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Abstract

Recently, a number of systems have been deployed that gather
sensitive statistics from user devices while giving differential
privacy guarantees. One prominent example is the compo-
nent in Apple’s macOS and iOS devices that collects infor-
mation about emoji usage and new words. However, these
systems have been criticized for making unrealistic assump-
tions, e.g., by creating a very high “privacy budget” for an-
swering queries, and by replenishing this budget every day,
which results in a high worst-case privacy loss. However, it
is not obvious whether such assumptions can be avoided if
one requires a strong threat model and wishes to collect data
periodically, instead of just once.

In this paper, we show that, essentially, it is possible to
have one’s cake and eat it too. We describe a system called
Honeycrisp whose privacy cost depends on how often the data
changes, and not on how often a query is asked. Thus, if the
data is relatively stable (as is likely the case, e.g., with emoji
and word usage), Honeycrisp can answer periodic queries for
many years, as long as the underlying data does not change
too often. Honeycrisp accomplishes this by using a) the sparse-
vector technique, and b) a combination of cryptographic tech-
niques to enable global differential privacy without a trusted
party. Using a prototype implementation, we show that Hon-
eycrisp is efficient and can scale to large deployments.

1 Introduction

Differential privacy [26] has become the gold standard for per-
forming analysis on sensitive data while giving strong, prov-
able privacy guarantees. A common way to answer queries
about a data set in a differentially private way is to 1) compute
the exact answer to the query, and to then 2) add a carefully
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calibrated amount of noise to the answer before returning it to
the client. There is now a substantial literature on differential
privacy, both on the theoretical foundations [28] and on prac-
tical implementations [20, 55, 62, 68]. There are also several
large-scale deployments, including one in Google’s Chrome
web browser [32] and another in Apple’s iOS devices [8].

For concreteness, let us consider one specific use case from
Apple’s deployment [5] in a bit more detail. To get a better
sense of how popular each emoji is, Apple devices record
an event every time the user types an emoji — assuming the
user has opted in — and temporarily store the events, with
appropriate noise added in, locally on the device. Then, once
in a while, the device samples a subset of these events and
sends them to Apple’s servers [8], where they are aggregated
with events from other devices and then analyzed.

Existing deployments like the one described above face two
important challenges. The first has to do with the way the data
is collected. Much of the early literature assumes a trusted
data curator, who collects the data in the clear, aggregates it,
and, as the final step, adds noise to the (precise) answer of the
query. We refer to this model as global differential privacy
(GDP). In Apple’s deployment, however, noise is added lo-
cally by each user before the contributions are collected by
Apple. This is called local differential privacy (LDP) [32].
Adding noise locally, before aggregation, is necessary for
user privacy, since otherwise Apple would have access to the
user data in the clear and could be compelled to collect and
reveal the data of individual users. (Apple receives thousands
of requests for data from law enforcement every year [6].)

Although LDP is clearly better for privacy, it also adds con-
siderably more noise to the overall data set and thus reduces
the accuracy that can be achieved from comparable queries.
The differential privacy literature reasons about this tradeoff
between privacy and utility by assuming a privacy budget
that reflects the users’ privacy expectations; it then assigns a
“cost” to each query that reflects the amount of information
the query can leak and that must be deducted from the budget
each time the query is asked. In general, LDP requires a much
larger privacy budget than GDP because, to achieve similarly
accurate results, the amount of perturbation of each data point
must be significantly lower.
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The second challenge has to do with the fact that new data
is uploaded regularly (e.g., daily). Regular updates are neces-
sary because user behavior can change over time and Apple
or Google would presumably like to track such changes; how-
ever, it also means that, even if the answers are appropriately
noised, the noise terms from repeated queries will eventually
cancel out as more and more queries are answered, revealing
statistics about the user’s behavior. This leakage further ex-
acerbates the first problem: to get the same level of accuracy,
the privacy budget would need to be even larger! If one stops
answering queries once the budget is exhausted, this approach
provides strong guarantees. However, no finite budget would
be enough to support periodic queries indefinitely, which
is why Apple opted to replenish the budget every day [72].
This would be reasonable if 1) users were comfortable with
potentially revealing emojis they typed yesterday, or 2) the
emoji usage by the same user on two different days were com-
pletely uncorrelated; however, neither seems like a realistic
assumption.

In this paper, we propose a possible way out of this
dilemma. We present a system called Honeycrisp that can
sustainably run queries like the one from Apple’s deployment
while protecting user privacy in the long run, as long as the
underlying data does not change too often — which is likely,
e.g., in the case of emoji usage patterns. Honeycrisp accom-
plishes this with a combination of two key insights. The first
is a new threat model, which we call occasionally Byzantine
+ mostly correct (OB+MC), and which we have specially tai-
lored to large-scale deployments with millions of users, such
as Apple’s or Google’s. In contrast to prior work, such as
Prochlo [13], UnLynx [36], or Outis [21], we do not assume
powerful third parties that could take on a substantial amount
of work: with millions of users, any substantial involvement
would require a lot of resources — perhaps even a data center,
which few parties can afford. On the other hand, we assume
that the adversary can compromise at most a small fraction
(say, 1-5%) of the users’ devices. This is substantially lower
than the usual 1/2 or 1/3, but, at the scale we are targeting, it
would still mean far more corrupted devices than are found,
e.g., in a typical botnet.

Our second insight is that, in this model, we can use a
cocktail of cryptographic techniques — specifically, multi-
party computation (MPC) [75] and a form of homomorphic
encryption — to efficiently implement global differential pri-
vacy at scale, which enables us to leverage the sparse vector
technique (SVT) [27, 66] from the differential privacy lit-
erature. We introduce a technique we call collect-and-test
(CaT) that can accomplish this, and we present a concrete
set of algorithms that implement CaT, along with a security
proof. Interestingly, our approach does not require a trusted
party at all. Even the system operator itself (e.g., Apple or
Google) does not need to be trusted; Honeycrisp uses it only
to facilitate the computation by providing resources, such as
computation and bandwidth.
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Figure 1. Scenario.

Using a prototype implementation, we demonstrate that
Honeycrisp can support a form of aggregation that is common
in both Apple’s and Google’s current deployments and would
be fast enough to run at scale, with billions of user devices.
With a billion devices and our choices for the cryptographic
building blocks, the aggregator would need to provide roughly
1.2 MB of bandwidth per user per query, and less than 50
cores; most user devices would need to provide about 1.2 MB
of traffic and about 60 seconds of computation time, although
a tiny, randomly chosen set of devices would need to provide
substantially more. We also show that, with comparable se-
curity and privacy, a LDP system would exhaust a typical
privacy budget after only 91 days, whereas Honeycrisp could
run for up to ten years. In summary, our contributions are:

e the collect-and-test technique (Section 2);

the design of Honeycrisp (Section 3);

a prototype implementation (Section 4); and
e an experimental evaluation (Section 5).

2 Overview

Figure 1 illustrates the scenario we are considering in this
paper. There is a very large number of users (e.g., all iPhone
and MacBook owners, or all Chrome users), as well as one
central aggregator ‘A — e.g., Apple or Google. Each user reg-
ularly collects some sensitive information on her device that
she wishes to make available to the aggregator for analysis,
provided that her privacy can be guaranteed. The aggregator
has substantial computational resources — e.g., a data center —
and is able to collect the uploaded data from the devices, as
well as perform some cryptographic operations. The aggre-
gator also has at least one analyst, who would like to issue
queries about the collected data; for instance, one possible
query could be a count-mean sketch of emojis or new words
that are not yet in a dictionary, as in [8].

