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ABSTRACT: Short (15-30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs)
specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available
organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional:
when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with
industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to

the closest known native signal peptide and 73% + 9% on average.

For cells to function, proteins must be targeted to their proper
locations. Over one-third of the bacterial proteome that is syn-
thesized in the cytoplasm is exported outside of it, and as a core
requirement, the pathways that control localization are highly
conserved across all domains of life.! To direct a protein
through secretion pathways, organisms encode instructions in a
leading short peptide sequence (typically 15-30 amino acids)
called a signal peptide (SP).2 SPs direct peptide chains to vari-
ous export pathways, including the well-characterized Sec-*~
and Tat-mediated pathways.*’

SPs have been engineered for a variety of industrial and ther-
apeutic purposes, including increased export for recombinant
protein production*® and increasing the therapeutic levels of
proteins secreted from industrial production hosts.” Secretion
facilitates protein production by removing stress caused by pro-
tein accumulation in the cytoplasm, as well as by placing the
burden of separation on the cells, which simplifies downstream
processing. '

Due to the utility and ubiquity of protein secretion pathways,
a significant amount of work has been invested in identifying
SPs in natural protein sequences. Much of this work was pio-
neered by the groups behind the SignalP web server
(http://www.cbs.dtu.dk/services/SignalP/), which first used ar-
tificial neural networks'' and hidden Markov models'? and now
leverages modern deep learning architectures to model SPs.'3
An additional tool from the SignalP team, TargetP, is capable
of identifying SP sequences and classifying them by the path-
way used and the targeted intracellular or extracellular loca-
tion. '

While this is a significant step toward modeling SP sequences
from proteomic data, the challenging task of generating a SP
sequence has yet to be validated in vivo. Indeed, the task of

generating protein sequences of any kind is just beginning to be
tackled.'>"!? Given a desired protein to target for secretion, there
is no universally-optimal directing SP?**! and there is no relia-
ble method for generating a SP with measurable activity. In-
stead, libraries of naturally-occurring SP sequences from the
host organism or phylogenetically-related organisms are tested
for each new protein secretion target.”'*> That these libraries
give functional SPs for new proteins is due to inherent “trans-
ferability” of SP sequences among multiple targets: empirically,
roughly 50%?' to 68%° of natural SPs paired to a protein secre-
tion target produce measurable activity.

Although at one time the space of functional SP sequences
was hypothesized to be quite large under the helical hairpin hy-
pothesis,? subsequent research found that nature has designed
SP sequences to interact with the necessary translocons in vari-
ous pathways.?* While researchers have attempted to generalize
our understanding of SP—protein pairs by developing general SP
design guidelines, those guidelines are heuristics at best and are
limited to modifying existing SPs, not designing new ones.>*>2

Here we present a machine translation model for generating
SP sequences that have a high probability of being functional.
Specifically, we trained a Transformer model®’ to predict SPs
given the mature protein sequences of proteins annotated with
SPs in Swiss-Prot?® from all available organisms. These gener-
ated sequences are predicted by SignalP to have high probabil-
ity of functioning as SPs. Upon in vivo validation in a gram-
positive production organism, we find that 48% of constructs
with generated SPs lead to secreted enzyme activity comparable
to SPs used industrially. The functional generated sequences
share as little as 58% sequence identity to the closest natural SP
and 73% =+ 9% on average.

Results
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Model Description. We cast the SP generation problem as a
translation problem by using the mature protein with the SP se-
quence removed as the source and the corresponding SP se-
quence as the output sequence. We employ the Transformer en-
coder-decoder architecture as first described by Vaswani et al.
(ref. ¥') that leverages an attention mechanism,” which weights
different positions over the entire sequence in order to deter-
mine a representation of that sequence, and remains a state-of-
the-art architecture for machine translation between human lan-
guages.’**! Recent work has also applied the Transformer
model to extract information from protein sequences for use in
downstream protein function prediction and engineering
tasks. 3%

embed

Iiiiii

Protein
to secrete

Training Objective. We apply the Transformer architecture
to SP prediction by treating each of the amino acids as a token
(¢f- machine translation, where words, characters, or subwords
are tokens). The Transformer encoder maps an input sequence
of tokens (the protein amino acids) to a sequence of continuous
representations. Given these representations, the decoder then
generates an output sequence (the SP amino acids) one token at
a time. Each step in this generation depends on the generated
sequence elements preceding the current step and continues un-
til a special <END OF SP> token is generated. Figure 1 illus-
trates the modeling scheme. During training, we pass the de-
coder the true target SP. Training details can be found in Meth-
ods.

