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Here we introduce a Landau-Lifshitz-based diagonalization (LLD) method, and use this approach to calculate
the effects of the interfacial Dzyaloshinskii-Moriya interactions (DMI) on the radial-type spin wave modes of
magnetic vortices in circular disks. The LLD method is a semianalytical approach that involves the diagonal-
ization of the magnetostatic kernel, exchange, and DMI contributions to extract the system eigenfrequencies
and eigenmodes. The magnetic vortex state provides a convenient model system in which to investigate the
effects of the DMI on the dynamics of magnetic structures with confined geometries. Our calculations show
that the DMI leads to shifts of the mode frequencies that are similar in magnitude to what is observed for spin
waves of a comparable wavelength in extended films. However, unlike what is found in thin films, only the
down-shifted modes are observed in the disks, and these correspond to modes that propagate either radially
outward or inward, depending on the vortex circulation. The semianalytical calculations agree well with full
micromagnetic simulations. This technique also applies to other systems with cylindrical symmetry, for example,
magnetic skyrmions.
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I. INTRODUCTION

Interfacial Dzyaloshinskii-Moriya interactions (DMI) are
important for the stabilization of Néel skyrmions [1–4], and
have also been shown to influence domain wall formation and
propagation [5–7]. The DMI also lead to significant changes
in the dispersion relations for surface spin waves in saturated
magnetic thin films [8,9], where inclusion of a DMI energy
term results in shifts in the frequencies of surface spin waves
that propagate in opposite directions. These theoretically pre-
dicted frequency shifts have been verified experimentally by
several groups, and the detection of this frequency difference
is currently the best available method to obtain quantitative
measurements of the DMI [10–13].

The DMI have intriguing potential for spintronics and
magnonics applications, consequently it is important to de-
velop a full understanding of how the DMI affect dynamics
in patterned magnetic structures. The dynamic excitations in
micro- and nanosized structures are quantized based on the
element size, hence the wavelengths of the spin excitations are
short enough that they are likely to be affected by the DMI. In
the presence of DMI, counterpropagating surface spin waves
that have the same frequency will have different wavelengths
and, as a direct consequence, the spin excitations in confined
geometries can no longer be standing wave excitations [14].
Micromagnetic simulations have also shown that the DMI
should lead to nonreciprocal modes that propagate around the
edges of saturated structures [15], and to changes of the spin
eigenmodes of nonuniform magnetization states [16], where
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the dynamic spectra for spin textures ranging from a magnetic
skyrmion to a vortex were considered as the anisotropy and
DMI were varied. Magnetic vortices, in particular, have often
served as a model system for the study of spin textures. In the
dynamic regime, vortices exhibit modes with gyrotropic [17],
radial [18,19], and azimuthal [20] motion patterns. The vortex
radial modes, which have been described theoretically [21,22]
but without the inclusion of the DMI, involve spin waves that
are quantized in the radial direction, also the direction that
should be maximally affected by interfacial DMI. Hence this
is a convenient system in which to examine the effects of the
DMI on spin textures.

Here we present a semianalytical method to calculate the
static and dynamic effects of DMI on spin textures with
cylindrical symmetries, and use this technique to study the
effects of DMI on the spin excitations of magnetic vortex
states. The semianalytical approach makes it faster and easier
to make predictions and compare to experiments than full
micromagnetic simulations. Moreover, semianalytical expres-
sions provide greater insight into the role of the various
magnetic and geometric parameters. The paper is structured
as follows: In Sec. II we introduce the Landau-Lifshitz based
diagonalization (LLD) method to solve for the spin excitation
frequencies and mode profiles for spin states with cylindrical
symmetry and with DMI. In Sec. III the approach used for
micromagnetic simulations is presented. In Sec. IV we show
that the LLD method and micromagnetic simulations yield
frequencies and mode profiles that agree well for a magnetic
vortex state. The results show that the DMI lead to important
modifications of the spin excitations in patterned structures.
The modifications of the vortex dynamics are illustrative of
what should be expected for other spin configurations, and
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this approach can be easily extended to other systems with
cylindrical symmetry, e.g., skyrmions. Finally, in Sec. V we
provide the conclusions.

II. THEORY

We use a semianalytical approach to study the effects of
the DMI on the eigenfrequencies and eigenmodes of magnetic
vortices confined in cylindrical nanodots of thickness L and
radius R. Radial-type modes with frequencies well above the
vortex core gyrotropic frequency are considered (typically
radial modes are in the GHz range, whereas the gyrotropic
mode ∼100 MHz), and we assume that the magnetization
does not depend on the z coordinate through the disk thick-
ness. Furthermore, the DMI is of the interfacial type with
symmetry breaking along the z direction as observed in heavy
metal/ferromagnetic bilayer or multilayer thin films.

