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Abstract 18	
 19	
Mutant evolution in spatially structured systems is important for a range of 20	
biological systems, but aspects of it still require further elucidation. Adding to 21	
previous work, we provide a simple derivation of growth laws that characterize 22	
the number of mutants of different relative fitness in expanding populations in 23	
spatial models of different dimensionalities. These laws are universal and 24	
independent of “microscopic” modeling details. We further study the 25	
accumulation of mutants and find that with advantageous and neutral mutants, 26	
more of them are present in spatially structured, compared to well-mixed colonies 27	
of the same size. The behavior of disadvantageous mutants is subtle: if they are 28	
disadvantageous through a reduction in division rates, the result is the same, and 29	
it is the opposite if the disadvantage is due to a death rate increase. Finally, we 30	
show that in all cases, the same results are observed in fragmented, non-spatial 31	
patch models. This suggests that the patterns observed are the consequence of 32	
population fragmentation, and not spatial restrictions per se. We provide an 33	
intuitive explanation for the complex dependence of disadvantageous mutant 34	
evolution on spatial restriction, which relies on desynchronized dynamics in 35	
different locations/patches, and plays out differently depending on whether the 36	
disadvantage is due to a lower division rate or a higher death rate. Implications 37	
for specific biological systems, such as the evolution of drug-resistant cell 38	
mutants in cancer or bacterial biofilms, are discussed.   39	
  40	
 41	
  42	
 43	
 44	
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Introduction 45	

 46	

The dynamics of mutant creation and invasion are relatively well understood 47	

under a variety of conditions and assumptions, mostly assuming perfect mixing of 48	

individuals. In the context of constant populations, the fixation probability of 49	

mutants as well as fixation times have been thoroughly defined under various 50	

assumptions in the population genetics literature (KIMURA 1962; PATWA AND WAHL 51	

2008). The emergence of mutants in exponentially growing bacterial populations 52	

is also well studied, based on the famous Luria-Delbruck experiments (LURIA AND 53	

DELBRUCK 1943) and the resulting rich theoretical framework (ZHENG 1999; 54	

KEPLER AND OPREA 2001; DEWANJI et al. 2005; KOMAROVA et al. 2007). This has 55	

been instrumental for understanding the principles according to which antibiotic-56	

resistant microbes emerge (JOHNSON AND LEVIN 2013), and has also been applied 57	

to studying the emergence of drug resistance in some cancers (GOLDIE AND 58	

COLDMAN 1983; GOLDIE AND COLDMAN 1998; KOMAROVA AND WODARZ 2005). The 59	

majority of tumors, however, are characterized by the growth of 2D and 3D 60	

spatial structures, and so is the growth of bacteria in biofilms. Recent 61	

experimental and theoretical work (FUSCO et al. 2016) has extended our 62	

understanding of mutant emergence in such spatially structured, expanding 63	

populations. An excess of mutational jackpot events was observed in spatial 64	

compared to well-mixed systems. Such events result from mutations arising at 65	

the surface of expanding, spatially structured populations, surfing at the edge of 66	

range expansions, and appearing as mutant “sectors” or “slices”. These jackpot 67	
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events can occur relatively late in the expansion process, which is in contrast to 68	

well-mixed systems in which mutational jackpot events can only occur early on in 69	

the population growth process (FUSCO et al. 2016). Hence, overall, the average 70	

number of mutants when the total population reaches a given threshold size is 71	

significantly larger in spatial compared to non-spatial settings (FUSCO et al. 72	

2016). This work was done under the assumption that cells do not die, and 73	

theory and computations were mostly developed in the context of neutral 74	

mutants. A number of other papers studied the spread of mutants in spatial and 75	

fragmented settings. A study by (GRALKA AND HALLATSCHEK 2019) considered the 76	

spread of advantageous mutants focusing on the role of habitat fragmentation. In 77	

(GRALKA et al. 2016) several scaling relationships for individual mutant clones 78	

were derived, including advantageous mutants, in the context of expanding 2D 79	

colonies, both ”flat” and radial. Spatial dynamics of disadvantageous mutants 80	

were studied by (OTWINOWSKI AND KRUG 2014), focusing on Write-Fischer 81	

dynamics in constant populations, and by (LAVRENTOVICH et al. 2016), who 82	

looked at the mutational meltdown. The dynamics of advantageous mutants in a 83	

3D patch model was studied by (WACLAW et al. 2015) in the context of tumors.   84	

 85	

Here, we build on the existing work and investigate the dynamics of 86	

mutant emergence and growth in spatially structured cell populations assuming 87	

varying death rates, different mutant fitness, different dimensionalities of space, 88	

and different spatial modeling approaches. One of the two main messages of this 89	

paper is to report interesting dynamics observed for disadvantageous mutants, 90	
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which could apply for example to drug-resistant mutants that emerge before the 91	

onset of therapy. If the disadvantage is caused by a larger death rate of the 92	

mutant cells, then we find that in contrast to other scenarios, the number of 93	

mutants at a given size can be larger in a well-mixed compared to the spatial 94	

system. If, on the other hand, the fitness disadvantage arises because of a 95	

slower replication rate, then more mutants are found in the spatial compared to 96	

the non-spatial system, similar to the results obtained for neutral or 97	

advantageous mutants.  98	

The second message is that surprisingly similar results are obtained in 99	

explicitly spatial models and in patch models, where local within-patch dynamics 100	

are governed by perfect mixing, but individuals migrate to other patches. 101	

Interestingly, the results do not depend on the assumption that patches are 102	

spatially arranged, with migration of individuals to nearest neighboring patches. 103	

The same outcomes are observed if migration can occur to any randomly chosen 104	

patch in the system. Therefore, the properties of mutant growth in the spatial 105	

agent-based model might not be the direct consequence of spatial dynamics, but 106	

the consequence of population fragmentation.  107	

 108	

In addition, in this paper we provide a simple and straightforward 109	

derivation of scaling growth laws that govern cell expansion in spatially 110	

constrained models. The so-called “surface growth” law of homogeneous cell 111	

colonies in space has previously been described in experiments (FREYER AND 112	

SUTHERLAND 1985; BRU et al. 1998; GUNTHER et al. 2007) and in the modeling 113	
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literature (BRU et al. 2003; BLOCK et al. 2007; KOMAROVA AND WODARZ 2010; 114	

