vector machine (SVM), decision trees,
long short-term memory (LSTM) networks, etc. [21]–[26].
Both Markov-based and AI-based methods require extensive
training before actual detection, and in practice, there might
not be sufficient data for training purpose. Fault detection
can also be performed with particle filters [27]–[29]. Particle
filters are usually computationally expensive and also require
extensive trainings beforehand.

Almost all previous works focus on the accuracy of fault
detection and they seldom consider the detection delay.
Detection delay is defined as the time difference between
the moment that the fault occurs and the time instant that
the fault is detected. A small detection delay can result in
timely remedial actions, thus prevent catastrophic results due
to extended damages and reduce economic loss. Therefore,
detection delay is an essential design parameter for WT fault
detection or diagnosis.

Quickest or low latency change detection is an online
detection method aiming at minimizing the detection delay
of an abrupt change in probability distributions of a random
process. We propose to develop low latency fault detection
method for WTs by analyzing the statistical properties of the
stator currents generated by WTs. The stator current can be
modeled as a random process, and the presence of bearing
fault will affect the probability distributions of the stator
current. The time instant that the fault occurs is a change
point, and it can be modeled as a random variable. Gen-
erally, change detection methods can be classified into two
categories, Bayesian and non-Bayesian (minimax) methods.
If the prior probability of the change point is known, then
the methods are Bayesian procedures, such as [30], [31].
On the other hand, when the prior probability of the change
point is unknown, the low latency change detection methods
are developed under the minimax or non-Bayesian criterion.
Minimax methods are employed in many practical applica-
tions, since it is usually difficult to obtain prior information
about change point distribution.

Cumulative sum (CUSUM) procedure [32] and Shiryaev-
Roberts (SR) procedure [33] are two most commonly used
minimax change detectionmethods, which aim at minimizing
the delay with the worst case change point distribution, under
the constraint of a lower bound of average run length (ARL)

to false alarm. However, the above-mentioned minimax pro-
cedures are developed for systems with single pre-change and
single post-change model, and they require the exact infor-
mation regarding the distribution models before and after
the change. Therefore, these procedures cannot be readily
applied to WT fault detection since the fault signature might
appear at one of several possible frequencies corresponding
to several candidates for post-change models. There are lim-
ited works with unknown or uncertain post-change models
under mimimax criterion. In [34], a quickest change detection
algorithm is proposed in order to detect false data injection
attacks (FDIA) in smart grids with time-varying dynamic
models. An orthogonal matching pursuit CUSUM (OMP-
CUSUM) algorithm is proposed to identify the buses under
FDIAwhile minimizing the detection delay in [35]. However,
these two works study the cases where post-change param-
eter has continuous support, whereas the problem of WT
fault detection deals with multiple candidates for post-change
models, i.e. the post-change parameter has finite and discrete
support.

The objective of this paper is to develop low latency fault
detectionmethods based on the unique properties ofWTbear-
ing faults. Since faults of a bearing introduce excitations (har-
monics) into the spectrum of stator current, the analysis is
performed in the frequency domain. Statistical analysis show
that the amplitude of stator current at a given frequency can
be modeled by using Gamma distribution, and the presence
of fault will affect the parameters of the Gamma distribution.
The theoretical frequency of the excitation caused by a cer-
tain fault is determined by the mechanical structure of the
bearing. The actual frequency of the fault excitation might
deviate from its theoretical value due to the uncertainty of
some mechanical parameters. Therefore, in order to detect
the fault, the detection algorithm needs to monitor signals on
several candidate frequencies. To solve this problem, we pro-
pose a multi-candidate low latency fault detection procedure,
which is an enhanced version of the CUSUM algorithm. The
conventional CUSUM algorithm can only be used to detect
change point over a single data stream, yet the proposed
multi-candidate detection procedure can be used to detect
change point that happens on one of many potential data
streams, with the index of the data stream with the change
point unknown to the detector. In addition, the theoretical per-
formance bounds on the PFA andADD of themulti-candidate
procedure have been analytically derived. The performance
bounds reveal the fundamental tradeoff between detection
delay and false alarm. The proposed procedure allows flexible
parametric adjustment of the tradeoff betweenADD and PFA.
Moreover, this detection method does not require a training
stage.

The remainder of this paper is organized as follows.
Section II describes the experimental setup and the pro-
cess of data collection. The methods for data pre-processing
and feature extraction in the frequency domain are pre-
sented in III. Section IV studies the statistical behavior
of the feature behavior and establishes probability models.
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The multi-candidate low latency fault detection procedure is
proposed and analyzed in Section V. Experiment and sim-
ulation results are presented in Section VI, and Section VII
concludes the paper.

