GW/PT DESCENDENT CORRESPONDENCE VIA VERTEX
OPERATORS

A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

ABSTRACT. We propose an explicit formula for the GW /PT descendent correspondence in
the stationary case for nonsingular connected projective 3-folds. The formula, written in
terms of vertex operators, is found by studying the 1-leg geometry. We prove the proposal
for all nonsingular projective toric 3-folds. An application to the Virasoro constraints for
the stationary descendent theory of stable pairs will appear in a sequel.
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0. INTRODUCTION

0.1. Correspondences. Let X be a nonsingular projective 3-fold. In [15, [16] 18] the
correspondence between the primary Gromov-Witten and Donaldson-Thomas invariants
was established in the toric case. As indicated in [16], the natural next step is to extend
the map/sheaf correspondence to the full descendent theories of X. A basic compatibility
for the map/sheaf correspondence is that the SL(2)-equivariant counts in geometries of the
form

X = Curve x C?

should specialize, via Mumford’s relation for Hodge classes and the analogous vanishing
on the sheaf side, to the Gromov-Witten/Hurwitz correspondence for curves studied in
[25], 26], 27]. This idea represents the technical starting point of the paper, and our formulas
evolved from the formulas of [27].
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Our goal here is to a present a conjecture relating descendent integrals over the moduli
of stable maps and sheaves. The conjecture is an explicit closed formula for the correspon-
dence for all descendents of cohomologyf] classes

(1) v e H?(X)

of degree at least 2. We refer to the degree restriction as the stationary caseﬂ

Basic results on the map/sheaf descendent correspondence have been obtained in [32], 33]
including general constructions, proofs in the toric and hypersurface cases, calculations of
leading terms, and geometric applications. However, a closed formula for the descendent
correspondence was not found in [32]. We have succeeded here in finding such a formula
for descendents of classes of degree at least 2. For nonsingular projective toric 3-folds, we
prove the stationary descendent correspondence formula (via the methods of [32]).

0.2. Stable pairs. In the years after the first papers, a better moduli space for the sheaf
theory was introduced in [34]: the moduli of stable pairs on X. As the generating series
of descendent integrals in the theory of stable pairs have much better analytic properties,
we will work will the stable pairs theory on the sheaf side (instead of the moduli of ideal
sheaves used in [15, [16, 18]).

Definition 1. A stable pair (F,s) on a 3-fold X is a coherent sheaf F' on X and a section
s € HY(X, F) satisfying the following stability conditions:

e [ is pure of dimension 1,

e the section s: Ox — F has cokernel of dimensional 0.

Let C be the scheme-theoretic support of F. By the purity condition, all the irreducible
components of C' are of dimension 1 (no 0-dimensional components are permitted). By
[34, Lemma 1.6], the kernel of s is the ideal sheaf of C,

Jo = ker(s) C Oy,
and C' has no embedded points. A stable pair
Ox > F

therefore defines a Cohen-Macaulay subcurve C' C X via the kernel of s and a 0-dimensional
subscheme of C' via the support of the cokernel of s.
To a stable pair, we associate the Euler characteristic and the class of the support C of
the sheaf F,
X(F)=n€eZ and [C]|=p¢€ Hy(X,Z).

For fixed n and 3, there is a projective moduli space of stable pairs P, (X, 3). Unless /3 is an
effective curve class, the moduli space P, (X, 3) is empty. An analysis of the deformation
theory and the construction of the virtual cycle [BP,(X, 8)]"" is given [34]. We refer the
reader to [28] [36] for an introduction to the theory of stable pairs.

IWe take singular cohomology always with C-coefficients.
2The terminology agrees with the definition of stationary descendents in case X is a curve [25].
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0.3. Stable pairs descendents. Stable pairs invariants are integrals of the form

PT
w = qn/ W
s ; [P (X, B)

where w =), w, is an element of the formal sum €, ., H*(P.(X, 3)). For fixed 3, the

moduli space P,(X, 3) is empty for all sufficiently negative n. Hence, <w>;T is a Laurent
series in gq.
Descendent classes are defined via universal structures over the moduli space of stable
pairs. Let
m: X x P(X,B) = P.(X, )

be the projection to the second factor, and let

OXxPn(X,ﬁ) — F,
be the universal stable pair on X x P, (X, ). Let

chi(F) =Y chy(F,) € @ H*(X x P.(X, ).

nez nez
The following descendent classes are our main objects of study:

chi(v) = (chy(F) - 7) € @D H™(Pu(X, 8)) for v € H'(X).

nel

Conjecture 2. [34] The stable pairs descendent series

(el (30) -+l ()

is the Laurent expansion of rational function of q for all v; € H*(X) and all k; > 0.

For Calabi-Yau 3-folds, Conjecture [2| reduces immediately to the rationality of the basic
series (1) proven via wall-crossing by [3, 40]. In the presence of descendent insertions,
Conjecture [2| has been proven for rich class of varieties including toric varieties, hypersur-
face, and varieties admitting good degenerations [29, 30, 3], 32} B33].

The generating series for descendents in the DT theory of ideal sheaves have more com-
plicated analytic properties. In particular, the descendent series are not always Laurent
expansions of rational functions. Descendents in DT theory are discussed in Section 4] and
a DT version of Conjecture [2]is presented there.

0.4. Gromov-Witten descendents. Let X be a nonsingular projective 3-fold. Gromov-
Witten theory is defined via integration over the moduli space of stable maps.

Let C' be a possibly disconnected curve with at worst nodal singularities. The genus of
C'is defined by 1 — x(O¢). Let M;,m (X, B) denote the moduli space of maps with possibly
disconnected domain curves C' of genus g with no collapsed connected components. The
latter condition requires each connected component of C' to represent a nonzero class in
Hy(X,Z). In particular, C' must represent a nonzero class . Let

X,8) = X,

ev; : M

/
g,m(
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L; — M,,.(X,5)
denote the evaluation maps and the cotangent line bundles associated to the marked points.
Let v1,...,7%m € H*(X), and let
—

Vi = (L) € H* (M, (X, B)).

The descendent insertions, denoted by 73(7), correspond to the classes Fevi(y) on the
moduli space of stable maps. Let

GW m
<Tk1(71)-~~7km(vm)> Z/, I eFevin
9.5 (M, ., (X,B8)]" ;-7

denote the descendent Gromov-Witten invariants. The associated generating series is de-
fined by

(2) <7'k:1 (1) - .Tkm(7m)> = Z < ﬁ Tki(’)/i)>;\;v w292

GW
d g€Z  1=1

Since the domain components must map nontrivially, an elementary argument shows the
genus ¢ in the sum is bounded from below. Foundational aspects of the theory are

treated, for example, in [2, [7, 12].

0.5. Negative descendants. To state our GW/PT descendent conjecture, we will require
not only the usual Gromov-Witten descendant 75, for £ > 0 but also descendants 7, with
negative k < 0 indices. While the negative subscripts have no geometric meaning for stable
maps, negative descendents will drastically simplify the statement of the correspondence.

Negative descendents reflect the fact that descendent integrals can be interpreted as
matrix coefficients of operators in a Fock space. The Fock space formalism for the study
of ancestors in the GW theory of toric manifolds was developed by Givental [9], and his
computations can be interpreted in terms of negative descendents. For another application
of the negative descendents, see the undergraduate thesis of Pixton [37].

We introduce the negative descendants by means of an auxiliary algebra Heisy with a
linear functional which encodes the Gromov-Witten invariants.

