
NOTES ON MATRIX FACTORIZATIONS AND KNOT HOMOLOGY

A. OBLOMKOV

Abstract. These are the notes of the lectures delivered by the author at CIME in June
2018. The main purpose of the notes is to provide an overview of the techniques used in the
construction of the triply graded link homology. The homology is space of global sections
of a particular sheaf on the Hilbert scheme of points on the plane. Our construction relies
on existence on the natural push-forward functor for the equivariant matrix factorizations,
we explain the subtleties on the construction in these notes. We also outline a proof of
the Markov moves for our homology as well as some explicit localization formulas for knot
homology of a large class of links.

1. Introduction

The discovery of the knot homology [Kho00] of the links in the three-sphere, motivated
search for the homological invariants of the three-manifolds. Heegard-Floer homology were
discovered soon after Khovanov’s seminal work, this homology categorifies the simplest case
of WRT invariants (the invariants at the fourth root of unity). More general WRT invariants
are beyond of the reach of currently available technique. Thus it is very important to reveal
as much structure of the Khovanov homology as it is possible.

The mathematical construction of WRT invariants relies on special properties JW projec-
tors at the root of unity, thus it is natural to search for the analogues of the projectors in the
knot homology theory. If the algebraic variety is endowed with the action of the torus with
the zero-dimensional locus, the algebraic geometry offer a natural decomposition of category
of the coherent sheaves into the mutually orthogonal pieces [HL19], hence we have a natural
analog of the JW projectors. In the paper [OR18d] we constructed a map from the braid
group to the category of coherent sheaves on the free Hilbert scheme of points on the plane
such that that Markov moves properties hold for the vector space of the global sections of the
sheaf. Thus we have geometric candidate for JW projectors for such knot homology.

The quest for the geometric interpretation of JW projectors was the main motivation for
the author of the notes to develop the connection between sheaves on the Hilbert scheme
of points and knot homology. The localization type formulas were first encountered by the
author in the joint work with Jake Rasmussen and Vivek Shende [ORS18] where the homology
of the torus knots were connected with the topology of the Hilbert schemes of points on the
homogeneous plane singularities (see also [GORS14]). However, back in 2012 it was a total
mystery to the author how one would expand the relation in [ORS18], [GORS14] beyond the
torus knots.

The connection was demystified by Lev Rozansky who was armed with the physics intu-
ition as well as very deep understanding of already existing knot homology theories. As it
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turned out the searched after knot homology has a natural interpretation within the frame-
work of the Kapustin-Saulina-Rozansky topological quantum field theory for the cotangent
bundles to the Lie algebras as targets [OR18a]. A purely mathematical theory underlying
the physical predictions is laid out in the series of our joint papers [OR18e],[OR18c],[OR17],
[OR18b],[OR18d]. To provide an introduction to the technique of these paper is the main
goal of this note.

1.1. Main result. Let us state a consequence of the results from the papers that requires
the minimal amount of new notations. We need some notations, though. Throughout the
paper we use notation Dper

G pXq for the derived category of the two-periodic G-equivariant
complexes of coherent sheaves on X, where G is a group acting on X. For us particularly
important case of the pair X,G is HilbnpC2q, Tsc “ C˚ ˆ C˚ with scaling action of Tsc on
C2. The dual B to the universal quotient bundle B_, B_|I “ Crx, ys{I will be used in our
construction of the knot homology.

We also use notation Brn for the braid group on n strands. For an element β P Brn we
can form a link in the three-sphere Lpβq by closing the braid in the most natural way.

Theorem 1.1.1. [OR18d] There is a constructive procedure that assigns to a braid β P Brn
an object Sβ P D

per
Tsc
pHilbnpC2qq such that

(1) Sβ¨FT “ Sβ b detpBq where FT is the full twist on n strands
(2) The triply graded vector space HHHpβq :“ H˚pSβ b Λ‚Bq is an isotopy invariant of

the closure Lpβq.
(3) The character of representation of the anti-diagonal torus C˚a Ă Tsc on the spaces

H˚pSβ b ΛiBq is the HOMFLYPT polynomial:

(1.1)
ÿ

i

aiχqpC˚a, H˚pSβ b ΛiBqq “ HOMFLYPTpLpβqq.

The constructive procedure in the statement of theorem relies on the theory of matrix
factorizations and in this note we try to present a gentle introduction into the aspects of the
theory of matrix factorizations that are necessary for our theory. The author of the notes
learned theory of matrix factorizations from discussions with Lev Rozansky, as result the
exposition here is quite biased.

The first construction of the triply-graded categorification of the HOMFLYPT invariant
appeared in the seminal work of Mikhail Khovanov and Lev Rozansky [KR08]. It is natural to
conjecture that the homology discussed in these notes coincide with the Khovanov-Rozansky
homology.

1.2. Outline. After defining and motivating the category of matrix factorizations in section
2.1.2 we spend some time discussing the most common type of matrix factorizations, Koszul
matrix factorizations in section 2.2. The Koszul matrix factorizations are in many regards
are analogous to the complete intersection rings and in this section we make this analogy
more precise by providing a method for constructing a matrix factorization from a complete
intersection (see lemma 2.2.3).

Next we discuss Knorrer periodicity in section 2.3 which is the most basic equivalence
relation between the categories of matrix factorizations. After that we explain how one
would perform push-forward and pull-back between the categories of matrix factorizations,
see section 2.4. Finally, in the section 2.5 we introduce the equivariant matrix factorizations,
in particular we explain the difference between the strongly and weakly equivariant matrix
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factorizations, later we only work with the weakly equivariant matrix factorizations since the
weak equivariance allows us to define the equivariant push-forward.

In the section 3 we explain the key point of our construction, the homomorphism from
the braid group Brn to the category of matrix factorizations. First in the section 3.1 we
introduce our main space X with a potential W and define a convolution algebra structure
‹ on the category MFGLnˆB2pX ,W q, here B Ă GLn is a subgroup of upper-triangular ma-

trices. There is a slightly smaller space X̄ with potential W such that Knorrer periodicity
identifies MFGLnˆB2pX ,W q with MFB2pX̄ ,W q and it intertwines the convolution product ‹
with the convolution product ‹̄, we provide details in the section 3.2. After setting nota-
tions for the ordinary and affine braid groups in section 3.3 we state main properties of the
homomorphisms:

Φ : Brn Ñ MFB2pX̄ st,W q, Φaff : Braffn Ñ MFB2pX̄ ,W q,

the pull-back along jst : X st Ñ X intertwines these homomorphisms. We postpone the details
of the construction of homomorphisms Φ,Φaff till section 5.

In section 4 we explain how one can use the homomorphism Φ to construct the triply-
graded homology. The free Hilbert scheme FHilbfreen consists of the B-conjugacy classes

FHilbfreen “ ČFHilb
free

n {B pairs of matrices with cyclic vector such that the monomials of the

matrices applied to the vector span Cn. There is an embedding of the B-cover ČFHilb
free

n of

the free Hilbert scheme into the stable version of our space ČFHilb
free

n Ñ X̄ st and we define
the homology group:

Hipβq :“ H˚ppΦpβq b ΛiBqBq,
where B is the tautological vector bundle over the free Hilbert scheme. It is shown in [OR18e]
that the graded dimension total sum

HHHpβq “ ‘iH
ipβq,

is a triply graded knot invariant of the closure Lpβq. We explain in the section 4.2 why this
invariant specializes to the HOMFLYPT invariant after we forget about one of the gradings.
Here H ipβq is Hb`ipβq with b “ bpβq being some specific function of β.

The free Hilbert scheme FHilbfreen :“ ČFHilb
free

n {B is smooth and it contains the usual

flag Hilbert scheme FHilbn Ă FHilbfreen which is very singular and not even a local complete
intersection. The relation of our homology with the honest flag Hilbert scheme is the following:

Sβ “ jepΦpβqq
B P Dper

Tsc
pFHilbfreen q, supp pHpSβqq Ă FHilbn,

where HpSβq is the sheaf of FHilbfreen which is the homology of the two-periodic complex Sβ.
The most non-trivial part of the statement from [OR18e] is the fact that the homology

HHHpβq do not change under the Markov move that decreases the number of strands in the
braid. In the section 7 we give a sketch of a proof the Markov move invariance, we rely in this
section on the material of section 5 where the details of the construction of the braid group
action are given.

In the section 6 we do a simplest computation in the convolution algebra of the category
of matrix factorizations in the case n “ 2. We show that in MFB2pX̄ st,W q we have an
isomorphism

(1.2) C‚ ‹ C‚ » q4C‚ ‘ q2C‚,
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which is the geometric counter-part of the fact that the square of the non-trivial Soergel
bimodule for n “ 2 is equal to a double of itself [Soe01].

Finally, in the section 8 we define the categorical Chern functor:

CHst
loc : MFGLnˆB2pX st,W q Ñ Dper

Tsc
pHilbnpC2qq.

We also discuss the properties of the conjugate functor HCst
loc (see [OR18f] for the original

construction )which is monoidal. The sheaf Sβ in the theorem 1.1.1 is given by:

Sβ “ CHst
locpΦpβqq.

The advantage of the sheaf Sβ over Sβ is that it is a Tsc-equivariant periodic complex of
sheaves on the smooth manifold HilbnpC2q thus we can hope to use Tsc-localization technique
for computation of the knot homology. There are some technical issues with using the local-
ization method directly as we discuss in 8.5. We also explain how these technical issue could
be circumvented and in particular how one can apply this technique to compute the homology
of the sufficiently positive elements of Jucy-Murphy algebra. This formula was conjectured
in [GRN16].

1.3. Other results. We also would like to mention that many relevant aspects of matrix
factorizations are not covered in these notes. The reader could consult papers the original
papers of Orlov for the connections with mirror symmetry [Orl04] and paper [Dyc11] for some
further discussion of the foundations of the theory of matrix factorizations and of course the
seminal paper of Khovanov and Rozansky [KR08] where the first construction of a triply
graded homology of the links was proposed. The constructions in these notes are motivated
by the physical theory of Kapustin, Saulina, Rozansky [KRS09], the reader is encouraged
to read wonderful, basically purely mathematical paper [KR10] where the role of matrix
factorizations in the theory is explained.

Let us also mention that there is a slightly different perspective on the geometric inter-
pretation of the knot homology due to Gorsky, Neguţ, Hogencamp and Rasmussen [GRN16],
[GH17]. Their approach takes the theory of Soergel bimodules and the corresponding link
homology construction [KR08] as a starting point of theory, rather than the categories of
matrix factorizations discussed in these notes. Finally, let us mention the recent work of
Hogencamp and Elias on categorical diagonalization [EH16],[EH17a],[EH17b] which provides
a categorical setting for the localozation in the category of coherent sheaves.

These notes by no means were intended as a comprehensive survey of the theory of matrix
factorization or of the theory of knot homology. It is a merely is a slightly extended version
of the three lectures that the author delivered at 2018 CIME. Thus the author asks for an
apology from the colleagues whose contributions to the fields are not covered in the notes.

Acknowledgments: First of all I would like to thank my coathor and friend Lev Rozansky
for teaching everything that is in these notes. All results in these notes are contained in our
joint papers. I also would like to thank Andrei Neguţ and Tina Kanstrup for discussion
related to the content of the notes. I am very grateful to an anonymous referee for many
great suggestion on improving the first draft of the notes. I am very greatful to CIME
foundation for opportunity to teach the course at the Summer school. The participants of the
course provided valuable feed-back on the material. I was also partially supported by NSF
and Simons foundation.
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2. Matrix factorizations

In this section we remind some basic facts about matrix factorizations. There are many
excellent exposition on matrix factorizations [Eis80],[Orl04],[Dyc11] and we choose not to
concentrate on usual matrix factorizations, instead we aim to define equivariant matrix fac-
torizations and subtleties that arise in attempt to define such. We also discuss Koszul matrix
factorizations and the (equivariant) push-forward functor from [OR18e].