II. EXPERIMENT SETUP AND DATA COLLECTION
A. DATA COLLECTION
Stator current signals obtained from a 160-W Southwest
Wind Power Air Breeze direct-drive permanent magnet syn-
chronous generator (PMSG)WT are used in this paper to test
the fault detection algorithm. The procedure for obtaining the
stator current signal was described in [13]. The WT used to
record the data has six pole pairs (p = 6). The data was
obtained while the turbine operated in variable wind speed
(from 0 to 10 m/s) condition. The shaft of the stator was
rotatingwithin the speed range of 6−13Hz. The stator current
signal was recorded using National Instruments acquisition
hardware with a sampling frequency fso = 10 kHz. The
signal was recorded within 100-second-long periods every
20 minutes. The total operation time of the WT was about
25 hours. The test bearing (7C55MP4017) was pretreated by
removing the lubricant, in order to accelerate degradation.
A bearing outer-race fault was generated artificially for a test
bearing, as illustrated in [13, Fig. 12]. One of the two bearings
supporting the shaft was removed to simulate eccentricity.
The test wind turbine stopped rotating at the end of the
experiment, due to the broken bearing cage.

Although the data were prerecorded and stored offline,
they are processed sequentially in an online manner by the
faulty detection algorithm to emulate practical application
scenarios. That is, during the testing of the fault detection
algorithm, the data are fed to the algorithm sequentially in
real-time. The algorithmmakes decisions based on all current
and past data, without any knowledge of the future data that
have not been fed to the algorithm. Even though the data were
collected over a time period of about 25 hours, experiment
results demonstrate that the algorithm can detect wind turbine
faults just a few seconds after the occurrence of the fault.
Details will be given in Section VI.

B. FAULT SIGNATURES
Bearing faults introduce excitations on particular frequencies
of the stator current. Those excitations are referred to as fault
signals. There are four fault modes for bearings: inner race
fault, outer race fault, cage fault, and rollers defect. Each one
is characterized by a frequency of a fault signal. Denote the
frequencies corresponding to inner race fault, outer race fault,
cage fault, and rollers defect as fi, fo, fc, and fb, respectively,
and they can be calculated as [6]:

fi = 0.5 · Nb · fr

(
1+

Db · cosφ
Dp

)
(1)

fo = 0.5 · Nb · fr

(
1−

Db · cosφ
Dp

)
(2)

fc = 0.5 · fr

(
1−

Db · cosφ
Dp

)
(3)

TABLE 1. Fault frequencies.

fb = fr ·
(
Db
Dp

)
·

[
1−

(
Db · cosφ

Dp

)2
]

(4)

where fr is the bearing rotation frequency, Db is the diameter
of rollers, Dp is the rollers pitch diameter, Nb is the number
of rollers, and φ is the rollers’ contact angle with races.
The bearing under investigation supports the main shaft,

which connects the generator with wind blades. For that
reason, the vibrations excited in the bearing affect the sta-
tor current by modulating the amplitude of the fundamental
frequency f1. The fundamental frequency is defined as the fre-
quency of the main harmonic generated by the wind turbine.
Frequencies of fault signals in stator current can be calculated
as

ffault = f1 ± k · fbf (5)

where fbf ∈ {fi, fo, fb, fc}, and k = 1, 2, . . .. Throughout this
paper the value k = 1 is used.
For the WT that was used to obtain stator current, fr =

f1
p ,

where f1 = 60 Hz is the fundamental frequency, and p = 6
is the number of pole pairs. The parameters of the bearing
supporting the shaft are, Db = 8 mm, Dp = 33 mm,
Nb = 8. The contact angle of the rollers is unknown and it
is assumed that φ = 0. The frequencies corresponding to the
four different types of faults are listed in Table 1.

III. DATA PREPROCESSING AND FEATURE EXTRACTION
The procedures for data preprocessing and feature extraction
are described in this section. All procedures described in this
section are sequential online algorithms that process new data
as they sequentially come in.

A. SYNCHRONOUS RESAMPLING
The key for fault detection is to extract fault signatures, which
are located on particular frequencies relative to fundamental
frequency f1. The extraction of fault signatures (5) of a sig-
nal with non-stationary frequency f1 is rather difficult. The
signal-to-noise ratio (SNR) of bearing fault signals is usually
small. High frequency resolution is required to reduce the
impact of the noise, and more samples for FFT are required.
However, the fundamental frequency f1 may drift over time,
which leads to time-varying frequencies corresponding to dif-
ferent faults. This makes it difficult to extract the information
corresponding to a specific bearing fault.

In order to resolve the problem of fundamental frequency
variation, the method of synchronous resampling can be
applied [13]. The basic idea is to perform non-uniform sam-
pling such that the phase difference between any two adjacent
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FIGURE 1. FFT of the resampled stator current. Frequency resolution is
0.1 Hz. Excitations due to faults of the bearing are visible on frequencies
corresponding to bearing cage and rollers defects.

samples is constant. Details of synchronous resampling can
be found in [13]. The resampling frequency used in this paper
is fs = 1920 Hz.