Generated
signal peptide

softmax AA

prediction

PROT

Figure 1. Sequence-to-sequence modeling for signal peptide (SP) amino acid sequences. During training, the first ~100 amino acids of the
protein are tokenized and embedded as input for the Transformer Encoder-Decoder architecture with N=5 layers. The output is the SP amino

acid sequence.

Training Data. From Swiss-Prot*® we were able to extract
over 40,000 SP—protein pairs from all domains of life. Protein
secretory pathways are highly conserved, and others have found
that incorporating data from all available organisms boosts ac-
curacy in secretion prediction.'> Additionally, we elect to train
with SP-protein sequences over SP sequences alone, as experi-
mental evidence suggests strong dependence on the protein se-
quence.'** We selected sequence length maximum cutoffs of
70 amino acids and 105 amino acids for the SP and protein, re-
spectively, to capture important motifs while keeping sequences
short for more efficient training.

Model inputs are one-hot encodings of amino acid sequences
of proteins to be secreted without their corresponding signal
peptide. Mature proteins were padded or truncated to 105 resi-
dues, by observing that the loss during training did not decrease
with longer input protein sequences, and the memory and com-
putation required by the Transformer architecture scales quad-
ratically with the sequence length. After truncation and remov-
ing duplicates, 25,000 SP—protein pairs remained, which were
split randomly into training (80%) and validation (20%) sets.
While we chose to restrict our search to the reviewed portion of
UniProt (Swiss-Prot), most of the SPs returned were identified
by computational annotation, and a future alternative is to in-
corporate sequences identified in TTEMBL, allowing a larger

training set for better model prediction. Model outputs are one-
hot encodings of signal peptide amino acid sequences, which
are padded or truncated to 70 residues.

In addition to training on the full dataset, we also trained on
filtered subsets of the full dataset for which we removed se-
quences with >75%, >90%, >95%, or >99% sequence identity
to 28 enzymes from 4 families we selected for experimental val-
idation (further described below) in order to test the model’s
ability to generalize to distant protein sequences. The Trans-
former model was then trained on each of these filtered datasets
and used to generate sequences.

Machine Sequence Generation. Given a trained model that
predicts sequence probabilities, there are many methods by
which protein sequences can be generated.'”'” One such method
is beam search,* which generates a sequence by taking the most
probable amino acid additions from the N-terminus. In tradi-
tional beam search, the size of the beam refers to the number of
unique hypotheses with highest predicted probability for a spe-
cific input that are tracked at each generation step. For example,
a beam size of 5 generates hypotheses from the N to C terminus,
keeping the 5 most probable sequences as the sequence grows.
In this study, we attempt to generate “generalist” SPs, which
have higher probability of functioning across multiple input
protein sequences. To this end, we employed an alternate form

2
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of beam search, which we call “mixed input beam search” with
a beam size of 5 over the decoder in identifying SPs. Our mixed
input beam search generates SP hypotheses for multiple protein
inputs, keeping the SP sequences with highest predicted proba-
bilities. This generation process reflects the natural SPs’ trans-
ferability between proteins to secrete, as 50-68% of natural SPs
from related species exhibit measurable function when tested
against specific enzymes.”®?! By providing the Transformer
model with multiple enzymes, the model has an opportunity to
generate a sequence with high likelihood given multiple inputs,
rather than being forced to generate a SP for an input it is unsure
about.

For this study, we aimed to identify novel SPs (new amino
acid sequences) and test them for secretion of ten enzymes
across four families (amylases, lipases, proteases, and Xy-
lanases) in an industrial gram-positive bacterial (Bacillus sub-
tilis) host. In addition to the ten enzymes tested, we also pro-
vided 31 other enzymes as inputs to generate SPs, in an effort
to increase the transferability of generated SPs to multiple en-
zymes. The enzymes and the SPs generated for them can be
found in Supplementary File 1. Predictions were made based on
models trained on the four cutoffs for sequence identity de-
scribed above.