RODRIGUEZ-BRENES et al. 2013; TALKINGTON AND DURRETT 2015; MURPHY et al. 115	

2016). Here we study the laws of mutant generation, spread, and competition 116	

with the wild type individuals, in the context of spatially restricted colony 117	

expansion. We derive formulas that relate the expected number of 118	

disadvantageous, neutral, and advantageous mutants to the total population size 119	

in different spatial dimensions. While some of these laws have been derived 120	

previously (such as the growth laws of neutral mutants (FUSCO et al. 2016)), 121	

others are novel or confirm previous numerical observations (see the conjecture 122	

of paper (f) on advantageous mutant growth in 2D expansion), 123	

 124	

 125	

Materials and methods 126	

Two-dimensional agent-based model 127	

We used a 2-dimensional, agent-based model, where a 2-dimensional square 128	

grid is considered. A spot on the grid can be empty or can contain a cell, which is 129	

either wild-type or mutant. At each time step, the grid is randomly sampled N 130	

times, where N is the total number of cells currently in the system. If the sampled 131	

cell is wild-type, the cell attempts division (described below) with a probability Lw 132	

or dies with a probability Dw.  When reproduction is attempted, a target spot is 133	

chosen randomly from the nearest neighbors of the cell (8 neighbors, i.e. the 134	

Moore neighborhood, was used unless otherwise noted). If that spot is empty, 135	

the offspring cell is placed there. If it is already filled, the division event is 136	
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aborted. The offspring cell is assigned wild type with probability 1-u and it is a 137	

mutant with probability u. If the sampled spot contains a mutant cell, the same 138	

processes occur. Attempted division occurs with a probability Lm, and the cell 139	

dies with a probability Dm. The offspring of a mutant cell is always a mutant in the 140	

absence of back mutation. In a different version of the model, a mutant’s 141	

offspring can be of wild-type with probability u. Initial and boundary conditions are 142	

determined by the specific geometric setting investigated. For 2D spatial 143	

simulations, an nxn square domain is considered. At the boundaries of the 144	

domain, a spot is assumed to have fewer neighbors, i.e more division events will 145	

fail. The simulations start with a single wild-type cell, placed into the center of the 146	

grid. Simulations always stop before the boundary of the grid is reached. For 1D 147	

cylinder simulations, we use an nxw rectangular domain of width w. We start with 148	

an array of w wild type cells at the left boundary of the domain, and impose 149	

periodic boundary conditions in the transversal direction. In each simulation, the 150	

cell population is allowed to grow to a size M, and the number of mutant cells at 151	

this size is recorded. Such simulations are performed repeatedly, and the 152	

average number of mutants is calculated. Simulation runs, in which the total cell 153	

population goes extinct due to stochastic effects, are ignored.  154	

 155	

Analysis of 2D spatial stochastic models is presented in Section 3 of the 156	

Supplement. Growth laws for different geometries are derived in Section 4 of the 157	

Supplement.  158	

 159	
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Modeling exponential growth 160	

To compare the spatial dynamics to a well-mixed system, we considered a 161	

simple stochastic simulation of exponential growth. Denoting the number of wild-162	

type cells with xw and the number of mutant cells with xm, one of the cell types is 163	

chosen with a probability given by their proportion in the whole cell population. 164	

Wild-types can divide with a probability Lw and can die with a probability Dw. 165	

Mutants can divide with a probability lm and die with a probability dm. Mutations of 166	

wild type cells happen with probability u. As in the spatial system, the average 167	

number of mutants at population size M was determined.  168	

 169	

A patch (island / metapopulation) model 170	

We also considered an alternative modeling approach to capture mutant 171	

dynamics in spatially structured populations. Instead of tracking the spatial 172	

location of individual cells, we analyze a model that consists of a two-dimensional 173	

grid of nxn patches or demes. Deme models to approximate spatial dynamics 174	

have been explored before (WACLAW et al. 2015), and our approach is 175	

conceptually related. Within each patch, local dynamics occur where cells are 176	

assumed to mix perfectly. At each time step, cells are allowed to migrate to a 177	

different patch with a given rate. In each local patch, Gillespie simulations 178	

(GILLESPIE 1977) of the following ordinary differential equation model were run: 179	

   180	

		

dxi
dt

= lwxi(1−u) 1−
xi + yi
k

⎛

⎝⎜
⎞

⎠⎟
−dwxi −mxi +

m
8 x j

neighbors , j
∑

dyi
dt

=ulwxi 1−
xi + yi
k

⎛

⎝⎜
⎞

⎠⎟
+ lm y 1− xi + yi

k
⎛

⎝⎜
⎞

⎠⎟
−dm yi −myi +

m
8 y j

neighbors , j
∑



	 8	

Wild-type cells are denoted by xi, and mutant cells by yi, where the subscript i 181	

enumerates the spatial locations in a two-dimensional array. Wild type cells 182	

divide with a density-dependent rate lw(1-(x+y)/k), die with a rate dw, and migrate 183	

out of the patch with a rate m. Migration is assumed to occur to one of the eight 184	

neighboring patches, chosen randomly. During replication of the wild-type cells, a 185	

mutant cell can be generated with a probability u. Mutant cells divide with a 186	

density-dependent rate lm(1-(x+y)/k), die with a rate dm, and migrate with a rate 187	

m.  188	

 189	

In an alternative (fragmentation) model, instead of migrating with rate m/8 per 190	

patch to one of the eight neighboring patches, cells migrate with probability m/(n-191	