B. FREQUENCY-DOMAIN FEATURE EXTRACTION
After synchronous resampling, the time domain data are
converted to the frequency domain via FFT. The resampled
time-domain data are divided into length-Nf frames, and FFT
is performed on each frame. The time duration for each frame
is Tf =

Nf
fs

second, and the frequency resolution after FFT

is f0 = 1
Tf
=

fs
Nf
. In this paper, we use fs = 1920 Hz

and Nf = 19200, and the frequency resolution after FFT is
f0 = 0.1 Hz.

Fig. 1 shows the spectrogram of the data after synchronous
resampling. In the spectrogram, we can clearly see the main
harmonic of the stator current at 60 Hz. In addition, excita-
tions due to different types of faults are clearly visible around
frequencies 54, 56, 58, 62, 64, and 66 Hz.

The fault frequencies shown in the spectrogram do not
match with the theoretical values given in Table 1. The mis-
match is mainly due to the assumption φ = 0, which is
usually non-zero. Nevertheless, the theoretical value gives a
rough estimate of the exact location of the fault frequencies.
Therefore, during the analysis, we can analyze a range of
frequency components centering at the theoretical fault fre-
quencies as [ffault − fw, ffault + fw], where ffault is one of the
possible fault frequencies, and the window size 2fw is chosen
to be an integer multiple of the frequency resolution f0.
For a given fault frequency ffault, we can extract the ampli-

tude of the signals over the block of frequencies in [ffault −
fw, ffault + fw] and form them as a feature vector. For the n-th
FFT frame, denote the signal amplitude vector over the fre-
quency range [ffault−fw, ffault+fw] as sn = [sn1, sn2, · · · , snw],
where snj is the signal amplitude at frequency ffault − fw +
(j − 1)f0 in the n-th frame, and w = 2 fwf0 + 1 is the number
of elements in the feature vector. Since the fault feature
could appear at any one of the frequencies in {ffault − fw +
(j − 1)f0}wj=1, we denote the set of frequencies as candidate
frequencies. In this paper, fw = 0.5 Hz is used, which results
in a feature vector size w = 11.

C. ENERGY NORMALIZATION
Due to the fluctuation of the operation environment, such as
wind speed, the power of the feature vector changes with
respect to time. Energy normalization is performed to com-
pensate for power fluctuations.

The energy normalization is performed by using a sliding
window approach. The energy of each sample is normalized
by the average energy of samples in the current and the
previous Nw frames. The normalization of the j-th element
in the n-th frame can be expressed as

xnj =
snj
√enj

(6)

where

enj =
1

Nw + 1

n∑
k=n−Nw

|skj|2 (7)

is the average energy of the current and past Nw samples on
the j-th candidate element.

With the normalized samples, we can form the normalized
feature vector as xn = [xn1, xn2, · · · , xnw]T .

The normalized feature vector xn is a random vector.
Wewill detect the presence of fault by analyzing the statistical
properties of the components in xn.

IV. STATISTICAL ANALYSIS OF FEATURE VECTOR
Statistical analysis is performed over the frequency domain
feature vector to identify their statistical properties with and
without different types of faults.

A. STATISTICAL DISTRIBUTION
We obtain histogram by using the experiment data cor-
responding to the samples on the j-th candidate fre-
quency {xnj}n. It is found that the distribution of xnj can
be accurately modeled by using Gamma distribution with
probability density function (PDF) given as

p(x;α, β) =
βαxα−1e−xβ

0(α)
, (8)

where 0(α) is the Gamma function, and α and β are the
parameters of the Gamma distribution. The parameters α and
β depend on the element index j as well as the presence of
fault.

The mean, mx , and variance, σ 2
x , of a Gamma distributed

random variable x are

mx =
α

β
, σ 2

x =
α

β2
(9)

B. ONLINE PARAMETER ESTIMATION
We propose to estimate the distribution parameters, α and β,
online by using a sliding window approach. At each frame,
the parameters for signals on one candidate frequency can be
estimated by using the corresponding data from the current
and the past Nw frames.
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FIGURE 2. Empirical and analytical Gamma distribution of outer race
feature vector components.

Themean and variance of the j-th element at the n-th frame
can be estimated as

m̂nj =
1

Nw + 1

n∑
k=n−Nw

xkj (10)

σ̂ 2
nj =

1
Nw

n∑
k=n−Nw

(xkj − m̂nj)2 (11)

It should be noted that the factor 1
Nw

is used in (11) to ensure
the estimation is unbiased.