2.1. Motivation and examples. Given an affine variety Z and a function F on it we define
[Eis80] the homotopy category MFpZ, F q of matrix factorizations whose objects are complexes
of projective R “ CrZs-modules M0,M1 M “M0 ‘M1 equipped with the differential

D “ pD0, D1q P HomRpM
0,M1q ‘HomRpM

1,M0q

such that D2 “ F . Thus MFpZ, F q is a triangulated category as explained in subsection 3.1
of [Orl04]. We first discuss the objects of this category, then discuss various properties of the
morphism spaces.

It is convenient to think about a matrix factorization pM0‘M1, Dq as two-periodic curved
complex:

. . .
D1

ÝÝÑM0 D0

ÝÝÑM1 D1

ÝÝÑM0 D0

ÝÝÑM1 D1

ÝÝÑ . . . , D2 “ F.

Let us look at several basic examples of matrix factorizations and discuss briefly a motivation
for the definition of the matrix factorizations by Eisenbud [Eis80].

Example 2.1.1. Z “ C, R “ Crxs and F “ x5. The two-periodic complex

. . .
x2

ÝÑ R
x3

ÝÑ R
x2

ÝÑ R
x3

ÝÑ R
x2

ÝÑ . . .

is an example of an object in MFpC, x5q. Here and everywhere below we underline to indicate
zeroth homological degree.

Example 2.1.2. Z “ C2, R “ Crx, ys, F “ xy. The two-periodic complex

. . .
x
ÝÑ R

y
ÝÑ R

x
ÝÑ R

y
ÝÑ R

x
ÝÑ . . .

is an example of an object in MFpC2, xyq.

The last example has the following geometric interpretation. A module over a quotient
ring Q “ Crx, ys{pxyq, in general, does not have a finite free resolution. In particular, M “

Crxs “ Q{pyq is a module over Q with an infinite free resolution:

0 ÐM
y
ÐÝ Q

x
ÐÝ Q

y
ÐÝ Q

x
ÐÝ . . . .

This resolution has a two-periodic (half-infinite) tail which is a reduction of the matrix fac-
torization from the example 2.1.2. As explained in [Eis80] this phenomenon is more general.

We felt obliged to mention these results on matrix factorizations to honor the origins of
the subjects. For further development of Eisenbud theory the reader is encouraged to look at
[Eis80] as well as [Orl04],[Orl09],[Orl11] where the connection with B-model theory is devel-
oped. However, the hypersurfaces defined by the potentials from [OR18e] do not have a clear
geometric interpretation and it is unclear to us how to make use of Eisenbud’s theory in our
case. Instead, more elementary homological aspect of the matrix factorizations is important
to us. Roughly stated, the very important observation is that all important homological in-
formation about the category of matrix factorizations is contained in a neighborhood of the
critical locus. We explain more rigorous statement below.
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It is a good place to define morphisms in the category of matrix factorizations. Suppose
we have two objects F1 “ pM1, D1q,F2 “ pM2, D2q P MFpZ, F q then we define:

HompF1,F2q :“ tΨ P HomRpM1,M2q|Ψ ˝D1 “ D2 ˝Ψu.

Since the modules Mi are Z2-graded we have a decomposition

HompM1,M2q “ ‘iPZ2HomipM1,M2q

where HomipM1,M2q Ă Homi
RpM1,M2q :“ HomRpM

0
1 ,M

i
2q ‘HomRpM

1
1 ,M

i`1
2 q.

We say that an element Ψ P Hom0pF1,F2q is homotopic to zero: Ψ „ 0 if there is h P
Hom1pM1,M2q such that Ψ “ h ˝D1 `D2 ˝ h. Finally, we define the space of morphisms as
a set of equvalence classes with respect to the homotopy equivalence:

HompF1,F2q :“ Hom0pF1,F2q{ „

Now that we defined the objects and morphisms between the objects we can state Orlov’s
theorem

Theorem 2.1.3. [Orl04] MFpZ, F q has a structure of the triangulated category.

To complete our discussion of the homological properties of category of matrix factorizations
with respect to their critical locus let us observe that an element f P R naturally gives an
element of HompF ,Fq. For simplicity let us also assume that Z Ă Cm. Then we have a
well-defined ideal Icrit Ă R generated by BF

Bxi
i “ 1, . . . ,m and xi are coordinates on Cm.

Proposition 2.1.4. For any F P MFpZ, F q and f P Icrit we have:

Hom0pF ,Fq Q f „ 0.

Proof. If it is enough to show the statement for f “ BF
Bxi

. Thus the statement follows since:

BF

Bxi
“
BD

Bxi
D `D

BD

Bxi
,

and BD
Bxi

provides the needed homotopy. �

The last proposition implies that category of matrix factorizations is model for the coherent
sheaves on possibly singular critical locus of the potential F . When the potential is linear in
by some set of variables than there is an equivalence between with the DG category of the
critical locus (see section 8.3 for more discussion). Another manifestation of this principle is
the shrinking lemma, see lemma 3.4.2 below.

2.2. Koszul matrix factorizations. The matrix factorizations from examples 2.1.2 and
2.1.1 are examples of so called Koszul matrix factorizations which we discuss in this subsection.
Suppose we have a presentation of the potential as sum F “

řn
i“1 aibi. Then we define Koszul

matrix factorization Kr~a,~bs P MFpZ, F q as

Kr~a,~bs :“ pΛ‚V,Dq, D “
ÿ

i

aiθi ` bi
B

Bθi
,

where V “ xθ1, . . . , θny. The examples 2.1.1, 2.1.2 are Krx2, x3s and Krx, ys, respectively.
The Koszul matrix factorizations are tensor products of the simplest Koszul matrix factor-

izations. Indeed, given two matrix factorizations F1 P MFpZ, F1q, F2 P MFpZ, F2q the tensor
product F1 b F2 P MFpZ, F1 ` F2q is the matrix factorization pM1 bM2, D1 b 1` 1bD2q.

Thus we have Kr~a,~bs “ bni“1Krai, bis.
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An object of the category of matrix factorizations with the zero potential is a two-periodic
complex of coherent sheaves. We denote by DperpZq the derived category of the two-
periodic complexes of coherent sheaves. Given two matrix factorizations F1 P MFpZ, F q,
F2 P MFpZ,´F q their tensor product is an element of DperpZq and proposition 2.1.4 implies:

Corollary 2.2.1. For F1 P MFpZ, F q, F2 P MFpZ,´F q homology of the two-periodic com-
plex F1 b F2 are supported on the zero locus of Icrit.

Now let us discuss a method for constructing interesting Koszul matrix factorizations. Let
us first recall some basic properties of the usual Koszul complexes. The sequence f1, . . . , fm P
R is called regular if fi is not a zero-divisor in the quotient R{pf1, . . . , fi´1q for i “ 1, . . . , n.
It is known that the regularity does not depend on the order of the elements. There is an
equivalent way to define regularity with the help of Koszul complexes. The Koszul complex

of ~f is:

Kr~f s “ pΛ‚V,Dq, D “
ÿ

i

fi
B

Bθi
.

Proposition 2.2.2. The sequence pf1, . . . , fmq is regular if and only if:

H ipKr~f sq “ 0, i ą 0, , H0pKp~fqq “ R{pf1, . . . , fmq.

Given a finite complex of pC‚, dq of free R-modules we denote by rC‚sper the two-periodic
folding of the complex. It is an element of MFpZ, 0q. Suppose F P pf1, . . . , fmq and the

sequence ~f is regular. Then the lemma below shows that there is an essentially unique way to

deform the complex rKr~f ssper to an element of MFpZ, F q. We outline a proof of the lemma
to demonstrate the key deformation theory technique that is used in many constructions of
[OR18e].

Lemma 2.2.3. Suppose F P pf1, . . . , fmq and the sequence ~f is regular.Then the Koszul
complex

C‚ “ Kr~f s “ tC0
d`1
ÐÝÝ C1

d`2
ÐÝÝ . . .

d`m
ÐÝÝ Cmu

could be completed with the opposite differentials d´i : C‚ Ñ C‚`2i´1, i ą 0 such that

pC‚, d
` ` d´q P MFpZ, F q.

Proof. We will construct the differentials di iteratively. Since the sequence is regular we have
a homotopy equivalence:

(2.1) pC‚, d
`q „ Q “ R{pf1, . . . , fmq.

Let us also introduce notation for the graded pieces of the space of homomorphisms:

HomipC‚, C‚q “ ‘jHompCj , C´i`jq.

The element F is an endomorphism of pC‚, d
`q and because of (2.1) it is homotopic to zero

by the lemma assumptions. Thus there is a homotopy hp´1q P Hom´1pC‚, C‚q such that

F “ hp1q ˝ d` ` d` ˝ hp1q. Let us set Dp1q “ d` ` hp1q.
The differential Dp1q is the first order approximation for our desired extension. It is not

differential of a matrix factorization if n ą 1 since:

pDp1qq2 “ F ` php1qq2.
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However the correction term php1qq2 is actually an element of Hom´2
d`
pC‚, C‚q, that is it com-

mutes with the differential d`:

d` ˝ hp1q ˝ hp1q “ Fhp1q ´ hp1q ˝ d` ˝ hp1q “ Fhp1q ` hp1q ˝ hp1q ˝ d` ´ hp1qF “ hp1q ˝ hp1q ˝ d`.

Thus again by (2.1) there is a homotopy hp3q P Hom´3pC‚, C‚q such that hp1q “ d` ˝ h
p3q `

hp3q ˝d`. We define the next approximation to the needed differential Dp3q “ d``hp1q`hp3q.
Again Dp3q is not a differential of a matrix factorization if n ą 3:

pDp1q`hp3qq2 “ F`php1qq2`Dp1q˝hp3q`hp3q˝Dp1q`php3qq2 “ F`hp1q˝hp3q`hp1q˝hp3q`php3qq2.

The correction term belongs to Homă´3pC‚, C‚q and the degree four piece of this term is

hp1q ˝ hp3q ` hp3q ˝ hp1q. Let us check that hp1q ˝ hp3q ` hp3q ˝ hp1q P Hom´4
d`
pC‚, C‚q:

d` ˝ hp1q ˝ hp3q “ Fhp3q ´ hp1q ˝ d` ˝ hp3q “ Fhp3q ´ php1qq3 ´ hp1q ˝ hp3q ˝ d`,

d` ˝ hp3q ˝ hp1q “ hp1q ˝ hp1q ˝ hp1q ´ hp3q ˝ d` ˝ hp1q “ php1qq3 ´ hp3qF ´ hp3q ˝ hp1q ˝ d`.

By the same argument as before homomorphism hp1q ˝ hp3q ` hp3q ˝ hp1q is homotopic to zero
and let denote by hp5q P Hom´5pC‚, C‚q. The next approximation for our differential is

Dp5q “ d` ` hp1q ` hp3q ` hp5q and

pDp5qq2 ´ F P Homă´5pC‚, C‚q.

Similar method could be applied to show that correction term of degree six is homotopic to
zero and thus we have the next order correction. Clearly, this iterative procedure terminates
since our complex is of finite length. More formal proof of the lemma is given in lemma 2.1
in [OR18e]. �

Remark 2.2.4. The only assumption on the complex pC‚, d
`q that we used is that

(2.2) Homă0
d` pC‚, C‚q „ 0.