1) per patch to any other patch regardless of its location. This holds for cells in all 192	

the patches in the system, thus removing a spatial component from the migration 193	

process. Otherwise, the equations are identical to the ones above. 194	

 195	

Simulations were started with a single wild-type cell in the middle patch. The 196	

simulations were run until the total cell population size, summed over all patches, 197	

reached size M. At this point, the number of mutants summed over all patches 198	

was recorded. This was done repeatedly, and the average number of mutants at 199	

size M was determined. Instances of the simulation that resulted in population 200	

extinction across all patches were ignored.  201	

 202	
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For comparison, Gillespie simulations were performed in a non-fragmented, well 203	

mixed system described by the following equations: 204	

 205	

The carrying capacity of the non-fragmented system is taken n2 times the 206	

carrying capacity of the individual patches (n2 is the total number of patches). 207	

The average number of mutants at population size M was determined in the 208	

same way as in the patch model. 209	

 210	

Deterministic (ODE) versions of these models are presented in Section 2 of the 211	

Supplement. 212	

 213	

 214	

Data availability:  215	
This paper uses mathematical models and does not have new data. 216	

 217	

 218	

 219	

 220	

 221	

 222	
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Results 225	

 226	

Generation and spread of mutants in spatial and non-spatial 227	

models 228	

We used a 2-dimensional agent-based model and a patch model (see Materials 229	

and Methods) to explore the spread of mutants in spatial and non-spatial growth 230	

processes. Denote by Lw and Lm the division rates of wild type and mutant cells, 231	

and by Dw and Dm their respective death rates. Below we report the results for 232	

neutral, disadvantageous, and advantageous mutants.  233	

 234	

 235	

 236	

Neutral mutants 237	

First we used the 2-dimensional agent-based model under the same 238	

assumptions as used in (FUSCO et al. 2016), i.e. with neutral mutants and zero 239	

death rates (Lw=Lm>0, Dw=Dm=0). The same type of dynamics is observed as 240	

previously reported, with mutant clones either being engulfed by wild-type cells 241	

after creation, or mutant clones establishing growing sectors. The average 242	

number of mutants at size M is significantly larger for the spatial compared to the 243	

non-spatial system (not shown).  244	

 245	
Similar results are observed under the assumption that cells can die 246	

(Lw=Lm>0, Dw=Dm>0). Mutants either grow as expanding sectors or are engulfed 247	

by the wild-type cells after temporary expansion (Figure 1, inset in (a)). The 248	
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number of mutants at population size M is always larger in the spatial compared 249	

to the non-spatial system (Figure 1(a)). The extent of the difference is larger for 250	

higher death rates and lower reproduction rates, i.e. for populations with a higher 251	

turn-over (Figure 1a). This is because in higher turn-over systems, more 252	

generations are required to reach a given size threshold, resulting in the 253	

amplification of the observed effect. 254	

 255	

Results of this comparison were qualitatively similar to those obtained 256	

from the patch model. The number of neutral mutants at population size M 257	

(assumed much smaller than the maximum system size) was always higher for 258	

the spatial (patch) compared to the well-mixed system (Fig S2(A) of the 259	

Supplement). Interestingly, this result holds for different spatial organizations of 260	

the patch model. In the most spatially restricted system, individuals can only 261	

migrate to and from the eight nearest neighboring patches. In an alternative 262	

model, migration is allowed between any patches regardless of their location. In 263	

either case, a patch model produces significantly more mutants than the mass-264	

action system. This suggests that it is not the spatial arrangement per se but 265	

fragmentation of the system that may be responsible for the observed increased 266	

number of mutants. The difference is more pronounced for larger cell death rates 267	

(Fig S2(A) of the Supplement).  268	

 269	

 270	

 271	
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Advantageous mutants 272	

If the mutant is advantageous, the dynamics are similar as those observed for 273	

neutral mutants. First, we assume that the advantage is given by a larger division 274	

rate of the mutant cells. The number of mutants at population size M is always 275	

larger in the spatial compared to the well-mixed setting (Fig 1(b,c)); higher death 276	

rates lead to a larger difference between the number of mutants in spatial and 277	

non-spatial settings (Fig S1(a) in the Supplement).   Mutants can again either 278	

grow as expanding sectors, or show a temporary growth phase before being 279	

engulfed by wild-type cells, see inset in Fig 1(c). Similar results are obtained if we 280	

assume that the mutant advantage is given through a reduced death rate of 281	

mutant cells (Figure 1bii and Fig S1(b) in the Supplement). These conclusions 282	

remain robust if we use the patch model (either spatially constrained or with 283	

random migration between any two patches) instead of the agent-based model 284	

(Fig S2(B) of the Supplement).  We note that the graphs cover a range of 285	

degrees to which the mutant is advantageous, starting from almost neutral up to 286	

a 4-fold advantage (perhaps unrealistically high, where the spatial system is 287	

completely invaded by mutants). The aim was to show that results do not change 288	

for a large parameter range. 289	

 290	

 291	

Disadvantageous mutants 292	

Disadvantageous mutants are very unlikely to grow as sustained sectors, 293	

especially if the disadvantage is more pronounced (inset in Figure 1(d)). In the 294	
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absence of death, after creation, mutants undergo a few cell divisions and are 295	

then engulfed by the expanding wild-type cell population; in the presence of cell 296	

death, they form mutant “islands”, which can become repeatedly generated by 297	

mutations and tend to be outcompeted by wild-type cells.  298	

 299	

 300	

The average number of mutants when the overall population reaches size 301	

M depends on spatial structure in a more complex way, compared to the case of 302	

neutral mutants. First, we assume that the fitness difference lies in the division 303	

rate of the cells (figure 1(d)). In this case, we observe that the average number of 304	

mutants is always larger for the spatial compared to the well-mixed simulations. 305	

The extent of the difference, however, becomes very small as the extent of the 306	

disadvantage grows. Hence, unless the mutant is almost neutral, the increase in 307	

the number of mutants in the spatial compared to the non-spatial system 308	

becomes negligible. In addition, the difference is most pronounced for small 309	

death rates and diminishes for larger death rates (Fig S1(c) of the Supplement).  310	