From (9), at the n-th frame, we can obtain an estimate of
the parameters α and β for the j-th element as

α̂nj =
m̂2
nj

σ̂ 2
nj

, β̂nj =
m̂nj
σ̂ 2
nj

(12)

Fig. 2 shows the empirical and analytical pdfs of xn1 and
xn9 from the feature vector related to the outer race fault,
by using parameters estimated with (12). In the experiment
setup, the outer race fault is artificially introduced at the
beginning of the experiment and its signature is shown in xn9,
which is at the frequency of 30.0 Hz. There is no fault
signature at xn1, which is at the frequency of 29.2 Hz. The
analytical pdf is obtained by evaluating (8) by using param-
eters estimated from (12). The empirical pdf is obtained by
normalizing the histogram of the experiment data. There is a
good match between the analytical and empirical pdf. Also,
there is an obvious difference in distribution between xn1 and
xn9 due to the presence of fault signature on xn9.

Fig. 3 shows the distribution of xn4 from the feature vector
related to the cage fault, before and after the fault occurs.
In the experiment, the cage fault starts to appear at n =
130 frame, and the fault signature is at 56.2 − fw + (j −
1)f0 = 56 Hz, which corresponds to an index of j = 4 in
the feature vector. The pdf corresponding to the non-defective
case is calculated by using data with n < 130, and the pdf
corresponding to the defective case is calculated by using

FIGURE 3. Empirical and analytical Gamma distribution of cage feature
vector components in normal and defective conditions.

data with n ≥ 130. There is a clear difference between the
distributions before and after the fault occurs.

Moreover, when the fault is not present, it is discovered
that the elements in a fault feature vector are identically
distributed. That is, when the fault is not present, α̂nj ≈ α̂mj
and β̂nj ≈ β̂mj for m 6= n. Such a property can be used to
further improve the estimation accuracy of the parameters.

It should be noted the proposed frequency domain mod-
eling is robust against noise. Noise in real-world systems
can be modeled as additive white Gaussian noise (AWGN),
which has uniform power spectrum density in the frequency
domain. The flat noise spectrum means the noise power is
uniformly distributed over the entire frequency bands, which
results in a very low noise power over a small frequency
range. On the other hand, the fault signature is embedded
over a very small frequency range. Thus we can significantly
increase the signal-to-noise ratio (SNR) by focusing on the
analysis of the signal over a very small range of frequency
bands. As a result, the presence of noise will have negligible
impacts regarding the performance of proposed algorithm.

V. LOW LATENCY FAULT DETECTION
The sequential low latency fault detection algorithm is pre-
sented in this section. The detection algorithm is formulated
by exploring the statistical distributions of the feature vector
before and after the fault occurs.

A. FORMULATION OF HYPOTHESIS
For the fault detection, define the two hypotheses for the
variable xnj

H0 : No fault (13)

H1 : Fault is present (14)

As shown in Figs. 2 and 3, the presence of fault will affect
the values of α and β for the corresponding element in the
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feature vector. Denote the parameters before and after the
change point as

(
α(0), β(0)

)
and

(
α(1), β(1)

)
, respectively.

For a Gamma distributed random variable x with energy
normalized to unit, from (9), we have

m2
x + σ

2
x =

α2

β2
+
α

β2
= 1 (15)

which yields

β =
√
α(α + 1) (16)

Therefore we only need to characterize the impacts of fault
on α, and the corresponding β can be inferred from (16).

To quantify the impacts of fault, define a new parameter

α1 =
α(1)

α(0)
(17)

For the outer race fault shown in Fig. 2, the average value
of α1 is 1.4. For the cage fault shown in Fig. 3, the average
value of α1 is 2.9.

In practical system design, α1 is unknown beforehand.
We will treat α1 as an adjustable design parameter that can
be set by using prior knowledge. We will show the impact of
the choice of α1 on the detection performance in the section
of experiment results.

With the definition of α1 and the estimation of α̂(0)j
using (12), the hypotheses can be formulated as

H0 : xnj ∼ Gamma
(
α̂
(0)
j , β̂

(0)
j

)
(18)

H1 : xnj ∼ Gamma
(
α̂
(1)
j , β̂

(1)
j

)
(19)

where

α̂
(1)
j = α̂

(0)
j α1 (20)

β̂
(k)
j =

√
α̂
(k)
j (α̂(k)j + 1), for k = 0, 1 (21)

With the hypothesis formulated in (18), define the likeli-
hood ratio (LR) as

λnj =
p(xnj; α̂

(1)
j , β̂

(1)
j )

p(xnj; α̂
(0)
j , β̂

(0)
j )

(22)

Combining (8) and (22) yields

log λnj = α̂
(1)
j log β̂(1)j − α̂

(0)
j log β̂(0)j

+

(
α̂
(1)
j − α̂

(0)
j

)
log xnj − xnj

(
β̂
(1)
j − β̂

(0)
j

)
+ log0(α̂(0)j )− log0(α̂(1)j ) (23)

B. LOW LATENCY FAULT DETECTION ALGORITHM
Based on the hypothesis and LR formulated in the previous
subsection, we propose a multi-candidate low latency fault
detection algorithm.