The generated SP sequences from each cutoff (4 SPs for each
target enzyme) were appended to different protein target se-
quences to test with SignalP. The generated SPs also showed
high probability of functioning as predicted by SignalP 5.0 (av-
erage probability 90.4% + 17.1%, Supplemental Section 1) and
also contain many of the motifs common to SPs (positively
charged N-terminus, hydrophobic core, and terminal AXA mo-
tif). While these heuristics could also be used to generate SPs,
we find that the machine-learning approach generates SPs with
significantly higher predicted probability of functioning than
those generated by heuristics (p-value = 5 X 10728; Supple-
mental Section 1), which agrees with reported experimental dif-
ficulty in applying heuristics to designing SPs.>* We also pro-
vide comparisons to sequences generated by HMMER™ and a
variational autoencoder’ in Supplemental Section 1).

Secreted Enzyme Activity Validation. We then tested the
predicted SPs by expressing SP-protein pairs in a Bacillus sub-
tilis host strain used for secretion of industrial enzymes. We ex-
pressed ten enzymes: 5 amylases, 1 lipase, 2 proteases, and 2
xylanases. Functional secretion was determined by testing fer-
mentation supernatants with the corresponding enzyme activity
assay, as described in Supplemental Table 2.

For the ten enzymes, we tested 1) SPs generated by the Trans-
former model 2) industrial SPs native to Bacillus subtilis (posi-
tive controls) and 3) SPs generated using random source amino
acid sequences. The sequences for 1) and 2) can be found in
Supplementary File 1. For the positive controls, we used six SPs
represented in previous studies for industrial levels of protein
secretion (AptE, LipB, YbdG, Yenl, YkvV, and YvcE).2021%7
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For 3), output SPs were generated by the Transformer model
for input protein sequences, which were made by drawing ran-
domly from random amino acid distributions following a) the
Bacillus amino acid distribution, b) the bacterial amino acid dis-
tribution, and c) a uniform amino acid distribution. The se-
quences can be found in Supplemental Table 4, and the func-
tional classification results are summarized in Table 1. The
measured enzyme activities for each construct, as well as details
for their functional classification, can be found in Supplemental
Section 2. A total of 163 unique constructs were tested.

Table 1: Summary of protein-SP constructs that are func-
tional.

Num Functional Num Tested Perc-e nt
Functional
SPs Generated for o
Random Inputs : 18 6%
Natural SPs 27 34 79%
Generated SPs 53 111 48%

Functional classification is summarized in Supplemental Sec-
tion 2, where enzyme activity in the supernatant is plotted for
visual comparison. SPs Generated for Random Inputs were gen-
erated by the Transformer model given randomized amino acid
sequences for the target protein, as detailed in Methods. Posi-
tive controls are naturally occurring Bacillus signal peptides.
Generated SPs were generated for 41 proteins through mixed
input beam search.

Using native SPs, 79% of constructs with 6 commonly used
SPs resulted in secreted activity. We were pleased to find that a
substantial fraction (48%) of the constructs containing a gener-
ated SP also resulted in significant secreted activity. SPs gen-
erated for random protein inputs were much less likely to lead
to secreted activity. Only one construct containing an SP gener-
ated given random amino acid sequences gave some superna-
tant activity (Protease 05, Supplemental Section 2), which indi-
cates that, in general, a real protein sequence is required for gen-
erating a sensible SP and the model is not relying on other arte-
facts for generation. Additionally, for the 21 generated func-
tional SPs that were tested with multiple proteins, all 21 were
functional for all proteins with which they were tested.

Generated SP-Enzyme Constructs Exhibit Activity Com-
parable to Natural Constructs. The model-generated SP-
enzyme constructs are not only functional; they also exhibit ac-
tivity similar to that of constructs with natural SPs. This is
shown in Figure 2, which illustrates the highest performing nat-
ural and generated SP for each enzyme tested with both. Activ-
ities for all generated constructs can be found for comparison in
Supplemental Section 3. Of the tested enzymes, approximately
half exhibited higher or comparable secreted activity with ma-
chine-generated SPs. Thus, the generated SPs offer comparable
and sometimes significantly higher activity compared to natural
SPs, even with a generative model that was not specifically
trained to optimize secretion levels.
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Figure 2. Generated signal peptides enable secreted enzyme activities that are comparable to natural SPs. The highest-performing natural
(labeled “pos”) and machine-generated (labeled “gen”) SPs are shown for the 7 enzymes where both were tested. Of these 7 enzymes, 4
exhibited the same or higher supernatant activity with generated SPs (top row), and 3 exhibited higher supernatant activity with native
Bacillus SPs (bottom row). P-values are provided for reference for comparing the biological replicates of the best generated and natural SPs
by a two-sided t-test with unequal variance for two independent samples of scores, where the null hypothesis is that the samples have identical