The vortex magnetization distribution in a circular disk
has radial symmetry for |D| � 0 mJ/m2, an assumption that
is supported by micromagnetic simulations that will be dis-
cussed later, hence the problem can be reduced from that
of a two-dimensional (2D) spin distribution M(ρ, φ) to a
one-dimensional (1D) distribution M(ρ). Thus, the magnetic
energy for the vortex in a disk geometry reads

W = −μ0M
2
s πL

∫ R

0
ρ dρ h · m, (1)

where h = H/Ms and m = M/Ms are the reduced effective
field and the reduced magnetization, respectively, and Ms is
the saturation magnetization. The reduced effective field is
given by

h = hex + hDM + hd, (2)

and m and h are each vectors

m =
⎛⎝mρ

mφ

mz

⎞⎠, h =
⎛⎝hρ

hφ

hz

⎞⎠, (3)

where (ρ, φ, z) is the standard cylindrical coordinate system
as depicted in Fig. 1(a). The reduced effective field includes
hDM and hd, which are the reduced effective DMI and de-
magnetization fields, respectively, normalized by Ms, and the
reduced exchange field, which is hex = 2Aex

μ0M2
s
∇2mwhere Aex is

the stiffness constant. Anisotropy is neglected, since vortices
form most readily in magnetically soft materials where the
anisotropy is small in comparison with the magnetostatic
energy of the vortex (FeNi, for instance). We note that inter-
facial DMI usually coexist with some level of out-of-plane
anisotropy. A vortex state will exist for low out-of-plane
anisotropy Ku, whereas for larger Ku, perpendicular domains
or skyrmions will form depending on the DMI.

The DMI between two atomic spins Si and S j is given by

HDM = Di j ·(Si × S j ), (4)

where Di j is the Dzyaloshinskii-Moriya vector, which is per-
pendicular to both the asymmetry direction and the vector
ri j between the spins Si and S j . This atomistic model, trans-
lated to a continuum energy density [8,23] and expressed in
cylindrical coordinates with symmetry breaking along the ẑ

FIG. 1. Static vortex configuration of a disk of radius
R = 250 nm, L = 5 nm with D = 1.5 mJ/m2, where (a) shows a
top view of the spin distribution and the color bar represents mo,z.
White arrows depict the standard in-plane cylindrical coordinate
system (ρ, φ), and cyan arrows show the in-plane rotated cylindrical
coordinate system (s, ξ ). (b) Magnetization components versus ρ,
where solid lines are from micromagnetic simulations, and dashed
lines are solutions obtained from 1D energy minimization. The spin
state has cylindrical symmetry, but the spins are tilted by an angle ψ

away from the φ̂ direction as shown in the inset. For D = 0 mJ/m2,
ψ is zero.

direction, reads

EDM = −D

[
(φ̂ × ẑ) ·

(
m × 1

ρ

∂m
∂φ

)
+ (ρ̂ × ẑ) ·

(
m × m

∂ρ

)]
. (5)

If the magnetization depends only on ρ, the DM energy
density reduces to

EDM = −D

[
mρ

∂mz

∂ρ
− mz

(
∂mρ

∂ρ
+ mρ

ρ

)]
, (6)

and the associated effective field is

hDM = 2D

μoM2
s

[
∂mz

∂ρ
ρ̂ −

(
∂mρ

∂ρ
+ mρ

ρ

)
ẑ

]
. (7)

The static magnetic configuration m0(ρ) is obtained by
minimizing the disk energy, Eq. (1), using the nonlinear
conjugate gradient method with the modified Polak-Ribiere-
Polyak method with guarantee conjugacy [24]. The results,
shown in Fig. 1, indicate that the static magnetization of the
vortex state with DMI is tilted from the azimuthal direction
by an angle ψ = tan−1 (−mρ/mφ ) that is well described by a
Cauchy function ψ (ρ) = a

1+( ρ

σR )
2 for most values of DMI and

dot aspect ratios, where a and σ are fitting parameters. The tilt
ψ goes to zero as D approaches zero.

To describe small oscillations of the magnetizationm(ρ, t )
about the static magnetization m0(ρ) using a 1D model, the
Landau-Lifshitz (LL) equation is written in a new orthogonal
system (s, ξ , z) such that m0(ρ) always lies along the s
direction and the dynamical components of m(ρ, t ) are along
the ξ and z directions. The magnetization is rotated about the z
axis at each ρ position by the tilt angleψ (ρ) using the rotation
matrix

R(ψ ) =
⎛⎝cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎞⎠. (8)
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The reduced magnetization and reduced total effective field in
the rotated frame are

m̃ = R(ψ )m, (9)

h̃ = R(ψ )h, (10)

respectively, with

m̃ =
⎛⎝m̃s

m̃ξ

mz

⎞⎠, h̃ =
⎛⎝h̃s
h̃ξ

hz

⎞⎠. (11)

The LL equation in the rotated frame with no damping reads

∂m̃
∂t

= −|γ |Msm̃ × h̃, (12)

where γ is the gyromagnetic ratio. The magnetization and the
effective field can each be separated into static and dynamic
parts

m̃ = m̃0(ρ) + m̃∼(ρ, t ),

h̃ = h̃0(ρ) + h̃∼(ρ, t ),

where the dynamic magnetization vector m̃∼(ρ, t ) =
(m̃∼,s, 0,m∼,z ) is perpendicular to the static magnetization
vector m̃0 = (0, 1, 0) that is assumed to lie in-plane. This is
a reasonable assumption since the out-of-plane vortex core
is small (typically ∼10 nm), and calculations that include
the out-of-plane tilt yield similar results. The LL equation is
linearized considering that |m∼| � |m0|, m̃0 × h̃0 = 0, and
the temporal variation of the dynamic components is assumed
to be of the form exp(−iωt ). This leads to

−iωm̃∼ = −|γ |Ms(m̃0 × h̃∼ + m̃∼ × h̃0), (13)

which yields a set of two coupled equations:

iωm̃∼,s = |γ |Ms(m̃0h∼,z − m∼,zh̃0,ξ ), (14)

iωm̃∼,z = |γ |Ms(−m̃0h̃∼,s + m̃∼,sh̃0,ξ ), (15)

where terms that involve products of dynamic contributions
are neglected.