Assume a certain fault occurs at frame θ and the fault sig-
nature is on theµ-th candidate frequency in the feature vector.
Both θ and µ are random variables. That is, when n < θ ,
xnj follows the distribution specified by H0; when n ≥ θ ,

xnµ follows the distribution specified by H1, and xnk follows
the distribution of H0 for all n and k 6= µ.

Denote the detected change point as θ̂ . Then the PFA can
be defined as

PFA = P(θ̂ < θ) =
∞∑
k=1

πkP(θ̂ < k) (24)

where πk = P(θ = k) is the prior probability of the change
point.

The well known CUSUM and SR procedures are designed
for the change point detection in a single time sequence. They
cannot be readily applied to the problem encountered in this
paper, where there aremultiple parallel data streams (multiple
candidate frequencies), and the change point occurs in at most
one of the data stream (candidate frequency).

To address this problem, we propose a multi-candidate low
latency detection procedure as follows.
Definition 1 (Multi-candidate detection procedure): With

the frequency domain feature vector xn, the detected change
point is

θ̂ = inf{n : Cn ≥ A} (25)

where we set inf{∅} = ∞, A is a pre-defined threshold
determined by the PFA, the test statistic Cn is defined as
Cn =

∑w
j=1 Cn,j, Cn,j is the test statistic for the j-th element,

and it can be recursively calculated as

Cn+1,j = max(1,Cn,j)λn+1,j (26)

and C1,j = 1.
This detection procedure is an enhanced version of the

CUSUM procedure. It combines the test statistic {Cn,j}wj=1 to
determine the change point. The CUSUM procedure can be
considered as a special case of the multi-candidate procedure
when w = 1. It should be noted that the multi-candidate
test procedure proposed in Definition 1 is different from
the procedure proposed in [36]. In [36], the summation
is performed over the logarithm of the CUSUM statistic,
i.e.,

∑w
j=1 logCn,j, which corresponds to the multiplication

of the linear CUSUM statistic Cn,j.

C. PERFORMANCE ANALYSIS
Next, we study the performance of the multi-candidate test
procedure. Let Pk and Ek denote the probability measure
and the corresponding expectation when the change occurs
at θ = k . With such a notation, P∞ and E∞ can be used to
represent the probability measure and expectation before the
change point, that is, θ = ∞.
Lemma 1: The test statistic Cn is a sub-martingale under

the probability measure P∞, and E∞[Cn] ≤ nw.
Proof: The proof is given in Appendix A.

Theorem 1: Assume the elements in the feature vector xn
are independent. With the multi-candidate procedure defined
in 1, the probability of false alarm is upper bounded by

PFA ≤
θ̄w
A

(27)
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where θ̄ =
∑
∞

k=0 πkk is the prior mean of the change point θ ,
and w is the number of candidates.

Proof: The proof is given in Appendix B
Next, we study the detection delay of the multi-candidate

test procedure. It is difficult to obtain the exact ADD of the
detection procedure. Instead, we will obtain an asymptotic
upper bound. To facilitate analysis, define

f (x) �
x→x0

g(x)⇐⇒ lim
x→x0

f (x)
g(x)
≤ 1 (28)

Theorem 2: Assume the elements in the feature vector xn
are independent, and the frames are independent in time. Let
PFA < α. As α→ 0, we have

E[θ̂ − θ |θ̂ > θ] �
α→0

1
1−α

| logα|+log θ̄+logw
D10

(29)

where θ̄ is the priori mean of the change point, w is the length
of the feature vector, and

D10 =

∫
p(x;α(1), β(1)) log

p(x;α(1), β(1))
p(x;α(0), β(0))

dx (30)

is the Kullback-Leibler (KL) divergence between the distribu-
tions p(x;α(1), β(1)) and p(x;α(0), β(0)).

Proof: The proof is given in Appendix C.
In Theorem 2, the asymptotic upper bound of the ADD

is inversely proportional to the KL divergence D10. The KL
divergence measures the difference between two distribu-
tions. When the difference between the two distributions
before and after the change point is large, the detection delay
is in general smaller. The asymptotic ADD upper bound is a
decreasing function of the PFA α, which demonstrates the
tradeoff relationship between the PFA and ADD. In addi-
tion, the asymptotic ADD upper bound is proportional to
logw, which means we can reduce the detection delay by
reducing the number of candidate frequencies. On the other
hand, the value of w must be large enough to ensure that the
frequency corresponding to the faulty feature is included in
the feature vector.