Thus we can strengthen our lemma a little bit by replacing regularity Koszul complex by the
condition (2.2)

It is natural to ask how canonical is the matrix factorization pC‚, d
` ` d´q constructed in

the previous lemma. Clearly, our method relies on a existence of various homotopies which
are not unique. However, one can show that outcome of the iterative procedure in the proof
is unique up to an isomorphism. We invite reader to try to apply the iterative method of
the previous lemma to show lemma below, a formal proof could be found in lemma 3.7 in
[OR18e].

Lemma 2.2.5. Let pC‚, d
`q be a complex of free modules with non-trivial terms in degrees

from 0 to l ě 0 such that Homă0
d` pC‚, C‚q „ 0. Suppose we have two matrix factorizations

F “ pC‚, d` ` d´q, F̃ “ pC‚, d` ` d̃´q P MFpZ, F q,

where d´ “
ř

iě0 d
´
i , d̃´ “

ř

iě0 d̃
´
i , d´i , d̃

´
i P Hom´2i´1pC‚, C‚q and F „ 0 as endomorphism

of pC‚, d
`q. Then there is Ψ “ 1`

ř

ią0 Ψi, Ψi P Hom´ipC‚, C‚q such that

Ψ ˝ pd` ` d´q ˝Ψ´1 “ d` ` d̃´.

Because of the previous lemma we will use notation KF pf1, . . . , fmq P MFpZ, F q for a
matrix factorization from the lemma 2.2.3.
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2.3. Knorrer periodicity. The critical locus of the potential F “ xy is a point x “ y “ 0
so according to our principle we expect that the category of matrix factorizations with the
potential xy is equivalent to the category of matrix factorizations on the point. It is indeed
the case and the equivalence is known under the name Knorrer periodicity and we explain
the details below.

Let us denote the Koszul matrix factorization Krx, ys P MFpC2, xyq by K. Then there is
an exact functor between triangulated categories:

Φ : MFppt, 0q Ñ MFpC2, xyq, pM,Dq ÞÑ pM b Crx, ys, Dq bK.

The functor in the inverse direction is the restriction functor:

Ψ : MFpC2, xyq Ñ MFppt, 0q, pM,Dq ÞÑ pM |x“0, D|x“0q.

These functors are mutually inverse. Indeed, to show that Ψ ˝ Φ “ 1 we observe that

K|x“0 “ rCrys
y
ÐÝ Cryss which is a sky-scarper at y “ 0. We leave it as an exercise to a reader

to show Φ ˝Ψ “ 1.
More generally, if Z “ Z0ˆC2

x,y and F0 P CrZ0s then there is a functor: Φ : MFpZ0, F0q Ñ

MFpZ, F0 ` xyq given by tensoring with the Koszul complex Krx, ys.

Theorem 2.3.1. [Orl04] The functor Φ is an equivalence of triangulated categories.

2.4. Functoriality. Now we will use previously developed technique to define the push-
forward functor for matrix factorizations. First we discuss a construction of the push-forward
for embedding map: j : Z0 ãÑ Z where Z “ Spec pSq and Z0 “ Spec pRq, R “ S{I.

Theorem 2.4.1. [OR18e] Suppose we have F P S, F0 “ j˚pF q and I “ pf1, . . . , fmq where
fi form a regular sequence. Then there is well-defined functor of triangulated categories:

j˚ : MFpZ0, F0q Ñ MFpZ, F q

Given an element F “ pM,Dq P MFpZ0, F0q let us explain the construction of the element

j˚pFq “ rF P MFpZ, F q. Since M “ Rn for some n we can lift it to the module ĂM “ Sn as

well as the differential to a Z2-graded endomorphism rD P HomSpS
n, Snq, rD|Z0 “ D. Since fi

form a regular sequence we can form Koszul complex Kpf1, . . . , fmq “ pΛ
‚Cn b S, dKq which

is a resolution of S-module R. The technique similar to the method of lemma 2.2.3 yields

Lemma 2.4.2. [OR18e] There are dij : ĂM b Λ‚Cn b S, i´ j P 1` Zě0 such that

rF “ pΛ‚Cn b S, dK ` rD ` d´q P MFpZ, F q

and the element rF is unique up to isomorphism.

To complete proof of the theorem 2.4.1 we need to show that the construction of j˚ extends
to the spaces of the morphisms between the objects and to the space of homotopies between
the morpshism, it is shown in lemma 3.7 of [OR18e] and we refer interested reader there for
the technical details.

Unlike push-forward the pull-back functor is rather elementary. Suppose we have f : Z Ñ
Z0 a morphism of affine varieties and F “ f˚pF0q, F0 P CrZ0s. Since pull-back of a free
module is free, we have a well-defined functor:

f˚ : MFpZ0, F0q Ñ MFpZ, F q.
Finally, let us remark that the above defined pull-back and push-forward functors satisfy

the base change relation for commuting squares of maps.
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2.5. Equivariant matrix factorizations. Matrix factorization is a natural object attached
to a function on the affine manifold. However limiting yourself to only affine manifold is
frustrating, so one would like to develop a theory of matrix factorizations on quasi-projective
manifolds. There are some proposals in the literature for such theory, see for example [PV11].

In our work [OR18e] we chose an approach that is probably more limited than the one from
[PV11] but has an advantage of being computation friendly. So in [OR18e] to explore matrix
factorizations on the manifolds that are group quotients of the affine manifolds, we develop
theory of equivariant matrix factorizations. In this section we motivate our definitions and
outline the ingredients of the construction from [OR18e].

Suppose the affine manifold Z has an action of an algebraic group H and F P CrZsH .
Then one can say the matrix factorization F “ pM,Dq P MFpZ, F q is strongly G-equivariant
if M is endowed with H-representation structure and the differential D is H-equivariant. Let
us denote the set of strongly equivariant matrix factorizations by MFstrH pZ, F q. By requiring
the morphism between the objects and the homotopies between the morphisms to be H-
equivariant we can provide MFstrH pZ, F q with the structure of the triangulated category.

However, the notion of strong equivariance turns out to be too restrictive. Indeed, one
of the key tools in our arsenal is the extension lemma 2.2.3 together with the push-forward
functor. So we would like to have analog of lemma 2.2.3 in the equivariant setting, for the
H-equivariant ideal I “ pf1, . . . , fmq with fi forming a regular sequence. Unfortunately, the
proof of the lemma fails in the strongly equivariant setting because we can not guarantee that
the homotopies in the iterative construction of proof are equivariant. If H is reductive, we can
save the proof by averaging along the maximal compact subgroup of H. But for non-reductive
group we need a weaker notion of equivariance that relies on the Chevalley-Eilenberg complex
explained below.

Let h be the Lie algebra of H. Chevalley-Eilenberg complex CEh is the complex pV‚phq, dq
with Vpphq “ Uphq bC Λph and differential dce “ d1 ` d2 where:

d1pub x1 ^ ¨ ¨ ¨ ^ xpq “

p
ÿ

i“1

p´1qi`1uxi b x1 ^ ¨ ¨ ¨ ^ x̂i ^ ¨ ¨ ¨ ^ xp,

d2pub x1 ^ ¨ ¨ ¨ ^ xpq “
ÿ

iăj

p´1qi`jub rxi, xjs ^ x1 ^ ¨ ¨ ¨ ^ x̂i ^ ¨ ¨ ¨ ^ x̂j ^ ¨ ¨ ¨ ^ xp,

Let us denote by ∆ the standard map h Ñ h b h defined by x ÞÑ x b 1 ` 1 b x. Suppose

V and W are modules over the Lie algebra h then we use notation Vb
∆
W for the h-module

which is isomorphic to V bW as a vector space, the h-module structure being defined by ∆.

Respectively, for a given h-equivariant matrix factorization F “ pM,Dq we denote by CEhb
∆
F

the h-equivariant matrix factorization pCEhb
∆
F , D ` dceq. The h-equivariant structure on

CEhb
∆
F originates from the left action of Uphq that commutes with right action on Uphq used

in the construction of CEh.
A slight modification of the standard fact that CEh is the resolution of the trivial module

implies that CEhb
∆
M is a free resolution of the h-module M .

Now we about to define a new category whose objects we refer to as weakly equivariant
matrix factorizations. The objects of this category MFhpZ,W q are triples:

F “ pM,D, Bq, pM,Dq P MFpZ,W q
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where M “M0‘M1 and M i “ CrZsbV i, V i P Modh, B P ‘iąjHomCrZspΛ
ihbM,ΛjhbMq

and D is an odd endomorphism D P HomCrZspM,Mq such that

D2 “ F, D2
tot “ F, Dtot “ D ` dce ` B,

where the total differential Dtot is an endomorphism of CEhb
∆
M , that commutes with the

Uphq-action.
Note that we do not impose the equivariance condition on the differential D in our definition

of matrix factorizations. On the other hand, if F “ pM,Dq P MFstrpZ, F q is a matrix
factorization with D that commutes with h-action on M then pM,D, 0q P MFhpZ, F q.

There is a forgetful map for the objects of the categories ObpMFhpZ, F qq Ñ ObpMFpZ, F q
that forgets about the correction differentials:

F “ pM,D, Bq ÞÑ F 7 :“ pM,Dq.

Given two h-equivariant matrix factorizations F “ pM,D, Bq and F̃ “ pM̃, D̃, B̃q the

space of morphisms HompF , F̃q consists of homotopy equivalence classes of elements Ψ P

HomCrZspCEhb
∆
M,CEhb

∆
M̃q such that Ψ ˝Dtot “ D̃tot ˝Ψ and Ψ commutes with Uphq-action

on CEhb
∆
M . Two maps Ψ,Ψ1 P HompF , F̃q are homotopy equivalent if there is

h P HomCrZspCEhb
∆
M,CEhb

∆
M̃q

such that Ψ´Ψ1 “ D̃tot ˝ h´ h ˝Dtot and h commutes with Uphq-action on CEhb
∆
M .

Given two h-equivariant matrix factorizations F “ pM,D, Bq P MFhpZ, F q and F̃ “

pM̃, D̃, B̃q P MFhpZ, F̃ q we define F b F̃ P MFhpZ, F ` F̃ q as the equivariant matrix fac-

torization pM b M̃,D ` D̃, B ` B̃q.

We define an embedding-related push-forward in the case when the subvariety Z0
j

ãÝÑ Z is
the common zero of an ideal I “ pf1, . . . , fnq such that the functions fi P CrZs form a regular
sequence. We assume that the Lie algebra h acts on Z and I is h-invariant. In section 3
of [OR18e] we use technique similar to the proof of lemma 2.2.3 to show that there is a
well-defined functor:

j˚ : MFhpZ0,W |Z0q ÝÑ MFhpZ,W q,

for any h-invariant element W P CrZsh.
For our construction of the convolution algebras we also need to define the equivariant

push-forward along a projection. Suppose Z “ X ˆ Y, both Z and X have h-action and the
projection π : Z Ñ X is h-equivariant. Then for any h invariant element w P CrX sh there is
a functor π˚ : MFhpZ, π˚pwqq Ñ MFhpX , wq which simply forgets the action of CrYs.