The demagnetizing field contribution is hd (r) =
Ĝ[m(r)] where Ĝ is a tensorial nonlocal integral
operator (the tensorial magnetostatic Green’s function
is Gαβ (r, r′) = −(∇r )α (∇r′ )β (4π |r − r′|)−1, expressed
in cylindrical coordinates with r = (ρ, φ, z), and
Ĝ[m(r)] = ∫

Ĝ[r, r′]m(r′)d3r′). Due to the radial symmetry
and constant magnetization m(r) across the disk thickness,
the Green’s functions can be averaged over φφ′ and zz′,

gαβ (ρ, ρ ′)= 1

2πL

∫ L

0
dz

∫ 2π

0
dφ

∫ L

0
dz′

∫ 2π

0
dφ′Gαβ (r, r′).

(16)

The only terms that are nonzero are

gρρ (ρ, ρ ′) = − 1

ρ ′ δ(ρ − ρ ′) + (2 − γ 2)Kell[γ 2] − 2Eell[γ 2]

Lπγ
√

ρρ ′

−
(
2 − γ 2

L

)
Kell

[
γ 2
L

] − 2Eell
[
γ 2
L

]
LπγL

√
ρρ ′ , (17)

gzz(ρ, ρ ′) = − 2

πL

{
1

ρ ′Kell

[
ρ2

ρ ′2

]
(1 − �[ρ − ρ ′])

+ 1

ρ
Kell

[
ρ ′2

ρ2

]
�[ρ − ρ ′] − 1

γ2
Kell

[
γ 2
1

γ 2
2

]}
, (18)

where �[ρ − ρ ′] is the Heaviside step function, Kell,Eell are
elliptic integrals, and

γ =
√

4ρρ ′

(ρ + ρ ′)2
, γL =

√
4ρρ ′

L2 + (ρ + ρ ′)2
, (19)

γ1,2 = 1
2 [

√
(ρ + ρ ′)2 + L2 ∓

√
(ρ − ρ ′)2 + L2]. (20)

It is important to mention that Eqs. (17) and (18) can also
be used for the dynamic calculations since we are in the
magnetostatic regime, i.e., ω � ck, where k is the wave
vector.

The demagnetization field in cylindrical coordinates can
now be reduced to

hd(ρ) = �̂d [m(ρ ′)], (21)

where �̂d is the magnetostatic tensorial nonlocal integral
operator, which operates on m(ρ ′) as follows:

�̂d [m(ρ ′)] =
∫

ĝ(ρ, ρ ′)m(ρ ′)ρ ′dρ ′, (22)

with

�̂d =

⎡⎢⎣Âρρ 0 0

0 0 0

0 0 Âzz

⎤⎥⎦, (23)

Âρρ = ĝρρ diag(ρ ′) �ρ ′, (24)

Âzz = ĝzz diag(ρ
′) �ρ ′, (25)

where the nonlocal integral operators ĝρρ and ĝzz are written in
n × n discretized matrix form with ρ entries as columns, and
ρ ′ entries as rows following Eqs. (17) and (18), diag(ρ ′) is an
n × n diagonal matrix, and�ρ ′ is the cell size. The integration
in Eq. (22) is accomplished by the matrix multiplication
between the nonlocal integral operator �̂d with the column
vector m(ρ ′) (for more details see Appendix A).

The DMI Eq. (7) and exchange effective fields can be
expressed in terms of differential operators as

hDM(ρ) = �̂DMm(ρ), hex(ρ) = �̂exm(ρ), (26)

with

�̂DM =

⎛⎜⎝D̂BC
ρρ 0 D̂ρz

0 0 0

D̂zρ 0 D̂BC
zz

⎞⎟⎠, �̂ex =

⎛⎜⎝ Êρρ 0 ÊBC
ρz

0 Êφφ 0

ÊBC
zρ 0 Êzz

⎞⎟⎠.

(27)

The operators with the superscript BC contain only terms
that contribute to the boundary conditions and in the absence
of DMI these terms vanish. For spin textures with radial
symmetry the extended form of the above operators are

D̂ρz = 2D

μ0M2
s

d

dρ
, (28)
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D̂zρ = − 2D

μ0M2
s

(
d

dρ
+ 1

ρ

)
, (29)

Êρρ = Êφφ = 2Aex

μ0M2
s

(
d2

dρ2
+ 1

ρ

d

dρ
− 1

ρ2

)
, (30)

Êzz = 2Aex

μ0M2
s

(
d2

dρ2
+ 1

ρ

d

dρ

)
, (31)

subject to the boundary conditions

dm
dn

= D

2Aex
(ẑ × n̂) × m. (32)

This form guarantees that the edge magnetization rotates in a
plane containing the edge surface normal [2].

