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ABSTRACT: Short (15-30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) 
specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available 
organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: 
when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with 
industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to 
the closest known native signal peptide and 73% ± 9% on average.

For cells to function, proteins must be targeted to their proper 
locations. Over one-third of the bacterial proteome that is syn-
thesized in the cytoplasm is exported outside of it, and as a core 
requirement, the pathways that control localization are highly 
conserved across all domains of life.1 To direct a protein 
through secretion pathways, organisms encode instructions in a 
leading short peptide sequence (typically 15-30 amino acids) 
called a signal peptide (SP).2 SPs direct peptide chains to vari-
ous export pathways, including the well-characterized Sec-3–5 
and Tat-mediated pathways.6,7  

SPs have been engineered for a variety of industrial and ther-
apeutic purposes, including increased export for recombinant 
protein production2,8 and increasing the therapeutic levels of 
proteins secreted from industrial production hosts.9 Secretion 
facilitates protein production by removing stress caused by pro-
tein accumulation in the cytoplasm, as well as by placing the 
burden of separation on the cells, which simplifies downstream 
processing.10 

Due to the utility and ubiquity of protein secretion pathways, 
a significant amount of work has been invested in identifying 
SPs in natural protein sequences. Much of this work was pio-
neered by the groups behind the SignalP web server 
(http://www.cbs.dtu.dk/services/SignalP/), which first used ar-
tificial neural networks11 and hidden Markov models12 and now 
leverages modern deep learning architectures to model SPs.13 
An additional tool from the SignalP team, TargetP, is capable 
of identifying SP sequences and classifying them by the path-
way used and the targeted intracellular or extracellular loca-
tion.14  

While this is a significant step toward modeling SP sequences 
from proteomic data, the challenging task of generating a SP 
sequence has yet to be validated in vivo. Indeed, the task of 

generating protein sequences of any kind is just beginning to be 
tackled.15–19 Given a desired protein to target for secretion, there 
is no universally-optimal directing SP20,21 and there is no relia-
ble method for generating a SP with measurable activity. In-
stead, libraries of naturally-occurring SP sequences from the 
host organism or phylogenetically-related organisms are tested 
for each new protein secretion target.21,22 That these libraries 
give functional SPs for new proteins is due to inherent “trans-
ferability” of SP sequences among multiple targets: empirically, 
roughly 50%21 to 68%20 of natural SPs paired to a protein secre-
tion target produce measurable activity.  

 Although at one time the space of functional SP sequences 
was hypothesized to be quite large under the helical hairpin hy-
pothesis,23 subsequent research found that nature has designed 
SP sequences to interact with the necessary translocons in vari-
ous pathways.24 While researchers have attempted to generalize 
our understanding of SP–protein pairs by developing general SP 
design guidelines, those guidelines are heuristics at best and are 
limited to modifying existing SPs, not designing new ones.2,25,26 

Here we present a machine translation model for generating 
SP sequences that have a high probability of being functional. 
Specifically, we trained a Transformer model27 to predict SPs 
given the mature protein sequences of proteins annotated with 
SPs in Swiss-Prot28 from all available organisms. These gener-
ated sequences are predicted by SignalP to have high probabil-
ity of functioning as SPs. Upon in vivo validation in a gram-
positive production organism, we find that 48% of constructs 
with generated SPs lead to secreted enzyme activity comparable 
to SPs used industrially. The functional generated sequences 
share as little as 58% sequence identity to the closest natural SP 
and 73% ± 9% on average.  

Results 
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of beam search, which we call “mixed input beam search” with 
a beam size of 5 over the decoder in identifying SPs. Our mixed 
input beam search generates SP hypotheses for multiple protein 
inputs, keeping the SP sequences with highest predicted proba-
bilities. This generation process reflects the natural SPs’ trans-
ferability between proteins to secrete, as 50-68% of natural SPs 
from related species exhibit measurable function when tested 
against specific enzymes.20,21 By providing the Transformer 
model with multiple enzymes, the model has an opportunity to 
generate a sequence with high likelihood given multiple inputs, 
rather than being forced to generate a SP for an input it is unsure 
about. 

For this study, we aimed to identify novel SPs (new amino 
acid sequences) and test them for secretion of ten enzymes 
across four families (amylases, lipases, proteases, and xy-
lanases) in an industrial gram-positive bacterial (Bacillus sub-
tilis) host. In addition to the ten enzymes tested, we also pro-
vided 31 other enzymes as inputs to generate SPs, in an effort 
to increase the transferability of generated SPs to multiple en-
zymes. The enzymes and the SPs generated for them can be 
found in Supplementary File 1. Predictions were made based on 
models trained on the four cutoffs for sequence identity de-
scribed above.  