2.1 The OB+MC threat model

To provide strong protections, we would like to be robust not
just to honest-but-curious (HbC) behavior, but rather to actual
Byzantine faults. At smaller scales, the standard threat model



for this setting would be to assume that a certain fraction (usu-
ally one third) of all nodes can be Byzantine. However, this
seems overly pessimistic for our scenario, for two reasons.

Aggregator: Occasionally Byzantine (OB). First, the enor-
mous size and prominent position of the aggregator would
subject it to a lot of scrutiny (from the press, the users, etc.),
so it is not likely to be Byzantine for long. It can very well
be Byzantine for brief periods, however — for instance, due
to misbehavior by rogue employees. Because of this, even a
well-intentioned aggregator might not “trust itself” to always
behave correctly, and might wish to design the system to limit
the damage it could do during any Byzantine periods.

Users: Mostly Correct (MC). Second, if the number of users
is very large (e.g., the 1.3 billion macOS/iOS devices [4]), it
seems unlikely that an adversary could compromise a large
fraction of them. This is different from, say, BFT: in a replica
set of 4-7 nodes, compromising 1/3 of the system means just
one or two nodes. But at the scale of the Apple ecosystem,
even compromising 3% would mean about 39 million nodes,
which is much larger than, e.g., a typical botnet.

We refer to these assumptions as the OB+MC threat model,
to distinguish it from the classic Byzantine fault model and
its 1/3 failure threshold. To reiterate, we assume that a) the
aggregator is HbC when the system starts and usually remains
HbC, except for occasional periods of Byzantine behavior,
and that b) a small fraction of the devices, on the order of
a few percent, is Byzantine as well. Notice that the latter
requires that the aggregator refrain from building back doors
into its devices, so that, during its Byzantine periods, it cannot
— or will not [7] — change the devices’ software.

We explicitly do not assume the existence of a trusted
third party that is willing to be actively involved. If a party
is available that can be trusted with some very limited tasks,
such as generating random bits, Honeycrisp can use it for
efficiency (as described in [67, §B]), but it is not required.

Goals: Our primary goal is to protect user privacy. When the
aggregator is behaving correctly, we also ensure integrity (that
is, accurate query results), but we drop this second goal during
the aggregator’s Byzantine periods. This seems reasonable,
since the aggregator is the beneficiary of the collected data
and can only harm itself by misbehaving.

2.2 Background: Differential privacy

We begin by providing some brief background. Differential
privacy is a property of randomized functions that take a data-
base as input, and returns an aggregate output. Informally, a
function is differentially private if changing any single row in
the input database results in almost no change in the output.
If we view each row as consisting of the data of a single indi-
vidual, this means that any single individual has a statistically
negligible effect on the output. This guarantee is quantified in
the form of a parameter, €, which corresponds to the amount
that the output can vary based on changes to a single row.

Formally, for any two databases d; and d; that differ only in a
single row, we say that f is e-differentially private if, for any
set of outputs R,

Pr(f(dy) € R] < €€ -Pr[f(d;) € R]

In other words, a change in a single row results in at most a
multiplicative change of e€ in the probability of any output,
or set of outputs.

The standard method for achieving differential privacy for
numeric queries is the Laplace mechanism [26], which in-
volves two steps: first calculating the sensitivity, s, of the
query — which is how much the un-noised output can change
based on a change to a single row — and second, adding noise
drawn from a Laplace distribution with scale parameter s/e;
this results in e-differential privacy. Differential privacy is
also compositional, that is, if we evaluate two functions f;
and f; that are €;- and e;-differentially private, respectively,
publishing the results from both functions is at most (e; + €;)-
differentially private. This property is often used to keep track
of the amount of private information that has already been re-
leased: we can define a privacy budget €4y that corresponds
to the maximum loss of privacy that the subjects are will-
ing to accept, and then deduct the “cost” of each subsequent
query from this budget until it is exhausted. For a detailed
discussion of €4y, see, e.g., [43].

2.3 Background: The Sparse-Vector Technique

The Laplace mechanism, in combination with a finite pri-
vacy budget, cannot support repeated queries indefinitely,
since the budget will eventually be exhausted. However, the
following, different mechanism allows an analyst to make
regular, repeated queries without significantly reducing the
privacy budget with each query. The analyst does not ask
for f(x) directly; instead, she provides a “guess” f and asks
only whether | f (x) — f | > f”, where T is some small, noised
threshold. The actual value f(x) is then released only if the
answer is yes. This is called the sparse-vector technique
(SVT) [27, 28, 66].

The SVT has the key advantage that the privacy budget
needs to be charged significantly only if the answer to the
threshold query is yes — that is, if the answer to the query does
differ from the analyst’s guess. (Intuitively, the reason is that
the analyst does not really learn anything new if the guess
was correct.) A small charge is necessary even if the answer
is no, but, via advanced composition [29], this charge can be
“prepaid” at the beginning and amortized over a large number
of queries. Thus, the privacy budget is depleted mostly in
proportion to how frequently the data changes, with an addi-
tional logarithmic decay to account for negative answers and
the possibility of error in threshold comparison. The details
for this privacy budget improvement are discussed in detail
in Section 5.2. In our motivating scenario, such changes (dif-
ferent emoji preferences, or appearance of new, previously
unknown words) are likely to be rare. Thus, the SVT enables



the analyst to run the system for much longer, or even indefi-
nitely, without assuming that the users are willing to tolerate
high worst-case information leaks.

2.4 Strawman solutions

Collect the data unencrypted: One way to implement the
SVT would be to simply have the aggregator collect all the
data unencrypted, and to perform the thresholding at the ag-
gregator. In our threat model, this is not an option: the aggre-
gator could become Byzantine at any time and would then be
able to leak the plain-text information of any user.

Use large-scale MPC: Another way would be to implement
the SVT using a multi-party computation (MPC) between all
the devices. Each device could input its local data, and the
MPC could then aggregate the data, do the thresholding, and
then either release the new answer or indicate that the answer
has not changed. However, generic MPC is known to scale
very poorly with the number of participants: efficient MPC
techniques are available for two parties (e.g., [48]) and some
can handle dozens of parties (e.g., [73]) but we are not aware
of any technique that could be used for a billion parties.

Use small-scale MPC: The MPC could also be performed at
a smaller scale, e.g., between the aggregator and one device,
or a small subgroup of devices. However, this is risky because
we have assumed that the aggregator is capable of small-scale
collusion and/or a small-scale Sybil attack — for instance, they
could manufacture a few extra devices, keep them, and always
perform the MPC with these devices. Also, it is not clear
how the data would be aggregated: individual devices (e.g.,
phones and tablets) are not likely to be capable of receiving
and processing millions of records from other users, nor can
they necessarily be trusted with this information.

2.5 Our approach: Collect-and-Test

We now sketch our actual approach, which we call collect-
and-test (CaT). CaT proceeds in the following three phases.

Setup phase: In the first phase, CaT uses a sortition scheme
(Section 3.2) to randomly and accountably choose a commit-
tee, which is a small subset of devices. The committee then
uses MPC to generate a keypair for an additively homomor-
phic cryptosystem. The private key is secret-shared, and the
shares are kept on the committee’s devices, whereas the pub-
lic key is endorsed by the devices and sent to the aggregator
(Section 3.3).