Semianalytical solutions were obtained by extending the
approach presented in Ref. [21] for the case without DMI. In
the absence of DMI, the linearized LL equation Eq. (13) can

be reduced to a single integro-differential equation and then
solved numerically as an eigenvalue problem. The effective
torque exerted by the DMI, however, yields two uncoupled
integro-differential equations, hence the problem is conse-
quently more complicated than the dipole-only case. With
DMI, the problem can be set up as an eigenvalue problem of
the form

iω

|γ |Ms
m̃∼,n = �̂(ρ, ρ ′)m̃∼,n, (33)

with eigenfrequencies obtained as follows:

ωn = −iγMsλn, (34)

where m̃∼,n(ρ) is the nth eigenmode with eigenfrequency ωn,
and λn are the eigenvalues of the operator �̂, which contains
the magnetostatic nonlocal integral operator, and the exchange
and DMI differential operators. The extended form of Eq. (33)
reads

iω

|γ |Ms

(
m̃ρ

mz

)
=

(
m̃0�̂zρ cosψ m̃0�̂zz − h̃o,ξ

h̃o,ξ − m̃0(�̂ρρ cos2 ψ + �̂φφ sin2 ψ ) −m̃0�̂ρz cosψ

)(
m̃ρ

mz

)
, (35)

with

�̂ρρ = Âρρ + Êρρ + D̂BC
ρρ , (36)

�̂zz = Âzz + Êzz + D̂BC
zz , (37)

�̂φφ = Êφφ, (38)

�̂ρz = D̂ρz + ÊBC
ρz , (39)

�̂zρ = D̂zρ + ÊBC
zρ . (40)

Expressions for the operator matrices can be found in
Appendix A.

III. MICROMAGNETIC SIMULATIONS

Micromagnetic simulations were performed using Mu-
Max3 [25] and compared with the results from the LLD
method. The simulations were conducted by first relaxing a
particular spin structure in zero magnetic field to obtain the
ground state. Next, a small out-of-plane perturbation field
of approximately 20 mT was applied, chosen such that the
perturbation of the spins from the zero-field equilibrium state
is a few percent. The spins were next allowed to precess after
removing the perturbation field using a damping parameter
of α = 0.01, and Fourier transforms of the z component of
the dynamical magnetization versus time were performed to
obtain the spectra. Simulations with a sinusoidal driving field
were conducted at selected resonance frequencies and the
modes were constructed from the spin distributions saved
out over two periods after a steady-state response to the
driving field was reached, typically after approximately 50
oscillations. Structures with R and L ranging from 100 to
350 nm and 1 to 10 nm, respectively, were considered.
The simulations were performed using 2 × 2 × L nm3

cells. Selected simulations were also done with 1 × 1 ×
L nm3 cells and the same results were obtained. For
R = 250 nm and L = 5 nm the simulations were repeated
with a 25-nm diameter hole in the center of the disk
with a ring-typed vortex configuration to understand the
role of the vortex core. Parameters typical for Permal-
loy were used for the magnetic layer: Ms = 8 × 105 A/m,
exchange of A = 1.3 × 10−11 J/m2, anisotropy was ne-
glected, and the interfacial DMI was varied from 0 to
2.0 mJ/m2, which is within the range of values that have been
reported for heavy metal/ferromagnetic thin film bilayers
such as Permalloy/Pt [10,11].

IV. RESULTS AND DISCUSSION

The static equilibrium state and the dynamic modes were
calculated using the 1D LLD approach and micromagnetic
simulations. The tilt angles ψ in Fig. 1, obtained using the
1D expressions, were used as input to calculate the the kernel
�̂(ρ, ρ ′) in Eqs. (33) and (35). The static profiles obtained
from the LLD approach and the micromagnetic simulations
agree well, as shown in Fig. 1(b). The DMI leads to an in-
plane tilt of the magnetization that increases with increasing
D. The DMI also leads to changes in m0,z, as shown in Fig. 2.
For a given L and R, the core size increases with increasing
|D|, where the size depends on the magnitude but not the
sign of D, and the spins near the edges tilt out-of-plane in the
direction opposite to the core magnetization. Both of these
effects are most pronounced for small L; for L = 10, 5, and
1 nm, the core sizes atD = 2 mJ/m2 are 28%, 45%, and 100%
larger than the core at D = 0, respectively. Moreover, the out-
of-plane tilt at the disk edge is m0,z ∼ 0.04 for L = 1 nm and
D = 1.5 mJ/m2, and negligible for thicknesses of L � 5 nm.
Note that these calculations assume a constant D to provide
a straightforward means to compare the effects of DMI with
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FIG. 2. Static m0,z profiles for representative D values show an
enlargement of the vortex core and an increasingly prominent out-
of-plane tilt of the edge magnetization with increasing D. The disk
dimensions are (a) R = 100 nm and L = 1 nm, (b) R = 100 nm and
L = 5 nm, (c) R = 250 nm and L = 1 nm, and (d) R = 250 nm and
L = 5 nm.

that of L, which mainly changes the demagnetization energy,
but since the effect is interfacial in nature, the DMI should
be very small for L = 10 nm in a real sample. The tilting of
the edges is a general feature of patterned magnetic structures
with DMI, and changes to the vortex core profile due to the
DMI were also reported in Ref. [26].