The generated SP sequences from each cutoff (4 SPs for each 
target enzyme) were appended to different protein target se-
quences to test with SignalP. The generated SPs also showed 
high probability of functioning as predicted by SignalP 5.0 (av-
erage probability 90.4% ± 17.1%, Supplemental Section 1) and 
also contain many of the motifs common to SPs (positively 
charged N-terminus, hydrophobic core, and terminal AXA mo-
tif). While these heuristics could also be used to generate SPs, 
we find that the machine-learning approach generates SPs with 
significantly higher predicted probability of functioning than 
those generated by heuristics (p-value = 5 × 10!"#; Supple-
mental Section 1), which agrees with reported experimental dif-
ficulty in applying heuristics to designing SPs.24 We also pro-
vide comparisons to sequences generated by HMMER35 and a 
variational autoencoder36 in Supplemental Section 1). 

Secreted Enzyme Activity Validation. We then tested the 
predicted SPs by expressing SP-protein pairs in a Bacillus sub-
tilis host strain used for secretion of industrial enzymes. We ex-
pressed ten enzymes: 5 amylases, 1 lipase, 2 proteases, and 2 
xylanases. Functional secretion was determined by testing fer-
mentation supernatants with the corresponding enzyme activity 
assay, as described in Supplemental Table 2.  

For the ten enzymes, we tested 1) SPs generated by the Trans-
former model 2) industrial SPs native to Bacillus subtilis (posi-
tive controls) and 3) SPs generated using random source amino 
acid sequences. The sequences for 1) and 2) can be found in 
Supplementary File 1. For the positive controls, we used six SPs 
represented in previous studies for industrial levels of protein 
secretion (AprE, LipB, YbdG, YcnJ, YkvV, and YvcE).20,21,37 

For 3), output SPs were generated by the Transformer model 
for input protein sequences, which were made by drawing ran-
domly from random amino acid distributions following a) the 
Bacillus amino acid distribution, b) the bacterial amino acid dis-
tribution, and c) a uniform amino acid distribution. The se-
quences can be found in Supplemental Table 4, and the func-
tional classification results are summarized in Table 1. The 
measured enzyme activities for each construct, as well as details 
for their functional classification, can be found in Supplemental 
Section 2. A total of 163 unique constructs were tested. 
Table 1: Summary of protein-SP constructs that are func-
tional. 

 Num Functional Num Tested Percent  
Functional 

SPs Generated for 
Random Inputs 1 18 6% 

Natural SPs 27 34 79% 
Generated SPs 53 111 48% 

Functional classification is summarized in Supplemental Sec-
tion 2, where enzyme activity in the supernatant is plotted for 
visual comparison. SPs Generated for Random Inputs were gen-
erated by the Transformer model given randomized amino acid 
sequences for the target protein, as detailed in Methods. Posi-
tive controls are naturally occurring Bacillus signal peptides. 
Generated SPs were generated for 41 proteins through  mixed 
input beam search.   

Using native SPs, 79% of constructs with 6 commonly used 
SPs resulted in secreted activity. We were pleased to find that a 
substantial fraction (48%) of the constructs containing a gener-
ated SP also resulted in significant secreted activity.  SPs gen-
erated for random protein inputs were much less likely to lead 
to secreted activity. Only one construct containing an SP gener-
ated given random amino acid sequences gave some superna-
tant activity (Protease 05, Supplemental Section 2), which indi-
cates that, in general, a real protein sequence is required for gen-
erating a sensible SP and the model is not relying on other arte-
facts for generation. Additionally, for the 21 generated func-
tional SPs that were tested with multiple proteins, all 21 were 
functional for all proteins with which they were tested. 

Generated SP-Enzyme Constructs Exhibit Activity Com-
parable to Natural Constructs. The model-generated SP-
enzyme constructs are not only functional; they also exhibit ac-
tivity similar to that of constructs with natural SPs. This is 
shown in Figure 2, which illustrates the highest performing nat-
ural and generated SP for each enzyme tested with both.  Activ-
ities for all generated constructs can be found for comparison in 
Supplemental Section 3. Of the tested enzymes, approximately 
half exhibited higher or comparable secreted activity with ma-
chine-generated SPs.  Thus, the generated SPs offer comparable 
and sometimes significantly higher activity compared to natural 
SPs, even with a generative model that was not specifically 
trained to optimize secretion levels. 
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Figure 2. Generated signal peptides enable secreted enzyme activities that are comparable to natural SPs. The highest-performing natural 
(labeled “pos”) and machine-generated (labeled “gen”) SPs are shown for the 7 enzymes where both were tested. Of these 7 enzymes, 4 
exhibited the same or higher supernatant activity with generated SPs (top row), and 3 exhibited higher supernatant activity with native 
Bacillus SPs (bottom row). P-values are provided for reference for comparing the biological replicates of the best generated and natural SPs 
by a two-sided t-test with unequal variance for two independent samples of scores, where the null hypothesis is that the samples have identical 
expected values.