Collect phase: In the next phase, the aggregator uses its re-
sources to distribute the public key and the endorsements to
all the devices; each device verifies the endorsements (Sec-
tion 3.4), then encrypts her data with this key, and sends the ci-
phertext back to the aggregator, along with a zero-knowledge
proof that the encrypted plaintext is formatted correctly and
in the right range. (Note that the aggregator does not know
the private key for the cryptosystem and thus cannot perform
these checks on the plaintext directly!) Finally, the aggregator
verifies the range proofs, aggregates the ciphertexts using the

homomorphic property of the cryptosystem, and thus obtains
a single ciphertext that contains the (precise, un-noised) sum
of the individual records (Section 3.5).

Test phase: Finally, the aggregator sends the (single) aggre-
gate ciphertext back to the committee, along with its “guess”
for the plaintext value. The committee members input their
key shares, the guess and the ciphertext into another MPC,
which combines the shares, recovers the private key (Sec-
tion 3.6), and decrypts the ciphertext to obtain the precise sum.
The MPC then generates random bits to noise the sum (Sec-
tion 3.7) and compares the result to the aggregator’s “guess’
(Section 3.8). If the difference is larger than the threshold, the
MPC outputs the true result; otherwise it outputs a default
value to indicate that the result is close to the guess.

bl

2.6 Challenges

At first glance, it may seem that the key ideas are only in the
approach (e.g., the applicability of the SVT and homomorphic
encryption), and that an implementation of CaT could sim-
ply consist of a few standard cryptographic building blocks.
However, there are also two subtle technical challenges. First,
although the aggregator cannot directly read the encrypted
data, it can attempt to infer the data in other ways — e.g., by
leaving out some ciphertexts while computing the aggrega-
tion, and/or by fabricating Sybil identities that will adaptively
choose the ciphertexts they contribute (for instance, identical
to the ciphertext of a specific user whose data the aggrega-
tor wants to learn). To address this, we have developed a
verifiable aggregation protocol for the Collect phase that can
ensure that the aggregator 1) includes the ciphertext of each
user exactly once, 2) computes the aggregation correctly, and
3) can include at most a small fraction of malicious (but non-
adaptive) inputs. The second challenge is scalability: with
easily a billion participants that each have only very limited
resources, we must design the protocol very carefully to avoid
overwhelming individual participants.

3 The Honeycrisp system

Next, we describe a concrete system called Honeycrisp that
implements the CaT approach in the OB+MC model. Honey-
crisp relies on the following assumptions:

1. Each device i has a locally generated keypair o;/7; for
signing messages; the aggregator can check whether
each public key 7; belongs to a valid device.

2. There is a once-off randomness beacon — an indepen-
dent party P that can be trusted to generate a single
random string, By, when the system is first launched.

3. All devices know an upper bound N, and a lower
bound N,;, of the number of potential participating
devices in the system.

4. There is an immutable bulletin board B that the aggre-

gator can use to broadcast a small amount of data to all
devices.



5. Devices can use an external, time-stamped channel X
to report the aggregator if it behaves maliciously.

6. Secure, authenticated, point-to-point channels can be
established from each device to a) the aggregator, and
b) a small number of other devices.

7. There is an upper bound f (= 1-5%) on the fraction
of participating devices that may be malicious, collude
with each other, or collude with the aggregator.

8. There is an upper bound g on the probability that an hon-
est device goes offline while participating in a round.

9. There exists an efficient hash function that is indistin-
guishable from a random oracle.

For instance, in the case of Apple, these assumptions could
be satisfied by 1) the Secure Enclave coprocessor in re-
cent devices; 2) an existing random number service, such as
random. org, or a widely respected party, such as the EFF;
and 3) public estimates on the number of devices sold [59],
and/or self-reported statistics on installed base of iPhone users
[74]; again, only an imprecise range is necessary. 4) could
be any of several (free, centralized) “bulletin boards”, such
as Wikipedia, StackExchange, or Reddit; only the aggregator
needs to post transactions, and only a small number of times
per round, so neither cost nor latency should be an issue. For
5), if users have evidence that the aggregator has acted ma-
liciously, they could post this evidence in an online forum
(Twitter, Wikipedia, ...) or give it to the press. 6) could be
satisfied with TLS channels, in combination with NAT traver-
sal techniques [34]; 7) seems plausible given experience with
existing deployments (see 2.1); 8) seems plausible given the
always-on nature of modern devices (which is being lever-
aged, e.g., for push notifications), and 9) is a common model
for cryptographic protocols. For additional details about our
assumptions and ways to satisfy them, please see [67, §C.1].
We also make a simplifying assumption, which is that most
users have only one device, and that it is therefore sufficient to
provide a per-device privacy guarantee. However, Honeycrisp
can easily be changed to give a per-user privacy guarantee
instead — by selecting a single device for each user (e.g.,
based on AppleID) and by having only this device respond to
queries, using data from that user’s entire set of devices.

3.1 Committees and rounds

Recall from Section 2.5 that there is a committee of C devices
that holds the shares of the private key for the homomorphic
encryption, and that also maintains the privacy budget. Since
the committee is composed of regular devices, it would be
very burdensome to require the same devices always perform
the role of the committee. Hence, Honeycrisp segments its
execution into discrete rounds, and it randomly appoints a
new committee for each round.

The security of the scheme is contingent on the depend-
ability of this committee. Since we cannot trust individual
devices, any action that could cause sensitive data to leak

(“privacy failure”), such as making decisions on behalf of the
committee or reconstructing the secret key, must require a
large subset of, say, A members. But A cannot be too large
either, otherwise it can happen that some queries do not re-
ceive an answer (“liveness failure”) because some committee
members — say, B devices — go offline during a round.

In our design, we chose A = £C and B = 1C. Using a
probabilistic argument, we can show that, if up to f = 3% of
the devices are malicious and the system runs one round per
day for ten years, C > 29 is sufficient to prevent privacy
failures with probability 99.999%, while ensuring that at
least 95% of the queries are answered successfully (with
an unsuccessful query simply resulting in a re-run in the
subsequent round). We provide more details in Section 5.4
and the full analysis in [67, §C.3].

3.2 Setup phase: Sortition

Next, we show how the committee can be selected in such
a way that an adversary cannot influence or predict the
selection. This particular building block has appeared in
several earlier systems, including Algorand [37] and Rand-
Hound/RandHerd [71]; here, we adapt the approach from
Algorand because, unlike RandHound/RandHerd, it can scale
to millions of participants.

Briefly, the protocol works as follows. Each round i has a
“block” B; of random bits. The blocks are usually uniformly
random from A'’s perspective, and A can only manipulate
them within strict limits. B; determines the committee, as
well as a “leader” L;, as follows. First, each device signs
three messages (B;, i,0), (B;,i,1), and (B;,i,2). (The third
element in these triples is just to ensure that the hashes of
the messages are independent.) The committee then consists
of the devices whose signatures on (B;, i, 0) have the lowest
hash, the “leader” is the device whose signature of (B;, i, 1)
has the lowest hash, and the next random number B;,; equals
the hash of the leader’s signature of (B, i, 2).

A detailed description of the protocol, which we call
GET_NEW_COMMITTEE, is in the figure below. As part
of the protocol, ‘A maintains a Merkle tree [57] of an array of
registered devices. This allows it to publish a constant-sized
tree root that is bound to the state of the array at a given point
in time, and subsequently to provide logarithmic-sized proofs
that devices are in the committed array [9]. We assume that
By is a random number that is provided by a trusted source
after the set of initial devices, R_, is already committed to
by placing the tree root on the bulletin board B.