The dynamical modes of the magnetic vortex were cal-
culated using micromagnetic simulations and using the LLD
method. Figure 3 shows spectra obtained from micromagnetic
simulations for selected R and D. The spectra for D = 0 show
a strong mode that is the lowest-order radial mode, and a
weaker mode that is the third order mode. A small peak that is
due to the second mode is barely visible between the first and
third modes. The spectra for D > 0, in contrast, show strong
peaks for each of the first, second, and third order modes.
Without DMI the even modes are only weakly excited because
they have a net moment near zero and the odd modes are fa-
vored, whereas with DMI, the odd and even modes have com-

parable amplitudes. A similar effect was observed in Ref. [14]
for simulations of saturated elements. The DMI leads to
a reduction in symmetry that allows all possible modes to
couple to a uniform driving microwave field. For R = 250 nm,
L = 5 nm, and D = 1.5 mJ/m2 the first three modes obtained
from spectral analysis of the average dynamical magnetization
along the z direction vs time obtained from micromagnetic
simulations are f1,Mumax = 4.6 GHz, f2,Mumax = 6.0 GHz, and
f3,Mumax = 7.2 GHz (Fig. 3). These frequencies are close to
the eigenfrequencies obtained from the LLD method: f1 =
5.15 GHz, f2 = 6.51 GHz, and f3 = 7.73 GHz.

The dynamic modes of the magnetic vortex are quantized
along the radial direction. Cross-sectional plots and full mode
maps of the out-of-plane motion m∼,z are shown in Figs. 4
and 5, respectively, for D = 0 and D = 1.5 mJ/m2. For
D = 0 (left panels), the modes are standing wave excitations
with well defined nodes and antinodes, whereas for D = 1.5
mJ/m2 (right panels), the modes have similar wavelengths but
are propagating rather than standing waves. Similar effects
have been noticed in confined 1D systems with DMI [14]. As
shown in Fig. 5, the spin wave excitations appear to move
from the center, outwards. The edge amplitudes are also much
larger when DMI is present. Full animations of Figs. 4 and
5 are included as Supplemental Material [27]. Cross sections
and full mode maps of the in-plane dynamic magnetization
m̃∼,s show similar behavior (see Appendix B). Figure 6 shows
a comparison of the eigenvectors obtained from the LLD
method and the simulations for the first three modes and the
results from the two methods agree well.

The direction of the propagation depends on the circulation
of the vortex c and the sign of D, but it is independent of the
polarity p of the vortex. In fact, for ring-shaped structures in
the vortex state (see the Supplemental Material [27]) where
the central out-of-plane core is absent, the dynamics are virtu-
ally unchanged. Without the core, the DMI-induced tilt angle
ψ goes to zero but the modes still show outward or inward
propagation similar to what is observed in Figs. 4 and 5, hence
the propagating nature of the modes is due to the DMI and is
not a consequence of the static tilt. The propagation direction
for the vortex modes is inward for cD < 1, and outward for
cD > 1, where c = 1 (−1) corresponds to a counterclockwise
(clockwise) circulation. For vortices in a circular disk, the sign

FIG. 3. Normalized spin wave spectra from simulations for disks with L = 5 nm and R from left to right of 150, 200, and 250 nm, where
the D values are, from top to bottom, 0, 1, and 1.5 mJ/m2. The peaks correspond to radial-type vortex modes. Note that only down-shifted
modes are observed for both vortex circulations/chiralities.
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FIG. 4. Time evolution of the cross sectional dynamic magne-
tization profiles m∼,z(ρ ) for the first three modes obtained from
simulations with R = 250 nm and L = 5 nm. The left and right
columns show the modes for D = 0 and 1.5 mJ/m2, respectively.
The light to dark lines are used to show the time evolution over one
half-period T . The modes for D = 0 are standing modes, whereas
the modes for D = 1.5 mJ/m2 show outward motion and the zero
crossings are no longer stationary.

of ψ depends on the signs of D and p but is independent
of c. An inward (outward) static tilt is observed for Dp > 1
(Dp < 1) where p = 1 corresponds to a polarity in the +ẑ
direction. The resonance frequencies are the same for any p,
c, or sign of D.

The LLD method and micromagnetic simulations were
both used to calculate the effect of the DMI magnitude and
the disk aspect ratio L/R on the resonant frequencies and
mode amplitudes. Figure 7 shows that the frequency increases
as a function of L/R for D = 1.5 mJ/m2 [Fig. 7(b)] in a
similar manner as what is observed for D = 0 [Fig. 7(a)]. The
LLD results for D = 0 are the same as those calculated using
Ref. [21] if the exchange contribution is neglected from the
LLD calculations. In Fig. 7 the exchange is included, which
slightly raises the calculated resonance frequencies. Figure 8
shows that the frequencies of all of the observed modes
decrease as a function of increasing D for R = 250 nm and
L = 5 nm, and similar trends are observed for other structure
dimensions (additional plots are included in Appendix B). In
all cases the LLD and micromagnetic simulation results agree
well.