expected values.

Generated Constructs Are Diverse in Sequence. The gen-
erated SPs occupy regions of sequence space that are not known
to have been explored by naturally occurring SPs. The input
protein sequences were removed at various sequence identity
cutoffs from the training set to ensure that predictions were
made for enzyme sequences that the trained model had never
seen before. However, we did not specifically select for SP se-
quences that met a specified diversity threshold, as can be done
to ensure sequence diversity.*

Interestingly, functional generated SPs share on average 73%
+ 9% and as little as 58% sequence identity to the closest SP in
Swiss-Prot (Figure 3A). Multiple sequence alignments (MSAs)
for each of the best generated SPs identified for each enzyme
can be found in Supplemental Section 5. We show the MSA for
the most distant sequence in Figure 3B. In general, the gener-
ated SP retains characteristics of other natural SPs, such as a
positively charged N-terminus, hydrophobic core, and AXA
motif, while sharing low sequence identity (as low as 58%).
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Figure 3. a) Percent sequence identity of various SPs to the closest matching natural SPs in Swiss-Prot, including 1) Functional Generated
SPs (73% + 9%) and 2) Nonfunctional Generated SPs (70% + 8%) b) Multiple sequence alignment of the most diverse functional generated
SP (58% identity to closest natural SP) with native SPs. Color groups follow those in ClustalW.*

SignalP Does Not Discriminate Between Functional and
Non-Functional Constructs with Generated Signal Pep-
tides. Interestingly, the functional classification accuracy of the
best server, SignalP 5.0,'> on the generated SPs is quite low.
Figure 4 shows a receiver-operating curve (ROC) that displays
true positive rate versus false positive rate for secretion proba-
bilities generated by SignalP. As a reminder, random guessing
gives an Area Under the Curve (AUC) of 0.50. SignalP per-
forms quite poorly, with an AUC of only 0.59. However, there
are a few differences in our modeling and validation approaches
worth noting. First, our model is based on the Transformer ar-
chitecture, whereas SignalP relies on bidirectional long short-
term memory (LSTM) cells for longer range sequence interac-
tions. Empirically, attention-based models currently have gen-
erally higher accuracy than LSTMs for protein tasks.>* Addi-
tionally, our specific validation task of secreting functional

enzyme in Bacillus subtilis differs from that of SignalP, which
aims to assign a probability for sequences functioning as SPs
from genomic data across many domains of life. Therefore, alt-
hough SignalP may have the ability to discern natural SPs from
other sequences, it does not appear to classify machine-gener-
ated SPs in Bacillus well, as previously shown by Brockmeier
and coworkers.? This low accuracy may result from an inability
to predict expression in the desired host, which SignalP is not
trained for. In the future, SignalP may be adapted for specific
production organisms in a feedback loop with our model, which
is capable of generating functional sequences to test. We at-
tempted to identify general protein properties from Biopython*
that differed between the functional and nonfunctional SPs, but
were unable to identify any statistically significant differences
(Supplemental Section 4).
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Figure 4. a) Receiver Operating Characteristic (ROC) curve for the prediction of functional constructs with machine-generated SPs. The
SignalP 5.0 web server, an exemplary tool for natural SP annotation, performs poorly on this task, with AUC=0.59 (compared to 0.50 for
random guess). b) Probability predictions for functional and nonfunctional generated SP constructs. Most constructs are predicted to be

functional with high probability.