Every time a device sends A a message, A must send a
signed acknowledgment of having received the specific mes-
sage. If A fails to do so, the device reports through the report-
ing channel, X, that it has not yet received a message that is
due from A, giving A an opportunity to respond publicly. If
she does not, the device reports that A has deviated from the
protocol. This prevents A from ignoring devices, in particular
devices that should be leaders or committee members.



GET_NEW_COMMITTEE

1. Each new device who wishes to join registers its
public key with A. A device is only eligible to
be a leader or committee member if it has been
registered for at least k rounds or was an initial
device. A adds each new key to the set R;. A
creates a Merkle tree of R; and posts the root to
the bulletin board. This will allow A to generate
proofs py j, that a device j is eligible for election in
round i’, by showing that j € R, for some ¢ < i’ —«.

2. Each device j € R; for some ¢t < i — x computes
Mij.0 = signg, (B, i, 0) and sends it to A.

3. A computes h; j o = Hash(z; j o) for each j. The
devices with the C lowest h; j o form the commit-
tee. A posts the committee, along with their #; j o
and y; ;, to the bulletin board.

4. Each device j thatis in set R; for t < i—x computes
Nij1 = signskj (B, i, 1) and sends it to A.

5. A computes h; j; = Hash(n; ;1) for each j. The
device with the minimum h; j ; is the leader L;. A
posts (Li, n; L, 1, M L;) to the bulletin board.

6. The leader L; sends n; 1, » = signskL_(B,-,i, 2)
to A, who posts it on the bulletin board. Then
Biy1 = Hash(n; ,, 2).

7. If the leader does not respond in time, then B;.; =
Hash(B;, i).

8. Each device j checks that:

o If j is not on the committee, then h; j o > h; ko
for each committee member, k.

® 1; i is correct for each committee member k.

e For each committee member, k, ; o is a correct
signature for k.

L] If] *L; then hi,j,l > hi,Li,l-
® y; 1, is correct.
® 1 1, 1andn; 1, > are correct signatures for L;.

If any of these fail, the device sends the evidence of
the failure to the reporting channel, X, and aborts the
protocol.

A full proof of how this ensures the unlikeliness of a mali-
cious committee is provided in [67, §C.3].

3.3 Setup phase: Key generation

Once a new committee has formed, the committee members
must generate a new keypair (PK, SK) for the homomorphic
cryptosystem that will be used to encrypt and aggregate the
users’ private data records for this round. As explained in 3.1,
the secret key will be stored using a secret sharing scheme. It
will remain safe, as long as there are fewer than %C malicious

committee members. Additionally, the scheme must be able to
detect if malicious committee members attempt to introduce
an error into the secret during reconstruction, provided fewer
than %C of them collaborate to attempt this. Lastly the scheme
should allow for up to %C committee members to go offline.
We achieve this with Shamir Sharing [69], based on the Reed-
Solomon code [65], with parameter ¢t = L%CJ.

The following protocol, KEY_GEN, is performed within
the MPC to securely generate a key-pair:

KEY GEN
1. Choose (PK, SK) < KeyGen()
2. Publicly reveal PK to all participants.

3. Distribute SK using a secret-sharing scheme that
detects errors when there are fewer than %C errors

and is secure against up to éC erasures.

3.4 Collect phase: Querying

Honeycrisp may run for a long time, and during that time
the needs of the aggregator could change; thus, it could be
problematic to hard-code a specific query, or set of queries,
in the design. Instead, Honeycrisp can optionally support a
simple query language that can be used to specify arbitrary
queries over the data that is available at each device. For
instance, the aggregator could ask for a count-mean sketch
of emoticons today, and a count of the devices that have shut
down because of low battery [5] tomorrow. The question of
what to include in the “database” that is available for querying
is up to the operator; users could also be allowed to enable or
disable certain items based on their own preferences.

Since Honeycrisp relies on an additively homomorphic
cryptosystem for aggregating the collected records, not all
queries can be supported. However, we can support counts
and sums, as long as we maintain queries that are 1-sensitive
for differential privacy purposes. For instance, Honeycrisp
can easily compute the number of devices that have a given
property, make histograms or count-mean/count-min sketches,
and can sum or average values from a group of devices. These
types of queries boil down to two steps: the first, which we
call the map step, maps each record in the data set to a vector
of numeric values (or even a single value), and the second,
which we call the sum step, then adds up all the vectors to
produce the final output.

To verify that a proposed query has a finite “privacy cost”
that is within the remaining privacy budget, the committee
must be able to determine the sensitivity of the query — that
is, the amount by which the answer can change if a single
person’s data is added or removed. We can enable this by
writing the queries in a language such as Fuzz [39], which
comes with a static analysis that bounds the sensitivity.

Once the committee has verified that the remaining privacy
budget is sufficient for the proposed query, the honest com-
mittee members sign a query authorization certificate that



includes the public key generated in Section 3.3, the query
specification, the remaining privacy budget, and the current
round, and they upload it to the aggregator, which distributes
it to the other devices. The other devices verify that the cer-
tificate has been signed by at least % of the current committee
(whose membership they know from Section 3.2); if so, they
accept the included public key and query.

3.5 Collect phase: Aggregation

Once a device has received the certificate and the query from
the aggregator, and once it has verified the certificate, it lo-
cally performs the query’s map step — using the data on that
particular device — and obtains a vector of numeric values.

At first, it may seem that the device can simply encrypt the
values using the homomorphic cryptosystem and send them
to the aggregator. However, this is not enough to guarantee
privacy. While A will not be able to learn any information
from the ciphertext itself, A may, during a Byzantine period,
send to the committee an incorrect aggregation, such that the
query result exposes sensitive user information. For instance,
if A used the additively homomorphic property to multiply
a single device’s input x; by a sufficiently large constant,
then the result of the query would allow conclusions about x;,
since the Laplace noise will be “too small” to hide such a large
contribution. Alternatively, A could create Sybil identities
and choose the inputs of these identities to be x; as well —
which A can do because the ciphertext c; is uploaded to it. To
prevent attacks such as these, we would like (A to prove that
1) each honest device’s input affects only its own ciphertext,
and that 2) the summation was correctly computed.

To prevent adaptive choices of ciphertexts, Honeycrisp
requires that all inputs to the summation be committed to
before any are revealed. It also requires that the summation
process is checked. Since the number of devices is too large
for the entire summation to be checked by any device, A
generates, and commits to, an object we call a summation tree
that contains the inputs and partial sums. This is done using
the AGGREGATE protocol below.

AGGREGATE

1. Each device holds a key-pair (o;, 7;) for a signa-
ture scheme and a private input x;.

2. Each device computes ¢; = Encpg (x;)

3. Each device generates a commitment to (c;, 7;),
namely t; = Hash(r;||c;||m;), where r; L
{0, 1}'28. The device sends (7}, t;) to A.

4. A sorts pairs (r;,t;) by m; to form an array of
tuples Commit. A generates a Merkle tree Mc
from array Commit and publishes the root to B.

5. Each device generates a zero-knowledge proof,
z;, that the plaintext x; that corresponds to the
ciphertext c; is in the required range.

6. Each device sends (r;, c;, 1, z;) to A.

7. A checks the message. If either the proof, z;, or
the commitment, ¢; = Hash(r;||c;||7;), is wrong,
they ignore the message.

8. A generates a summation tree, S. The leaves are
setto be S(0, i) = (7;, ¢;, r;) if A received a correct
message from a device and (7;, L) otherwise. Each
non-leaf vertex has two children and a ciphertext
that is the sum of its children’s ciphertexts.