Definition 3. Heisy is the C(u)-algebra generated by the elements
{Tk(y) | kelZ, ve H*(X)}

and satisfying the relations

(@), T (8)] = (1)L /X o B

U2
The standard (shifted) Heisenberg algebra Heis is generated by {7y }xez with relations

k 5k+m+1

i 7] = (—1)* 222

Normally ordered monomials

TirTig - Tig, 11 St <ovve <,
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form a linear basis of Heis. To an element of Heis, we assign an element of Hom(H*(X), Heisx)
by the following rule on basis elements (with linear extension):

e every normally ordered monomial of positive degredﬂ is assigned the C-linear map
TiyTig - - - Tip - H™(X) — Heisx
defined via coproduct (we use the Swidler coproduct convention [I1]):

TuTi T (1) = T (V)T (V) - T () -
e the degree 0 monomial 1 € Heis is assigned to 0 € Hom(H*(X), Heisx).
Furthermore, for o € H*(X), define the product

Q- Ty Tig =" Tzk(’)/) = TiyTig Tik<O{ : ’7) .
We construct a linear functional ()5 on Heisx via Gromov-Witten theory. The positive
elements 7;>0(7y) generate a commutativﬂ subalgebra Heis} C Heisx. The linear functional
GW
(i ()73, (72) - 'Tz'k(%»ﬁ = (7 (1) 7ia (72) -+ o (k) 3
is well-defined on the basis elements of Heis!;. We extend the linear functional to the whole
algebra Heisx by imposing the condition

_ Ok-+2
®) (m()®), = (8),- %2 [
for all ® € Heisx and k < 0. We will often denote (-)5 on Heisx by (-)§V to emphasis the
Gromov-Witten origins.

0.6. Renormalized descendants. The most convenient way to state our conjectural
GW/PT correspondence is to introduce new classes HY T () and H?W(v) for v € H*(X).
The required operators are introduced below.

e The classes HYT(7) are linear combinations of descendents for stable pairs defined in
Section [0.3l Let

HY'(y) = m (HY ) € @D H (Pu(X,B)).

nez

The classes HYT € @,,., H*(X x P,(X, 8)) are defined by

HPT(2) = ikaHZT =38 (%) ixkchk(ﬂ?) ,
k=0 k=0

where

/2 —x/2

€ — €

072 = —cy(Tx), 8(x)= "

3Here, 7;,7;, . .. 7, has degree k.
4f X has odd cohomology, then supercommutative. For simplicity, our analysis will restricted to
commutative case. The modifications for odd cohomology are not significant and are left to the reader.
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In particular, we have

2 3
Co C C
HPT = chy 4 (F) — ﬂchk_l(lp) + 19;0chk_3(19‘) — 322;60Ch’“‘5(F) + ...

e The classes HPW(v) are most naturally constructed in terms of linear combinations of

descendent operators introduced by Getzler [§] . These operators are

> (iuz)" ! 1 (iuz)"t
4 " n = 1 .\ Yn - 1N mn
(4) Z =T Z(1+zcl)na +cl — (1—|—zcl)ncl

n=-—o0o n>0

where we use the standard Pochhammer symbol

I'a+n
(a), = Lt n)
I'(a)
Here, ¢; is treated as a formal symbol, but whenever there is an evaluation, ¢; becomes
C1 (TX)
A straightforward computation shows that the relations for the operators 75, imply the
standard Heisenberg relations for the operators ay:

104(0), 0 (B)] = KSipm / a-B.

X

By definition (@), 7>0(7) is a linear combination of a;(y - &™), i =k +1,...,1,

iu)k )l (1 w2 (SN 1 1
T, = <I€(+)1)—!ak+1—cl—( ]3! (Zl a) ak—i—((k—z 1)!0% (Zlg—l- Z E) ap_1+....
a— a= 1<a<b<k—1
For the first non-negative values of k, the formula yields
i u? 3iucy
(5) To=01, T1 2562—01%, 7—2:—€03— 1

Similarly, 7x<o(7) is a linear combination of a;(y-c¥™), i =k, k—1,...,

2

7 = (—iu)*(—k — Dlag, 4+ (—iw)* 1 (=k)ley <_Z é) A1+ ...

a=1
If we invert the transition matrix from elements a to 7, we obtain
o= —u’r o+... , 0_] = —UT_1 —UCIT_2+ ....

Thus the negative operators ay-o act inside the bracket in a nonstandard manner:

(o)D), = [ /X (_cl(skﬂmmw).y} (@), k<0,

We assemble the operators a in the following generating function:

(6) cb(Z)ZZ% (%>n+é;% (%)”

n>0
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The main objects of our paper are the new operators

(7) HW(z) = Z HEW2 ! = Resy—op ( dydw : 89W)—08(w) :)
k=0

y—w

where y, w, and z satisfy the constraint

(8) yel = weve "

Here, Res,—o, denotes the integral along a small loop around w = oco. The operators HEW
are mutually commutative. To obtain explicit formulas for HEW, we use the Lambert
function to solve equation and express y in terms of x,w. Then, the integral in the
definition of HEW can be interpreted as an extraction of the coefficient in of w=t. We
provide an explicit method to compute HEW in Section . The descendent classes

H,SW(’y) € Heisx

are then obtained using the Swidler coproduct as in Section [0.5] We also use Swidler
coproduct conventions in

HY(y) = [THEY (7). k= (k1. k).

0.7. Equivariant correspondence. All the definitions and construction introduced in
Sections have canonical lifts to the equivariant setting with respect to a group
action on the variety X. Our first result concerns the equivariant GW/PT descendent
correspondence [32].

The most natural setting is the capped vertex formalism from [I8] 32] which we review
briefly here. Let the 3-dimensional torus

T=C"xC"xC"
act on P! x P! x P! diagonally The tangent weights of the T-action at the point
p=0x0x0eP!'xP!xP!
are Si, Sa, 3. The T-equivariant cohomology ring of a point is
Hr(e) = Clsy, s2, 53] -
We have the following factorization of the restriction of class ¢yjco — ¢3 of X to p,
c1cg — 3 = (81 4 $2)(s1 + $3)(S2 + $3)

where ¢; = ¢;(T).

Let U C P! x P! x P! be the T-equivariant 3-fold obtained by removing the three
T-equivariant lines Ly, Lo, L3 passing through the point oo x oo x co. Let D; C U be the
divisor with i coordinate co. For a triple of partitions 1, s, f13, let

GW,T PT,T

(9) <H Tki(P)‘MhM%MS >U’D 7 < HChki(m‘ul’m"M‘g >U,D
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denote the generating series of the T-equivariant relative Gromov-Witten and stable pairs
invariants of the pair

D=u,D,CcU

with relative conditions p; along the divisor D;. The stable maps spaces are always taken

with no contracted connected components. The series @D are the capped descendent vertices
of [1§].

Theorem 4. After the change of variables —q = e the following correspondence between
the 2-leg capped descendent vertices holds:

GW,T PT.T
HEW ‘ > [ —|m\—|uz|< HPT ‘ > ’ d )
<1:[ R ()| pa, o, 0 . H ke (P) |, o, 0 bp o (s1+53)(s2+53)

. i

The result of Theorem [ has two defects. Since the third partition is empty, the result
only covers the 2-leg case. Moreover, the equality of the correspondence is not proven
exactly, but only mod (s; + s3)(s2 + s3). For the l-leg vertex with partitions (uy,0,0),
Theorem [4] can be restricted in two ways to obtain the equality of the correspondence

mod (31 + 83)(81 + 82)(82 + 83) .

The analysis of the 1-leg geometry in Section [2 shows the relationship of the operators
HEW HPT to the formulas of [25, 26, 27].

0.8. Non-equivariant limit. By following the proofs of [32], we derive a non-equivariant
GW/PT descendent correspondence for stationary insertions. For our statements, we will
follow as closely as possible the notation of [32].

Let Heis® be the Heisenberg algebra with generators aez\ (o}, coefficients Cley, o], and
relations

[k, Q] = kbpqmeica.

Let Heis C Heis® be the subalgebra generated by the elements ax~¢, and define the Clcy, ¢o)-
linear map

(10) Heis® — Heis , & — o
by a; = a5 for k£ > 0 and
a/,ﬁ) = (—c10p11 + 6k+2iu)zf>, for k <0.