Generated Constructs Are Diverse in Sequence. The gen-
erated SPs occupy regions of sequence space that are not known 
to have been explored by naturally occurring SPs. The input 
protein sequences were removed at various sequence identity 
cutoffs from the training set to ensure that predictions were 
made for enzyme sequences that the trained model had never 
seen before. However, we did not specifically select for SP se-
quences that met a specified diversity threshold, as can be done 
to ensure sequence diversity.38 

Interestingly, functional generated SPs share on average 73% 
± 9% and as little as 58% sequence identity to the closest SP in 
Swiss-Prot (Figure 3A). Multiple sequence alignments (MSAs) 
for each of the best generated SPs identified for each enzyme 
can be found in Supplemental Section 5. We show the MSA for 
the most distant sequence in Figure 3B. In general, the gener-
ated SP retains characteristics of other natural SPs, such as a 
positively charged N-terminus, hydrophobic core, and AXA 
motif, while sharing low sequence identity (as low as 58%).  
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Figure 3. a) Percent sequence identity of various SPs to the closest matching natural SPs in Swiss-Prot, including 1) Functional Generated 
SPs (73% ± 9%) and 2) Nonfunctional Generated SPs (70% ± 8%) b) Multiple sequence alignment of the most diverse functional generated 
SP (58% identity to closest natural SP) with native SPs. Color groups follow those in ClustalW.39

SignalP Does Not Discriminate Between Functional and 
Non-Functional Constructs with Generated Signal Pep-
tides. Interestingly, the functional classification accuracy of the 
best server, SignalP 5.0,13 on the generated SPs is quite low. 
Figure 4 shows a receiver-operating curve (ROC) that displays 
true positive rate versus false positive rate for secretion proba-
bilities generated by SignalP. As a reminder, random guessing 
gives an Area Under the Curve (AUC) of 0.50. SignalP per-
forms quite poorly, with an AUC of only 0.59. However, there 
are a few differences in our modeling and validation approaches 
worth noting. First, our model is based on the Transformer ar-
chitecture, whereas SignalP relies on bidirectional long short-
term memory (LSTM) cells for longer range sequence interac-
tions. Empirically, attention-based models currently have gen-
erally higher accuracy than LSTMs for protein tasks.33 Addi-
tionally, our specific validation task of secreting functional 

enzyme in Bacillus subtilis differs from that of SignalP, which 
aims to assign a probability for sequences functioning as SPs 
from genomic data across many domains of life. Therefore, alt-
hough SignalP may have the ability to discern natural SPs from 
other sequences, it does not appear to classify machine-gener-
ated SPs in Bacillus well, as previously shown by Brockmeier 
and coworkers.20 This low accuracy may result from an inability 
to predict expression in the desired host, which SignalP is not 
trained for. In the future, SignalP may be adapted for specific 
production organisms in a feedback loop with our model, which 
is capable of generating functional sequences to test. We at-
tempted to identify general protein properties from Biopython40 
that differed between the functional and nonfunctional SPs, but 
were unable to identify any statistically significant differences 
(Supplemental Section 4). 
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Figure 4. a) Receiver Operating Characteristic (ROC) curve for the prediction of functional constructs with machine-generated SPs. The 
SignalP 5.0 web server, an exemplary tool for natural SP annotation, performs poorly on this task, with AUC=0.59 (compared to 0.50 for 
random guess). b) Probability predictions for functional and nonfunctional generated SP constructs. Most constructs are predicted to be 
functional with high probability.

Discussion 
We describe the application of a sequence-to-sequence model 

to generate functional peptide sequences that have not been 
identified in nature. These sequences accomplish the same 
function of directing enzyme secretion to the B. subtilis super-
natant, yet they share as little as 58% sequence identity, and on 
average 73% ± 9%, to the closest-aligned recorded SP and thus 
explore new regions of sequence space. Enzymes with ma-
chine-generated SPs are expressed with activity levels compa-
rable to those of natural SPs used in industrial enzyme produc-
tion, although they were not explicitly designed to maximize 
secretion levels. 

This work builds upon existing efforts in protein sequence 
generation with deep learning by providing in vivo validation of 
predictions. In one other case in which predictions were vali-
dated experimentally, 24% of the malate dehydrogenase en-
zymes from a generative adversarial network (GAN) by in-sam-
ple generation were functional.15 Our approach uses a sequence-
to-sequence approach trained with SP-protein pairs. We were 
pleased to find that a high fraction of generated constructs 
(98%) were predicted to be functional by SignalP (Supple-
mental Section 1), and a significant fraction (48%) of constructs 
were in fact functional in vivo. While SignalP is optimistic in 
its predictions, the lower fraction that is functional in vivo and 
the volume of heuristics developed for modifying existing 
SPs2,25,26 suggest this remains a challenging engineering task.  