 311	

A different result is observed if the lower fitness of the mutant strain is brought 312	

about by a higher death rate of mutant cells. If the difference in death rates lies 313	

above a threshold level, the average number of mutants at size M is observed to 314	

be larger in well-mixed compared to spatial simulations (Fig 1(e)), which is the 315	

opposite trend compared to the previous cases, and also the opposite result 316	

compared to those reported in (FUSCO et al. 2016). Panel (f) shows more details 317	
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of this behavior. We observe that the number of mutants in a well-mixed system 318	

starts exceeding that of the spatial system when the % death rate increase is 319	

about 16% for this parameter set (when measured at size 103), but this 320	

percentage decreases for larger population sizes: it is about 12% when 321	

measured at size 105, and we expect that the effect is observed for even smaller 322	

degrees of disadvantage at lager sizes. This might be relevant for cancer cell 323	

populations, where the number of cells can reach 1010-1013. For smaller degrees 324	

of disadvantage, even though there are more mutants in the spatial system, the 325	

difference is drastically reduced compared to that reported for neutral systems 326	

(Fig 1f). This again indicates that a disadvantage in death counters the potential 327	

of spatial structure to increase mutant numbers.  Lower reproduction rates result 328	

in more pronounced differences between the number of mutants in spatial and 329	

non-spatial settings (Fig S1(d) of the Supplement).  All in all, the effect reported 330	

here is manifested for a wide range of disadvantages.  331	

 332	

An analysis of the spatial stochastic model is developed in Section 3 of the 333	

Supplement. Using the pair approximation, we derive a formula for the selection-334	

mutation balance of mutants away from the colony boundary (formula (36)). This 335	

theory predicts patterns similar to those described above. An intuitive explanation 336	

of disadvantageous mutant behavior under decreased reproduction and 337	

increased death is provided in the next section, see Fig 3. 338	

 339	
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To confirm the robustness of these results, we performed simulations with 340	

disadvantageous mutants in a patch model. Again, the outcome of the dynamics 341	

depends on the parameters upon which the disadvantage is based, see Fig 2 for 342	

migration to nearest patches and Fig S12 for global migration. If the mutant has a 343	

lower division rate than the wild-type, the number of mutants at population size M 344	

is larger for the spatial than for the well-mixed scenario. This difference is largest 345	

if cells do not die, and diminishes with increasing cell death rates. If, however, 346	

the mutant is characterized by a larger death rate than the wild-type, then the 347	

opposite result is obtained: the number of mutants at population size M is smaller 348	

in the spatial than in the well-mixed system (as long as the difference in the 349	

death rate lies above a threshold). Again, the results are qualitatively similar for 350	

the spatially restricted (nearest neighbor) and non-restricted (migration to all 351	

patches) models (see yellow symbols in the central panels of Fig 2 and Fig S12).    352	

 353	

Deterministic (ODE) versions of the patch models are developed and 354	

analyzed in Section 2 of the Supplement. In particular, Section 2.5 of the 355	

Supplement provides approximate formulas for the numbers of mutants in a 356	

metapopulation model and shows for what division and death parameters the 357	

number of disadvantageous mutants is higher (lower) in the deterministic 358	

metapopulation model compared to the mass-action model. This confirms the 359	

above finding that for mutants with lower division rates, more mutants occur in a 360	

deterministic metapopulation model, and for mutants with sufficiently high death 361	

rates, there are more mutants in mas-action.  362	
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 363	

 364	

Disadvantageous mutants: an intuitive explanation of growth patterns 365	

 An intuitive explanation of this phenomenon can be built by observing the 366	

growth patterns of disadvantageous mutants in a single patch, starting from a 367	

single wild type cell (see Sections 2.5-2.6 of the Supplement for details). 368	

Typically, as the total population increases and reaches its carrying capacity, the 369	

mean number of mutants is an increasing function of the total population size, 370	

and it eventually on average saturates at the selection mutation balance. The 371	

number of mutants however does not grow proportional to the total population 372	

size, in fact, in some cases the percentage of mutants increases with size, and in 373	

others it decreases with size. It turns out that mutants characterized by 374	

decreased division rates, which grow relatively slowly at the initial stages, 375	

gradually increase in fraction and are most abundant at carrying capacity (Fig 3, 376	

blue line panel (a)). On the other hand, mutants with larger death rates grow 377	

relatively fast at the initial stages (because they have the same division rates 378	

equal to those of the wild types, and initially behave like neutral mutants). As time 379	

goes by, however, the larger death rates of mutants start making a difference. 380	

The disadvantageous mutants start being ``weeded out” and decrease in 381	

percentage down to the selection-mutation balance, when the system reaches 382	

carrying capacity (Fig 3, orange line in panel (a)). In other words, if the mutants 383	

are characterized by decreased divisions, we expect to observe the largest 384	

fraction of mutants when the patch reaches its maximum population; in contrast, 385	
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if the mutants are characterized by increased deaths, then the percentage of 386	

mutants is larger at intermediate stages of growth compared to patches that 387	

reach capacity.  388	

 389	

Next, we note that a well-mixed system can be viewed as a superposition 390	

of identical, independent smaller patches that all grow simultaneously (figure 391	

3(b)). A (proper) patch model is also a collection of patches, but the growth in 392	

different patches does not happen simultaneously; instead, it starts in one patch, 393	

after a while a second patch starts growing, etc (Fig 3(c)). Therefore, an 394	

important difference between the well-mixed system and a patch system is that in 395	

the latter model, different patches are desynchronized, such that at a given point 396	

in time some patches are completely filled to capacity while others have not 397	

started growing yet.  398	

 399	

Keeping this in mind, we can see whether a synchronized (well-mixed) or 400	

a desynchronized (patch) model will contain a larger number of mutants. If the 401	

mutants have decreased division rates and their percentage grows with total 402	

population size, then we are likely to find more mutants in a desynchronized 403	

system (spatial or fragmented) that consists of a number of full patches 404	

(maximum size, maximum mutant percentage), plus a number of empty patches 405	

that do not contribute. In a synchronized (i.e. mixed) system, populations in all 406	

patches will lie below carrying capacity at total size M, resulting in fewer mutants.  407	
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On the other hand, if the mutants have increased death rates and their 408	