When restricted to the subalgebra Heis} , the C|cy, co]-linear map is an isomorphism.
For a nonsingular projective 3-fold X and classes v1,...,v € H*(X), the hat operation
make no difference inside the GW bracket,

(11) (HEY(7))SW = (HW(7))$",

because the treatment of the negative descendents on the left side is compatible with the
treatment of the negative descendents by the hat operation.
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Let k = (k1,...,k;) be a vector of non-negative integers. Following [32], we define the
following element of Heis{, :

T 1 P|-1 TTGW
M= o > (=D P = [T HEY
12 set partitions P of {1,...,1} SepP
where Hg;/v = [Lics HE"W and the element HEW € Heis® is a linear combination of monomials

of a;, the expression is given by . The polynomiality of ﬁE in ¢, ¢3 is not obvious (and
will be deduced in Section [3| from the results of [32]).
For classes 71,...,v € H*(X) and a vector k = (ky,. .., k) of non-negative integers, we

define
Hk’1(’71>"'Hk’l(%) = Z Hﬁgs(75)7

set partitions P of {1,...,1} S€P

where vg = [[;cq Vi

Theorem 5. Let X be a nonsingular projective toric 3-fold, and let ; € H=*(X,C). After
the change of variables —q = ™, we have

PT

<Hk1 (1) - Hkl(%)>zw = q’d/2<HZT(%) . HZT(%)>B :

where d = fﬁ c.

The two main restrictions in Theorem [5| are that X is toric and that the classes ~; are
of degree at least 2. We conjecture the first restriction to be unnecessary.

Conjecture 6. Let X be a nonsingular projective 3-fold, and let ; € H=*(X,C). After
the change of variables —q = ™, we have
PT

(Bt o0y = (R ) B0

where d = fﬁ c.

For the precise formula for our GW/PT correspondence, the second restriction (to the
stationary theory) is required — the formula is not correct for descendents of the identity
class.

0.9. Plan of the paper. After reviewing the dressing operator in Section [I} the goal of
Section 2] is to establish the 1-leg version of Theorem [] with

i1 =2 =10
modulo s; + so. We derive our formula for the 1-leg GW/PT descendent correspondence by
an explicit analysis of the Gromov-Witten and stable pairs descendent theory (the modulo
s1+ s2 condition leads to drastic simplification). The results depend crucially on the earlier
study of curves in [25] 26]. We then show our correspondence matches the correspondence
of [32] modulo ¢3 — ¢1¢5 and use the results of [32] to conclude the proof of Theorem [4| in
Section [3l
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To prove the stationary non-equivariant result of Theorem [5] we must check that the
non-equivariant limit formulation of the GW/PT descendent correspondence of [32] does
not develop singularities under the specialization c3 = coc;. The matter is discussed in the
Section [3] Examples are presented in Section [3.7]

We have conjectured Virasoro constraints for the stable pairs descendent theory for all
nonsingular projective 3-folds (the precise formulas for P? appear in [28]). In a sequel
[21] to the present paper, we will apply Theorem |5 to obtain the Virasoro constraints for
stable pairs on toric 3-folds in the stationary case from the proven Virasoro constraints in
Gromov-Witten theory.

Section [4] contains results and conjectures concerning parallel questions about the de-
scendent DT theory of ideal sheaves. The DT descendent series are not always rational
functions in ¢, so a discussion of the analytic properties is necessary.

0.10. Past and future directions. The main formula and the method of the paper is
quite old [22]. Since our first draft was written, many new approaches to understanding
descendent integrals on both sides of the correspondence were developed. In particular,
we now expect a geometric path to the GW/PT descendent correspondence for X should
be possible via relative geometries X/D. For relative theories without higher descendent
insertions, the correspondence is very simple [I5]. After moving the descendents of the
classes

v € H*(X)

to the relative divisor D, the relative GW/PT descendent correspondence there implies a
descendent correspondence for X.

For such a path to succeed, a detailed study of the bubble over D is required. On
the sheaf side, there has been very good progress in explicitly relating the relative and
descendent invariants in fully equivariant K-theory, see [I], 38].

0.11. Acknowledgments. We are grateful to D. Maulik, N. Nekrasov, G. Oberdieck,
A. Pixton, J. Shen, R. Thomas, and Q. Yin for many conversations about descendents and
descendent correspondences.

A. Ob. was partially supported by NSF CAREER grant DMS-1352398. This paper is
based upon work supported by the National Science Foundation under Grant No. 1440140,
while the first two authors were in residence at the Mathematical Sciences Research In-
stitute in Berkeley, California during the Spring semester of 2018. A. Ok. was partially
supported by the Simons Foundation as a Simons Investigator. A. Ok. gratefully ac-
knowledges funding by the Russian Academic Excellence Project '5-100" and RSF grant
16-11-10160. R. P. was partially supported by SNF-200021143274, SNF-200020162928,
ERC-2012-AdG-320368-MCSK, SwissMAP, and the Einstein Stiftung.

This project has received funding from the European Research Council (ERC) under
the European Union Horizon 2020 research and innovation program (grant agreement No.
786580).



GW/PT DESCENDENT CORRESPONDENCE VIA VERTEX OPERATORS 11

1. DRESSING OPERATOR

1.1. Summary. We establish here properties of the dressing operator W which intertwines
the operators A and A of [26]. These results are needed for the proofs of Theorems {4| and
[l of the introduction.

1.2. Notation. We recall the formulas for the operators Ay, of [26] Section 3.2.2]:

euz/2 _ efuz/Z)k:

A = Z.Akzk = %S(uz)tzz( CE Ex(uz),

keZ kEZ

1)
o z(k—r/2 7,0
E(2) = Z e /)Ek_r,k—i-m,
k€Z+31
_{(a—i—l)(a—i—Q)...(a—l—k), k>0

(a+1)x (al@a—1)...(a+k+1)"Y k<0

Here, E;; are the matrix units of the Lie algebraﬂ gl(V') where V is the infinite dimensional
C-vector space with basis labeled by the shifted integers Z + % For a more detailed
treatment, we refer the reader to |26, Section 2].

We will study the operator W which intertwines the operator A with

~ ~ 1 (uz)k
A=) A== —~———
% K u%(tz—i—l)kak’

the u-asymptotic expansion of A at u ~ 0. See [27, Section 4.4.2] for furthelﬁ discussion.
We have used here the operators

. —
1, k=0

By definition, the matrix A can be written as a series in variables u, z, ¢ with coefficients
in the subalgebra of gl(V') generated by the operators

H= Z kEu, and S =oa_;.
k€Z+%
Let us denote the latter subalgebra by g[(V). The algebra g[(V) has a natural basis of
ordered monomials
{H*S"|a,beZ}
with relations
SH=(H+1)S.

Every operator in Section [1|is assumed to be an element of gl(V) but not gl(A>/2V).
6 [27], the notation Ay = Agy1 is used.
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The coefficient in front of each monomial H%S? in the formula for A is a Laurent poly-
nomials of variables z,u,t. In other words,

A€ gl(V)[[2*, w141
Moreover, A is homogeneous of degree —1 if we introduce the grading

(12) degu = degt = —degz=1.

1.3. The differential equation. We consider first the intertwiner between the operators

D = S'+H,

_ 1 1 1 tS
D = D--(H H) where 7-=12
2< -z 1-2 ) where .

and establish the following basic properties.

Lemma 7. There is a unique solution W of the linear differential equation

aw 1 72 72 273 + 372
13 —=-WB h B=H>—"_+H
) = where G—z2 "=z7  30-2"
with the following properties:
() Wheo =1,

(i) W'DW = D,
(iii) W is upper-triangular.

In fact, the unique solution W of Lemma El also intertwines A and A:
Theorem 8. Let W be the operator of Lemmal[7, then
(14) WAW = A.

Existence of the dressing operator W satisfying is shown in [26] by slightly different
methods, but the path via is new (and very efficient).

Proof of Lemma[7. Let W be a solution of the differential equation . The equation has
no singularity at « = 0, so there is a unique solution W satisfying W|,—o = 1. A direct
computation yields

d

— (wbw D) =w <1

du %[B’E]Jr%)WlDl'

Then, after a lengthy but straightforward calculation, we find

11, =1 dD
~|B.D]+ 5= =0,
t [ i du

Thus we obtain the first and second properties of W. The upper-triangularity follows from

the upper-triangularity of B. O
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Proof of Theorem[§. As explained in Section both A and W are sums of monomials
H*S® with coefficients in the ring of Laurent polynomials of variables u, ¢, z and, moreover,
are homogeneous with respect to grading . Therefore, using Zariski density, we need
only prove at the values

z=m, t=1, me&Zsg.