Interestingly, the leading existing model trained for identify-
ing SPs is not able to accurately distinguish functional machine-
generated SP sequences from those that are not functional. Be-
cause our model generates sequences that an advanced critic 
(SignalP) is not able to discriminate among, coordinating these 
two systems in an adversarial approach could increase accuracy 
for both sequence generation and discrimination. 

Important for both natural and synthetic SPs is whether they 
are transferable between secretion targets and host organisms. 

In this study, limited to a single round of experimentation, we 
used a generation strategy with multiple protein inputs with the 
goal of maximizing the probability of the SP functioning for any 
protein sequence. Of the functional generated SPs tested with 
multiple proteins, all 21 were classified as functional when pre-
pended to all tested proteins. With knowledge that the Trans-
former model can generate functional protein sequences, prob-
ing the accuracy with which this translation strategy is able to 
generate SPs specific to desired secretion proteins and whether 
these specific SPs are transferable are potential future direc-
tions. Additionally, augmenting the generation process by con-
ditioning on desired metadata, such as the host species, as out-
lined recently by Madani and coworkers,19 may allow tuning SP 
sequences to different production organisms, as we have ob-
served that the length distribution of generated SPs (20.3 ± 4.1) 
is lower than that of both Uniprot’s Bacillus SPs (25.5 ± 6.3) 
and Brockmeier’s set of Bacillus SPs (28.5 ± 5.2). 

As the protein modeling field moves toward machine gener-
ation of protein sequences, our understanding of protein simi-
larity must evolve as well. Similarities have historically been 
measured by a weighted alignment of linear sequences. How-
ever, we are finding that machine learning is capable of inter-
polating in modeled latent space to reach regions of sequence 
space that nature has yet to explore, as nature has significant 
physical limitations on its engineering strategies (and our data-
bases, although large, are woefully incomplete). By challenging 
and supplementing nature’s generation strategy with machine-
generated sequences to more fully sample sequence space, we 
can unlock sequences with new properties and functions. 

Materials and Methods 
Model training. We trained a Transformer Encoder-Decoder 

with 5 layers and a hidden dimension of 550. Each layer had 6 
attention heads. The model was trained for 100 epochs with a 
dropout rate of 0.1 in each attention head and after each posi-
tion-wise feed-forward layer. Following the original 
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Transformer paper,27 we used periodic positional encodings and 
the Adam optimizer. We increased the learning linearly for the 
first 12500 batches from 0 to 1e-4 and then decayed by n_steps 
^ -0.03 after the linear warmup. Models were trained on 1 
NVIDIA V100 GPU through a generous grant from the Caltech 
Amazon Web Services Compute program.  

Data augmentation. We used varying sub-sequences of the 
mature protein sequences as source sequences in order to aug-
ment our training dataset, to diminish the effect of choosing one 
specific length cutoff, and to make the model more robust. For 
mature proteins of length L < 105, the model receives the first 
L – 10, L – 5, and L residues as training inputs. For mature pro-
teins of L >= 105, the model receives the first 95, 100, and 105 
amino residues as training inputs. Data for signal peptides were 
collected from UniProt. 

Bacterial strains, DNA design, and library construction. 
The expression vector was constructed from the Bacillus sub-
tilis shuttle vector pHT01 by removal of the BsaI restriction 
sites and replacing the inducible Pgrac promotor with the con-
stitutive promotor Pveg.  However, IPTG was included during 
expression to ensure no residual or off-site inhibition from the 
LacI fragment still included on the pHT vector.  Signal peptide 
sequences predicted from the model were reverse translated into 
DNA sequences for synthesis using JCat41 for codon optimiza-
tion with Bacillus subtilis (strain 168).  Each gene of interest 
was modeled at four homology cut-offs resulting in 4 predicted 
signal peptides.  These 4 signal peptides were synthesized as a 
single DNA fragment with spacers including the BsaI re-
striction sites. 8 individual colonies were picked from each 
group of 4 predicted signal peptides.  Protein sequences were 
selected from literature reports of enzymes expressed in Bacil-
lus host systems.  Supplemental Excel File 1 lists the enzymes 
used in this work and their reported amino acid sequence.  Sig-
nal peptide and protein DNA sequences were ordered from 
Twist Biosciences and cloned into their E. coli cloning vector.  
Bacillus subtilis PY97 was the base strain used for the expres-
sion of enzymes.  Native enzymes that could interfere with 
measurement were knocked out as indicated in Supplemental 
Table 3.   