Finally, let us discuss the quotient map. The complex CEh is a resolution of the trivial
h-module by free modules. Thus the correct derived version of taking h-invariant part of the
matrix factorization F “ pM,D, Bq P MFhpZ,W q, W P CrZsh is

CEhpFq :“ pCEhpMq, D ` dce ` Bq P MFpZ{H,W q,

where Z{H :“ SpecpCrZshq and use the general definition for an h-module V :

CEhpV q :“ HomhpCEh,CEhb
∆
V q.
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3. Braid groups and matrix factorizations

In this section we explain a construction for an action of the finite and affine braid groups
on the particular categories of the matrix factorizations from [OR18e]. First we explain a
construction for the convolution algebra on our categories of matrix factorizations. Then we
explain a categorization of the homomorphism from the affine braid group to the finite braid
group from [OR18c].

3.1. Convolution product. Let us first motivate the definition of the space that host our
categories of matrix factorizations. Somewhat abusing notations we introduce space

?
X “

gln ˆ GLn ˆ n where n stands for the Lie algebra of strictly upper-triangular matrices. We
omit the sub-index since the size of the matrices is clear from the context, we also use G and
g for GLn and gln in this situation.

The space
?
X has the action of the group of upper-triangular matrices B and G:

ph, bq ¨ pX, g, Y q “ pAdhpXq, hgb,Ad´1
b Y q, ph, bq P GˆB.

The flag variety Fl is a quotient G{B since every full flag can be moved into the standard
flag by G-action and B is the stabilizer group of the standard flag . The group B acts on the
tangent space to Fl at the point of standard flag and as B-module the tangent space is equal
n. Thus the B-quotient of

?
X is naturally isomorphic to the cotangent bundle to the flag

variety: ?
X {B “ gˆ T ˚Fl

Thus G-action on
?
X induces the G-action on gˆ T ˚Fl.

The space T ˚Fl is symplectic and the G-action respects preserves the symplectic form.
Thus there is moment map µ : T ˚Fl Ñ g˚. The trace identifies g with g˚ and we can think
of the moment map as g-linear B-invariant function:

µ :
?
X Ñ C, µpX, g, Y q “ TrpXAdgY q.

Now we can define our main space where the convolution algebra dwells. The space
?
X

has B-invariant projection to the first factor and our main space is the fibered product:

X :“
?
X ˆg

?
X “ gˆGˆ nˆGˆ n.

The space X has a action of G ˆ B2 that is induced from the G ˆ B action on
?
X ,

respectively the projections p1, p2 on two copies of
?
X are GˆB2-equivariant. The group B

is a semi-direct product B “ T ˙U of the torus T and the group of upper-triangular matrices
U .

We define our main category to be:

MFn :“ MFGˆB2pX ,W q, W “ p˚1pµq ´ p
˚
2pµq,

where we require the weak U2-equivariance and strong Gˆ T 2-equivariance in our category.
The strong G ˆ T 2-equivariance implies that all differentials in the complexes are G ˆ T 2-
invariant. We can combine strong Gˆ T 2-equivariance with the weak U2-equivariance since
the Chevalley-Eilenberg complex for U2 is Gˆ T 2-invariant.

There is an action of Tsc “ C˚ ˆ C˚ “ C˚a ˆ C˚t on the space
?
X and the induced action

on X :
pλ, µq ¨ pX, g, Y q “ pλ2 ¨X, g, λ´2µ2Y q.

The potential W is not Tsc-invariant, it weight 2 with respect to the torus C˚t . We require
the differentials in a curved complex from MFn to have weight 1 with respect to C˚t and it
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has weight 0 with respect to C˚a. To simplify notations we do not use any extra indices to
indicate such Tsc-equivariance. We also use notation

qktl ¨ F

for the matrix factorization F with the k-twisted C˚a-action and l-twisted C˚t -action.
Since the space X has B2-action we can also twist a matrix factorization F by a repre-

sentation of this group. Given a characters χl and χr of the left and right factor in B2, the
twisted matrix factorization is denoted by

Fxχl, χry.

To define convolution product in category MFn we introduce the convolution space Xcon
which is a fibered product:

Xcon :“
?
X ˆg

?
X ˆg

?
X “ gˆ pGˆ nq2.

There are three GˆB3-equivariant maps π12, π23, π13 and the convolution product is defined
by the predictable formula:

F ‹ G :“ π13˚pCEnp2qpπ
˚
12pFq b π˚23pGqqT

p2q
q.

Since the projections πij are smooth we can apply base change formula and the standard
argument, that could be found in [CG97]. One derives with the use of the base change that
thus defined product is associative.

3.2. Knorrer reduction. We can apply the Knorrer periodicity discussed in section 2.3 to
reduce the size of our working space X . Indeed, the pair of space and potential:

X̄ “ bˆGˆ n, W pX, g, Y q “ TrpXAdgpY qq

is B2-equivariant with respect to the action:

pb1, b2q ¨ pX, g, Y q “ pAdb1X, b1gb2,Ad´1
b2
Y q.

Thus we can define the category of weakly U2-equivariant and strongly T 2-equivariant matrix
factorizations:

MFn :“ MFB2pX̄ ,W q.
To illustrate some of our methods we provide a proof for the equivalence in

Proposition 3.2.1. There is an equivalence of categories:

Ψ : MFn Ñ MFn.

Proof. First we observe that the group G acts freely on the space X hence we can take quotient
by this group. The quotient can be implemented with help of the map:

X q
ÝÑ X ˝ :“ gˆ nˆGˆ n, qpX, g1, Y1, g2, Y2q “ pAd´1

g1
X,Y1, g

´1
1 g2, Y2q.

The potential W ˝pX,Y1, g, Y2q “ TrpXpY1 ´ AdgY2qq is the pull-back W0 “ q˚pW q and the
pull-back provides an equivalence q˚ : MFn » MFB2pX 0,W0q.

To complete our proof we fix notations for the truncation of a square matrix X:

X “ X` `X´´, X` P n, Xt
´´ P b.
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The potential W ˝ can be written as a sum of W and a quadratic term and thus we can apply
the Knorrer periodicity:

TrpXpY1 ´AdgY2qq “ TrppX` `X´´qpY1 ´AdgY2qq “ ´TrpX`pAdgY2qq`

TrpX´´pY1 ´AdgY2qq “ ´TrpX`pAdgY2qq ` TrpX´´pY1 ´AdgY2q`q.

The entries of the matrices X´´, Y1´pAdgY2q` are the coordinates in the direction transversal
to the subspace X̄ with coordinates X`, g, Y2 and the Knorrer periodicity allows us to remove
the quadratic term in the last formula. �

It is explained in [OR18e] that the category MFn has a monoidal structure ‹̄ such that
that the functor Ψ sends it to the monoidal structure ‹.

3.3. Braid groups. The affine braid group Braffn is the group of braids whose strands
may also wrap around a ‘flag pole’. The group is generated by the standard generators σi,
i “ 1, . . . , n´ 1 and a braid ∆n that wraps the last stand of the braid around the flag pole:

σi “

i`1 i
‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚

.........................................................................................

.........................................................................................

................
............˚

..............

......................................................

......................................................

......................................................

......................................................

.............................................................
.......
.........
......
...........
........
.......
........................................................................

and ∆n “
‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚

..................................................

................................

..................................................

................................

................
............˚

..............

......................................................

......................................................

......................................................

......................................................

......................................................

......................................................

..........................................................................................................................

...........
........
....

.......................

.

The defining relations for this generators are

σn´1 ¨∆n ¨ σn´1 ¨∆n “ ∆n ¨ σn´1 ¨∆n ¨ σn´1,

σi ¨∆n “ ∆n ¨ σi, i ă n´ 1,

σi ¨ σi`1 ¨ σi “ σi`1 ¨ σi ¨ σi`1, i “ 1, . . . , n´ 2,

σi ¨ σj “ σj ¨ σi, |i´ j| ą 1.

The mutually commuting Bernstein-Lusztig (BL) elements ∆i P Braffn are defined as fol-
lows:

∆i “ σi ¨ ¨ ¨σn´2σn´1∆nσn´1σn´2 ¨ ¨ ¨σi “

i
‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚

..................................................

................................

..................................................

................................

................
............˚

..............

...............................

...............................

...............................

...............................
...............

...............
...............

...............

......................................................

......................................................

................................. ...................... ...................... ...................... ...........

........................................................................................................................................

.............................................................................................

...............
........
.....

............................

.

The finite braid group Brn is the subgroup of the affine braid group with the generators
σi, i “ 1, . . . , n´ 1. Other words, we do not allow the braids to go around the pole.

There is a natural homomorphism fgt : Braffn Ñ Brn, geometrically it is defined by remov-
ing the flag pole. In particular we have:

fgtp∆nq “ 1, fgtp∆iq “ δi, i “ 1, . . . , n´ 1.

The inclusion discussed above ifin : Brn Ñ Braffn is a section of the flag forgetting map:
frg ˝ ifin “ 1.
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3.4. Braid action. In this section we outline a construction of the homomorphisms from
the (affine) braid group to our convolution algebras of matrix factorizations. For a geometric
counter-part of the map g we need to introduce stable versions of our categories of matrix
factorizations.

Let us define the stable locus X̄ st,‚ Ă X̄ ˆV to be set of quadruples pX, g, Y, vq that satisfy
a open condition:

(3.1) CxpAd´1
g Xq`, Y yv “ V.

There is a natural projection πV : X̄ ˆ V Ñ X̄ and there is an open embedding map
jst : X̄ st Ñ X̄ where X̄ st “ πV pX̄ ‚,stq. This map induces the pull-back map:

j˚st : MFn Ñ MF
st
n :“ MFB2pX̄ st,W q.

It is shown in [OR18e, Lemma 13.3] that the category MFn has a natural structure of convo-
lution algebra. The main results of the papers [OR18e], [OR18c] play the crucial role in the
construction of the knot invariant in the next section.

Theorem 3.4.1. There are homomorphisms of algebras:

Φ : Brn Ñ pMF
st
n , ‹̄q, Φaff : Braffn Ñ pMFn, ‹̄q.

Moreover, the pull-back j˚st is the homomorphism of the convolution algebras and

j˚st ˝ Φaff “ Φ ˝ fgt.

The fact that the pull-back morphism is an algebra homomorphism relies on the following
shrinking lemma, for a proof see lemma 12.3 in [OR18e].

Lemma 3.4.2. Suppose X is a quasi-affine variety and F “ pM,Dq P MFscpX,W q, W P

CrXs. The elements of CrXs act on MFpX,W q by multiplication. Let us assume that the
elements of the ideal I “ pf1, . . . , fmq Ă CrXs act by zero-homotopic endomorphisms on F
and Z 1 Ă X is the zero locus of I. Let Z Ă X be a subvariety defined by J “ pg1, . . . , gnq
such that Z X Z 1 “ H. Then F is homotopic to F |XzZ as matrix factorization over CrXs.

Essentially the lemma says that we can shrink our ambient space to any open neighborhood
of the critical locus of the potential and such operation does not change the corresponding
category of matrix factorizations.

Let us also remark that there is another construction for the affine braid group action on
the similar category of matrix factorizations in [AK15b] but the precise relation between our
construction and result of this paper is known to the author.

4. Knot invariants

4.1. Geometric trace operator. Let bn, nn be Lie algebras of the group of upper, respec-
tively strictly-upper triangular nˆn matrices. The free nested Hilbert scheme FHilbfreen is a

B ˆ C˚-quotient of the sublocus ČFHilb
free

n Ă bn ˆ nn ˆ Vn of the cyclic triples

ČFHilb
free

n “ tpX,Y, vq|CxX,Y yv “ Vnu,

here Vn “ Cn. The usual nested Hilbert scheme FHilbn is the subvariety of FHilbfreen , it is
defined by the condition that X,Y commute.