We define the operators

um—i—l um—l—lm

mm » m
—"A|t:1,z:m> 'A(m) = —|~A|t:1,z:m .
m: m:

Alm) —

By [26 Lemma 2] in first case and a direct computation in second case, we find
Alm) el/SeuHQ/QsmequQ/Zefl/S : le’(m) _ Smemu/s .
Thus, to prove complete the proof of Theorem [8, we need only prove the equation
(15) wAOW = AW
Let us Ndenote the operator on the LHS of equation by O and the operator on the
RHS by O. Equation is satisfied at u = 0 since
AV o=8, AD|,o=S, W] =1.
Taking the u derivative of O, we find

dO

1
d_ _ [O,B] +§W71€1/S€uH2/2[H27S]equ2/2€71/SW
U

= [0,B] — %O — W lel/Seut? /2 [y Ge—uH? 2= 1/S Yy
1 ~
= [O,B]—§O—DO,

where we have used the intertwining relations for D and D. A direct (lengthy) computation
yields

d0  ~ 1~~~
— =[0,B] - -0 — DO.
du [ ) ] 2
By the uniqueness of a solution of a linear ODEs, the proof of (15]) is complete. O

2. 1-LEG CORRESPONDENCE
2.1. Background. The 1-leg geometry concerns the space
C? x P!
with the action of the 3-dimensional torus

T=(C)?xC".
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The first factor (C*)? acts on C? with tangent weight s; and s, at the origin 0 € C2. The
second factor C* acts on P! with tangent weights ¢ and —t at the respective fixed points
0,00 € P!. For simplicity, we denote the two fixed points

0x0, 0xooeC?xP!

by 0 and oo respectively.
There is a 2-dimensional torus Ty C T which preserves the natural symplectic form
dzy A dze on C?. Let

HTO(.) = (C[S?ﬂ )
then the restriction to the action T, corresponds to the specialization
§1=—8 =8, t=t.

By the Mumford identity for the Hodge classes, the Ty-equivariant Gromov-Witten invari-
ants of C? x P! are equal to the C*-equivariant Gromov-Witten invariants of P! up to
simple factors of s. The results of [26] solving the equivariant Gromov-Witten theory of
P! in terms of operators A are restated in Section in the form we require here.

In [26], the Gromov-Witten invariants of P! are computed in terms of the Fock space

F =A%V, V=2 2C[*).
Before stating the results of [20], we give a quick overview of the basics about the Fock

space and the related representation theory.

2.2. Fock space. The Fock space A>/2V has a natural basis of the form

A®PY = @Cvs, vg = 2P ANZ2NAZB L
s

where S = {s; > s9 > s3 > ...} C Z+1/2 is an ordered sequence satisfying the properties
(i) Sy =S\ {Z<o— 5} is finite,
(i) S- ={Z<o — 4} \ S is finite.
The fermionic operator 1, on A>/?V is defined by wedge product with the vector z*,
Y -v=2FAw.

An inner product (-,-), on V is defined by letting the monomials z* be an orthonormal
basis. We use the same notation (-,-), for the induced inner product on A®/2V. Let A*
denote the operator adjoint to A with respect to the inner product (-,-),. The adjoint
operators ¢, satisfy the canonical anti-commutation relations,

Vil + i = 0y, itk + i = Uit +iYr = 0.

The projective representation 75 of gl(V') is defined in terms of fermion operators by the
formula

W&"(Ez‘j) = 1/111/1; By
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where we have used normal order notation
: ¢z¢j = i .

The operators ay, of Section[I.2) commute as element of End(V'), but the operators ms(ay)
do not commute — the operators 7y (a4 ) form an Heisenberg algebra. For simpler formulas,
we will drop 75 in our notation. That is, we use oy, for the operators ms(ay):

[, ) = k-
The action of the Heisenberg algebra preserves the eigenspaces of the charge operator
Cvg = (54| = [5-)vs -

The operators Ay, Ay, of Section act on A®/2V via my. We obtain an alternative
proof of Theorem 1 of [26].
Corollary 9. As elements of End(A>/2V) the operators Ay, satisfy
- t
[J‘lk,ﬂl} = (—1)k5k+l—1§-

Proof. Using the homogeneity of fNL, we set u = 1 for the proof. The statement of Corollary
[ is equivalent to the equation

[j[(z),ji(wﬂ —z} (-%)"

which we will derive from the Heisenberg relations for the operators «j. By definition
(after setting u = 1),

[ﬁ@’j(“’)} =2 n <£)n 1+ tz)n(ll Y tw)_,

n#0

On other hand, the summation over positive n after multiplication by (1 + Z) is equal to
zt because

(%)n ((1 + tz)n(nl + tw) _y, + %(1 + tz)nzll + tw)n) -

Z\" 1 z
<E) ((1 +t2)p (1 +tw)_, B (1+ tz)nil + tw)n) B

<%)n (5 (1+ tz)n(ll—l— tw)_n  (L+ tz)nt(i + tw)_n> B

(g)n (1+ tz)nll(l +tw) o, (5)”“ (1+ tz)n(ll—i- tw) 1

Analogously, the summation over negative n after multiplication by 1+ % is equal —z¢. [J
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The Fock space contains a special vacuum vector

Vp = V_1/2,-3/2,-5/2, ...

annihilated by the positive part of the Heisenberg algebra spanned by ay~o. The vectors

%) H a_y, Uy

form a basis of the Fock subspace of vectors of charge 0. For an operator A € End(F), the
shorthand notation

(Al = (v, Alp)).
is commonly used. The Gromov-Witten bracket,

<Tk1([0])7'k2([ Tk‘n | ,u>GWC 7

denotes the C*-equivariant theory of P! relative to co € P'. A central result of [26] is the
following matching.

Theorem 10. [26] The C*-equivariant Gromouv- Witten theory of P! satisfies

(T, ([0]) 7y ([0]) - - 7 ([ |M>GW(c (Apy 1Ay 41 - - - Ap 1 ‘M>rf

2.3. GW in terms of the Fock space. To state the analogous formula for invariants of
X =C*xP!

with descendents placed at the fixed point [0] € C? x P!, a slight modification A of
operator Ay is required. Let

Ay = 2V (AL) + Opy1/u,
where U is the following homomorphism of C[t]-algebras:
U gl(V)[[ut, #5Y] — gl(V) [ 21, s, (u) = dus,  T(ay) = ay/s".
The above modification of operators is chosen in such way that the identification
A1 =1,([0])), keZ

defines a homomorphism from the subalgebra of gl(V)[[u*!, t*!, s*1]] generated A to the
algebra Heisx of Section [0.5] Moreover, the action of

f_[k, k<0

on the vacuum is consistent with (3). After combining previous remarks with Theorem
we obtain the following formula for invariants with the relative condition i ([00]) . . . i ([00])
over oo € P

Proposition 11. The Ty-equivariant Gromov- Witten theory of X satisfies
GW,T ~ . - ar | AT
(T, (0D 7R, ([0]) -+ 7, (1O [ 1) = (AyirAbgst - A1 [ 1)
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2.4. PT in terms of Fock space. The set of half-integers indexes the standard basis
{ei} i€Z+1

of V. We identify the vector space V with 2/2C[z][[z""]] by
e; — 2t

Then, the operator a,, acts as multiplication by =" on 2z/2C[2][[z7!]]. We define the oper-
ator H on V by z4 on z'/2C[][[z""]]. On the sheaf side, the insertion of the descendants
is given by the following formula involving H.

Proposition 12. The Ty-equivariant stable pairs theory of X satisfies

BT 0D )T = (TT e )

where D = H + ay.

Proof. By standard arguments [15] [34], the moduli space P,(X,d) is empty if n < d. On
the other hand if n > d the virtual cycle on P, (X, n) vanishes in the To-theory [19]. If
" P,(X,n) = Hilb, (C?)
is nonsingular of expected dimension, and
chy(F) = (—1)*chg(J)
where J on C? x Hilb,,(C?) is the universal ideal sheaf associated to Hilb, (C?),
7 : C* x Hilb, (C?) — Hilb,(C?).

On the other hand, Nakajima’s construction provides a natural identification between
the Fock space and

&b Hr, (Hilb,(C?)).

n=0
By equivariant Grothendieck-Riemann-Roch, m.ch(J) is expressible in terms of the Chern
character of the tautological sheaf over the Hilbert scheme Hilb, (C?). The operator mul-
tiplication by the latter Chern character is diagonal in the basis of torus fixed points and
has a simple expression in terms of H (see, for example, [13]). In the Fock space model,
we have,

(e/2 — e7*/ 2z, ch(T)(z) = ma(e™*H).