The expression vector backbone, gene of interest, and SP 
fragments were amplified via PCR with primers including BsaI 
sites and assembled through Golden Gate Assembly, with a 
linker GGGGCT sequence (encoding Glycine and Alanine) be-
tween the generated SP and the target protein. Primers used to 
amplify each fragment are listed in Supplemental Table 1.  Each 
linear DNA fragment was agarose gel purified for use in Golden 
Gate assembly reactions.  The Golden Gate reactions were per-
formed with 700ng vector PCR product, 100ng signal peptide 
group PCR product, and 300 ng gene of interest PCR product 
in 20µl reactions (2µl 10x T4 Ligase Buffer, 2µl 10x BSA, 
0.8µl BsaI-HFv2, 1µl T4 Ligase).  The reactions were cycled 
35 times (10min, 37°C; 5 min, 16°C) then heat inactivated (5 
min, 50°C; 5min, 80°C) before being stored at 4°C for use di-
rectly. 

Enzyme expression and functional characterization. All 
Bacillus strains were transformed by natural competency as pre-
viously described.42 Transformations were plated on LB agar 
(10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, 15g/l agar) sup-
plemented with 5µg/ml chloramphenicol and grown overnight 
at 37°C.  Single colonies were picked and grown overnight in 
96-well plates (Whatman #7701-5200) with LB containing 17 
μg/ml chloramphenicol then stored as glycerol stocks.  For en-
zyme expression, cultures were seeded from glycerol stocks 

into 100 µl LB media and grown overnight at 37°C.  A 10 μl 
aliquot of the overnight culture was transferred into 500 μl of 
2xYT media (16 g/l Tryptone, 10 g/l yeast extract, 5 g/l NaCl) 
containing 1mM IPTG and incubated for 48 hrs at either 30°C 
or 37°C with shaking (900 rpm, 3 mm throw).  Culture super-
natants were clarified by centrifugation (4000 rpm, 10 min) and 
used directly in enzyme activity assays.  Strains were grown and 
expressed in at least three biological replicates from each orig-
inal picked colony. 

Enzyme expression quantification was attempted via SDS-
PAGE (BioRad Criterion 10-20 % Tris-HCl) but the observed 
expression level was below a quantifiable limit.  Enzyme ex-
pression was too low to reliably quantify with SDS-PAGE, so 
the relative expression of each enzyme was approximated by 
activity measurements.  Enzyme activity was measured in the 
linear response range for each substrate and reaction condition 
as listed in Supplemental Table 2.  Intracellular enzyme expres-
sion was assessed by washing the cell pellet after the superna-
tant was removed, and then resuspending in 500 μl of 50 mM 
HEPES buffer with 2 mg/ml Lysozyme and incubated for 30 
minutes at 37 °C.  The resuspended material was centrifuged 
again and used directly in enzyme activity assays.   

SPs Generated for Random Inputs. SPs were generated by 
the trained Transformer model with 99% sequence identity cut-
off for randomized protein inputs following a) the Bacillus 
amino acid distribution, b) the bacterial amino acid distribution, 
and c) a uniform amino acid distribution. The same mixed input 
beam search generation approach was used as detailed in Ma-
chine Sequence Generation. These sequences can be found be-
low in Supplemental Table 4. 

ASSOCIATED CONTENT  
Supporting Information 
The Supporting Information is available free of charge on the ACS 
Publications website. 
• Supplementary Tables detailing 1) primers used to generate 

linear DNA fragments, 2) reaction conditions, 3) strains used, 
4) control sequences generated, 5) distribution of protein and 
SP lengths as obtained from UniProt and Supplementary Sec-
tions detailing 1) comparison of alternate generation ap-
proaches, 2) functionality classification from experimental 
validation, 3) activity assays at higher dilution, 4) sequence 
characteristics of functional vs nonfunctional generated SPs, 
and 5) all MSAs for functional SPs, (PDF) 

• Supplementary File 1: amino acid sequences of proteins and 
signal peptides (Excel) 

AUTHOR INFORMATION 
Corresponding Author 
Frances H. Arnold – Department of Chemistry and Chemical En-
gineering, California Institute of Technology; orcid.org/0000-
0002-4027-364X; Email: frances@cheme.caltech.edu 

Author Contributions 
Z.W., F.H.A., and K.K.Y. conceived and directed this study. 
K.K.Y., A.L., and Z.W. obtained training data and trained the 
models. Z.W., M.J.L., and D. Wernick planned the in vivo experi-
mental validation. M.J.L., and A.B. performed the experimental 
validation. Z.W. analyzed the experimental results. D. Weiner ad-
vised the study. Z.W., F.H.A., K.K.Y., and M.J.L. wrote the pa-
per. All authors edited and approved the manuscript. †These au-
thors contributed equally.  