Remark 4.1.1. There is a bit of confusion in the notations, what we denote here by FHilbn
is denoted in [OR18e] by Hilb1,n and by FHilbnpCq in [GRN16].
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The torus Tsc “ C˚ ˆ C˚ acts on FHilbfreen by scaling the matrices. We denote by

Dper
Tsc
pFHilbfreen q a derived category of the two-periodic complexes of the Tsc-equivariant quasi-

coherent sheaves on FHilbfreen . Let us also denote by B_ the descent of the trivial vector

bundle Vn on ČFHilb
free

n to the quotient FHilbfreen . Respectively, B stands for the dual of B_.
Below we construct for every β P Brn an element

Sβ P Dper
Tsc
pFHilbfreen q

such that space of hyper-cohomology of the complex:

HkpSβq :“ HpSβ b ΛkBq
defines an isotopy invariant.

Theorem 4.1.2. [OR18e] For any β P Brn the doubly graded space

Hkpβq :“ Hpk`writhpβq´n´1q{2pSβq
is an isotopy invariant of the braid closure Lpβq.

The variety ČFHilb
free

n embeds inside X via a map je : pX,Y, vq Ñ pX, e, Y, vq. The diagonal
copy B “ B∆ ãÑ B2 respects the embedding je and since j˚e pW q “ 0, we obtain a functor:

j˚e : MFB2
n
pX st

,W q “ MF
st
n Ñ MFB∆

pČFHilb
free

n , 0q.

Respectively, we get a geometric version of ”closure of the braid” map:

L : MFB2
n
pX st

,W q “ MF
st
n Ñ Dper

Tsc
pFHilbfreen q.

The main result of [OR18e] could be restated in more geometric term via geometric trace
map:

T r : Brn Ñ Dper
Tsc
pFHilbfreen q, T rpβq :“ ‘kLpΦpβq b ΛkBq.

The above mentioned complex Sβ is the complex LpΦpβqq. The differentials in the complex
Sβ are of degree t thus the differentials are invariant with respect to the anti-diagonal torus

Ta. Hence the forgetful functor χ : Dper
Tsc
pFHilbfreeq Ñ Dper

Ta
pFHilbfreeq could be composed

with K-theory functor K : Dper
Ta
pFHilbfreeq Ñ KTapFHilbfreeq. The composite functor K ˝ χ

is closely related to decategorification and the classical Ocneanu-Jones trace, we discuss the
Ocneaunu-Jones trace TrOJ and related theorem of Markov in the next subsection.

Theorem 4.1.3. [OR18e] The composition H ˝ T r : Brn Ñ Dper
Tsc
pptq categorifies the Jones-

Oceanu trace:

TrOJpβq “ dima,q K ˝ χ ˝H ˝ T rpβq,
where the q-grading comes Ta-action and a-grading is from the exterior powers of B

4.2. OJ trace and Markov theorem. As we discussed before every link L in R3 is isotopic
to the closure of a braid L “ Lpβq, β P Brn. On the other hand it is clear that such a
presentation is not unique. Markov theorem describes the non-uniqueness explicitly and thus
provides an algebraic description of the set L of the isotopy equivalence classes of the links.

Theorem 4.2.1. The closure operation L identifies the set L of isotopy class of links in S3

and the set of equivalence classes:
ď

n

Brn{ „
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where the equivalence relation is generated by the elementary equivalences:

α ¨ β „ β ¨ α, α, β P Brn(4.1)

Brn`1 Q α ¨ σ
˘1 „ α, α P Brn.(4.2)

If we have homomorphism Tr from the braid group to some field F that respects the
relations (4.2) then the value Trpβq P F is an isotopy invariant of the closure Lpβq. In
practice it is hard to classify such homomorphisms, however the great discovery of Ocneanu
and Jones is that one can classify such homomorphisms if we pass to a quotient Hn of the
braid group.

The Hecke algebra Hn is generated by gi, i “ 1, . . . , n´ 1 modulo relations:

gigi`1gi “ gi`1gigi`1, i “ 1, . . . , n´ 2,

gi ´ g
´1
i “ q ´ q´1, i “ 1, . . . , n´ 1.

There is a natural algebra homomorphism π : Brn Ñ Hn, σi ÞÑ gi. It is shown in [Jon87]
that there is a unique homomorphism TrOJ :

Ť

nHn Ñ Qpa, qq that satisfies relations (4.2)
and normalizing relation

TrOJp1q “
a´ a´1

q ´ q´1
.

The corresponding invariant is TrOJpβq P Qpa, qq is also known as HOMFLYPT invariant,
HOMFLYPTpβq.

Thus the formula (1.1) from the introduction and theorem 4.1.3 state that there is a
specialization of the graded dimension of HHHpβq that becomes a HOMFLYPT invariant.
Let us recall that the space HHHpβq up to some elementary grading shift is equal:

H˚pΦpβq b Λ‚BqB.

This space naturally has four gradings: ˚, ‚ and Tsc-grading. However, only three of these
gradings are invariant with respect to the Markov moves: ˚ is not preserved by the moves.
The first grading is ‚, we call it a-grading, since it is responsible for the a-variable in the
HOMFLYPT polynomial specializations. The other two gradings come from Tsc-action:

degpXijq “ q2, degpYijq “ q´2t´2.

To specialize to the HOMFLYPT polynomial we need to set t “ ´1 or more geometrically,
we need to restrict torus Tsc-action on the space HHHpβq to the action of the anti-diagonal

torus, we denote the specialized category by MF
st,a
n . To be more precise, the category MFst,an

is a category of matrix factorizations on X st
with the potential W which are B2

n-weakly
equivariant, Gˆ T 2 ˆ Ta-strongly equivariant.

As we mentioned before this torus is special because under this specialization the differen-

tials in the curved complexes from MF
st
n become torus invariant, hence there is a well-defined

functor:

K : MF
st,a
n Ñ KTapMFst,an q.

This K-theory functor turns the homotopy equivalence (6.1) into the relation:

rC`s “ q´1prC‖s ´ rC‚x´χ1,´χ1ysq.

Thus the combination of the relations (1.2) and (6.3), (6.4) imply the quadratic relation in
the Hecke algebra.
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The Markov move relations (4.2) hold for the invariant HHHpβq and in the section 7 we
discuss the main idea of our proof of the Markov moves for HHH. We need some details of
the braid group action construction for the Markov move argument, therefore we outline the
construction in the next section.

5. Geometric realization of the affine braid group

5.1. Induction functors. The standard parabolic subgroup Pk has Lie algebra generated
by b and Ei`1,i, i ‰ k. Let us define space X pPkq :“ bˆ Pk ˆ n and let us also use notation

X pGLnq for X pGLnq. There is a natural embedding īk : X pPkq Ñ X and a natural projection
p̄k : X pPkq Ñ X pGLkq ˆ X pGLn´kq. The space X pGLkq ˆ X pGLn´kq is equipped with a

B2
k ˆB

2
n´k-invariant potential W

p1q
`W

p2q
which is a sum of pull-backs of the potentials W

along the projection on the first and the second factors. Moreover, we have:

(5.1) ī˚kpW q “ p̄˚kpW
p1q
`W

p2q
q.

Since the embedding īk satisfies the conditions for existence of the push-forward and the
relation (5.1) between the potentials holds, we can define the induction functor:

indk :“ īk˚ ˝ p̄
˚
k : MFB2

k
pX pGLkq,W q ˆMFB2

n´k
pX pGLn´kq,W q Ñ MFB2

n
pX pGLnq,W q

Similarly we define space X frpPkq Ă b ˆ Pk ˆ n ˆ V as an open subset defined by the
stability condition (3.1). The last space has a natural projection map

p̄k : X frpPkq Ñ X pGLkq ˆ X frpGLn´kq

and the embedding īk : X frpPkq Ñ X frpGLnq and we can define the induction functor:

indk :“ īk˚ ˝ p̄
˚
k : MFB2

k
pX pGLkq,W q ˆMFB2

n´k
pX frpGLn´kq,W q Ñ MFB2

n
pX frpGLnq,W q

It is shown in section 6 (proposition 6.2) of [OR18e] that the functor indk is the homomor-
phism of the convolution algebras:

indkpF1 b F2q‹̄indkpG1 b G2q “ indkpF1‹̄G2 b F2‹̄G2q.

To define the non-reduced version of the induction functors one needs to introduce the space
X ˝pGLnq “ gˆGLn ˆ nˆ n which is the slice to GLn-action on the space X . In particular,
the potential W on this slice becomes:

W pX, g, Y1, Y2q “ TrpXpY1 ´AdgpY2qqq.

Similarly to the case of the reduced space, one can define the space X ˝pPkq :“ gˆPk ˆ nˆ n
to be the locus of and the corresponding maps ik : X ˝pPkq Ñ X ˝pGLnq, pk : X ˝pPkq Ñ
X ˝pGLkq ˆ X ˝pGLn´kq. Thus we get a version of the induction functor for non-reduced
spaces:

indk :“ ik˚ ˝ p
˚
k : MFB2

k
pX pGLkq,W q ˆMFB2

n´k
pX pGLn´kq,W q Ñ MFB2

n
pX pGLnq,W q

It is shown in proposition 6.1 of [OR18e] that the Knörrer functor is compatible with the
induction functor:

indk ˝ pΦk ˆ Φn´kq “ Φn ˝ indk.
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5.2. Generators of the finite braid group action. Let us define B2-equivariant embed-
ding i : X pBnq Ñ X , X pBq :“ bˆBˆn. The pull-back of W along the map i vanishes and the
embedding i satisfies the conditions for existence of the push-forward i˚ : MFB2pX pBnq, 0q Ñ
MFB2pX pGLnq,W q. We denote by CrX pBnqs P MFB2pX pBnq, 0q the matrix factorization
with zero differential that is concentrated only in even homological degree. As it is shown in
proposition 7.1 of [OR18e] the push-forward

1̄n :“ i˚pCrX pBnqsq

is the unit in the convolution algebra. Similarly, 1n :“ Φp1̄nq is also a unit in non-reduced
case.

Let us first discuss the case of the braids on two strands. The key to construction of the
braid group action in [OR18e] is the following factorization in the case n “ 2:

W pX, g, Y q “ y12p2g11x11 ` g21x12qg21{det,

where det “ detpgq and

g “

„

g11 g12

g21 g22



, X “

„

x11 x12

0 x22



, Y “

„

0 y12

0 0



Thus we can define the following strongly equivariant Koszul matrix factorization:

C̄` :“ pCrX s b Λxθy, Dq P MFstrB2pX ,W q,

D “
g12y12

det
θ `

ˆ

g11px11 ´ x22q ` g21x12

˙

B

Bθ
,

where Λxθy is the exterior algebra with one generator.
This matrix factorization corresponds to the positive elementary braid on two strands.

Using the induction functor we can extend the previous definition to the case of the arbitrary
number of strands. For that we introduce an insertion functor:

Indk,k`1 : MFB2
2
pX pGL2q,W q Ñ MFB2

n
pX pGLnq,W q

Indk,k`1pFq :“ indk`1pindk´1p1̄k´1 ˆ Fq ˆ 1̄n´k´1q,

and similarly we define non-reduced insertion functor

Indk,k`1 : MFB2
2
pX pG2q,W q Ñ MFB2

n
pX pGnq,W q.

Thus we define the generators of the braid group as follows:

C̄pkq` :“ Indk,k`1pindk´1pC̄`qq, C̄pkq` :“ Indk,k`1pindk´1pC`qq.