D. COMPLEXITY ANALYSIS
In order to apply the proposed multi-candidate detection
procedure to on-line data in each time-frame, the procedure
needs to go through 3 stages: 1) data preprocessing, 2) fea-
ture extraction, and 3) test statistic computation. In stage 1,
the computation is dominated by the fast Fourier trans-
form (FFT) operation that has a complexity of O(Nf logNf ),
where Nf is the frame size. The second stage involves oper-
ations such as energy normalization, mean and variance esti-
mation. Each of these operations has a complexity ofO(Nw),
where Nw is the number of past time-frames (samples) used
for parameter estimation and energy normalization. Finally,
the third stage is dominated by the operation described in
equation (26), which has a complexity ofO(w), wherew is the
feature vector size, i.e., the number of candidate frequencies.

In this paper, we set Nf = 19200,Nw = 100, and w = 11.
As a result, the overall complexity of the proposed algorithm

is dominated by stage 1, which is O(Nf logNf ). That means
the frame size Nf is the most dominating factor in the compu-
tational complexity of the algorithm. A frame of Nf = 19200
samples with a sampling rate of fs = 1920 Hz corresponds
to a frame duration of Tf = 10 seconds. Thus as long as
the algorithm can finish the computation within 10 seconds,
the algorithm can be implemented in an online fashion. Our
simulation and experiment results show that the calculation
time of the algorithm is much less than 10 seconds, thus the
algorithm can be directly applied to online data.

VI. NUMERICAL ANALYSIS
In this section, we demonstrate the performance of the pro-
posed bearing fault detection algorithm with both experiment
and synthesized simulation data. Since the experiment data
is obtained from only one trial, it is important to obtain
the results with simulation data to analyze the bounds on
performance metrics.

A. EXPERIMENT RESULTS
We test the performance of the proposed bearing fault detec-
tion algorithm with the experiment data. In the data process-
ing, we set the FFT frame size as Nf = 19, 200, a resampling
frequency of fs = 1, 920 Hz, which result in a frequency
resolution of f0 = 0.1 Hz and a frame duration of Tf =
Nf
fs
= 10 sec. The size of the feature vector is w = 11,

which corresponds to a frequency span of wf0 = 1.1 Hz.
The number of past time-frames (samples) used for parameter
estimation and energy normalization is set as Nw = 100.

In the experiment setup, the inner race fault and outer
race fault are artificially introduced at the beginning of the
experiment. The cage fault and roller fault starts to appear at
the n = 130th frame.
The performance of the proposed low latency fault detec-

tion algorithm can be tuned by setting the values of two
parameters, the degree of change α1 and the detection
threshold A.
The value of α1 is determined by the distributions before

and after the change point. If the location of the change point
is known, we can estimate the value of α1 by using data
before and after the change point. The value α1 may be
different for different types of faults. For example, for the
outer race fault shown in Fig. 2, the average value of α1 is 1.4,
while for the cage fault shown in Fig. 3, the average value of
α1 is 2.9. We obtained these empirical values using offline
analysis based on the experimental data, where we knew the
exact location of the change point, i.e., the time instant when
a particular fault occurs.

However, in case of online change point (fault) detection,
we will not have the exact knowledge of α1 beforehand,
as it requires the exact location of change point. Therefore,
in online change detection, α1 is treated as an adjustable
design parameter that can be set by using prior knowledge.
We will show the performance of the proposed algorithm
under different values of α1.
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FIGURE 4. Frequency-domain false alarm ratio v.s. α1.

Since the experiment data are obtained under one trial,
the PFA cannot be directly calculated from the experiment
data. To address this issue, we propose to study the behaviors
of false alarm by using the frequency-domain data streams
without fault. Specifically, for each of the 4 faults, we extract
features from several groups of frequency-domain data cen-
tered around frequencies which are outside the range of
[ffault − fw, ffault + fw], where ffault denotes the theoretical
fault frequency (c.f. Table 1). The detection procedure is then
applied to these frequency-domain data streams and the total
number of false alarms is recorded. The frequency-domain
false alarm ratio is defined as the ratio between the total num-
ber of false alarms and the total number of time-frames mul-
tiplied by the number of groups. The frequency-domain false
alarm ratio can serve as an indicator for PFA. Fig. 4 shows the
frequency-domain false alarm ratio as a function of α1, under
various values of the threshold A. The relationship between
frequency-domain false alarm ratio and α1 is not monotonic.
Under a fixed threshold A, the frequency-domain false alarm
ratio is concave or quasi-concave in α1. The choice of α1
needs to consider the tradeoff between the detection delay and
frequency-domain false alarm ratio.