Funding Sources 

Page 7 of 10

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8 

This work was supported by BASF through the California Re-
search Alliance (CARA), the National Science Foundation Divi-
sion of Chemical, Bioengineering, Environmental and Transport 
Systems (CBET-1937902), a National Science Foundation Gradu-
ate Fellowship  GRF2017227007 (to Z.W.), and through generous 
research credits provided by Amazon Web Services. 
Competing Interests 
Provisional patent applications have been filed based on the re-
sults presented here. 
Notes 
The trained Transformer model for generating signal peptides and 
the data used to train the model will be available at 
https://github.com/fhalab/SPGen. 

ACKNOWLEDGMENTS  
The authors would like to thank Yisong Yue, Taehwan Kim, and 
other instructors of the Spring 2017 CS159 course at Caltech for 
initial guidance, and Zheyuan (Steve) Guo and Lucas Schaus for 
helpful discussions. Additionally, the authors would like to thank 
the team members of BASF Enzymes for being gracious hosts over 
the course of this project and Twist Biosciences for providing DNA 
at educational rates.  

ABBREVIATIONS 
SP signal peptide; LSTM long short-term memory; ROC receiver 
operating characteristic; IPTG isopropyl β-d-1-thiogalactopyra-
noside 

REFERENCES 
(1)  Tsirigotaki, A.; De Geyter, J.; Šoštarić, N.; Economou, A.; 

Karamanou, S. Protein Export through the Bacterial Sec Pathway. 
Nat. Rev. Microbiol. 2016, 15 (1), 21–36. DOI: 
10.1038/nrmicro.2016.161. 

(2)  Low, K. O.; Mahadi, N. M.; Illias, R. M. Optimisation of Signal 
Peptide for Recombinant Protein Secretion in Bacterial Hosts. 
Appl. Microbiol. Biotechnol. 2013, 97 (9), 3811–3826. DOI: 
10.1007/s00253-013-4831-z. 

(3)  Wickner, W. The Enzymology Of Protein Translocation Across 
The Escherichia Coli Plasma Membrane. Annu. Rev. Biochem. 
1991, 60 (1), 101–124. DOI: 10.1146/annurev.biochem.60.1.101. 

(4)  Driessen, A. J. M.; Manting, E. H.; van der Does, C. The 
Structural Basis of Protein Targeting and Translocation in 
Bacteria. Nat. Struct. Biol. 2001, 8 (6), 492–498. DOI: 
10.1038/88549. 

(5)  Osborne, A. R.; Rapoport, T. A.; van den Berg, B. Protein 
Translocation by the Sec61/SecY Channel. Annu. Rev. Cell Dev. 
Biol. 2005, 21, 529–550. DOI: 
10.1146/annurev.cellbio.21.012704.133214. 

(6)  Berks, B. C.; Palmer, T.; Sargent, F. Protein Targeting by the 
Bacterial Twin-Arginine Translocation (Tat) Pathway. Curr. 
Opin. Microbiol. 2005, 8 (2), 174–181. DOI: 
10.1016/j.mib.2005.02.010. 

(7)  Natale, P.; Brüser, T.; Driessen, A. J. M. Sec- and Tat-Mediated 
Protein Secretion across the Bacterial Cytoplasmic Membrane-
Distinct Translocases and Mechanisms. Biochim. Biophys. Acta - 
Biomembr. 2008, 1778 (9), 1735–1756. DOI: 
10.1016/j.bbamem.2007.07.015. 

(8)  Mori, A.; Hara, S.; Sugahara, T.; Kojima, T.; Iwasaki, Y.; 
Kawarasaki, Y.; Sahara, T.; Ohgiya, S.; Nakano, H. Signal 
Peptide Optimization Tool for the Secretion of Recombinant 
Protein from Saccharomyces Cerevisiae. J. Biosci. Bioeng. 2015, 
120 (5), 518–525. DOI: 10.1016/j.jbiosc.2015.03.003. 

(9)  Zhang, L.; Leng, Q.; Mixson, A. J. Alteration in the IL-2 Signal 
Peptide Affects Secretion of Proteins in Vitro and in Vivo. J. 
Gene Med. 2005, 7 (3), 354–365. DOI: 10.1002/jgm.677. 

(10)  Mergulhão, F. J. M.; Summers, D. K.; Monteiro, G. A. 
Recombinant Protein Secretion in Escherichia Coli. Biotechnol. 
Adv. 2005, 23 (3), 177–202. DOI: 
10.1016/j.biotechadv.2004.11.003. 