#sH) can be found in [25, Section

g

The last claim of the Proposition follows from the formula e H = (H + ay)e®'. O

Further discussion of the properties of the operator m(e
2.2.1]. In other words, we have

(Tmeron i)™ = (e [T

J
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2.5. The dressing operator and the GW/PT operators. The dressing operator
W =¥ (W)

drastically simplifies the formula for the Gromov-Witten invariants of X. Indeed, by the
results of Section [T}, we have:

— B n 1 " 1 (Z'u)nfll,n
1 14 "A, O+ — T O
(16) (Zx ) Z 1+t t2(1+tx)na
ne”Z n<0
(17) W '+ H)W =D,
a

(18) D=2 S (H 1 n/2) (i) .

s
n>0
where we define

ar = sy, a_p, = Sta_y, — t0_1 + Op_oiu, k>0.

Immediately from the formulas, we see that the operators ay satisfy the same relations
as the operators a;([0]) from Heisy. Moreover, since W is upper-triangular (and thus
preserves the vacuum), we have the following formulas for the invariants:

(19) (e tonly™ " = (TTa® e i)
20 (T ™™ = (TLEpE ey’

To prove ((19), we start from definition (4)) which yields: The first formula is equivalent
to the evaluation of the generating functions for a; from the definition (4)):

(TT e f)™ =

GW, Ty

Then, using Proposition , the vacuum preservation of Wﬁl, and , we find

<HZTM([OD$ M>GW’TO = <Hfl(mi)ea1 ﬂ>?
= <W_1HA(951-)6“1

(iua;)™it 1 (fuz;)™ !

7 n; >0

n

)

(iuxi)”i_l B 1 (luxl)m—l B .
_ ke 7 ST e S T

ng;>
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Equation ((19) follows from these two equations. The proof of is simpler (and uses
Proposition [12]).
In order to approach Theorem [4|in the 1-leg case, we will require the following result.

Proposition 13. The following identity holds in End(F)[[u*!, t£1, s

e”P = f Wexp (i—u(w2 — )+ é(y - w))  exp (Z Sy - w’”)) 3

yl=1/e Y —W 2st mordll

where the integral is taken on the surface defined by the equation
ye—iyt/u _ we—iwt/uesx
In the statement of Proposition [13] we have used normal ordering notation:

aoa_;, 1<0
oGO0 = .
a_;a;, 1>0.

2.6. Proof of Proposition We have seen that the operators H and «,, act respectively
as z-4 and multiplication by z=" on z'/2C[z][[z7!]]. Thus, D, defined by equation (L),
becomes a differential operator acting on the functions of z.

We view D as acting on functions of z from the left. Consider the eigenvalue problem

(21) sDf = \f, f € z"/2Hol(C*),

where Hol(C*) denotes holomorphic single-valued functions on C*. The Laurent series
expansion provides a map from z'/2Hol(C*) to the completion V' of the space V.

Since «,, acts as multiplication by z~", the eigenvalue equation (21)) is equivalent to the
following ODE:

1 d stz? tz 1 =z
- _ = =\ S
L dziu—tz " (@u)} f=2fs () 2(1—x)?’

: . ~1/2
/20 w1 ALtz
f=z P {2375,22 (s+ st )z iu '

The condition f € z'/2C[2][[z7!]] leads to the eigenfunctions:

. LN —1/2
o= (2 e Y2 | = VI ! e = s k+ 1
25t 22 s) z tz ’ 2/

for k € Z.
For h(z) € 1+ z7'C[[z7!]], the operator of multiplication by h(z),

My, : 2% = 2% h(z),

is an invertible endomorphism of V. Similarly, for §(z) € z~'+272C[[27!]], the reparametriza-
tion operator

with solution

Ry : 2 = 0(2)F
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is invertible. We can therefore restate the above computation in terms of multiplication
and reparametrization operators,

(22) sH = R, '"M_'DMRy,
where
w 1y1 1 w i
=—— - -—=1 1—-— 0(z) = 2 e =
8(z) 2512 | <s> z 2 og( zt) 7 () =2"e

In the proof of Proposition [13|so far, we have studied operators in End(V). The claim
of Proposition [13] on the other hand, is about the operators in End(¥). For the remainder
of the proof, we will work in End(F). We will use formula to find an expression for D
in terms of the operators

a, € End(¥)

via the boson/fermion correspondence.
Let us quickly review the key points of the boson/fermion correspondence. It is custom-
ary to assemble fermionic operators in generating functions:

Ya)= Y b, W)= > gt
kezZ+1/2 keZ+1/2

The zero mode of the product of two fermionic generating function gives the exponential
of the operator sxH:

(23) e = [yl (y)v* (ye ") .

Thus, to express e**P in terms of the operators a,, using , we must compute the action
of the reparametrization and scaling operators on ¢ (x) and ¢*(z).

Lemma 14. For g € 27! 4+ 272C|[[z™!]], we have:

R, = o ) altos(s™ (1/2))s.

g™ (1))

Ryt ()R, = v (W) ’

v

where f, stands for the x-derivative of f and g™ is the inverse function

9" (9(2)) = x.

Proof. The matrix coefficients of the operator R, are given by the expansion

R, (") = Z Tipz'

i
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We then have the following formulas with summation indices 4, k ranging in the set 1/2+7Z:
R(R, ' (f) = D Ry(y" =" ARS(f)

k

= ZykRg(zk) Af
k

= Z racy’z' A g
kyi

= Y Ri(y)2 Ay,

where R} is the linear operator adjoint with respect to the scalar product (-, -), with the
orthonormal basis 3*. To complete the proof, we must compute the adjoint operator Ry

ORI = Pune 1/

— — (wlloBg™ (/)R (7). )

w

We conclude
R; (y") = y(log(g™ (1/y))y) Ry gin (y') ,

which implies the first equation of the Lemma. The second equation,

R, ()R, = (R) ™ (0 (1/y)RE)* = (R, (1/y)))* = ¢ (R—l(ll/y)) ’

then follows from the first. O

By applying Lemma [I4] we obtain

IR €I = 0 (g ) ¥ (g ) SO0/

(1/¢ e [§)
-
(24) - v,
lyl=1/e Yy
where y = 0“1+(l/f)’ w = m and € is close to zero. The variables y, w are subject to

the constraint:

0(1/w) = 06(1/y)e**.
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The boson/fermion correspondence is written in terms of these generating functions and
the following auxiliary operators:

Y(a) =Ta" T (2), ¢ (z) =T "2 T _(2),
[i(x) = eFo- (@) gFas (@) , ax(r)=7F Ogp——

where C'is the standard charge operator [25] and T is the shift operator

T(US) = Usy+1,52+1,83+1,... «

The boson/fermion correspondence together with and yields:

dy | , ,
est _ % _y ESFJr(y)F,(U})Sil : wefww/t _ yefzuy/tefsz’
yl=1/e Y VY

where € is very small and S = M, is the operator of multiplication by e®,

xn 1y1 1 w
=— -)-——=zlog(1l——).
8(2) 2st2? * (s) . 2% ( zt)

By Taylor expansion, we obtain

e Ty (z)e % = ' T (z).

Hence, the conjugation by S produces the following result:

f dy—y\/% exp(s(1/y) — 8(1/w))T ()L (w)

Finally, we rewrite the integral in terms of semiforms. Indeed, the implicit equation for

w and y implies:
t t
dy(l—,—) :dw(l—,—> |
uy Tuw

On the other hand, we have
_ . —1/2
8(1/2) — R N
‘ P { o5t s t '
We obtain

Vdyd , :
est _ f Y wF.:,.(y)F_ (’LU) ’ wG_ww/t _ ye—zuy/te—sar .
Y

Combining the above equation with

Iyl (w) =T (y)l-(w) : /(1 —w/y)

yield the formula in the statement of the Lemma. U
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2.7. The 1-leg case. We prove here a weaker 1-leg version of Theorem [4]

U

Theorem 15. After the change of variables ¢ = —e™, we have for any collection of k; > 0
GW,T PT,T
<HHGW ) 1, 0, ®> ' q"“'< TTE (p) |12, 0, @> §

where Tog C T is the subtorus preserving the symplectic form on C?.