Discussion

We describe the application of a sequence-to-sequence model
to generate functional peptide sequences that have not been
identified in nature. These sequences accomplish the same
function of directing enzyme secretion to the B. subtilis super-
natant, yet they share as little as 58% sequence identity, and on
average 73% £ 9%, to the closest-aligned recorded SP and thus
explore new regions of sequence space. Enzymes with ma-
chine-generated SPs are expressed with activity levels compa-
rable to those of natural SPs used in industrial enzyme produc-
tion, although they were not explicitly designed to maximize
secretion levels.

This work builds upon existing efforts in protein sequence
generation with deep learning by providing in vivo validation of
predictions. In one other case in which predictions were vali-
dated experimentally, 24% of the malate dehydrogenase en-
zymes from a generative adversarial network (GAN) by in-sam-
ple generation were functional.'® Our approach uses a sequence-
to-sequence approach trained with SP-protein pairs. We were
pleased to find that a high fraction of generated constructs
(98%) were predicted to be functional by SignalP (Supple-
mental Section 1), and a significant fraction (48%) of constructs
were in fact functional in vivo. While SignalP is optimistic in
its predictions, the lower fraction that is functional in vivo and
the volume of heuristics developed for modifying existing
SPs>?326 suggest this remains a challenging engineering task.

Interestingly, the leading existing model trained for identify-
ing SPs is not able to accurately distinguish functional machine-
generated SP sequences from those that are not functional. Be-
cause our model generates sequences that an advanced critic
(SignalP) is not able to discriminate among, coordinating these
two systems in an adversarial approach could increase accuracy
for both sequence generation and discrimination.

Important for both natural and synthetic SPs is whether they
are transferable between secretion targets and host organisms.

In this study, limited to a single round of experimentation, we
used a generation strategy with multiple protein inputs with the
goal of maximizing the probability of the SP functioning for any
protein sequence. Of the functional generated SPs tested with
multiple proteins, all 21 were classified as functional when pre-
pended to all tested proteins. With knowledge that the Trans-
former model can generate functional protein sequences, prob-
ing the accuracy with which this translation strategy is able to
generate SPs specific to desired secretion proteins and whether
these specific SPs are transferable are potential future direc-
tions. Additionally, augmenting the generation process by con-
ditioning on desired metadata, such as the host species, as out-
lined recently by Madani and coworkers,'” may allow tuning SP
sequences to different production organisms, as we have ob-
served that the length distribution of generated SPs (20.3 £4.1)
is lower than that of both Uniprot’s Bacillus SPs (25.5 £ 6.3)
and Brockmeier’s set of Bacillus SPs (28.5 + 5.2).

As the protein modeling field moves toward machine gener-
ation of protein sequences, our understanding of protein simi-
larity must evolve as well. Similarities have historically been
measured by a weighted alignment of linear sequences. How-
ever, we are finding that machine learning is capable of inter-
polating in modeled latent space to reach regions of sequence
space that nature has yet to explore, as nature has significant
physical limitations on its engineering strategies (and our data-
bases, although large, are woefully incomplete). By challenging
and supplementing nature’s generation strategy with machine-
generated sequences to more fully sample sequence space, we
can unlock sequences with new properties and functions.

Materials and Methods

Model training. We trained a Transformer Encoder-Decoder
with 5 layers and a hidden dimension of 550. Each layer had 6
attention heads. The model was trained for 100 epochs with a
dropout rate of 0.1 in each attention head and after each posi-
tion-wise feed-forward layer. Following the original
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Transformer paper,*’ we used periodic positional encodings and
the Adam optimizer. We increased the learning linearly for the
first 12500 batches from 0 to 1e-4 and then decayed by n_steps
" -0.03 after the linear warmup. Models were trained on 1
NVIDIA V100 GPU through a generous grant from the Caltech
Amazon Web Services Compute program.

Data augmentation. We used varying sub-sequences of the
mature protein sequences as source sequences in order to aug-
ment our training dataset, to diminish the effect of choosing one
specific length cutoff, and to make the model more robust. For
mature proteins of length L < 705, the model receives the first
L—10, L -5, and L residues as training inputs. For mature pro-
teins of L >= 105, the model receives the first 95, 100, and 105
amino residues as training inputs. Data for signal peptides were
collected from UniProt.