The detection delay of the proposed multi-candidate detec-
tion algorithm is shown in Fig. 5. This metric is obtained by
running the proposed detection procedure 4 times with four
different sets of candidate frequencies corresponding to the
4 types of faults and then computing the average delay in
detecting these 4 faults. The detection delays are shown in
the units of frames, with the duration of each frame being
10 seconds. Under different configurations, the detection
delay ranges between 27 to 48 frames, which correspond to an
absolute delay of 270 to 480 seconds. Based on our statistical
analysis of the experiment data, the average true value of α1
is around 2.

Fig. 6 shows the detection delay as a function of the
frequency domain false alarm ratio. This figure demonstrates
the tradeoff relationship between delay and false alarm. For
comparison, results obtained from three other detection algo-
rithms, namely the conventional impulse detection algorithm
[13], SUM-Shiryaev-Roberts (SUM-SR) algorithm [37], and

FIGURE 5. Detection delay v.s. α1.

FIGURE 6. Detection delay v.s. frequency-domain false alarm ratio.

CUSUM-GLRT [38] algorithm, are also shown in the figure.
SUM-SR procedure is an enhanced version of the SR pro-
cedure, where all the local SR statistics corresponding to
individual post-change models are combined together. In all
algorithms, we set α1 = 2.0, and different tradeoff points are
achieved by adjusting the threshold valueA. It is observed that
the proposed multi-candidate algorithm slightly outperforms
the existing algorithms.

B. SIMULATION RESULTS
Synthesized simulation data are used to verify the analyt-
ical bounds derived in this paper. In the simulation setup,
we model the occurrence of the fault as a geometric distri-
bution, that is, πk = (1− ρ)k−1ρ, where ρ = 0.1. The value
of α1 is set to 2. The pre-change distribution parameters for
each candidate frequency α(0)j follows a uniform distribution
between [1 × 10−5, 5 × 10−5]. The simulation results are
obtained by averaging over 10,000 Monte-Carlo trials, where
only a single type of fault is simulated in each trial.

Fig. 7 shows the PFA as a function of the detection thresh-
old A. Under the same threshold A, the CUSUM-GLRT
algorithm has the lowest PFA, followed by the proposed
algorithm, and the PFA of the SUM-SR algorithm is signif-
icantly higher than the other two algorithms. The PFA of all
three algorithms are lower than the analytical upper bounds
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FIGURE 7. Probability of false alarm v.s. threshold.

FIGURE 8. Average detection delay v.s. threshold.

developed in Theorem 1. It should be noted that a lower PFA
does not necessarily mean a better performance due to the
effects of the ADD.

The ADDs of the three different algorithms are shown
in Fig. 8 as a function of the detection threshold. Under the
same threshold A, the SUM-SR algorithm has the lowest
ADD at the cost of a large PFA, followed by the proposed
multi-candidate detection procedure and CUSUM-GLRT,
respectively. The ADD of the proposed low latency algo-
rithm is lower than the asymptotic upper bound presented in
Theorem 2.

The tradeoff relationship between ADD and PFA for the
simulated data is illustrated in Fig. 9, where the ADD
is shown as a function of PFA. Different points on the
tradeoff curve are obtained by adjusting the detection thresh-
old A. Among the four algorithms, the proposed algo-
rithm achieves the best ADD-PFA tradeoff, followed by the
SUM-SR algorithm, the CUSUM-GLRT algorithm, and the
impulse detection algorithm, respectively. Since the impulse
detection algorithm is not a quickest change detection algo-
rithm, the ADD of the impulse detection algorithm is sig-
nificantly larger than the other three algorithms, which are
developed by using sequential statistics. At a PFA of 0.04,

FIGURE 9. Average detection delay vs. probability of false alarm.

the ADDs of the proposed algorithm, the SUM-SR algorithm,
the CUSUM-GLRT algorithm, and the impulse detection
algorithm are 7, 7.5, 10.7, and 382 frames, respectively.

VII. CONCLUSION
The detection of bearing faults of direct-drive wind turbines
have been studied in this paper under the framework of
low latency change point detection. The amplitude of sta-
tor current at a given frequency was modeled by using the
Gamma distribution, and the presence of fault will affect the
parameters of the Gamma distribution. We defined a new
parameter, α1, to measure the impact of the fault on the
Gamma distribution. A multi-candidate low latency change
point detection algorithm, which includes the conventional
CUSUM algorithm as a special case, has been proposed to
detect the various faults. The theoretical performance of the
proposed algorithm has been analytically identified in terms
of upper bounds of the probability of false alarm and average
detection delay. This algorithm can flexibly achieve differ-
ent tradeoff between the PFA and ADD. This proposed low
latency fault detection algorithm does not require a training
phase and can be readily applied to the collected data in
real-time. Experiment and simulation results demonstrated
that the proposed algorithm can detect faults in real-time
withminimumdelays, and it outperforms existing algorithms.
The proposed multi-candidate change detection can also be
applied to other change detection scenarios with the change
occurring in one of many possible data streams.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 1
To show that Cn is a sub-martingale under P∞, it is sufficient
to prove that E∞[Cn+1|Cn] ≥ Cn. For the LR λn,j, we have