Proof. We start by rewriting Proposition [13] after the change of variables

uy uw
y'—>27, 'LUF—)ZT

in the form

(25)
yl=1/e Y 5 5

LI (@ _ M) :

_ a, izt " 1 ay, (izt\ "
=2 (7)) i ()
where y, w are constrained by ye? = we®e®” and
Qr = Sy, Q_p = Sta_y, —tdp_1 + Op_oiu, Kk > 0.
We define a homomorphismﬂ F : Heis — Heis;y by
Flaw) = ax(p), ke zZ\{0}.

The linear map F is a homomorphism of algebras because
F(e): F(@)) = [01(p), 00 (9)] = K [ 9 = kbion(~5).
Moreover, F sends the LHS of to the LHS of since
t=c(Ty), s* = —cy(Ty) .
Let F be the standard Fock space for Heis with the vacuum vector vy,
arvg =0, k<O0.

We denote by Fyeom the Fock space space defined by the action of Heisy; on the vacuum:

ap(p)ug = {/ ( — t0pq1 + 5k+2iu) “plup, k<O.

The homomorphism F induces a canonical homomorphism of the Fock space,
(26) F:F = Fgeoms
by matching vacuum vectors F(vg) = ug since

F(@k)UQ) = arugp , k<0.

"The equivariant cohomology of U is generated over Q[s, t] by the class p of the fixed point.
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The Fock space JFyeom has a natural linear functional which evaluates Gromov-Witten
invariants. Since the elements
k;
H a;*(p)ug

i>0
form a basis of Fycom, we have a natural linear isomorphism between Heis;} and Fgeom. The
isomorphism allow us to define the following linear functional on JFyeop,:

GW,To

(27) w(@) = (@[;)ST,

where 8 = |u|P!. Formula implies that under the identification of the Fock spaces
F and Fyeom, the linear functional corresponds to a pairing in & with the vector

v, = W e ) € .
On the stable pairs side, equation evaluates the the right side of the correspondence

of Theorem [15
q—|ﬂ|< HH;;T([O])‘/J>PT,TO _ <H (sl]{:;)'k] W_lec” M>5"

J J

Since F sends the LHS of to the LHS of , we obtain
(5D o1 el N7 _ T grw G
<H k! woe M> n <HHk <p)‘ﬂ’@7®>U,D

j ;

1
via the evaluation of \Ifﬁw as a pairing in J with v,,. O

Since the Gromov-Witten bracket is compatible with the hat operation (11f), we can
equivalently write the conclusion of Theorem [15] as:

(28) (T o)|uw0.0)" " = o ( TTHET0)

2.8. Lambert function. We explain how to convert the contour integral in definition ([7))
to an explicit formula. The first step is to solve the constraint equation ,

z/0

PT,To

0, @,@>

U,D

ye’ = weve”

We interpret both sides as formal power series in z, and then we can find the solution by
induction on degree of x. In particular, the first few terms of the expansion are:

2 3
Ty z?y zy(2y — 1)
29 =y —
(29) wly) =y O(y+1) + 202(y + 1) 663(y + 1)°
We can therefore write explicit power series for the integrand in formula and find an
effective formula for HSW (z):

+ O(z%).

dw(y) ) 12 . 0(6()-0wl) -
30 Res,—o | dy < |
(30) y < % —

where w(y) is given by and ¢(z) is by (6).
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3. UNIQUENESS OF THE CORRESPONDENCE

3.1. Properties of the correspondence matrix. We define an augmented partition
size | - |* by the formula

AT =1+ N).

i
Let P be the set of all partitions. Let Py the set of partitions of augmented size d, and let
P<aq be the set of partitions of augmented size less than or equal to d,

de C ﬂ)gd cP.
As in Section we set

l
HOW = [ HSY € Heis,  HSY € Heis, ® Cley, ).

i=1
Lemma 16. For every p € Py, we have
(i) ﬁgw € Heis, ® Cley, ¢of |
(i) HSW = 25 + S aeo, bl Nay,
with ay = []'_, ax,.

Proof. The operator sD defined by is a linear combination of monomials in H and ay
with coefficients in C[s, t]. The same holds for every power of sD. Since the operator H is
a quadratic expressionﬁ of oy, with coefficients in C[s, t], we conclude

HW(2) € Heis® ® C[ey, 05/2] .
The integral defining ﬁGW(x) is invariant with respect to the sign change
0— —0.

Indeed, under the sign change the constraint equation turns into

which is equivalent to the original constraint equation after switching y and w. On the
other hand, the integral is unchanged after the switch. Thus, we have proven claim (i).
Definition ((18)) is homogeneous for the homological grading of the generators:

degar =k+1, dega_,=—-k+2, degs=degt=1.

The powers of D are therefore also homogeneous, and claim (ii) follows. U

8H = Zk>0 a_ L.
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3.2. Uniqueness. The 1-leg GW/PT descendent correspondence of Theorem [15(in the hat
form of is

(31) HPT s HOW.
The correspondence rule defines a Clcy, cp]-linear operator
T PPT 5 pOW

where P has Cley, ¢o)-basis H" and PV has C[cy, ¢5]-basis a,,. By Lemma (16| part (i),
T restricts to
Ty: Poy — P,
where the shifted size of the partitions are bounded in the bases on both sides.
There are two operators that encode 1-leg relative Gromov-Witten and stable pairs
theories. The first operator
MEW . pEW _,
has the Gromov-Witten invariants

<%(P)P\>;YIV>’TO , HEDP<«, AEPDP

as matrix entries. The second operator
PT . pPT
My Py =P
has the stable pairs invariants

(HTE) Ny " HEPa, AEP

as matrix entries.

Lemma 17. The operator Ty is an isomorphism and is the unique solution of the corre-

spondence equation
MGWT, = MET.

Proof. That T, is an isomorphism follows from Lemma [16| part (ii). The correspondence
equation is exactly the statement of Theorem [15in form (28))

To derive uniqueness, we will show that the operator M7 is injective. By the con-
struction of the projective representation A>/2V (see for example [25, section 2.2.2]), we
have:

PT,T
<H1F:T(p)’)\>U,D P =pu(N),

where p, = [[, p,, is the product of the shifted Newton polynomials from the ring of the

shifted symmetric functions A* = Q[p1, p2,...| and

. R RN —k
) = 32 [ gt = i Y] -2
is the evaluation of the shifted function at .

Since the products p, span a basis of the ring of the shifted symmetric functions and
the evaluation map

f={f(Mher
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is the Fourier transform in representation theory of S., [24], MJT is injective. U

3.3. Comparing correspondences. The GW/PT correspondence for the standard de-
scendents 7y, is studied in [32]. Since the descendents a; and HYT are the linear combina-
tions of the standard descendents {7, }m<k, the results of [32] hold in our setting here.

Theorem 18. [32] There exists an invertible transformation T : PPT — PW linear over
C[s1, $2, s3] for which the correspondence equation

(T ()M Az Ay = (HET ()| A, Ao As e

holds for all p, A1, A2, A3 € P. Moreover,

(i) I sends PE] to PEY,

(i) the coefficients of T are polynomials in the symmetric functions
c1 = e1(81,89,83), o= ea(S1,892,83), 3= e3(sy,S2,S3).
Corollary 19. The coefficients of T are polynomial in cq,co and
T =Tles=cre -

Proof. The uniqueness of Lemma [17| implies that T = J|;,—_,,. Hence, the coefficients of
J are polynomials of s = s; and ¢t = s3. Since

61’51=*52 = ta 02|51=*52 = _527
and since 7T is symmetric with respect to all permutations of s;, the coefficients of T must
be polynomial in ¢y, ¢s. O

3.4. Poles. The following pole restriction result will play a crucial role in the proof of
Theorem [ in Section 3.5

Lemma 20. The descendent invariants

(ruld Ao As) oy and {chy|As, A, As)

PT,T
U,D

have no poles along the hyperplane s; + s; = 0 if either Ay =0 or \; = (.