9. A serializes all vertices of S into an array and then
publishes a Merkle tree M of this array, as well
as the root of the summation tree S, (the sum of all
ciphertexts). To each device sent a correct leaf, A
also sends a proof that this leaf is in M.

Each device checks a small random portion of this tree,
using the CHECK_AGGREGATION protocol. Devices can
check that an item is in the set by asking A to sending a
membership proof for the item which consists of [log NT +
1 hashes from the Merkle tree [57]. If no device reports a
problem, this means that, with high probability (> 99%, based
on a security parameter s), the entire summation is correct.

Notice that the protocol also requires the devices to prove,
in zero knowledge, that their inputs are in the correct range —
e.g., using a zk-SNARK [10]. This step is not necessary for
privacy, but it is necessary for integrity: without it, a single
malicious device could render the entire query result useless
by encrypting and submitting a very large random value.

3.6 Test phase: Key recovery

At the end of the collect phase, the aggregator has obtained
the encrypted true result of the query. Next, the result must
be decrypted and compared to the analyst’s “guess.” Since no
individual party can be trusted with the full private key, the
committee must run another MPC to do the decryption.

The aggregator submits the vector of ciphertexts and the
analyst’s guess(es) to the committee. The committee members
then launch a multi-party computation to which they each
input 1) their share of the private key, 2) the ciphertext from
the aggregator, 3) the analyst’s guess, and 4) a threshold
difference, below which variation of the guess from the actual
result will not be revealed. Inside this computation, the private
key is reconstructed from the shares, and is then used to
decrypt the ciphertext(s). If too many committee members
have gone offline since the beginning of the round or now
refuse to participate, the MPC run fails and the aggregator
does not receive a response to her query for that round.

3.7 Test phase: Noising

Once the encrypted sums have been decrypted inside the
MPC, some noise must be added to the plaintext values be-
fore they are compared to the analyst’s guess. (This is part of



CHECK_AGGREGATION

Each device:
1. Verifies that N < N,,.x, and that the value

Commit; it sent to A appears in Mc.

2. Chooses a random v;,;; € [0, N — 1]. Then for

i € [Viniz, Viniz + ] mod N, verifies that:

e Commit; appears in Mc¢

® S(0,i) = (m;, L) or (m;,ci,17).

o If ci,ri # 1, checks t; = H(r,-llcl-||7r,-).

e 5(0,1i) appears in Mg.

Then for i € [Vinis, Vinir + s) mod N checks that
7 < miyp (exceptifi = N —1).

3. Chooses s distinct non-leaf vertices of S. To re-
duce redundancy, this should include the (roughly
s/2) vertices whose children the device has already
obtained from the previous step. The remaining
vertices should be chosen randomly from vertices
that do not have leaves as children. For each vertex,
the device verifies:

o That the vertex’s ciphertext is indeed the sum of
its childrens’ ciphertexts.

e That the vertex and its children are in M.

If any check fails, the device publicly publishes to X the
proof that A behaved maliciously (signed claims from
A that are inconsistent).

the SVT.) The noise must be drawn from a distribution which
gives correct differential privacy guarantees, and there must
not be a way for a malicious committee member to bias the
noise in any way. Often, random noise drawn from a Laplace
distribution with parameter (Af/€) is used to support Af-
sensitive queries, as this guarantees (e, 0) differential privacy.
In our case, we simply support 1-sensitive queries to make
use of the sparse vector mechanism, so we fix Af = 1. The
amount of noise will be a fixed amount set by the MPC in
Honeycrisp based on the pre-determined privacy budget, such
that no party (either the aggregator or the committee mem-
bers) has any ability to affect the privacy guarantees. One
additional concern is the existence of floating-point vulner-
abilities that may arise from irregularities in existing imple-
mentations of the Laplacian mechanism that create porous
(and thus attackable) distributions. Thus, the noise generation
must be carefully implemented (for instance, with a snapping
mechanism as described in [58]) to ensure differential privacy
and to prevent such attacks.

3.8 Test phase: Thresholding

Finally, the noised results are compared to the analyst’s guess.
Once again, this must be done within the multi-party compu-
tation, to prevent individual devices from “leaking” the result

to the aggregator. Somewhat counter-intuitively, such a leak
would be problematic even after noise has been added: the
privacy budget is not substantially charged if the analyst’s
guess was correct, so, if the data is stationary, the analyst
could run very many queries “for free”, average out the noise,
and then use the precise result to infer the individual inputs.
This requirement means that Honeycrisp cannot use a generic
threshold cryptosystem [25] but instead must use more pow-
erful MPC-based approach.

If the difference between the guess and the noised result is
larger than the threshold, the computation outputs the noised
result, and otherwise a default value to indicate that the guess
was approximately correct. In the former case, the committee
members deduct the “cost” of the query from the privacy
budget and report the noised result back to the aggregator; in
the (common) latter case, they simply report the outcome and
decrement the large number of “prepaid” negative answers
(see Section 2.3) but leave the budget itself unchanged.

3.9 Security analysis

A full formal definition of the security requirements, as well
as proof that Honeycrisp meets this requirements is provided
in [67, §C]. Informally, these properties are:

1. Privacy. The system remains e-differentially private for
a given €, or else everyone learns, with high probability,
that the Aggregator cheated.

2. Correctness. When the Aggregator receives a response
to a query, that response is correct — that is, the exact
answer plus the noise required for e-differential privacy.

3. Liveness. As long as there is sufficient privacy budget
left, the Aggregator will continue to be able to query
the system and receive responses with high probability.

4. Indemnification. If the Aggregator follows the proto-
col, devices cannot fabricate evidence that would prove
that the Aggregator had deviated from the protocol.

4 Implementation

In this section, we give a quick overview of the Honey-
crisp prototype we used for our experimental evaluation. The
code is available under an open-source license at https:
//github.com/danxinnoble/honeycrisp.

Shamir secret sharing: We use the error-correction prop-
erties of Shamir sharing [69] to tolerate the possibility that
after key generation, some committee members’ devices go
offline before the second MPC protocol. Thus the output of
the key-generation protocol MPC is a Shamir sharing of the
secret key among the k committee members such that any
subset of size t + 1 can reconstruct the secret, and such that
no t nodes can learn anything (in an information-theoretic
sense) about the secret. Shamir sharing also has the property
that if there are at least ¢ + 1 honest nodes, the honest nodes
can detect any errors introduced by dishonest nodes.
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MPC: Our implementation focused on the major compu-
tational bottlenecks for our systems — the two MPC proto-
cols. We implemented the MPC protocols using the SCALE-
MAMBA framework [49]. SCALE-MAMBA is a compiler
and virtual machine for running generic MPC computations.
It is the successor to the SPDZ framework [23], and is based
on many of the same protocols. SCALE-MAMBA is very
well suited for our application: it is truly multiparty (able
to compute an MPC between any number of parties), it is
secure against malicious adversaries who deviate from the
protocol, and it allows developers to express functions using
familiar high-level programming syntax rather than boolean
or arithmetic circuits.

Because SCALE-MAMBA provides Shamir-sharing as one
of its built-in MPC sharing schemes, we were able to use this
native scheme to store the secret key between the key gener-
ation and decryption rounds. We modified the open-source
SCALE-MAMBA source code to reconstruct the secret key
automatically using existing shares, even if some of the nodes
went offline between the key generation and the decryption.