(11)  Nielsen, H.; Engelbrecht, J.; Brunak, S.; Heijne, G. Von. A 
Neural Network Method for Identification of Prokaryotic and 

Eukaryotic Signal Peptides and Prediction of Their Cleavage 
Sites. Int. J. Neural Syst. 1997, 8 (05n06), 581–599. DOI: 
10.1142/S0129065797000537. 

(12)  Nielsen, H.; Krogh, A. Prediction of Signal Peptides and Signal 
Anchors by a Hidden Markov Model. Intell. Syst. Mol. Biol. 1998, 
6, 122–130. 

(13)  Almagro Armenteros, J. J.; Tsirigos, K. D.; Sønderby, C. K.; 
Petersen, T. N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, 
H. SignalP 5.0 Improves Signal Peptide Predictions Using Deep 
Neural Networks. Nat. Biotechnol. 2019, 37 (4), 420–423. DOI: 
10.1038/s41587-019-0036-z. 

(14)  Armenteros, J. J. A.; Salvatore, M.; Emanuelsson, O.; Winther, 
O.; Heijne, G. von; Elofsson, A.; Nielsen, H. Detecting Novel 
Sequence Signals in Targeting Peptides Using Deep Learning. 
Life Sci. Alliance 2019, 2 (5). DOI: 10.1101/639203. 

(15)  Repecka, D.; Jauniskis, V.; Karpus, L.; Rembeza, E.; Zrimec, J.; 
Poviloniene, S.; Rokaitis, I.; Laurynenas, A.; Abuajwa, W.; 
Savolainen, O.; Meskys, R.; Engqvist, M. K. M.; Zelezniak, A. 
Expanding Functional Protein Sequence Space Using Generative 
Adversarial Networks. bioRxiv 2019, 789719. DOI: 
10.1101/789719. 

(16)  Costello, Z.; Martin, H. G. How to Hallucinate Functional 
Proteins. arXiv 2019, 1903.00458. 

(17)  Brookes, D. H.; Park, H.; Listgarten, J. Conditioning by Adaptive 
Sampling for Robust Design. Proc. Mach. Learn. Res. 2019, 97, 
773–782. 

(18)  Riesselman, A. J.; Ingraham, J. B.; Marks, D. S. Deep Generative 
Models of Genetic Variation Capture the Effects of Mutations. 
Nat. Methods 2018, 15 (10), 816–822. DOI: 10.1038/s41592-
018-0138-4. 

(19)  Madani, A.; Mccann, B.; Naik, N.; Shirish, N.; Namrata, K.; 
Raphael, A.; Socher, P. H. R. ProGen : Language Modeling for 
Protein Generation. bioRxiv 2020 982272. DOI: 
10.1101/2020.03.07.982272 

(20)  Brockmeier, U.; Caspers, M.; Freudl, R.; Jockwer, A.; Noll, T.; 
Eggert, T. Systematic Screening of All Signal Peptides from 
Bacillus Subtilis: A Powerful Strategy in Optimizing 
Heterologous Protein Secretion in Gram-Positive Bacteria. J. 
Mol. Biol. 2006, 362 (3), 393–402. DOI: 
10.1016/j.jmb.2006.07.034. 

(21)  Degering, C.; Eggert, T.; Puls, M.; Bongaerts, J.; Evers, S.; 
Maurer, K. H.; Jaeger, K. E. Optimization of Protease Secretion 
in Bacillus Subtilis and Bacillus Licheniformis by Screening of 
Homologous and Heterologous Signal Peptides. Appl. Environ. 
Microbiol. 2010, 76 (19), 6370–6376. DOI: 
10.1128/AEM.01146-10. 

(22)  Hemmerich, J.; Rohe, P.; Kleine, B.; Jurischka, S.; Wiechert, W.; 
Freudl, R.; Oldiges, M. Use of a Sec Signal Peptide Library from 
Bacillus Subtilis for the Optimization of Cutinase Secretion in 
Corynebacterium Glutamicum. Microb. Cell Fact. 2016, 15 (1), 
208. DOI: 10.1186/s12934-016-0604-6. 

(23)  Engelman, D. M.; Steitz, T. A. Insertion of Proteins into and 
across Membranes : The Helical Hairpin Hypothesis. 1981, 23 
(February), 411–422. DOI: 10.1016/0092-8674(81)90136-7. 

(24)  Duffy, J.; Patham, B.; Mensa-Wilmot, K. Discovery of 
Functional Motifs in H-Regions of Trypanosome Signal 
Sequences. Biochem. J. 2010, 426 (2), 135–145. DOI: 
10.1042/BJ20091277. 