Proof. The invariants here are the capped vertices [18],[32]. The stated regularity property
for Gromov-Witten invariants follows from the localization formula [10] for the capped
vertex [I8] section 2]. As explained in [1§],

GW,T
(32) <TN|/\1’)\2’)\3>U,D = Z VGW(TMP‘ID ,27 gvu)'H()‘;ﬁSk—&-bSk-i-%Sk)

ALAG A
3
!
: H Wow (Aky Ay Skt1, Skt2, —Sk, U)
k1
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where the partitions in the sum are constrained by |\;| = |\;|, the half-edge term H is the
edge-term for the local curve theory [4], the term

\IJGW()U M, S1, 52, 83, u) = Z <>\

g

~I
1
2g9—2
— ) u,
53 — Yoo g.d

is the rubber integral, and Vew/(7,|A1, A2, A3, u) is the standard localization vertex [10] in
Gromov-Witten theory.

The rubber integral is regular at s; + s; = 0, the half-edge term is the ratio of the
explicit products of the linear expressions of s; which can be easily checked to be regular
at s; +s; = 0. The only potential source of poles at s; +s; = 0 is the standard localization
vertex Vow (7, A1, A2, Ag).

The standard Gromov-Witten localization vertex Vew(7,|A1, A2, A3) is straightforward
to analyze directly from the formula of [10]. In fact, the only source of poles at s; +s; =0
is the tangent weight of the tangent space the space of smoothing of a nodal rational curve
(which occurs in the Euler class of the virtual normal bundle to the T-fixed locus. If we

are smoothing a node connecting the rational components with T-weights 3+ and % at the
i J

node then the tangent space to the smoothing family is
S; Sj

di  dj’
Since d; and d; are the degrees of the images of the corresponding rational components,
we have d; < |\;| and d; < |A;|. Thus the pole statement follows in the Gromov-Witten
case since at least one of \; and A; are assume to be empty.
The PT case is shown by a computation similar to [I7, Section 3.3] where the parallel
DT statement is proven. In [I8], the formula for

PT,T

<Chu‘)‘17 A2, )\3>U,D

analogous to (32) is written. It immediately follows that the only possible source of poles
at s; + s; = 0 is the standard localized vertex Vpr(7,|A1, A2, A3) for PT theory [35]. Thus,
we must analyze the poles of

VPT(Ch,u’)\la @, )\3)

along s; + so = 0. We will use the rim-hook technique of [15].

Let us recall the basic structure of the standard PT localization vertex from [35]. To
a partition \;, we attach a monomial ideal \;[x;_1,z;11] C Clz;_1, x;11] and Clzy, 29, z3]-
modules

_ C[Ii—l iUz‘+1} ;
M; = Cla;, ;Y] @ ———— M= M,.
[ ] i [SCifl, xiﬂ] Ze_?

The T-fixed points of the moduli space of stable pairs P,(U/ D), x, 1, correspond to finitely
generated T-invariant C[z, 9, x3]-submodules:

Q C M/((1,1,1)).
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In the case at hand, Ay = 0, so a[35] the T-invariant submodules @ as above form 0-
dimensional families [35]. We can choose a monomial basis for each such ). The combi-
natorics of the T-weights of a monomial basis of () is discussed below.

The T-weights of the homogeneous monomials inside M; form an infinite cylinder

Cyl, C Z*.
Since Ao = (), the cylinder Cyl, is empty. Hence, the weights of @ form some subset of the
union Cyl; U Cyl;. The union has three types of weights:

where II = Cyl, N Cyly, It consists of the weights that have only non-negative coordinates
and lie in exactly one cylinder, and 1™ are the rest of the weights.

The submodule ) is uniquely characterized by the associated set of weights wt(Q).
Conversely, a subset S C Z? is a set of weights of ) corresponding to a T-invariant element
of P,(X/D)x, 0., if and only if the following three conditions holds:

(i) Sclull
(ii) w € S if any of the weights

(w1_17w27w3)7 (w17w2_17w3)7 (w1;w27w3_]—)

are in S.
(iii) |S] = n.
Let us call the set of weights as above geometric. For given a geometric set of weights
() we introduce the generating functions:

Fo(Q) = Z sishsk 4 Z stshsk,

(i5k)€Q (ijk)el™
Fi12(Q) = Z Sisg, F3(Q) = Z Sésg-
(i5)€As (i7)EM

In [35], the generating function of the redistributed virtual weights of the normal bundle
to the corresponding T-fixed point of P,(U/D)y, g, is defined by:

Vo =Fo — Fo +F0F0<1_Sl)(1_82>(1_83>+ Gio n Gog

515253 5185283 1 — S3 1 — 317
where f(s1,59,53) = f(s7%,55%,55"), Fo = Fo(Q), and
Gij:_Fij__J‘i‘FZ’jFij( 8i) SJ)’
iSj S;S;j

The standard localized vertex Vpr(ch,|A1,0,A3) is the sum over all geometric sets of
weights @) of the expressions:

g H chy, (Fo(Q)) - e(—Vo).
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To prove the Lemma, we must analyze the poles of e(—V(), and we follow method of
[16] in our argument. The order of the pole at s; + s, = 0 is equal to the constant term of
Vo(z, 271, t3). Substituting]]

Fas
Fo=F
0 =0 * ]_ — 51
into the the formula for V, we obtain
F — (1 — 81)(1 — 82)(1 — 83) G12

33) Fp— —2— +F,F
( ) =0 §15283 +_0_0 S$152S3 * 1— 83+

— 11— 1-— - (1-— 11—

E0F23< s2)( $3) _ Eona( s2)( S3) _

S$18283 5253

Since Fy(z, 27!, s3) has only strictly positive powers of x in its expansion and Fa3(x, s3)
has only positive powers of x in its expansion, we conclude that the functions
(1—a (1 sy) (1—a (1 - sy)

EO($_1,$,S§1)F23<I’_1,S3) ) EO(I7$_1,83)F23($7S§1) 1
S3 T ~S3

have only strictly negative and strictly positive, respectively, powers of x in their expan-
sions. The expression Gy, is the generating function for the tangent weights Hilbjy, (C?) at
the corresponding monomial ideal, hence we can use well-known formula for the tangent
weights to see that Gio(z,271) has no constant term.

To finish proof we must bound the constant term of

Fo(z 71, m,s5" 1—z)(1—271)(1—
Fo(z™, 2, 53 )+E0($,$_1,S3)Eo($_17$7851)( z)( z7)( s3)

34) F 1 sg)—
( ) _0(17,1' 783) s3 s3

The function Fy(z,z7!, s3) can be expanded in Laurent power series of s3, and the coeffi-
cients of the expansion are Laurent polynomials in z:

-1 _ i.J
Eo(z, 27, s3) = E a;;x'sh .
Z’Mj

The formal computation of the proof of [16l Lemma 5] determines the constant term of

to be
—% Z ((aiy — airry) = (@01 — aivrjn))’ s
which is non-positive. ’ O
3.5. Proof of Theorem [4. By Theorem [I8] we have the correspondence
(35) (T (P)| A A, 0y = (HET(p) [ Ar, Ao, 0)y

Theorem [4| will be derived from equation ([35]).

9For shorter formulas, we now drop @ from the notation.
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The element ﬁGW(p) is a linear combination of monomials of a;(p) with coefficients in
Clet, ¢2]. The descendents H) T (p) are the linear combinations of monomials of ch;(p) with
coefficients in C[ey]. Lemma [20) m 0| therefore implies that for every Ai, Ao, the specializations

(36) (HEY ()| A1 A, D) and (2 (p)| A1, Ao, 0)p )
s3=—s; s3=—s;
are well defined for both ¢ =1 and + = 2.
Consider first the ¢ = 1 case. By Corollary [19] we have
T =Tlsg=—s1
since the specialization s3 = —s; implies ¢3 = ¢1¢o. From , we conclude

GW,T

<ﬁGW(p) ’ /\1 )\2 ®> q_l)\1|_|>\2|< HPT(p) ‘ >\1 )\2 @ >PT’T mod (Sl -+ 83) .
H ’ ? o ) ) U.D

U,D

By considering the i = 2 case, we obtain the above equality mod (sy + s3) also. O

3.6. Proof of Theorem [5 Theorem [5| follows almost immediately from the following
reformulation of [32], Theorem 7]. We define

Eﬁ(csl_l > (=)= P = ) [T ZHED)

set partitions P of{1,...;} Sep

For classes v; € H*(X) and a vector k of non-negative integers, we define

Hy, (m) - He, () = Z ﬂks (7s),
set partitions P of{i,...1} S€P

where 75 = [[;cq i

Theorem 21. [32] Let X be a nonsingular projective toric 3-fold, and let v; € H*(X,C).
After the change of variables —q = e, we have

GW PT
Hy,(n).. Hy (), = (HT(n) - HET(0)

where the non-equivariant limit is taken on both sides.