The section 11 of [OR18e] is devoted to the proof of the braid relations between these
elements:

C̄pk`1q
` ‹̄C̄pkq` ‹̄C̄pk`1q

` “ C̄pkq` ‹̄C̄pk`1q
` ‹̄C̄pkq` ,

Cpk`1q
` ‹ Cpkq` ‹ Cpk`1q

` “ Cpkq` ‹ Cpk`1q
` ‹ Cpkq` .

Let us now discuss the inversion of the elementary braid. In view of inductive definition of
the braid group action, it is sufficient to understand the inversion in the case n “ 2.

Thus we define:

C´ :“ C`x´χ1, χ2y P MFB2pX pGL2q,W q,
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where χ1, χ2 are the standard generators of the character group of C˚ ˆ C˚ “ T Ă B2. The
definition of C̄´ is similar. It could be shown that the definition of C´ is actually symmetric
with respect to the left-right twisting:

C´ “ C`xχ2,´χ1y.

Theorem 5.2.1. We have:

(5.2) C` ‹ C´ “ 12.

6. Sample computation

In this section we would like to show an example of the convolution algebra computations.
But before I would expand a little bit our discussion of the basic matrix factorizations in the
case of n “ 2.

6.1. Basic matrix factorizations of rank 2. We have shown in the previous section that
the potential W is a product of three factors and we used this fact to define the matrix
factorization C̄`. However, it is clear that there are two more natural matrix factorizations
for this potential:

C̄‖ :“ pCrX s b Λxθy, D‖, 0, 0q, C̄‚ :“ pCrX s b Λxθy, D‚, 0, 0q P MFB2pX ,W q,

D‖ “
g21

det
θ ` y12x̃0

B

Bθ
, D‚ “

g21

det
x̃0θ ` y12

B

Bθ
, x̃0 “ g11px11 ´ x22q ` g21x12.

One of the matrix factorizations is actually a cone of the morphism between the other two:

(6.1) rC̄‖
φ
ÝÑ C̄‚x´χ1,´χ1ys „ qt ¨ C̄`

with map φ defined by

t´1 ¨Rxχ2,´χ1y Rxχ2,´χ1y

R Rx0,´χ1y,

g21

1

g21x̃0y12x̃0

x̃0

y12

where R “ CrX s. This relation is crucial for our discussion of the connection with the
Oceanus-Jones traces

6.2. Details on the convolution product. The convolution product inside the category
MFB2pX ,W q is a bit tricky to define and we refer reader to our paper [OR18e] where the
convolution product is constructed and used for the computations for n “ 3. On the other
hand the space X is bigger than the space X but the construction of the convolution is more
straightforward. The space X ˝ :“ X {GLn “ gˆnˆGLnˆn is intermediate between these two
spaces and we choose to work with this slightly bigger space to make our exposition simpler.

The space X ˝ and the relevant potential W ˝ appeared already in the proof of the propo-
sition 3.2.1. Let us spell out the definition of the convolution structure for the elements
F ,G P MFB2pX ˝,W ˝q:

F ‹ G :“ π˝13˚pCEpπ˝˚12 pFq b π˝˚23 pGqqq,
where we used the convolution space X ˝cnv :“ gˆnˆGLnˆnˆGLnˆn and the B3-equivariant
maps are

π˝12pX,Y1, g12, Y2, g23, Y3q “ pX,Y1, g12, Y2q, π˝23pX,Y1, g12, Y2, g23, Y3q “ pAdg12X,Y2, g23, Y3q,

π˝13pX,Y1, g12, Y2, g23, Y3q “ pX,Y1, g12g
´1
23 , Y3q.



NOTES ON MATRIX FACTORIZATIONS AND KNOT HOMOLOGY 21

To write the versions C‖, C‚, C` of the matrix factorizations from above we need more precise
notations for the Koszul matrix factorizations. We use the matrix notation

»

—

–

a1 b1 θ1
...

...
...

am bm θm

fi

ffi

fl

.

for the matrix factorization from MFpX,F q with the differential D “
řm
i“1 aiθi` bi

B
Bθi

acting

on CrXs b Λ‚rθs.
Let us also fix coordinates on the space X ˝ “ gˆ bˆGˆ b:

X “

„

x0 ` tr{2 x1

x´1 ´x0 ` tr{2



, Yi “

„

0 yi
0 0



g “

„

a11 a12

a21 a22



,

where tr “ trX. We also denote by δ1, δ2 the generators of Lie pU2q, U2 Ă B2. We also only
indicate non-trivial actions of δi, that is if no action of δi is given then this action is trivial.

With this conventions we have the matrix factorization of the identity braid has the form

C‖ “
„

x´1 y1 ´ y2a
2
11 θ1

y2x̃0 a21 θ2



, δ1θ1 “ ´2y2a11θ2.

The blob matrix factorization has the form

C‚ “
„

x´1 y1 ´ y2a
2
11 θ1

a21x̃0 y2 θ12



, δ1θ1 “ ´2a21a11θ
1
2

or equivalently

C‚ “
„

x´1 y1 θ11
´a2

11x´1 ` a21x̃0 y2 θ12



, θ11 “ θ1 ` a
2
22θ

1
2, δ1θ

1
1 “ 0

The matrix factorization of the positive intersection is

(6.2) C` “
„

x´1 y1 ´ y2a
2
11 θ1

x̃0 a21y2 θ2



, δ1θ1 “ ´2a11θ2.

6.3. Computation. Now we are ready to do our sample computation.

Proposition 6.3.1. In the convolution algebra of MFGLnˆB2pX ,W q we have:

C‚x0, χ1y ‹ C‚x0, χ1y “ C‚xχ1, χ1y ‘ C‚xχ2, χ1y.

Proof. Let us fix some more notation for the coordinates on the spaces that appear in our
constructions. For the group elements elements in the product X ˝conv “ gˆnˆGL2ˆnˆGL2ˆn
we use notations a, b and for the non-zero elements of upper-triangular matrices in the product
we use y1, y2, y3. We also add prime to the conjugate of X: X 1 “ AdaX.

Thus the matrix factorization C2 “ π˝˚12 pC‚q b π˝˚23 pC‚q is the following Koszul matrix fac-
torization:

C2 “

»

—

—

–

x´1 y1 ´ y2a
2
11 θ1

a21p2x0a11 ` x1a21q y2 θ2

x1´1 y2 ´ y3b
2
11 θ3

b21p2x
1
0b11 ` x

1
1b21q y3 θ4

fi

ffi

ffi

fl

, δ1θ1 “ ´2a11θ2, δ2θ3 “ ´2b11θ4.
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By making suitable linear change of θ1 ÞÑ θ1 ` 2a11θ2, θ2 ÞÑ θ2 and θ3 ÞÑ θ3 ` b11θ4, θ4 ÞÑ θ4

we can make the first simplification of this matrix factorization:

C2 “

»

—

—

–

x´1 y1 θ1

´a2
11x´1 ` a21p2x0a11 ` x1a21q y2 θ2

x1´1 y2 θ3

´b211x
1
´1 ` b21p2x

1
0b11 ` x

1
1b21q y3 θ4

fi

ffi

ffi

fl

, δiθj “ 0.

We use the third row to remove y2 from the other rows:

C2 “

»

—

—

–

x´1 y1 θ1

´a2
11x´1 ` a21p2x0a11 ` x1a21q 0 θ12

0 y2 θ3

´b211x
1
´1 ` b21p2x

1
0b11 ` x

1
1b21q y3 θ4

fi

ffi

ffi

fl

, θ12 “ θ2 ´ θ3.

Since θ3 is B2 invariant element, we can now remove the third row altogether and work over
the ring R1 “ CrX ˝convs{py2q.

We can also use the relation

´b211x
1
´1 ` b21p2x

1
0b11 ` x

1
1b21q “ ´c

2
11x´1 ` c21p2x0c11 ` x1c21q

to arrive to

C‚ ‹ C‚ “

»

–

x´1 y1 θ1

´a2
11x´1 ` a21p2x0a11 ` x1a21q 0 θ12

´c2
11x´1 ` c21p2x0c11 ` x1c21q y3 θ4

fi

fl

Doing couple more simple row transformations, that change the basis in the space xθ1, θ
1
2, θ

1
4y,

we arrive to a simplified presentation of C‚ ‹ C‚:

C2 “

»

–

x´1 y1 ´ c
2
11y3 θ11

a21p2x0a11 ` x1a21q 0 θ22
c21p2x0c11 ` x1c21q y3 θ14

fi

fl

Now let us notice that the top and the bottom lines of the last Koszul complex are δ2-
invariant and together they form a Koszul matrix factorization π˝,˚13 pC‚q. On the other hand
the middle line has only one non-trivial differential and to complete the proof we need to
compute the Chevalley-Eilenberg homology

H˚Lie pn, R
2 f
ÝÑ R2qT , f “ ´a21p2x0a11 ` x1a21q,

where R1 “ R2 b CrGL2s with last copy of GL2 has coordinates cij .
The space Spec pR2q has coordinates a, y1, y2, x and the Lie algebra n only acts on the

entries of the matrix a:
δ2ai2 “ ´ai1, δ2ai1 “ 0.

The differential in complex for H˚Lie is exactly δ2 hence

H0pn, R2q “ Cry1, y2, x, a11, a21,det˘1s, H1pn, R2q “ Cry1, y2, x, a, det˘1s{pa11, a21q,

where det “ det a. Now we can extract the torus invariant part:

pH˚pn, R2q b χ1q
Tsc “ pH0pn, R2q b χ1q

Tsc “ xa11, a21y.

Finally, let us observe that the function f is quadratic on a hence its induced action action
on pH˚pn, R2q b χ1q

Tsc is trivial and the statement follows.
�
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Now let us derive the formula (1.2) from the above computation. For that let us recall the
stable locus X̄ st is union of two open subsets: Uy “ ty ‰ 0u, Ux “ tpAd´1

g Xq12 ‰ 0u. On

the open set Uy the matrix factorization C̄‚ contracts since y is one of the differentials of the
curved complexes. Thus we can safely restrict our attention to the open locus Ux but on this
locus pAd´1

g Xq12 ‰ 0. Since the weights of Tsc ˆB
2 on this non-vanishing elements are:

weightppAd´1
g Xq12q “ q2 ¨ x0,´χ1 ` χ2y, weightpdetpaqq “ xχ1 ` χ2, χ1 ` χ2y

we can trade the Borel action weight for q χ1-shifts for q-shifts:

(6.3) C̄‚xχ1 ` χ1, χ
2y “ q2C̄‚xχ1 ´ χ2, χ

2 ´ 2χ2y,

(6.4) C̄‚xχ1, χ1 ` χ1y “ q´2C̄‚xχ1, χ2 ` χ2y.

Finally, we refer to the theorem 8.6.1 that implies that the pull-back j˚st turns the shifts xχ2, 0y
and x0, χ2y to the trivial B2-equivariant shift.

7. Markov relations

The first Markov relation is equivalent to HHH being a trace, that is we need to show
that the functor HHH is constant on the conjugacy classes inside Brn. In fact one can show
stronger statement. Before we state the this stronger statement let us discuss the connection
with usual flag Hilbert schemes.

7.1. Sheaves on the flag Hilbert scheme. The usual flag Hilbert scheme FHilbn is a

subvariety of Hilbfree1,n defined by the commutativity constraint on X,Y :

rX,Y s “ 0.