Bacterial strains, DNA design, and library construction.
The expression vector was constructed from the Bacillus sub-
tilis shuttle vector pHTO1 by removal of the Bsal restriction
sites and replacing the inducible Pgrac promotor with the con-
stitutive promotor Pveg. However, IPTG was included during
expression to ensure no residual or off-site inhibition from the
Lacl fragment still included on the pHT vector. Signal peptide
sequences predicted from the model were reverse translated into
DNA sequences for synthesis using JCat*' for codon optimiza-
tion with Bacillus subtilis (strain 168). Each gene of interest
was modeled at four homology cut-offs resulting in 4 predicted
signal peptides. These 4 signal peptides were synthesized as a
single DNA fragment with spacers including the Bsal re-
striction sites. 8 individual colonies were picked from each
group of 4 predicted signal peptides. Protein sequences were
selected from literature reports of enzymes expressed in Bacil-
lus host systems. Supplemental Excel File 1 lists the enzymes
used in this work and their reported amino acid sequence. Sig-
nal peptide and protein DNA sequences were ordered from
Twist Biosciences and cloned into their E. coli cloning vector.
Bacillus subtilis PY97 was the base strain used for the expres-
sion of enzymes. Native enzymes that could interfere with
measurement were knocked out as indicated in Supplemental
Table 3.

The expression vector backbone, gene of interest, and SP
fragments were amplified via PCR with primers including Bsal
sites and assembled through Golden Gate Assembly, with a
linker GGGGCT sequence (encoding Glycine and Alanine) be-
tween the generated SP and the target protein. Primers used to
amplify each fragment are listed in Supplemental Table 1. Each
linear DNA fragment was agarose gel purified for use in Golden
Gate assembly reactions. The Golden Gate reactions were per-
formed with 700ng vector PCR product, 100ng signal peptide
group PCR product, and 300 ng gene of interest PCR product
in 20pl reactions (2ul 10x T4 Ligase Buffer, 2ul 10x BSA,
0.8ul Bsal-HFv2, 1ul T4 Ligase). The reactions were cycled
35 times (10min, 37°C; 5 min, 16°C) then heat inactivated (5
min, 50°C; 5min, 80°C) before being stored at 4°C for use di-
rectly.

Enzyme expression and functional characterization. All
Bacillus strains were transformed by natural competency as pre-
viously described.* Transformations were plated on LB agar
(10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, 15g/1 agar) sup-
plemented with Spg/ml chloramphenicol and grown overnight
at 37°C. Single colonies were picked and grown overnight in
96-well plates (Whatman #7701-5200) with LB containing 17
pg/ml chloramphenicol then stored as glycerol stocks. For en-
zyme expression, cultures were seeded from glycerol stocks
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into 100 pl LB media and grown overnight at 37°C. A 10 pl
aliquot of the overnight culture was transferred into 500 pl of
2xYT media (16 g/l Tryptone, 10 g/l yeast extract, 5 g/l NaCl)
containing 1mM IPTG and incubated for 48 hrs at either 30°C
or 37°C with shaking (900 rpm, 3 mm throw). Culture super-
natants were clarified by centrifugation (4000 rpm, 10 min) and
used directly in enzyme activity assays. Strains were grown and
expressed in at least three biological replicates from each orig-
inal picked colony.

Enzyme expression quantification was attempted via SDS-
PAGE (BioRad Criterion 10-20 % Tris-HCI) but the observed
expression level was below a quantifiable limit. Enzyme ex-
pression was too low to reliably quantify with SDS-PAGE, so
the relative expression of each enzyme was approximated by
activity measurements. Enzyme activity was measured in the
linear response range for each substrate and reaction condition
as listed in Supplemental Table 2. Intracellular enzyme expres-
sion was assessed by washing the cell pellet after the superna-
tant was removed, and then resuspending in 500 pl of 50 mM
HEPES buffer with 2 mg/ml Lysozyme and incubated for 30
minutes at 37 °C. The resuspended material was centrifuged
again and used directly in enzyme activity assays.

SPs Generated for Random Inputs. SPs were generated by
the trained Transformer model with 99% sequence identity cut-
off for randomized protein inputs following a) the Bacillus
amino acid distribution, b) the bacterial amino acid distribution,
and c) a uniform amino acid distribution. The same mixed input
beam search generation approach was used as detailed in Ma-
chine Sequence Generation. These sequences can be found be-
low in Supplemental Table 4.
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