percentage is larger at the intermediate stages of population growth, then we 409	

expect to have more mutants in a fully synchronized system (i.e. a mixed 410	

system), which is equivalent to a set of identical patches that are all relatively 411	

early in their growth and thus contain a relatively large percentage of mutants.  In 412	

the desynchronized (spatial or fragmented) system, populations in several 413	

patches will have reached carrying capacity when the total population size 414	

reaches M, and thus will have already experienced a decline in mutant 415	

percentages.  416	

 417	

Before we proceed, we would also like to address the topic of jack-pot mutation 418	

events (FUSCO et al. 2016). One can think of those events as relatively long 419	

lineages of mutants which contribute significantly to the overall expected number 420	

of mutants in a growing colony. These lineages are more likely to grow in a 421	

spatial system, because a disproportionately large fraction of successful division 422	

events happens at the advancing front, thus resulting in the proliferation of 423	

individuals that are most separated from the founding individual, and which are 424	

more likely to have experienced a mutation. This argument certainly holds for 425	

neutral and advantageous mutants, but changes somewhat for disadvantageous 426	

mutants. First of all, jack-pot events are less important in the latter case, because  427	

mutant clones are unlikely to expand and in any location, mutant levels 428	

eventually settle to a low percentage (dictated by selection-mutation balance). 429	

Further, if the disadvantage is manifested through an increase in death, relatively 430	
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long mutant lineages that are more likely to pop up in spatial and fragmented 431	

systems, become progressively diminished by the process of weeding out the 432	

mutants, thus making the jack-pot contributions smaller in spatial/fragmented 433	

systems compared to the mass-action case. This is explored numerically in 434	

section 3.5 of the Supplement. 435	

 436	

 437	

Growth laws for neutral, advantageous, and disadvantageous 438	

mutants in spatial and non-spatial models 439	

 440	

Observations presented so far can be generalized by deriving growth laws of 441	

mutants in different scenarios, see Table 1 and Section 4 of the Supplement for 442	

details. 443	

 444	

Consider the type of growth where the population spreads in one direction 445	

(examples of such growth can be found in the geometry of colonic crypts 446	

(MICHOR et al. 2004; LOPEZ-GARCIA et al. 2010), or in mitotic zone germ cells in 447	

Caenorhabditis elegans (KERSHNER et al. 2013)). The mathematical abstraction 448	

of this process is the surface of a cylinder, which is a rectangular domain of width 449	

W, with the initial cell configuration aligned along one of the boundaries and 450	

periodic boundary conditions imposed in the transversal direction. The cell 451	

population in this case will engage in a linear growth, such that the mean total 452	

population N=W*L grows as N~t. The number of disadvantageous mutants in this 453	
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setting will scale with the total population as specified in the first column of Table 454	

1 (2D flat), as these mutants will typically form finite “bubbles” and thus their 455	

number will be entirely driven by production. If mutants are neutral, then on 456	

average, each newly created mutant will give rise to a clone that grows linearly in 457	

time, thus giving a quadratic growth law (uN2), see Figure 4, curves (a,b). Finally, 458	

advantageous mutants, when created, will form expanding clones whose width 459	

will grow as the colony proceeds to expand; in other words, advantageous 460	

colonies comprise (on average) increasing fractions of the total population size, 461	

adding an extra power of N to the growth law (uN3), see Figure 4, curves (c-g). In 462	

the case of a 2D flat front expansion, the number of neutral and advantageous 463	

mutants in a  colony of a fixed size negatively correlates with the front width: the 464	

number of mutants is inversely proportion to the first power of width, W, for 465	

neutral, and to the second power of W for advantageous mutants, see Section 466	

4.1 of the Supplement. Note that in the extreme case where W=1, we have a 467	

one-dimensional growing array of cells. In this special case (MICHOR et al. 2004), 468	

in the absence of cell death, all mutants regardless of their fitness properties 469	

behave as uN2.  470	

 471	
 472	
Next, consider range expansion in 2D (e.g. yeast colony expansion (CHEN et al. 473	

2014), 2D melanoma cultures (QIN et al. 2016; RODRÍGUEZ et al. 2019)), where 474	

the population grows outward as an expanding circle. In this case, the total 475	

population follows the so-called surface growth: N~t2. Mutant cells behave as 476	

specified in the second column of Table 1.  In particular, disadvantageous 477	

mutants are again proportional to the total population; neutral mutations are 478	
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expected to give rise to colonies whose size does not increase or decrease as a 479	

fraction of the total population (the 3/2 law), Figure 5(a,b); advantageous 480	

mutations create expanding colonies (the quadratic law), Figure 5(c-f). Note that 481	

our theoretical results for the advantageous mutants in a 2D range expansion 482	

confirm prior numerical results of (GRALKA AND HALLATSCHEK 2019).  483	

 484	

In a 3D range expansion, which is relevant for example for most solid tumors or 485	

biofilms (NADELL et al. 2016), the total population engages in a 3D surface growth 486	

such that N~t3. Mutants are predicted to behave as described in the 4th  column 487	

of Table 1, and numerical examples confirming the predictions are presented in 488	

Figure 6. The 3D flat front expansion is described in the 3rd column of table 1, 489	

see also curves (d-f) of Figure 6. The growth of advantageous mutants in a 490	

colony with a 3D flat front is characterized by the highest power (the 4th power) of 491	

N.  Further details are provided in Section 4.2 of the Supplement. 492	

 493	

For comparison, results for non-spatial, exponential growth were derived, for 494	

example, by (IWASA et al. 2006) and are given in the last column of Table 1. The 495	

growth of advantageous mutants in an exponentially expanding population is 496	

given by M(exp, adv)~uN(2α-1)/α, where α is a parameter that quantifies the mutant 497	

advantage (α=Lm-Dm)/(Lw-Dw)). Note that as α-> ∞, we have at most M(exp, 498	

adv)~uN2, and for all finite values of fitness advantage, the power is less than 2. 499	

 500	
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These laws are valid under some restrictions specified in Section 4 of the 501	