Theorem [l follows because
Hu = HH‘63=6162

and the restriction c3 = ¢1¢o does not affect the non-equivariant limit if all ; have positive
cohomological degree. O
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3.7. Examples for X = P3. The prefactor in front of >~  z*ch;(F) in the definition of
HPT(z) in Section . has an expansion that starts as:
2 3

x Co c c
$(E)=1- gy G0 d e
0 24" T 1020" T 322560"
In particular, the non-equivariant limit of HYT(v) is equal to
1
chi1(7) = gy che-1 (7 - e2).-

On the Gromov-Witten side of the correspondence, we have
(HM(1)®) = (w(y)®),

(HSV()2) = S(m()®),

(BV0)0) = Glat®) + glcien @),

1 51
GW 3
<H4 (V)‘I)> = ﬂ 04(7)(I)> - K<a1(01 7)‘D> e <0102 : (I)> )
1
<H§W(V)®> = 120< > - 4u<a1a2 cy - 7)¢’> - m@%(ﬁ '7)(I)>
1
—i—m@l(cfcg . fy)CI>> v 4<0102 <I>>
The operators a; are expressed in terms of standard descendents by inverting :
(37) a, = T )
"
02 = Ti+c-To,
2
>
—§a3 = 21 +3c T+,
iu? ) 5
—Ta4 = 67’3 + ]_161 - To + 6617'1 + Cci-To,
u

€a5 = 247'4—|—5001-7'3—|—35cf-7'2 + 100:1)’-71 +c‘11-7'0.

In particular, the GW/PT correspondence of Theorem [5| gives the following relations for
the degree 1 invariants of P3:

1 22 1
. L) = O s () fW——<wo<p> o
- PT T _ 1 ow | 25 o o
—q*(chg(H)); +_T< chu(p)); = —(mH)" + o (mL) 5 70 i
1 5
_ﬁ<7'07'1(|—)>1GW + @<7‘07‘0(p) 1GW

Here, and below in Section [4]

p, L, H € H*(P?
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are respectively the classes of a point, a line, and a plane. These formulas can verified
numerically up to «® with the help of Gathmann’s Gromov-Witten code and previously
known complete calculations on the stable pairs side [2§].

4. CONCLUDING REMARKS: DT/PT/GW

4.1. Stationary DT/PT correspondence. The moduli space I,,(X, §) parameterizes flat
families of ideal sheaves J C Ox with

x(9) =n, [Supp(0x/I)] =5 € Hy(X,Z).
There is a universal quotient sheaf F,, over X x I,(X, #) with fibers

Frlixx = 0x/J.
We define
chy () = m, (chy(F GEBH* for ve H*(X).

ne’l

The moduli space I,(X, 8) has a natural virtual cycle [I,,(X, 3)]"". The integrals of the
above descendents classes define generating series,

(chy, () .. . chy,,( =>q / chy, (1) - - - chi,, (Ym) 5

nez n X E ]’L)Z’V‘

just as for stable pairs. The normalized generating series of DT invariants have better
properties:

(39) (che, (1) - i, ()5 = (el (1) - ch, (7)) /(1S

We refer the reader to [15, [16] for a more detailed introduction.

The argument of [32] is valid if we replace the Gromov-Witten side by the DT theory
of ideal sheaves. Since the 1-leg invariants in DT and PT theories are identical modulo
S1 + So, our proof of Theorem [5| can be repeated to obtain the following non-equivariant
result.

Theorem 22. Let X be a nonsingular projective toric 3-fold, and let ; € H=*(X,C). The
stationary descendent DT /PT correspondence holds:

(chg, (1) ... chy, (%)> = (ch, (1) . - chy, (%)>PT :

Finding a relation between DT and PT theories which includes the descendents of the
identity class 1 is more subtle. A basic source of difficulty is that the DT generating series
(39) are not always rational functions. We expect the non-equivariant DT descendent series
to depend upon the function F3,

qn

=1

which arises as the logarithmic derivative of the McMahon function.
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Conjecture 23. Let X be a nonsingular projective 3-fold. For ~; € H*(X,C), the series

(chy, (1) - . . chy,, (7m)>gT/

is a polynomial in (qd%)iFg(—q) for 0 < i < m with coefficients in the ring of rational
functions of q.

4.2. Beyond the stationary case. The GW/PT correspondence for the complete non-
equivariant descendent theory is expected to be significantly more complex than the sta-
tionary case because of the analytic properties of the GW descendent series. In fact, we
expect the analytic complexities of the GW descendent series to be very similar to those of
the DT descendent series.

The Euler-Maclaurin formula provides an asymptotic expansion of F3(—gq) at u = 0:

o0

Fy(u) ~ 20(3)/u® =)

n=0

B2n+232n
@2n)!(2n 1 2)

(u)" 1.

For simplicity, we will use the notation Fj3(u) for the part of the expansion without the
most singular term. In order words, we define

~ Boy2Bon . \on-
F3(u) = — m(zuf L.
n=0 ’
Let us denote by R the ring of rational functions of ¢ = —e®. The following is a

Gromov-Witten version of Conjecture [23|

Conjecture 24. Let X be a nonsingular projective 3-fold. For ~; € H*(X,C), the series
GW
<Tk’1 (,71) Ty, (7771) 8
is a polynomial in (=) F3(u) for 0 < i < m with coefficients in the ring R[u*].

The power series F3(g) does not converge at any point of a circle |¢q| = 1. Hence, the ¢-
derivatives of F3(q) are linearly independent over R. Otherwise F3(q) would be a solution
of a non-trivial linear differential equation with rational coefficients and hence analytic
outside finite number of points. We can therefore define a homomorphism

d

6: % [ R0 3 B, - } NI

On the subring R[u*!], the homomorphism © is defined by the change of variable ¢™ = —q¢,
and, on the generators (q%)mFg(—q), © is defined by:

<qdiq)mF3(—q) - %(—i%)mﬂg(u).

Note the factor of % in the last formula: the homomorphism © is not merely a change of
variable.
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Conjecture 25. We have

S) (<HH];?T |M17M27M3 > HHGW \M1,M2,M3>UD mod (6162 - 03)2-

If Conjecture were true, then we could also write a conjecture for the complete non-
equivariant GW/DT descendent correspondence via the formulas of Section . The ap-
pearance of % in the definition of ® could be motivated by the computation of degree 0
GW and DT invariants [I5]. Though Conjecture [25]is mysterious, the claimed equality has
been supported by a large number of numerical experiments.

4.3. Equivariant DT series. Studying the GW/DT descendent correspondence in the
general T-equivariant setting is difficult for many reasons//| A major unresolved question
concerns the analytic properties of the generating series for T-equivariant Gromov-Witten
descendent invariants. However, based on computer experiment, we propose conjectures
controlling the behavior of the T-equivariant DT descendent series.

Let X be a nonsingular projective toric 3-fold equipped with an action of the 3 dimen-
sional torus T. As in Section [0.7] let

HT(') = C[Sl, S92, 83] .
We define the algebra §t generated by the serieﬂ

sz+1(—q) Z Zd% k>1,

n=0
nd their iterated q% derivatives.
Conjecture 26. The T-equivariant DT descendent series of X satisfy

<Chk‘1 (’71) Chk‘l ('71)>DT T S H—T—(O) X @(q) ® St

for ~v; € H¥(X,C) and f € Hy(X,Z).

Conjecture [26| fits into a web of conjectures about the analytic behavior of generating
functions of equivariant integrals of tautological classes over moduli spaces of sheaves [23].
We refer the reader to [23] for more motivation, further conjectures, and future directions.
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