The spectra for the vortices with the DMI show shifts
in the frequency of the respective modes that are similar
to what is observed for spin waves with comparable wave-
lengths in extended films with one important difference: the
frequency shifts in the confined structures are always to lower

FIG. 5. Two-dimensional m∼,z(ρ ) mode maps shown as a func-
tion of time for a disk of radius R = 250 nm and L = 5 nm over
one period, obtained from simulations. The first, second, and third
modes for D = 0 are shown in (a), (c), and (e), and the first, second,
and third modes for D = 1.5 mJ/m2 are shown in (b), (d) and
(f), respectively. Red, white, and blue represent positive, zero, and
negative amplitudes, respectively, hence the nodes are represented
by the white regions.

frequencies as compared to what is observed at D = 0, and
this corresponds to a dominant mode direction. For a thin
film, surface waves with a given wavelength that propagate
in opposite directions have different frequencies, and surface
spin waves at a particular frequency that travel in opposing
directions have different wavelengths. In a confined structure,
the wavelength quantization imposed by the structure size
and/or the spin texture creates a situation where it should
be possible to excite just one of the inward or outward
propagating modes of a particular order at a slightly smaller
frequency than the D = 0 resonance frequency, and the other
at a slightly higher frequency. The outward-propagating mode
is shown in Fig. 5; as mentioned previously, the direction can
be changed by either reversing the sign of D or the vortex
chirality. The oppositely directed, higher frequency mode is,
however, suppressed in the simulations and, according to the
LLD calculations, this is because this mode is not an eigen-
mode of the system. This aspect of how the DMI affects spin
dynamics in confined geometry could be useful for enhancing
nonreciprocity for magnonics applications.

FIG. 6. Eigenvectors (a) m∼,z and (b) m̃∼,s corresponding to the
first three vortex radial modes for R = 250 nm, L = 5 nm, and D =
1.5 mJ/m2. The solid lines are from the simulations, while the dashed
lines show the LLD semianalytical solutions. The eigenfrequencies
obtained from the LLD approach are f1 = (5.15 + 0.0019i) GHz,
f2 = (6.51 + 0.0012i) GHz, and f3 = (7.73 + 0.003i) GHz.
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FIG. 7. Radial spin-wave mode eigenfrequencies as a function
of the disk aspect ratio L/R with R = 250 nm for (a) D = 0 mJ/m2

and (b) D = 1.5 mJ/m2. The corresponding normalized spin wave
amplitudes are shown in (c) and (d) for the same values of D. The
dots show the full simulation results, while the closed symbols (*,
�, and � represent modes 1, 2, and 3, respectively) correspond
to the real part of the semianalytical solutions calculated using the
LLD method. The lines connecting the frequency values from the
simulations are guides to the eye.

In Fig. 7 the resonance frequencies shown from the LLD
calculations are the real part of ω, as calculated from Eq. (35).
For D = 0, the eigenvalues are real, but for |D| > 0 the
eigenvalues are complex. For D = 0, small imaginary parts of
order 1 × 10−14 are obtained, which is a numerical artifact;
the imaginary parts of the eigenfrequencies of the first mode
are as large as ∼1% for |D| > 0, which may be indicative of a
DMI contribution to the damping. In the micromagnetic simu-
lations the linewidths of the first mode are slightly narrower in
Fig. 3 for larger D. The linewidths � f are 0.47 and 0.40 GHz
for R = 250 nm with D = 0 and 1.5 mJ/m2, respectively,
which correspond to fractional linewidths of � f / f1 of 8.81%
and 8.75%, respectively. Theoretical calculations [8] predict
that the DMI should lead to a change in not just the frequency
but also the linewidth for extended thin films, so it is not

FIG. 8. Radial spin-wave mode (a) eigenfrequencies and (b) nor-
malized mode amplitudes as a function of D for a disk with
R = 250 nm and L = 5 nm. The dots are the full simulation results
while the closed symbols correspond to the real part of the semi-
analytical LLD calculations. The lines connecting the simulation
frequency values are guides to the eye.

FIG. 9. Illustration of the discretization scheme used for the LLD
calculations.

surprising that the DMI also lead to linewidth changes for
modes in confined structures.

V. CONCLUSIONS

In conclusion, the DMI lead to important modifications of
the static spin state and the dynamic excitations of magnetic
vortices. These modifications provide insight into the types of
effects that should be observed for other patterned magnetic
structures. These changes are captured well by the LLD
method, which provides a rapid means to gain insight into
the behavior not just for vortex-based systems, but also for
other spin textures with cylindrical symmetry. For the vortex,
the inclusion of the DMI induces a static in-plane tilt of the
spins that increases as a function of D. In the presence of
DMI the radial-type vortex modes are still quantized, however,
the mode frequencies are shifted, the modes are propagating
rather than standing modes, and the even and odd modes are

FIG. 10. Evolution of the cross sectional dynamic magnetization
profiles m̃∼,s(ρ ) for the same modes as Fig. 4 with R = 250 nm and
L = 5 nm. The right and left columns show the modes for D = 0 and
1.5 mJ/m2, respectively, for the first three modes.
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FIG. 11. Two-dimensional m̃∼,s(ρ ) mode maps shown as a func-
tion of time for a disk of radius R = 250 nm and L = 5 nm over
one period for the same modes as Fig. 5. The first, second, and
third modes for D = 0 are shown in (a), (c), and (e), and the first,
second, and third modes for D = 1.5 mJ/m2 are shown in (b), (d),
and (f), respectively. Red, white, and blue represent positive, zero,
and negative amplitudes, respectively.