SCALE-MAMBA operations are performed in a finite field
modulo a prime p. This complements our Ring-LWE encryp-
tion scheme particularly well, since we could use p as the
integer modulus for the LWE scheme. This meant that na-
tive SCALE-MAMBA operations were automatically modulo
p, so we did not need to implement the modular arithmetic
within the MPC. Furthermore, SCALE-MAMBA allows this
prime modulus to be configured. In Ring-LWE, the additive
homomorphism of plaintexts is modulo some integer g, where
|[p mod q| < g, ideally p =1 mod q. Being able to specify
p allowed us to have a sufficiently large plaintext modulus to
hold the aggregation.

Ring-LWE: Honeycrisp requires an additively homomorphic
cryptosystem to aggregate user inputs, and we instantiate our
scheme using the simple “two-element” Ring-LWE-based
encryption scheme of [54]. We chose this encryption scheme
because its key generation and decryption operations are very
simple algebraically — each involves a small constant number
of additions and one multiplication in the ring Z, [x]/ (x" + 1)
where p is prime and n is a power of 2.

The encryption scheme works over a polynomial ring R, def
Zp[x]/(x"™ + 1). Then the secret key is a random polynomial
s(x) € Ry, and the public key is a pair generated by sampling
arandom a € R, and setting the public key to be (a,b) € R?,

where b def a-s+e € Ry, for some “error” e € R, chosen from
an appropriate error distribution. The plaintext space is Z:,
where q,l € Z,1 < n,q < pand |[p mod g| < g. To encrypt
avector z € Zfl, the encryptor generates a random r € R, and

computes the ciphertext (u, v) def (ar+ey, br+|p/qlz) € RS,

Decryption is then simply z = round(v — u - s, | p/q)/ |p/q]
where round(x, y) rounds each coefficient of x to the nearest

multiple of y. (This assumes the errors e, e;, e, are sufficiently
small relative to p/q).

Our design and implementation for Ring-LWE key gener-
ation and decryption inside of an MPC was developed inde-
pendently from the concurrent work of [47], except that we
use their observation that if the plaintext length, [, is less than
n, then only [ coefficients of v ever need to be stored.

Security parameters: We use the LWE-estimator tool [53]
of Albrecht et al. [2] to obtain concrete parameters that pro-
vide sufficiently high security based on the best current LWE
attack algorithms. Using this tool, we find that dimensionality
n = 4096, a 128-bit prime p, and a Gaussian error distribution

with o = ‘/75 (which we approximate as the centered binomial
distribution with N = 2 trials) in each dimension, provides
over 128 bits of security.

We note that there is a space-time tradeoff: on the one hand,
Ring-LWE’s easy decryption and key generation simplify the
committee’s MPCs, and the large dimension allows many
metrics to be aggregated in parallel — while our implementa-
tion only uses one counter, our choices can yield up to 4,096
counters, each with a capacity of about 50 bits! But on the
other hand, the ciphertexts are fairly large, which increases
the bandwidth cost of the aggregator (Section 5.5). With a dif-
ferent homomorphic encryption scheme, such as Paillier [61]
or elliptic-curve-based El Gamal (ECEG), the MPCs would
take longer, but the ciphertexts would be smaller.

The verification portion of our scheme requires a collision
resistant hash function (for the Merkle Trees) and a signature
scheme for each user. Following standard practice, we use a
SHA-256 hash function and RSA-2048 signatures.

5 Evaluation

Our goal for the experimental evaluation is to answer the fol-
lowing three questions: 1) Can Honeycrisp support periodic
queries while giving reasonable privacy guarantees?, 2) How
expensive is Honeycrisp in terms of computation, bandwidth,
and storage?, and 3) How well does Honeycrisp scale?

5.1 Experimental setup

Honeycrisp is designed to operate in a very large deployment
with potentially billions of laptops and phones, as well as
a large data center. Since we did not have access to a large
enough testbed, we benchmarked several of the components
individually. For user-side computations, this is safe, since
users communicate only with the aggregator and not with
each other, and for the aggregator’s computations we can eas-
ily extrapolate the cost because the operations are simple and
can mostly be done in parallel. The only component of Honey-
crisp that requires more attention is the committee; here, we
cannot simply extrapolate, but fortunately the committees are
small enough for us to run the corresponding computations
completely.



Our aggregator experiments were run on eight Power-
Edge R430 servers with 64 GB of RAM, two Xeon E5-2620
CPUs, and 10 Gbps Ethernet. The operating system was Fe-
dora Core 26 with a Linux 4.3.15 kernel. This equipment
seems reasonably close to what a real-world aggregator would
have in its data center. To simulate users operating in a global
setting, we used multiple t 2. large Amazon EC2 servers
with 8 GB of RAM, located in all available geographic re-
gions, to obtain realistic latencies and communication costs.

We compare three different systems: 1) a RAPPOR-style
solution (LDP) that achieves differential privacy in the local
setting by making use of the randomized response mechanism;
2) a hypothetical solution (GDP) that uploads the unencrypted
data to the aggregator, which then releases the result using
global differential privacy, but not the SVT, somewhat analo-
gous to PINQ [55]; and 3) our proposed solution, Honeycrisp.
Notice that the second solution cannot protect user privacy
against the aggregator, so it is not necessarily a realistic com-
parison point for Honeycrisp; nonetheless we demonstrate an
improvement over this generic setting.

5.2 Utility

Our first goal is to determine whether Honeycrisp really can
support queries for longer than existing systems. To this
end, we simulate a comparison over a 10-year span between
LDP, GDP, and Honeycrisp. We consider a simple vector of
sensitivity-1 counting queries, which is at the heart of the
count-mean sketches Apple is using [8], and we assume that
the query needs to be asked once per day. Our model query
is performed on a corpus of Twitter data spanning 5 years,
and the count-mean sketch is over word usage frequency for
newly-appearing words in the English language. We assume
N = 1.3-10° users, which was the size of Apple’s deployment
in February 2018 [4], and we choose the parameters in such
a way that the total, noised count is within 1% of the true
count with probability p = 0.95, assuming a query with a con-
stant fraction that .001% of users respond to (although this
error is a constant factor that affects all systems identically).
For Honeycrisp, we set a threshold of 5%, and we (conserva-
tively) assume that, on average, the true count changes by that
amount about once every three months. This seems realistic:
research on changing use of out-of-vocabulary language, as
well as our own queries, show that word frequency changes
as little as 1 — 1.5% over an entire year [30].

Figure 2 shows a simulation of the privacy budget consump-
tion of all three systems over time. The LDP-based system
has the highest consumption by far; it goes through a budget
of ¢ = 1 (a common choice [43], indicated by the horizontal
line) approximately every 91 days. This is because, in the
local setting, each user’s data must be noised individually, so
the sum contains much more noise than with global differen-
tial privacy, where the sum is computed precisely and then
noised only once. As discussed in [28], with n this results
in an incurred error cost of O(+/n), as opposed to O(1) in
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Figure 2. Budget consumption over time.
the global setting. This is consistent with Apple’s decision to
renew the privacy budget very frequently, and if more users
were to respond to every query, this cost would become even
higher! The consumption of the (insecure and hypothetical)
GDP-based system is lower, but a budget of ¢ = 1 would last
less than half as long as Honeycrisp over this time span, when
we consider both systems operating over data vectors of size
10. This is because Honeycrisp has a second advantage: with
the sparse-vector technique, the budget decreases logarithmi-
cally with the total number of queries (as opposed to linearly)
and needs to be charged substantially only in the case when
the answer changes. Because of this, Honeycrisp can run for
10 years without exhausting its privacy budget of ¢ = 1. For
additional details, please see [67, §A].