It turns out that the support of the homology of the complex Sβ is contained in HilbL1,n.
Hence the sheaf homology of the complex is the sheaf

Sβ “ Soddβ ‘ Sevenβ :“ H˚pFHilbfreen , Sβq

on Hilb1,n and we immediately have the following:

Theorem 7.1.1. There is a spectral sequence with E2 term being

pH˚pFHilbn,Sβ b ΛkBq, dq

d : HkpFHilbn,Sodd{evenβ b ΛkBq Ñ Hk´1pFHilb1,n,Seven{oddβ b ΛkBq,

that converges to Hkpβq.

The theorem follows almost immediately from the main theorem 4.1.2 and the proposi-
tion 2.1.4. Moreover the sheaf Sβ is actually is a conjugacy invariant:

Theorem 7.1.2. [OR18e] For any α, β P Brn we have:

Sα¨β » Sβ¨α.

The argument could be found in the cited paper, here we illustrate the idea by showing
that

(7.1) Sσiσjσk » Sσjσkσi .
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Indeed, let us introduce the space X3 Ă glnˆpGLnˆ nnq
3 defined by the constraint requiring

the cyclic product of the group elements to be one. There is a natural B3-action and B3-
equivariant projections :

pri : X3 Ñ gln ˆ nn, pripX, g1, Y1, g2, Y2, g3, Y3q “ pX,Yiq.

Respectively, we also have projections π˝12, π
˝
23, π

˝
31 : X3 Ñ X ˝ and

Sσiσjσk “ pr1˚pCq, Sσjσkσi “ pr2˚pCq, C “ CEn3pπ˝˚12 pC
piq
` q b π

˝˚
23 pC

pjq
` q b π

˝˚
31 pC

pkq
` qq

On the critical locus of π˝˚i,i`1pW
˝q we have Yi “ AdgiYi`1 hence on the critical locus the

conjugation by g1 intertwines the projections pr1 and pr2 the isomorphism (7.1) follows.
In the argument above we ignore the stability conditions but can check that the shrink-

ing lemma 3.4.2 implies that the argument above works even after we impose the stability
conditions.

7.2. Second Markov move. The second Markov relation is more subtle and a proof of this
relation is arguably the most valuable result of [OR18e]. To convey the main idea of the proof
we explain why it holds for the braids on two strands. In this case we need to compare the
homology of the closure of σ˘1

1 with the homology of unknot, so let us first do the most trivial
case of the braids on one strands since Lp11q, 11 P Br1 is manifestly the unknot.

Indeed, for n “ 1 we have X̄1 “ CˆC˚ˆ 0 and je embeds ČFHilb
free

1 “ Cˆ 1ˆ 0 inside X̄1.

The group B1 “ C˚ acts trivially on ČFHilb
free

1 and thus FHilb1 “ C and Se “ j˚e pOX̄1
q “ OC

and B1 is the trivial bundle. We conclude then:

dimq,tH
0p11q “ dimq,tH

1p11q “
1

1´ q2
.

Now let us explore the geometry of the free Hilbert scheme FHilbfree2 . Let us fix coordinates

on the space ČFHilb
free

2 Ă bˆ nˆ V :

X “

„

x11 x12

0 x22



, Y “

„

0 y
0 0,



, v “

„

v1

v2



.

Since we have the stability condition CxX,Y yv “ C2 and both X,Y are upper-triangular,
we must have v2 ‰ 0. Thus after conjugating by the appropriate upper-triangular matrix we
could assume that v2 “ 1, v1 “ 0, let us denote this vector by v0. It is also elementary to see
that

CxX,Y yv0 “ C2 if and only if x12y ‰ 0.

Also the stabilizer of v0 is C˚ that scales x12, y and preserves x11, x22. Hence we have shown:

FHilbfree2 “ P1 ˆ C2,

the projection p on C2 is given by the coordinates x11, x22.

Let us contrast the geometry of FHilbfree2 with the geometry of FHilb2. The discussion in
this paragraph is not used in the proof below and is just an illustration of difficulties of the
geometry of the flag Hilbert scheme. The condition rX,Y s “ 0 is equivalent to the constraint:

ypx11 ´ x22q “ 0.

Hence the fibers of the projection p : FHilb2 Ñ C2 are points outside of the diagonal x11 “ x22

and the fibers are projective lines P1 over the diagonal.
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Next let us recall that the matrix factorization for the simple positive crossing is C` “
|x̃, yg21|. Since x̃|g“1 “ px11 ´ x22q, the pull-back jepC`q is the Koszul complex that is
homotopy equivalent to the structure sheaf of P1ˆC. Finally, the tautological vector bundle
is a sum of the line bundles B_ “ O ‘Op´1q, hence:

H0pσ1q “ H˚pOP1ˆCq “ Crx11s, H1pσ1q “ H˚pB_q “ H˚pOP1ˆC ‘OP1ˆCp´1qq “ Crx11s,

H2pσq “ H˚pdetpBqq “ H˚pOP1ˆCp´1qq “ 0.

By our construction the matrix factorization for the negative crossing is differs by a line
bundle twist from the one for positive crossing. In particular, we have jepC´q “ OP1ˆCp´1q
and can compute the homology:

H0pσ´1
1 q “ H˚pOP1ˆCp´1qq “ 0, H2pσ´1q “ H˚pdetpBqbOp´1qq “ H˚pOP1ˆCp´2qq “ Crx11s,

H1pσ´1
1 q “ H˚pB_ bOp´1qq “ H˚pOP1ˆCp´1q ‘OP1ˆCp´2qq “ Crx11s,

Thus we have shown Hkpσq “ Hkp11q and Hk`1pσ´1q “ Hkp11q as we expected.
Respectively, we can use nested nature of the scheme FHilbn to define the intermediate

map:

π : FHilbfreen Ñ Cˆ FHilbfreen´1 ,

where the first component of the map π is x11 and the second component is just forgetting
of the first rows and rows of the matrices X,Y and the first component of the vector v. Let
us also fix notation for the line bundles on FHilbfreen : we denote by Okp´1q the line bundle
induced from the twisted trivial bundle O b χk. It is quite elementary to show

Proposition 7.2.1. The fibers of the map π are projective spaces Pn´1 and

(1) Bn{π˚pBn´1q “ Onp´1q.
(2) Onp´1q|π´1pzq “ OPn´1p´1q.

We can combine the last proposition with the observation that the total homologyH˚pPn´1,Op´lqq
vanish if l P p1, n´ 1q and is one-dimensional for l “ 0, n:

Corollary 7.2.2. For any n we have:

‚ π˚pΛ
kBnq “ ΛkBn´1

‚ π˚pOnpmq b ΛkBnq “ 0 if m P r´n` 2,´1s.
‚ π˚pOnp´n` 1q b ΛkBnq “ Λk´1Bn´1rns

The geometric version of the Markov move is the following

Theorem 7.2.3. For any β P Brn´1 we have

Hkpβ ¨ σ1q “ Hkpβq, Hkpβ ¨ σ1q “ Hk´1pβq.

Sketch of a proof. The main technical component of the proof is the careful analysis of the
matrix factorizations C̄β¨σ˘1 P MFpX̄n,W q. It is shown in [OR18e] that this curved complex

C̄β¨σε1 has form:

(7.2) C1 C1 b V C1 b Λ2V C1 b Λ3V C1 b Λ4V ¨ ¨ ¨
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where C1 “ π˚pC̄βq, V “ Cn´2, the dotted arrows are the differentials of the Koszul complex
for the ideal I “ pg13, . . . , g1nq where gij are the coordinates on the group inside the product
X̄n “ bn ˆ GLn ˆ nn. Thus after the pull-back j˚e the dotted arrows of the curved complex
vanish and we only left with the arrows going from the left to right.

Now we would like to compute π˚pj
˚
e pC̄β¨σ˘1

1
q b ΛkBnq and here we can apply the previous

corollary. Thus if ε “ 1 then only the left extreme term of j˚e of the complex (7.2) survive the
push-forward π˚. Since the non-trivial arrows of j˚e of (7.2) all are the solid arrows which are
going the left to the right, the contraction of the π˚-acyclic terms do not lead to appearance
of new correction arrows thus conclude that

π˚pj
˚
e pC̄β¨σ1q b ΛkBnq “ j˚e pC̄β b ΛkBn´1q.

If ε “ ´1 then only the right extreme term of j˚e of the complex (7.2) survive the push-
forward π˚. Hence the similar argument as before implies:

π˚pj
˚
e pC̄β¨σ´1

1
q b ΛkBnq “ j˚e pC̄β b Λk´1Bn´1q.

�

8. Chern functor and localization

The theorem 7.1.1 provides a theoretical method for constructing a sheaf on the flag Hilbert
scheme that contains all the information about the knot homology of the closure of the braid
Lpβq. However, it is hard to use this method for actually computing knot homology.

The first complication comes from the fact that the space FHilbn is very singular and
working with this space requires extra level of care and technicalities [GRN16]. We will
explain how one can circumvent this complication with the Chern functor from the next
subsection.

The second complication comes from possible non-vanishing of the differential d in the
theorem, one would like to avoid the spectral sequence that do not degenerate at the second
step. The differential vanishes automatically if for example Soddβ vanishes, this kind of property

is probably related to the parity property in [EH17a] for Soergel bimodel model of the knot
homology. Again the Chern functor helps with finding braids that have the parity property,
as we explain in the end of the section.

8.1. Chern functor. In the paper [OR18d] we construct a pair of functors which we call a
Chern functor and a co-Chern functor:

(8.1) MFst
n Dper

Tsc
pHilbnq

CHstloc

HCstloc

,

where Hilbn is the Hilbert scheme of n points on C2, while Dper
Tsc
pHilbnq is the derived category

of two-periodic Tsc-equivariant complexes on the Hilbert scheme. In the same paper we prove

Theorem 8.1.1. [OR18d] For every n we have

‚ The functors CHst
loc and HCst

loc are adjoint.
‚ The functor HCst

loc is monoidal.
‚ The image of HCst

loc commutes with the elements Φpβq, β P Brn.
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As a manifestation of the categorified Riemann-Roch formula, we obtain a new interpreta-
tion for the triply-graded homology:

Theorem 8.1.2. [OR18d] For any β P Brn we have:

HHHpβq “ HompO,CHst
locpΦpβqq b Λ‚Bq.

Let us outline the construction of the Chern functor in the next subsection.

8.2. The Chern CH. First we will construct the functor between the categories MF and
MFDr where the last category is defined as a stable version of the category of equivariant
matrix factorizations:

MFDr :“ MFGpC ,WDrq, C “ gˆGˆ g, WDrpZ, g,Xq “ TrpXpZ ´AdgZqq,

the group GLn acting on components of C by conjugation. The stable version of the category
is defined as category of matrix factorizations on the slightly enlarged space:

C st Ă C ˆ V, pZ, g,X, vq P C st iff gv “ v.

Both stable and unstable versions of the categories fit into the diagram:

MF‚ MF‚Dr

CH‚

HC‚

,

where ‚ can be either st or H.
To lighten the exposition we explain only the construction for the functors CH and HC,

the stable version is an easy modification of the construction, see [OR18d]. We need two
auxiliary spaces in order to define the Chern functor:

Z 0
CH “ gˆGˆ gˆGˆ n, ZCH “ gˆGˆ gˆGˆ b

The action of GˆB on these spaces is

pk, bq ¨ pZ, g,X, h, Y q “ pAdkpZq,Adkpgq,AdkpXq, khb,Adb´1pY qq

and the invariant potential is

WCHpZ, g,X, h, Y q “ TrpXpAdghpY q ´AdhpY qqq.