both excited effectively by a spatially uniform field due to
the symmetry breaking provided by the DMI. There are also
differences at the edges, specifically an out-of-plane static tilt
at the edges is observed, and the edges show higher dynamic
amplitudes in the presence of the DMI. The changes in the
mode frequencies induced by the DMI are similar to what
is predicted for extended films, however, unlike the case
of an extended film, only the downward-shifted modes are
eigenmodes of the dynamic equations, which suggests that the
combination of DMI and confined geometries could lead to
new strategies for nonreciprocal spin wave excitation, or, in
the case of vortices, the outward-only mode could serve as a
pointlike source for spin waves if coupled to an extended film.
The system studied here involves interfacial DMI, however,
the LLD method can be easily modified to apply to systems
with bulk DMI.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Robert Camley
about the DMI. This work is supported by National Science
Foundation DMR Grant No. 1709525. J.D. and K.L.L. were
supported by a UCCS CRCW Award.

APPENDIX A: DEFINITIONS OF MATRIX OPERATORS

The differential DMI and exchange operators can be writ-
ten in matrix form using the finite difference method. We
discretize the first and second order derivatives using a central
difference scheme at each mesh site. For example, the central
difference for the first and second order derivatives of mρ at
the radial position ρ are

dmρ

dρ
≈ −mρ (ρ − �ρ) + mρ (ρ + �ρ)

2�ρ
, (A1)

d2mρ

dρ2
≈ mρ (ρ − �ρ) − 2mρ (ρ) + mρ (ρ + �ρ)

(�ρ)2
, (A2)

FIG. 12. Radial spin wave mode eigenfrequencies and normal-
ized radial spin wave amplitudes as function of D for (a) R =
100 nm, (b) R = 150 nm, (c) R = 200 nm, (d) R = 300 nm, and
(e) R = 350 nm, all with L = 5 nm. Dots show the full simulation
results, while the closed symbols correspond to the real part of the
semianalytical LLD solutions. The lines are guides to the eye.

where mρ (ρ ± �ρ) are the nearest neighbor magnetic mo-
ments of mρ (ρ) at mesh site ρ, and �ρ is the mesh dis-
cretization in the ρ direction. To obtain the derivatives for
the outermost cell at ρ = R − �ρ/2, we extrapolate to find
the hypothetical magnetization at the cell mout,ρ , as shown in
Fig. 9, and use this value to compute the first and second order
derivatives of the magnetization. The missing value mout,i,
with i = ρ, φ, or z, is extrapolated as follows:

mout,i ≈ mi(R − �ρ/2) + �ρ
dmi

dρ

∣∣∣∣
ρ=R

, (A3)
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where the derivative of the magnetization at the boundary ρ =
R is obtained by considering the DMI boundary conditions,
Eq. (32). Therefore, the outer missing neighbors are

mout,ρ ≈ mρ (R − �ρ/2) + �ρ
dmρ

dρ

∣∣∣∣
ρ=R

= mρ (R − �ρ/2) − �ρ
Dmz(R − �ρ/2)

2Aex
, (A4)

mout,z ≈ mz(R − �ρ/2) + �ρ
dmz

dρ

∣∣∣∣
ρ=R

= mz(R − �ρ/2) + �ρ
Dmρ (R − �ρ/2)

2Aex
, (A5)

mout,φ ≈ mφ (R − �ρ/2) + �ρ
dmφ

dρ

∣∣∣∣
ρ=R

= mφ (R − �ρ/2). (A6)

Moreover, the magnetic moment at the cellmin,i with i = ρ, φ,
or z, as Fig. 9 shows, is obtained considering the symmetry
in the spin distribution of the vortex state with DMI. In this
manner, the in-plane magnetization at the cell site min,ρ or
min,φ is obtained by flipping the sign of the corresponding
magnetization at the position ρ = �ρ/2 while the out-of-
plane magnetizationmin,z preserves its direction. In both cases
the magnitude of the magnetization is preserved:

min,ρ = −mρ (�ρ/2), (A7)

min,φ = −mφ (�ρ/2), (A8)

min,z = mz(�ρ/2). (A9)

The first and last rows of the DMI and exchange matrices
below are constructed using the presented symmetry consid-
erations and DMI boundary conditions. Note that the matrices
D̂BC

ρρ , D̂
BC
zz , Ê

BC
ρz , and ÊBC

zρ contain only terms due to DMI
boundary conditions, while the remaining terms are incorpo-
rated into the D̂ρz, etc. matrices.

Using the following notation:

P̂ =

⎛⎜⎜⎜⎜⎜⎝
ρ1

ρ2
ρ3

. . .
ρn−2

ρn−1
ρn

⎞⎟⎟⎟⎟⎟⎠
(A10)

and

F̂BC =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0
0

. . .
0

0
D�ρ

2Aex

⎞⎟⎟⎟⎟⎟⎟⎠, (A11)

the matrix forms of the DMI and exchange differential opera-
tors are

D̂ρz ≈ 2D

μ0M2
s

1

2�ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 0 1

−1 0 1
. . .

−1 0 1
−1 0 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A12)

D̂zρ ≈ − 2D

μ0M2
s

1

2�ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 0 1

−1 0 1
. . .