Note that at first, the bound on the privacy budget for Hon-
eycrisp is higher than that of both the LDP and GDP. This
is because of the way the SVT works: it charges a relatively
large privacy cost at the beginning, based on the expected
number of times the data will change, and then charges only
logarithmically for queries where the analyst’s estimate turns
out to be approximately correct. (The cost for such queries
is not exactly zero because the threshold comparison is per-
formed on the already-noised answer, so there will be occa-
sional charges even when the estimate is correct.) In contrast,
the other systems’ privacy budgets degrade linearly, so, in
the long run, Honeycrisp uses its privacy budget much more
efficiently.

Even at this much lower rate of consumption for Honey-
crisp, any finite privacy budget will eventually run out. How-
ever, “recharging” the privacy budget is not unreasonable per
se, since many secrets would become far less valuable to an
adversary if it took years to learn them. The key question is
how frequently the budget needs to be recharged, and here
Honeycrisp outperforms basic randomized response in the
local setting by a factor of over 40.

5.3 Cost: Normal participants

Next, we examine the cost that a “normal” participant would
pay to be part of Honeycrisp. We measured these costs by
running all the participant-level steps in a single round of the
protocol; we report the storage, bandwidth, and computation
time for five system sizes: N = 1.3 - 10’ (the estimated size
of Apple’s deployment), as well as, for comparison, values
ranging from N = 1.3 - 103 to N = 1.3 - 10%°.
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Figure 3. Bandwidth (a) and computation (b) required of
each participant in each round.

Bandwidth: Figure 3(a) shows the amount of bandwidth that
is consumed in a single round. The amount grows slightly
with the system size because the MHT becomes taller and thus
its inclusion proofs become longer (with O(log N)). However,
at less than 1.2 MB, the overall amount is reasonable even
for the largest system size we tried. The commitments and
range proofs (in particular, zk-SNARKS) each require less
than 1 kB [10], which is too little to be visible in the figure.

Computation: Figure 3(b) shows the amount of computation
that a participant needs to perform in each round, in terms of
milliseconds of computation time on an E5-2620 core. Check-
ing the signatures on the certificate and the MHT inclusion
proof consumes only a small amount of time; the overall
amount is likely dominated by the prover’s computation. The
implementation of [10] has proof times of approximately
0.2 ms per arithmetic gate. Considering the size of the arith-
metic circuit implementing our RLWE encryption scheme,
this would result in a proving time of approximately 54 sec-
onds. Although this cost is high, each device would need to
perform this step only once per query. At one query per day,
this should be manageable, especially if (as in our motivating
scenarios) quick turnaround times are not required and the
computation can be done slowly in the background.

Storage: Participant machines do not need to permanently
store any information, since they can always download the
entire history of blocks and Merkle-tree roots from the bul-
letin board. However, it makes sense to store at least the most
recent randomness block, most recent certificate, and at most
3 ciphertexts at a time for summation verification, which
together would be less than 200 kB.

5.4 Cost: Committee

We now quantify the cost of a participant that has been cho-
sen as a committee member for the current round. Such a
participant must perform two additional steps: 1) the MPC
to generate the keypair, as discussed in Section 3.3, and 2)
the MPC to decrypt, noise, and threshold the aggregate, as
discussed in Section 3.6. (There are other small costs, such as
signing the certificate, but we ignore them here because the
MPC costs clearly dominate.) These costs are independent of
the number N of participants, but they do very much depend
on the committee size, which is why we vary this parameter
from 10 to 40 users.
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Figure 4. Bandwidth (a) and time (b) required for each of

the two MPC steps using SCALE-MAMBA, for a RLWE
cryptosystem in a lattice of dimension n = 4096.

In Figure 4(a), we show the total number of bytes that
are sent by a committee member in each of the two MPCs;
Figure 4(b) shows the total completion time for each MPC.
We see that both time and traffic scale linearly with the size
of the committee. With C = 40 committee members, each
committee member uses less than 5 minutes and about 3.3 GB
for both protocols combined. The MPC execution consists
of an online phase and a secure pre-processing phase that
generates randomness. The latter is responsible for much of
the cost, making it difficult (but not impossible) to run this
process on mobile devices.

If the cost is too high for the mobile devices, there are at
least two possible solutions. One is to avoid mobile devices
entirely and to ask only more powerful devices (laptops or
desktops) to serve on the committee. If the adversary cannot
target specific device types, this merely results in a smaller
pool of potential committee members. If the adversary can
target the candidate devices specifically, this approach would
require us to scale down the fraction f of malicious devices;
for instance, if we assume f = 3% but two thirds of the devices
are mobile, we would need to choose the other parameters
based on f = 1% instead. The other way is to leverage a
party with limited trust, if one happens to be available. We do
not discuss this option here due to lack of space, but in [67,
§B], we show that it can reduce the cost to almost zero. Our
experiments with the SPDZ multiparty compiler show that,
in this case, the online phase alone requires just 10 MB for
both protocols combined.

Next, we justify our choice of committee sizes. Figure 5(a)
shows the probability of a privacy failure during a 10-year pe-
riod, given various settings for the fraction of malicious nodes
f and the committee size C. With f = 3% and a committee of
C = 40 members, the chance of ever seeing a privacy failure
(that is, a committee with too many malicious nodes) during
the ten years is about 1078, Figure 5(b) similarly shows, for
various settings of f and the fraction of offline nodes g, the
minimum committee size that would be needed to ensure that
at least 95% of the queries receive an answer. Again, with
f =3% and g = 4%, a committee of C = 40 members would
be sufficient. Notice that, if more nodes are offline than the
choice of g anticipates, the result is simply that a few more
queries will go unanswered.
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Figure 5. a) Probability of privacy failure for various com-
mittee sizes; b) minimum committee size needed for liveness.

5.5 Cost: Aggregator

Finally, we turn our attention to the aggregator. The aggrega-
tor clearly has the highest workload, but it also presumably
has the most resources. Since we cannot fully replicate the
aggregator in our lab, we benchmark the various steps in-
dividually and then extrapolate. As before, we focus on an
estimated size of N = 1.3 - 10°, as well as, for comparison,
values ranging from N = 1.3 - 10’ to N = 1.3 - 10'°.

Bandwidth: The aggregator would need to receive, from each
client, a public key and a ciphertext. (We ignore the single
copy of the certificate and the final result that the aggregator
receives from the committee because they are insignificant.)
The aggregator would need to send, to each client, a MHT
inclusion proof, a copy of the committee’s certificate, and a
selection of ciphertexts for summation tree verification, using
s = 5, giving 99% verification of correctness (see Section 3.5),
and thus requiring at most 17 ciphertexts to be sent to each
user. The only variable-size items are the inclusion proofs,
which require N log N bytes given N participants, and the
number of ciphertexts, which scales linearly; the public keys
are 256 bytes each, the ciphertexts 65,552 bytes each, and the
certificates 92 bytes each using an RSA certificate.

Figure 6(a) shows the total amount of bandwidth (bytes
sent or received) that the aggregator would need in each round.
Overall, the bandwidth consumption grows with O(N log N),
with a strong linear component. At N = 1.3 - 10°, the amount
sent would be roughly 1450 TB, or 1.12 MB/user; for compar-
ison, this would be less than the amount of traffic generated by
having 60% of the users download a typical web page (about
2 MB [17]) from the aggregator. If the traffic is a concern, it
could be reduced to about 1.45 TB by using ECEG instead of
Ring-LWE, at the expense of somewhat longer MPCs for the
commiittee, as discussed in Section 4.