Supplement. In particular, the laws for advantageous mutants hold for small 502	

mutant advantage, and also on the time scales before all the cells in a growing 503	

colony’s front are replaced by mutants. In the long-term, the replacement of all 504	

cells by advantageous mutants is an inevitable outcome in the presence of 505	

death, and an approximate outcome as t-> ∞ even in the absence of death. 506	

Once this happens, the growth law will be M~N.  507	

 508	

The laws of Table 1 are very general and hold in the presence and in the 509	

absence of cell death, and also in the presence and in the absence of back 510	

mutations (see Materials and Methods). The proportionality coefficients depend 511	

on particularities of the underlying dynamics (for example the type of grid used 512	

and the number of neighbors, as well as the death to division ratios), but the 513	

power laws are universal.  514	

 515	

The growth laws derived here have direct consequences for the expected 516	

numbers of mutants in equally sized populations growing in different dimensions 517	

(and mass-action). The proportion of neutral mutants scales as uN for a flat front 518	

(in 2D or 3D), uN1/2 for a 2D range expansion, uN1/3  in a 3D range expansion, 519	

while it is u log N in exponentially growing populations (see also  (FUSCO et al. 520	

2016)). That is, the number of neutral mutants is always larger in spatial systems 521	

compared to the well-mixed system. In space, the proportion of neutral mutants 522	

is the largest in low dimensions.  523	
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 524	

For advantageous mutants, the proportion of mutants is given by uN3 for a 2D flat 525	

front and it is uN4 for a flat front in 3D, while it is uN2 for a range expansion (in 2D 526	

or 3D);  it is uN(α-1)/α in exponentially growing populations. Again, it is the smallest 527	

in mass-action.  528	

 529	

Finally, for disadvantageous mutants, the power law of mutant growth is the 530	

same in all dimensions (and is given by uN). Therefore the results are more 531	

subtle and depend on the particular setup. As was shown in the previous section, 532	

the behavior depends on whether the disadvantage is manifested through 533	

differences in division or death rates.  534	

 535	

 536	

 537	

 538	

Discussion  539	

We have used computational models to study mutant evolution in spatially 540	

structured and fragmented populations, focusing on the average number of 541	

mutants present when the total population size has reached a threshold. 542	

Previous work, including (FUSCO et al. 2016), established that for neutral 543	

mutants, spatial restriction results in a larger number of mutants that are present 544	

in a population of a defined size. This was attributed to jackpot events occurring 545	

even at relatively large population sizes in spatially structured populations due to 546	
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the occurrence of range expansion. In contrast, jackpot mutation events can only 547	

occur at very early stages of growth in mixed systems. We extended this analysis 548	

by considering advantageous and deleterious mutants in greater detail, in the 549	

absence and presence of cell death, and assuming that mutant 550	

advantage/disadvantage was manifested through either the division or death 551	

rate. While the results for advantageous mutants were similar to those for neutral 552	

mutants (more mutants in spatial than mixed systems), we found a different trend 553	

for disadvantageous mutants. If disadvantage was mediated by an increase of 554	

the mutant death rate (rather than a decrease in the division rate), then the 555	

difference between the number of mutants in the spatial and well mixed systems 556	

becomes dramatically reduced even for very slightly disadvantageous mutants, 557	

and as the extent of the disadvantage crosses a threshold,  the number of 558	

mutants in spatially structured populations becomes smaller than in mixed 559	

systems.  560	

 561	

The new insights about disadvantageous mutants have important practical 562	

implications, for example for understanding the presence of drug resistant 563	

mutants prior to the start of treatment in cancers (HORSWELL et al. 2013) or 564	

bacterial populations that form a biofilm (BANIN et al. 2017). According to our 565	

results, spatial structure can make it less likely that mutants are present before 566	

treatment is started, and if they are present, their average numbers can be lower 567	

in spatially structured compared to mixed systems. This requires the 568	

disadvantage to be due to a larger death rate and the extent of the disadvantage 569	
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to lie above a threshold. We have shown that the disadvantage threshold beyond 570	

which this effect is observed becomes lower with larger population sizes, 571	

indicating that this could be especially relevant for cancer and bacterial 572	

populations. Drug resistant mutants have often been shown to be characterized 573	

by a fitness cost compared to drug-sensitive cells (GAGNEUX et al. 2006; SZAKACS 574	

et al. 2014), and this is well-documented in the literature for antibiotic resistance 575	

in bacteria (ANDERSSON AND HUGHES 2010). The extent of the disadvantage 576	

varies depending on the bacterial infection in question, and on the setting in 577	

which bacterial growth is measured (ANDERSSON AND HUGHES 2010). In a number 578	

of cases substantial fitness costs have been documented for drug resistant 579	

bacteria (WICHELHAUS et al. 2002; YU et al. 2005; NILSSON et al. 2006; 580	

ANDERSSON AND HUGHES 2010) (in the absence of compensatory mutations), e.g. 581	

up to 40% fitness reduction in some rifampin-resistant Staphylococcus aureus 582	

populations (WICHELHAUS et al. 2002), with even larger fitness costs reported in 583	

other studies (ANDERSSON AND HUGHES 2010). The fitness cost of resistant 584	

mutants is likely to eventually become reduced or eliminated due to the 585	

acquisition of compensatory mutations (GAGNEUX et al. 2006), but the initial 586	

dynamics of mutant evolution before therapy will be significantly determined by 587	

the original fitness cost of the mutants. The results reported here about the effect 588	

of spatial structure on the evolution of disadvantageous mutations therefore 589	

provides valuable information to better understand the emergence of resistant 590	

strains before the onset of treatment, and thus for our ability to potentially predict 591	

treatment outcomes. This complements other work that has shown an important 592	
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role of space for the dynamics of drug-resistant cells during therapy, through 593	

opening up space for the resistant mutants to grow through competitive release 594	