E∞(λn,j) =
∫ p(xnj; α̂

(1)
j , β̂

(1)
j )

p(xnj; α̂
(0)
j , β̂

(0)
j )

p(xnj; α̂
(0)
j , β̂

(0)
j )dxnj

= 1
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Based on the definition of Cn, we have

E∞[Cn+1|Cn] =
w∑
j=1

E∞[Cn+1,j|Cn]

=

w∑
j=1

max(1,Cn,j)E∞(λn+1,j)

≥

w∑
j=1

Cn,j = Cn

Thus Cn is a sub-martingale.
In addition,

E∞(Cn) = E∞

 w∑
j=1

max
1≤k≤n

3k:n,j


≤ E∞

 w∑
j=1

n∑
k=1

(3k:n,j)


= nw.

APPENDIX B
PROOF OF THEOREM 1
Cn is a sub-martingale under P∞. Based onDoob’s inequality,
we have

P∞(θ̂ < n) = P∞

(
max
1≤k<n

Cn ≥ A
)

≤
E∞(Cn)

A
≤
nw
A

(31)

Therefore, the PFA can be calculated as

PFA =
∞∑
k=1

πkPk (θ̂ < k)

=

∞∑
k=1

π∞Pk (θ̂ < k)

≤

∞∑
k=1

πk
kw
A
=
θ̄w
A
.

APPENDIX C
PROOF OF THEOREM 2
Assume the fault happens at the k-th frame on the j-th ele-
ment. Define a new stopping time

τ (A) = inf{n ≥ k : Z k:nj ≥ logA} (32)

where

Z k:nj =

n∑
l=k

log λl,j (33)

From (26), we have

Cn,j = max
1≤k≤n

n∏
l=k

λl,j (34)

Thus Cn ≥ Cn,j ≥
∏n

l=k λl,j when n ≥ k , or equivalently,
logCn ≥ Z k:nj . As a result, we have θ̂ ≤ τ (A).
Based on the strong law of large numbers, under the prob-

ability measure Pk , 1
nZ

k:k+n−1
j almost surely converges in

probability Pk to the KL divergence D10 = Ek [log λl,j],

1
n
Z k:k+n−1j

Pk−a.s.
−−−−→
n→∞

D10. (35)

Define

Tk = sup
{
n ≥ 1 :

∣∣∣∣1nZ k:k+n−1j − D10

∣∣∣∣ > ε

}
. (36)

If τ (A)−k > Tk , then from (36) we have∣∣∣∣ 1
τ (A)− k

Z k:τ (A)−1j − D10

∣∣∣∣ ≤ ε, if τ (A)−k > Tk (37)

which implies

τ (A)−k ≤
Z k:τ (A)−1j

D10 − ε
, if τ (A)−k > Tk (38)

Based on the definition of τ (A) in (32), we have

Z k:τ (A)−1j < logA (39)

Combining (38) and (39) results in

τ (A)−k ≤
logA
D10 − ε

, if τ (A)−k > Tk (40)

When log(A) > 0 and ε < D10, the following inequality is
true for both τ (A)−k > Tk and τ (A)−k ≤ Tk

τ (A)−k≤
logA
D10−ε

+Tk , if logA>0 and ε < D10 (41)

Given the convergence condition in (35), we have
E(Tk ) <∞. Since ε can be arbitrarily small, we can let
ε → 0. From Theorem 1, we can set A = θ̄w

α
to guarantee

PFA < α. Thus when α→ 0 and ε → 0,

Ek [τ (A)− k] �
α→0

log |α| + log θ̄ + logw
D10

. (42)

Since θ̂ is upper bounded by τ (A), we have

Ek [θ̂ − k] �
α→0

log |α| + log θ̄ + logw
D10

. (43)

When α→ 0, the right hand side of (43) is positive. Thus the
inequality in (43) still holds if we replace θ̂1−k by (θ̂1−k)+.
The ADD can be calculated as

E[θ̂ − θ |θ̂ > θ] =
1

P∞(θ̂ ≥ θ )

∞∑
k=1

πkEk (θ̂ − k)+ (44)

With the constraint PFA < α, we have P∞(θ̂ ≥ θ) =
1−PFA ≥ 1−α. Combining (32), (44), and the above results
yields (29).
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