(25)  Owji, H.; Nezafat, N.; Negahdaripour, M.; Hajiebrahimi, A.; 
Ghasemi, Y. A Comprehensive Review of Signal Peptides: 
Structure, Roles, and Applications. Eur. J. Cell Biol. 2018, 97 (6), 
422–441. DOI: 10.1016/j.ejcb.2018.06.003. 

(26)  Freudl, R. Signal Peptides for Recombinant Protein Secretion in 
Bacterial Expression Systems. Microb. Cell Fact. 2018, 17 (1), 
52. DOI: 10.1186/s12934-018-0901-3. 

(27)  Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; 
Gomez, A. N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You 
Need. Adv. Neural Inf. Process. Syst. 2017, 5998–6008. 

(28)  Consortium, U. UniProt: A Worldwide Hub of Protein 
Knowledge. Nucleic Acids Res. 2019, 47 (D1), D506–D515. DOI: 
10.1093/nar/gky1049. 

(29)  Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation 
by Jointly Learning to Align and Translate. CoRR 2014, 
abs/1409.0. 

(30)  Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-
Training of Deep Bidirectional Transformers for Language 

Page 8 of 10

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9 

Understanding. arXiv 2018, 1810.04805. 
(31)  Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; 

Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly 
Optimized BERT Pretraining Approach. arXiv 2019, 
1907.11692. 

(32)  Rives, A.; Goyal, S.; Meier, J.; Guo, D.; Ott, M. C.; Zitnick, L.; 
Ma, J.; Fergus, R. Biological Structure and Function Emerge from 
Scaling Unsupervised Learning to 250 Million Protein 
Sequences. bioRxiv 2019. DOI: 10.1101/622803. 

(33)  Rao, R.; Bhattacharya, N.; Thomas, N.; Duan, Y.; Chen, X.; 
Canny, J.; Abbeel, P.; Song, Y. S. Evaluating Protein Transfer 
Learning with TAPE. Adv. Neural Inf. Process. Syst. 2019, 9686–
9698. 

(34)  Graves, A. Sequence Transduction with Recurrent Neural 
Networks. ICML Work. Represent. Learn. 2012. 

(35)  Eddy, S. R. Profile Hidden Markov Models. Bioinformatics. 
1998. DOI: 10.1093/bioinformatics/14.9.755. 

(36)  Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes. In 
2nd International Conference on Learning Representations, 
ICLR 2014 - Conference Track Proceedings; 2014. 

(37)  Zhang, W.; Yang, M.; Yang, Y.; Zhan, J.; Zhou, Y.; Zhao, X. 
Optimal Secretion of Alkali-Tolerant Xylanase in Bacillus 
Subtilis by Signal Peptide Screening. Appl. Microbiol. 
Biotechnol. 2016, 100 (20), 8745–8756. DOI: 10.1007/s00253-
016-7615-4. 

(38)  Bedbrook, C. N.; Yang, K. K.; Robinson, J. E.; Gradinaru, V.; 
Arnold, F. H. Machine Learning-Guided Channelrhodopsin 
Engineering Enables Minimally-Invasive Optogenetics. Nat. 
Methods 2019, 16, 1176–1184. DOI: 10.1038/s41592-019-0583-

8 
(39)  Thompson, J. D.; Higgins, D. G.; Gibson, T. J. CLUSTAL W: 

Improving the Sensitivity of Progressive Multiple Sequence 
Alignment through Sequence Weighting, Position-Specific Gap 
Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22 
(22), 4673–4680. DOI: 10.1093/nar/22.22.4673. 

(40)  Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. 
J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, 
B.; De Hoon, M. J. L. Biopython: Freely Available Python Tools 
for Computational Molecular Biology and Bioinformatics. 
Bioinformatics 2009, 25 (11), 1422–1423. DOI: 
10.1093/bioinformatics/btp163. 

(41)  Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; 
Hempel, D. C.; Jahn, D. JCat: A Novel Tool to Adapt Codon 
Usage of a Target Gene to Its Potential Expression Host. Nucleic 
Acids Res. 2005, 33 (suppl_2), W526–W531. DOI: 
10.1093/nar/gki376. 

(42)  Koo, B. M.; Kritikos, G.; Farelli, J. D.; Todor, H.; Tong, K.; 
Kimsey, H.; Wapinski, I.; Galardini, M.; Cabal, A.; Peters, J. M.; 
Hachmann, A. B.; Rudner, D. Z.; Allen, K. N.; Typas, A.; Gross, 
C. A. Construction and Analysis of Two Genome-Scale Deletion 
Libraries for Bacillus Subtilis. Cell Syst. 2017, 4, 291–305. DOI: 
10.1016/j.cels.2016.12.013. 

  
 

 
  

Page 9 of 10

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 

10 

M

A

N

Q

R

STOP

M

R

T

T

A

PROT

Signal Peptide 
Output

Protein Input

Page 10 of 10

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