(ENDERLING et al. 2009; HILLEN et al. 2013; FUSCO et al. 2016).    595	

 596	

 Another interesting result was our finding that qualitatively similar results 597	

are obtained if we consider evolutionary dynamics in fragmented rather than 598	

spatially structured populations. The same outcomes were obtained for a patch 599	

model where individuals in each patch could migrate to any randomly chosen 600	

patch in the system (and not just the neighboring patches). Therefore, the 601	

properties of mutant evolution described here and also in (FUSCO et al. 2016) 602	

might not be a particular property of spatial systems, but more generally of 603	

fragmented systems. Our intuitive explanation for the differences in the numbers 604	

of disadvantageous mutants does not rely on any spatial restrictions in cell 605	

migration, but rather on the de-synchronization of mutant dynamics in the 606	

patches of a fragmented system.  607	

 608	

In order to understand the intuitive reasons for the observed patterns, it is 609	

helpful to consider different ways in which space/fragmentation could influence 610	

the dynamics of mutants in expanding populations, see Table 2.  611	

(A) How does space/fragmentation affect force of selection? While it is known 612	

in the literature that fragmentation may suppress selection (WRIGHT 1931; 613	

KOMAROVA 2006; GRALKA AND HALLATSCHEK 2019), this notion has to be 614	

applied carefully in each situation. For example, in our setting, we are 615	
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comparing an exponentially growing population where no selection at all 616	

takes place, to a spatially restricted or fragmented system, where in each 617	

patch or spatial location, individuals compete for space, thus leading to a 618	

suppression of weaker types and enhancement of stronger types. An 619	

exception is found in a patch model in the absence of death, see Section 620	

1.2.2 of Supplement.  621	

(B) How do jack-pot events influence mutant accumulation is space? Since in 622	

spatial and fragmented expanding systems, organisms that divide are 623	

more likely to be the ones that are further removed from the founding 624	

organisms (and thus are more likely to have acquired a mutation), jack-pot 625	

events enhance mutant accumulation, although their role is stronger for 626	

advantageous than disadvantageous mutants.  627	

(C)  How does desynchronization experienced in spatial and fragmented 628	

systems affect the accumulation of mutants? This is something that we 629	

saw affecting disadvantageous mutants only, because the nature of the 630	

affect relies on convergence of the mutants towards selection-mutation 631	

balance. Mutants with lower division rates gain in relative abundance, 632	

while mutants with higher death rates lose in relative abundance (are 633	

weeded out), resulting, respectively, in their enhancement/suppression in 634	

spatial and fragmented settings compared to non-structured systems. 635	

 636	

Table 2 summarizes the three influences (A-C) listed here. We can see that in 637	

the presence of death, there will always be more advantageous mutants in 638	
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space (and with no death, there are situations when we can find more in 639	

mass-action, Supplemental Section 1.2). For disadvantageous mutants, if 640	

they have increased death rates, there could be either more of fewer of them 641	

in space compared to well-mixed systems, as reported here. If they have 642	

decreased divisions, in the presence of death, this table shows that there 643	

could be some variable results, but we have not found a parameter regime 644	

with more such mutants in a well-mixed system (although the difference 645	

becomes vanishingly small for larger degrees of disadvantage.). 646	

 647	

Our analysis of mutant evolution in expanding spatial populations led to a 648	

concise derivation of mutant growth laws (see Table 1) in systems of different 649	

dimensionalities and under different assumptions on mutant fitness. In particular, 650	

our formulas coincide with those previously derived for neutral mutants (FUSCO et 651	

al. 2016) and confirm numerical predictions for advantageous mutants in 2D 652	

range expansions (GRALKA AND HALLATSCHEK 2019). 653	

 654	

Our work builds on and complements previous mathematical and computational 655	

investigations that explored the differences in mutant dynamics between spatial 656	

and non-spatial systems, such as the paper by (FUSCO et al. 2016). A variety of 657	

other papers dealt with related topics.  For example, deleterious mutants were 658	

studied in by (LAVRENTOVICH et al. 2016) in the context of conversional meltdown, 659	

and it was shown that spatial settings enhance the spread and invasion of 660	

disadvantageous mutants. A study by (OTWINOWSKI AND KRUG 2014) analyzed the 661	
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evolutionary dynamics characterized by a large and constant supply of beneficial 662	

or deleterious mutations in a one-dimensional spatial habitat, by using the 663	

Wright-Fisher (constant population) dynamics. It was found that compared to 664	

non-spatial settings, selection is weakened, adaptation is slower, and fitness 665	

variation is larger. In paper by (GRALKA et al. 2016) it is shown that spatially 666	

structured populations with beneficial mutations can give rise to a higher mutant 667	

count than well-mixed populations, while in other scenarios (GRALKA AND 668	

HALLATSCHEK 2019), fragmentation could reduce selection effects and lead to a 669	

lower mutant count. In general, our work fits into the larger literature concerned 670	

with spatial mutant evolution (HALLATSCHEK 2018; KAYSER et al. 2019; PAULOSE et 671	

al. 2019; PAULOSE AND HALLATSCHEK 2020) and structured populations (FREAN et 672	

al. 2013; HINDERSIN et al. 2016; ALLEN et al. 2017; GIAIMO et al. 2018). 673	

 674	

 To conclude, this study has demonstrated complex evolutionary dynamics 675	

in populations that are not well-mixed. We demonstrated that evolution can be 676	

influenced in different ways by spatial structure or habitat fragmentation, 677	

depending on the relative fitness of the mutant and depending on the parameter 678	

through which the fitness difference is expressed.  These results can also guide 679	

future experiments to address some of the computational observations reported 680	

here. Experimental results from 2-dimensional spatial growth of cells, such as 681	

reported in (FUSCO et al. 2016), should be compared to analogous results from a 682	

fragmented system, for example where cells are grown in a collection of different 683	

wells and periodically transferred to other, randomly chosen wells. This could test 684	
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our prediction that the mutant growth in the two scenarios follows similar 685	

patterns. On a more complex level, it would be interesting to devise an 686	

experimental system where the evolutionary dynamics of disadvantageous 687	

mutants is studied, comparing scenarios where the disadvantage is brought 688	

about by a difference in cell death versus cell division.  689	

 690	
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Tables 856	

 857	

Table 1. The growth laws of mutants in different spatial and non-spatial growth 858	

scenarios, for disadvantageous, neutral, and advantageous scenarios. α is a 859	

parameter that quantifies the mutant advantage, α=(Lm-Dm)/(Lw-Dw). 860	

 861	
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 862	

Mutant type (A)  (B) (C) 