Computation: The aggregator would need to generate the
MHT, verify the range proof that each participant uploads,
and perform the homomorphic addition. (The inclusion proofs
do not require extra work because they can simply be read
from the MHT once it is generated.) With our choices for the
hash function (SHA-256) and the homomorphic cryptosystem
(Ring-LWE), a single hash operation takes 0.005 ms and a
single homomorphic addition takes 1.7 ms. For the range
proofs, we estimate a verification cost of 5 ms, based on [10].
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Figure 6. Bandwidth (a) and computation (b) required for the
aggregator.

Figure 6(b) shows the total computation cost in terms of
computation time on a single E5-2620 core. If we (somewhat
arbitrarily) require the computation phase of each round to
last no more than an hour, the aggregator would need 45 cores
for N = 1.3 - 10°, which seems achievable.

Storage: The aggregator would need to store the public keys
and ciphertexts of all the participants and the MHT. (The
range proofs can be discarded once verified.) With 2048-bit
keys, SHA-256 hashes, and LWE encryption, a public key, a
single hash, and a ciphertext consume 256 bytes, 32 bytes, and
65,552 bytes respectively, so the overall storage requirement
is 65.84 kB per user, or roughly 86 TB for N = 1.3-10°. Again,
this seems clearly within the power of a typical aggregator.

6 Related Work

Honeycrisp offers three key properties: global differential
privacy, absence of powerful trusted parties, and scalability
to billions of users. To our knowledge, no existing system has
achieved all three properties simultaneously.

Local differential privacy: Several distributed differentially
private systems add noise locally to each user’s input, instead
of once to the final result. This avoids the need for expensive
cryptography, but it requires more noise, and thus reduces
accuracy. One prominent example of such a system is RAP-
POR [32, 33]. The schemes of [1, 38] also require participants
to add noise locally, however, rather than use homomorphic
encryption to hide the users’ inputs from the aggregate, they
use pair-wise blinding factors. Additional theoretical con-
tributions have also operated in the local setting, but have
included additional cryptographic tools [19, 46, 70]. More
recent theoretical work tackles similar challenges of infre-
quently changing data — [45] assumes that the data is drawn
from some set of underlying distributions that aren’t changing,
while [31] assumes that individuals’ data aren’t changing very
frequently — by contrast Honeycrisp only makes assumptions
about the changing nature of answers to queries.

A related approach is used in federated learning; for in-
stance, [11, 14] update complex models, such as neural net-
works, locally on user devices, to avoid sending data to a
centralized aggregator. As with the earlier approaches, the
accuracy gain comes at the expense of privacy.



Smaller-scale systems: Bindschaedler et al. [12] considers
differentially private aggregation with an untrusted aggregator
and a strict star topology (users never communicate with each
other). Their system uses both local and global noise addition
to provide security against collusion between the aggregator
and users. However, [12] requires each user to perform O(n)
public-key encryptions and requires O(n) communication
between each user and the aggregator, and thus is not suitable
in our setting, where n is very large, possibly up to a billion.
Halevi et al. [40] shows how to compute an arbitrary func-
tion in a setting where there are n users and single server. [40]
does not guarantee differential privacy, but the full version
of the paper does outline a system for securely computing a
sum in this model [41][§ 4.3]. However, the users connect to
the server sequentially, and each interaction with the server
requires Q(n) communication, which limits scalability.

Powerful trusted parties: Some existing systems rely on a
trusted party — an assumption Honeycrisp avoids. For instance,
PDDP [20] and PROCHLO [13] both make use of a proxy
to send information from a client to an analyst, [24] uses a
trusted third party, and [52] relies on a trusted dealer to set up
keys. [64] does not rely on trust, but operates in a different
setting where users communicate directly with each other.

Another group of prior solutions relies on the anytrust
model, that is, a group of third parties that must include at
least one honest party in order to protect privacy. The key dif-
ferences to Honeycrisp are that these parties are static, which
makes them easier targets for the adversary, and that they
must each contribute substantial resources, which increases
the difficulty of recruiting such parties. (In contrast, Hon-
eycrisp uses dynamic committees and performs most of the
expensive work at the aggregator, which is untrusted and has
a clear incentive to contribute.) One example of such a system
is UnLynx [36], which uses a group of trusted servers to help
with shuffling, aggregation, and query processing. UnLynx
supports richer queries than Honeycrisp (e.g., a SQL-style
GROUPRY), but the servers’ workload grows linearly with the
data size, so, with a billion users, each server would have to
be quite powerful. Outis [21] similarly supports GDP without
a trusted party but requires two non-colluding semi-honest
servers, with their cryptographic server serving as an analogue
to Honeycrisp’s committee functionality.

Prio [22] is another example from this group that also relies
on a group of special servers for aggregation. As with UnLynx,
each server needs substantial CPU and bandwidth resources.
Like [56], Prio does not provide differential privacy; rather,
it focuses on robustness to malicious user inputs, which it
recognizes using a new kind of zero-knowledge proof. This
makes Prio vulnerable, e.g., to intersection attacks, in which
an analyst performs two identical queries but forces one de-
vice to be offline during the second query, so that its sensitive
data can be computed from the two results. [22] does sketch a
possible extension to add differential privacy; however, even

with this addition, Prio’s proof processing means that it is not
as scalable to massive user bases as Honeycrisp — Prio can
process around 300 submissions per second (which remains
roughly constant no matter the number of servers), so it would
take over 35 days to process a billion submissions.

Computing other functions: We note that there are several
other systems that offer differential privacy while computing
functions over distributed data, such as database joins [60]
or vertex programs [62]. In each case, the underlying tech-
nology is quite specific to the class of functions that is being
targeted: for instance, the core of [60] is a primitive for set-
intersection cardinality, which has no obvious connection to
the aggregations that Honeycrisp can perform.

Other privacy guarantees: Many existing systems for col-
lecting sensitive data rely on secret-sharing [18, 44, 50],
anonymizing networks [35, 51] or even systems like Tor [42,
63] to aggregate the data privately, but do not explicitly make
use of differential privacy.

Bonawitz et al. [15] considers a scenario that is similar
to ours, and presents a protocol that also offers strong pro-
tection against user drop-out during protocol runs. It uses
pair-wise blinding to hide user inputs (as in [1, 38]), but does
not focus on differential privacy. Instead, the server learns
the exact summation, but only if a certain threshold of inputs
are received. This approach requires pair-wise key exchange
between all parties (and thus Q(n?) communication); scalabil-
ity is achieved by performing the aggregation in many small
batches of n values (in the evaluation, n < 500). Since the
threshold is less than n, the anonymity set is on the order of
hundreds, even if there are millions of users.

7 Conclusion

Honeycrisp fills a gap in the space of secure aggregation
systems: it can stretch a given privacy budget much longer
— possibly over as much as ten years — as long as the un-
derlying data does not change too often, and it does so in a
highly scalable way, without introducing a trusted party. Thus,
Honeycrisp could help to address the criticism of existing de-
ployments, e.g., the one operated by Apple, by addressing the
unique threat model that these data aggregators face. Honey-
crisp does require a nontrivial amount of computation from
the (small) group of user devices that is serving on the com-
mittee, but the recent improvements in MPC implementations
(e.g., [3, 16, 73]) make it seem likely that this cost can be
further reduced in the coming years.
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