The spaces C and X are endowed with the standard GˆB2-equivariant structure, the action
of B2 on C is trivial. The following maps

πDr : ZCH Ñ C , f∆ : Z 0
CH Ñ X j0 : Z 0

CH Ñ ZCH.

πDrpZ, g,X, h, Y q “ pZ, g,Xq, f∆pZ, g,X, h, Y q “ pX, gh, Y, h, Y q

are fully equivariant if we restrict the B2-equivariant structure on X to the B-equivariant
structure via the diagonal embedding ∆ : B Ñ B2. Note that j0 is the inclusion map.

The kernel of the Fourier-Mukai transform is the Koszul matrix factorization

KCH :“ rX ´Adg´1X,AdhY ´ Zs P MFpZCH, π
˚
DrpWDrq ´ f

˚
∆pW qq.

and we define the Chern functor:

(8.2) CHpCq :“ πDr˚pCEnpKCH b pj
0
˚ ˝ f

˚
∆pCqqqT q.
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We also define the co-Chern functor HC as the adjoint functor that goes in the opposite
direction: HC: MFDr Ñ MF. Thus, the functor HC is the composition of adjoints of all the
functors that appear in the formula (8.2).

The product ZCH ˆB has a B ˆB-equivariant structure: for pp, gq P ZCH ˆB we define

ph1, h2q ¨ pp, gq “ ph1 ¨ p, h1gh
´1
2 q

Then the following map is B2-equivariant:

f̃∆ : Z 0
CH ˆB Ñ X ˆB,

f̃∆pZ, g,X, h, Y, bq “ pX, gh, Y, hb,AdbY, bq.

The map f̃∆ is a composition of the projection along the first factor of ZCH and the embedding
inside X ˆB. The embedding is defined by the formula

AdbY1 “ Y2,

so it is a regular embedding. Thus since

j0˚pKCH b π̃
˚
DrpDqq P MFGˆB2pZCH ˆB, f̃

˚
∆pW qq,

where π̃Dr : ZHC ˆ B Ñ C is a natural extension of map πDr by the projection along B, we
have a well-defined matrix factorization f̃∆˚ ˝j

0˚pKCHbπ
˚
DrpDqq P MFGˆB2pX ˆB, π˚BpW qq,

where πB is the projection along the last factor. Now we can define:

(8.3) HCpDq :“ πB˚pf̃∆˚ ˝ j
0˚pKCH b π

˚
DrpDqqq.

8.3. Linear Koszul duality. We need to relate the category MFstDr and the categoryDper
Tsc
pHilbq.

This relation is a particular example of the linear Koszul duality. Let us discuss the linear
Koszul duality in general.

Derived algebraic geometry is explained in many places, here we explain it in the most
elementary setting sufficient for our needs.

Initial data for an affine derived complete intersection is a collection of elements f1, . . . , fm P
CrXs. It determines the differential graded algebra

R “ pCrXs b Λ˚U,Dq, D “
m
ÿ

i“1

fi
B

Bθi
,

where θi from a basis of U “ Cm.
More generally, given a dg algebra R such that H0pRq “ OZ we say that SpecpRq is a dg

scheme with underlying scheme Z. Respectively, we define dg category of coherent sheaves
on SpecpRq as

CohpSpecpRqq “ tbounded complexes of finitely generated R dg modulesu

tquasi-isomorphismsu
.

Consider a potential on X ˆ U :

W “

m
ÿ

i“1

fipxqzi,

where zi is a basis of U˚ dual to the basis θi. For the Koszul matrix factorization:

MFpX ˆ U,W q Q B “ pRb CrU s, DBq, DB “

m
ÿ

i“1

ziθi ` fi
B

Bθi
.
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and for a pM,DM q dg module over R, the tensor product

KSZU pMq :“M bCrXsbΛ˚pUq B

is an object of MFpX ˆ U,W q with the differential D “ DM b 1` 1bDB. The map KSZU
extends to a functor between triangulated categories:

KSZU : CohpSpec pRqq Ñ MFpX ˆ U,W q.

The functor in the other direction is based on the dual matrix factorization:

MFpX ˆ U,´W q Q B˚ “ pRb CrU s, D˚Bq, D˚B “ ´
m
ÿ

i“1

ziθi ` fi
B

Bθi
,

KSZ˚U : MFpX ˆ U,W q Ñ CohpSpec pRqq, KSZ˚U pFq :“ HomRpF bCrXˆUs B˚,Rq.

Theorem 8.3.1. The compositions of the functors:

KSZU ˝KSZ˚U , KSZ˚U ˝KSZU

are autoequivalences of the corresponding categories.

Proof of this theorem could be found in [Isi13], [AK15a] or one can consult [OR18d] for a
more streamlined argument.

8.4. Linearization. We would like to apply the Koszul duality in our situation. The com-
plication in our case is that we want to eliminate the group factor in the space C st but the
group is not a linear space. Thus we have to restrict ourselves to the neighborhood of the
identity and linearize the potential in this neighborhood and as we explain below it could be
done with localization.

A coordinate substitution Y “ Ug´1 on our main variety C makes the potential tri-linear:

WDrpX,U, gq “ TrpXrU, gsq “WDrpX,Ug
´1, gq.

Thus we introduce linearized categories:

MF‚Dr :“ MFGpC
‚,W linq,

where C ‚ is obtained from C ‚ by taking the closure of G inside g.
Since jG : C ‚ ãÑ C ‚ is an open embedding, the pull-back functor j˚G is a localization functor

and we denote
loc‚ : MF‚Dr Ñ MF‚Dr

for this functor.

Proposition 8.4.1. [OR18d] The functors locst are isomorphisms.

Since the potential W is linear as a function of g P g and the scaling torus Tsc does not act
on g, we obtain a pair of mutually inverse functors:

MF‚Dr Coh‚

KSZ˚g

KSZg

here Cohst is the two-periodic derived category DperpHilbq and Coh is the DG category of
the commuting variety.

The functors that we wanted to construct are defined by the composing the functors:
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CHst
loc :“ CHst ˝ plocstq´1 ˝KSZ˚g : MF‚ Ñ DperpHilbnpC2qq.

The localization functor does not seem to be invertible in the case of ‚ “ H, however
a construction of the functor in the opposite direction does not require invertibility of the
localization:

HC‚loc :“ HC‚ ˝ loc‚ ˝KSZg : Coh‚ Ñ MF‚.

8.5. Localization formulas. The advantage of this new interpretation is that the Hilbert
scheme is smooth, unlike the flag Hilbert scheme which is a homological support of ExtpΦpβq,Φp1qq.
So the complexes on Hilb are more manageable than their flag counter-part. In support of
this expectation, we apply the Chern functor to the Jusys-Murphy (JM) subgroup inside Brn
together with the parity property and prove an explicit localization formula for the sufficiently
positive elements of the JM subgroup.

Recall that the JM subgroup is generated by the elements

δi “ σiσi`1 . . . σ
2
n´1 . . . σi`1σi.

It is not hard to see that these elements mutually commute and that the full twist from the
introduction is the product:

FT “
n´1
ź

i“1

δi.

It is expected that CHst
loc applied to the matrix factorization corresponding to the suffi-

ciently positive element of JM algebra is a sheaf supported in one homological degree, we
state the precise conjecture below. Modulo this geometric conjecture we have a (conditional
on the conjecture) formula for the corresponding homology of the links.

Theorem* 8.6. For any n there are N,M ą 0 such that for a vector ~b P Zn´1 with ai`1´ai ą
N, a2 ąM the pq, t, aq-character of the homology of the closure of the braid

ś

i“2 δ
bi is given

by the formula

dima,Q,T HHHp
n
ź

i“2

δbiq “
ÿ

T

ź

i

zbii p1` az
´1
i q

1´ z´1

ź

1ďiăjďn

ζp
zi
zj
q,

where ζpxq “ p1´xqp1´QTxq
p1´Qxqp1´Txq , Q “ q2, T “ t2{q2. The last sum is over all standard Young

tableaux with zi “ Qa
1piqT l

1piq, a1, l1 are co-arm and co-leg of the square the standard tableau
with the square with the label i.

The proof has two components. The first component is concerned with actual computation
of the matrix factorization Φp

ś

i“2 δ
bi
i q. This computation is an easy consequence of our

construction of Φaff :

Theorem 8.6.1. [OR18c] For any i “ 1, . . . , n we have

Φaff p∆iq “ Φaff p1qxχi, 0y.

In particular, we show in [OR18c] that the pull-back j˚st sends Φaff p1qxχi, 0y to the trivial
line bundle. Since δi “ fgtp∆iq we conclude the following
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Corollary 8.6.2. For any β P Brn and bi,M P Z we have

Φpβ ¨
n
ź

i“2

δbii q “ Φpβqx~b, 0y,

CHst
locpΦpβ ¨ FTM qq “ CHst

locpΦpβqq b detpBqbM ,
where FT “

śn
i“2 δi is the full-twist braid.

Thus we can apply the first formula from the corollary and get an explicit Koszul matrix
factorization describing the desired curved complex:

Φp
n
ź

i“2

δbii q “ C‖x~b, 0y.

It is much harder though to compute Chern functor CHpC‖x~b, 0yq. It is expected [GRN16]
that CHpC‖q is a celebrated Procesi vector bundle and finding an explicit description for this
vector bundle is notoriously hard [Hai02]. So at the moment we do not have an explicit

statement for CHpC‖x~b, 0yq but we believe the following weaker conjecture could be proved by
inductive argument from the work of Haiman.

Conjecture 8.6.3. [OR18f] There is N ą 0 such that for any ~a such that ai`1 ´ ai ą N the
two periodic complex CHst

locpC‖x~a, 0yq is homotopy equivalent to the sheaf concentrated in even
homological degree.

On the other hand detpBq is an ample line bundle on HilbnpC2q and hence the assumptions

of the theorem 8.6 and corollary 8.6.2 imply that CHst
locpC‖x~bqy is homotopy equivalent to

the sheaf with no higher homology. The differential in the complex C‖ has Tsc degree t,
respectively by t-twisting even component of C‖ we obtain the curved complex Cev‖ with Tsc-

invariant differential. From the discussion above we have:

H˚pCHst
locpC‖x~a, 0yqq “ H0pCHst

locpCev‖ x~a, 0yqq “ χpCHst
locpCev‖ x~a, 0yqq “ χpSev1 x~a, 0yq,

where Sev1 is the version of S1 with t-twisted even component. There is well-defined image
KpC‖q of the complex inside of the Tsc-equivariant K-theory. Thus the Euler characteristics

of the LHS of last formula can be computed within KTscpFHilbfreeq and here we can use the
analog Negut’s theorem for the push-forward along the fibers of the projection

Proposition 8.6.4. For any rational function rpLnq with coefficients rational functions of
Li, i ă n, the K-theory push-forward is given by

π˚prpLnqq “
ż

rpzq

p1´ z´1q

ź

i“1

ζ 1pLi{zq
dz

z

where the contour of integration separates the set Polesprpzqq
Ť

t0,8u from the poles of the
rest of the integrant.

The K-theory class of the complex CHst
locpCev‖ q is

ś

1ďiăjďnp1´qtLi{Ljq. Hence we can ap-

ply the formula from the previous proposition iterative to obtain the iterated residue integral
formula for the desired link invariant:

ż

. . .

ż

ź

i

zbii p1` az
´1
i q

1´ z´1

ź

1ďiăjďn

ζp
zi
zj
q
dz1

z1
. . .

dzn
zn

.
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The final step of the proof is a delicate analysis of the iterated residue that was done in the
work of Negut [Neg15] in the context of K-theory of the flag Hilbert scheme.
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