−1 0 1
−1 0 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 2D

μ0M2
s

P̂−1, (A13)

D̂ρρ = D̂zz ≈ 2D

μ0M2
s

1

2�ρ
F̂BC, (A14)

Êρρ ≈ 2Aex

μ0M2
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

(�ρ)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+ 1

2�ρ
P̂−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 0 1

−1 0 1
. . .

−1 0 1
−1 0 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− P̂−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A15)

Êφφ = Êρρ, (A16)

Êzz ≈ 2Aex

μ0M2
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

(�ρ)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

2�ρ
P̂−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 0 1

−1 0 1
. . .

−1 0 1
−1 0 1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A17)

Êρz = −Êzρ ≈ − 2Aex

μ0M2
s

[
1

(�ρ)2
F̂BC + 1

2�ρ
P−1F̂BC

]
. (A18)

The integral demagnetization operators [Eqs. (24) and (25)] are, in matrix form,

Âρρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gρρ (ρ1, ρ
′
1) gρρ (ρ1, ρ

′
2) gρρ (ρ1, ρ

′
3) · · ·

gρρ (ρ2, ρ
′
1) gρρ (ρ2, ρ

′
2) gρρ (ρ2, ρ

′
3) · · ·

gρρ (ρ3, ρ
′
1) gρρ (ρ3, ρ

′
2) gρρ (ρ3, ρ

′
3) · · ·

...
...

...
gρρ (ρn−2, ρ

′
1) gρρ (ρn−2, ρ

′
2) gρρ (ρn−2, ρ

′
3) · · ·

gρρ (ρn−1, ρ
′
1) gρρ (ρn−1, ρ

′
2) gρρ (ρn−1, ρ

′
3) · · ·

gρρ (ρn, ρ
′
1) gρρ (ρn, ρ

′
2) gρρ (ρn, ρ

′
3) · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ρ ′
1

ρ ′
2

ρ ′
3

. . .
ρ ′
n−2

ρ ′
n−1

ρ ′
n

⎞⎟⎟⎟⎟⎟⎠�ρ ′,

(A19)

Âzz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gzz(ρ1, ρ
′
1) gzz(ρ1, ρ

′
2) gzz(ρ1, ρ

′
3) · · ·

gzz(ρ2, ρ
′
1) gzz(ρ2, ρ

′
2) gzz(ρ2, ρ

′
3) · · ·

gzz(ρ3, ρ
′
1) gzz(ρ3, ρ

′
2) gzz(ρ3, ρ

′
3) · · ·

...
...

...
gzz(ρn−2, ρ

′
1) gzz(ρn−2, ρ

′
2) gzz(ρn−2, ρ

′
3) · · ·

gzz(ρn−1, ρ
′
1) gzz(ρn−1, ρ

′
2) gzz(ρn−1, ρ

′
3) · · ·

gzz(ρn, ρ
′
1) gzz(ρn, ρ

′
2) gzz(ρn, ρ

′
3) · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

ρ ′
1

ρ ′
2

ρ ′
3

. . .
ρ ′
n−2

ρ ′
n−1

ρ ′
n

⎞⎟⎟⎟⎟⎟⎟⎠�ρ ′, (A20)

where the magnetostatic kernels gρρ and gzz should be writ-
ten in matrix form with ρ as columns, and ρ ′ as rows
following Eqs. (17) and (18). Note that these kernels have
numerically integrable singularities at ρ = ρ ′ since the el-
liptic function Kell (γ 2) goes to infinity at ρ = ρ ′. Due to
the singularities, and because gρρ changes rapidly near ρ =

ρ ′, the diagonal and near-diagonal terms of the demag-
netization kernels were numerically integrated over each
cell to obtain the average value within the cell Āρρ,i j =

1
ρ ′
j�ρ ′

∫ ρ ′
j+�ρ ′/2

ρ ′
j−�ρ ′/2 gρρ (ρi, ρ

′)ρ ′dρ ′. The effective fields calcu-

lated using these operators agree well with the effective fields
calculated using MuMax3.
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APPENDIX B: DYNAMIC m̃∼,s(ρ) PROFILES AND
RESULTS FOR ADDITIONAL ASPECT RATIOS

The m̃∼,s(ρ) cross sectional and full dynamic mode pro-
files are shown in Figs. 10 and 11, respectively, for the
same parameters used in Figs. 4 and 5 (R = 250 nm and
L = 5 nm) for D = 0 and 1.5 mJ/m2. The m̃∼,s(ρ) and
m∼,z(ρ) profiles show similar characteristics. Note that the
nodes for the second mode with D = 0 shown in Fig. 10 are
not as well defined as they are for the m∼,z(ρ) profiles in
Fig. 4, which is likely because the second mode for D = 0 is
only weakly excited by the spatially uniform excitation field
that was used for these simulations.

Figure 12 shows the radial spin wave eigenfrequencies
and amplitudes versus D for a variety of disk sizes. In all
cases, the frequency decreases as a function of increasing D,
and the change is more dramatic for the higher order/shorter
wavelength modes, as expected. The amplitude of the first
mode decreases with increasing D. For the third mode, the
amplitude drops slightly and then increases with increasing
D, whereas the mode amplitudes increase for the even modes,
especially the second mode. The amplitude changes are more
pronounced for the larger disks. The trends observed in the
simulations are also captured by the LLD results and the
values are close, though the LLD method often leads to
slightly higher frequencies.
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