Advantageous, no death ¯ ­ N/A 

Advantageous, with death ­ ­ N/A 

Disadvantageous, no death ­ ­ ­ 

Disadvantageous by divisions, with death ¯ ­ ­ 

Disadvantageous by death ¯ ­ ¯ 

Table 2. Summary of the contributions of different mechanisms to mutant 863	

accumulation in expanding spatial/fragmeted populations (see text). (A) is the 864	

role of fragmentation/spatial restrictions through changing selections strength, (B) 865	

is jack-pot events, and (C) is the synchronization phenomenon. Here ¯ means 866	

“suppresses mutants in space, compared to exponential growth in well-mixed 867	

systems” and ­ means “enhances mutants in space, compared to exponential 868	

growth in well-mixed systems”.  869	

 870	

 871	

Figure legends 872	

 873	

Fig 1. Comparison of the number of mutants in 2D spatial agent-based model 874	

simulations (red) and a well-mixed system (black). In (a-e), the lines represent 875	

the mean numbers of mutants in the spatial and non-spatial systems at equal 876	

size, N=103. (a) Neutral mutants, as a function of the death rate. (b-c) 877	
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Advantageous mutants, characterized by increased division rates (b) and 878	

decreased death rates (c), as a function of the fold-advantage. (d-e) 879	

Disadvantageous mutants characterized by decreased division rates (d) and 880	

increased death rates (e), as a function of the fold-disadvantage. Typical 2D 881	

spatial agent-based simulations of range expansion dynamics are shown in the 882	

insets for each mutant type. (f) The ratio of the mean number of mutants in the 883	

2D spatial simulations and that for the well-mixed system, for disadvantageous 884	

mutants with increased death rates, is shown as a function of fold-disadvantage. 885	

The two lines correspond to population sizes of 103 (blue) and 105 (yellow). The 886	

parameters for panels (a-e) (unless otherwise indicated in figure) are: L=0.2, 887	

D=0.1, u=2x10-3.  For each parameter combination, from 2x106 to 3x107 repeats 888	

were performed; shown are the means; standard errors are too small to see. For 889	

panel (f), Lw=Lm=0.09, Dw=0.05, u=2x10-3. Standard errors are represented by 890	

vertical bars and are not visible.  891	

 892	

Fig. 2. A systematic study of the number of disadvantageous mutants in mass-893	

action (blue bars in histograms) and in patch model (yellow bars). Data are 894	

presented for 8 parameter combinations: 1-3 with mutants of decreased division 895	

rates, 4 (the green point) with neutral mutants, and 5-8 with mutants of increased 896	

death rate. We observe that the mean number of mutants in the patch models 897	

with nearest neighbor migrations (depicted by yellow symbols in the central 898	

panel) becomes smaller than that in the mass-action model (blue symbols) if the 899	

disadvantage through death is sufficiently large. The numerical probability 900	
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distributions for the numbers of mutants are also presented for well-mixed and 901	

patch (with nearest neighbor migration) models; about 2x105 simulations were 902	

used for each parameter combination. Please note the logarithmic scale of the 903	

histograms. The rest of the parameters are as follows: u=10-3, m=10-5, k=100, 904	

100 patches; the number of mutants evaluated at total population 103. See 905	

Supplementary figure S14 for the patch model with global migrations; the results 906	

are very similar. 907	

 908	

Fig 3. Disadvantageous mutants – an intuitive picture. (a) The fraction of mutants 909	

(characterized by increased death and by decreased divisions) as a function of 910	

the population size (ODEs, parameters as in Fig S5). Inset: the time-series for 911	

the mutant populations with increased (orange) and decreased (blue) death 912	

rates, together with the wild type population (scaled by 1000 to fit in the same 913	

graph). (b) A schematic representing total population time-series in different 914	

patches in a patch model. (c) Same for the well-mixed model represented as a 915	

collection of identical, synchronous patches. At the same total population size, in 916	

a patch model some populations are at carrying capacity, and some are zero, 917	

while in the well-mixed model, all the ``patches” are partially filled. Patches with 918	

populations below carrying capacity have more mutants than patches at carrying 919	

capacity, if the mutants are characterized by increased death. Patches with 920	

populations below carrying capacity have fewer mutants than patches at carrying 921	

capacity, if the mutants are characterized by decreased divisions. 922	

 923	
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Fig. 4. Mutants in a colony with a 2D flat front: the number of mutants as a 924	

function of the total population, averaged over 1000 stochastic runs (standard 925	

errors too small to see).  Cases (a,b) are neutral, and the corresponding solid 926	

black lines are guides to the eye with slope 2 in the log-log plot. Cases (c-g) are 927	

advantageous, and the dashed lines are guides to the eye with slope 3. The 928	

following parameters are used: (a) Neutral, no death: Lw=Lm=0.7, Dw=Dm=0. (b) 929	

Neutral, with death: Lw=Lm=0.7, Dw=Dm=0.2. (c) Advantageous, no death: Lw=0.7, 930	

Lm=0.9, Dw=Dm=0. (d) Advantageous, no death, larger advantage:  Lw=0.7, 931	

Lm=1.0, Dw=Dm=0. (e) Advantageous by division, with death:  Lw=0.7, Lm=0.8, 932	

Dw=Dm=0.2. (f) Advantageous by death: Lw=Lm=0.7, Dw=0.2, Dm=0.1. (g) Same 933	

as (f), but with a wider front: W=1000. The rest of the parameters are u=5x10-5, 934	

W=100 (except (g)). 935	

 936	

Fig. 5. Mutants in the 2D range expansion: the average number of mutants as a 937	

function of the total population (standard errors too small to see).  Cases (a,b) 938	

are neutral, and the corresponding solid black lines are guides to the eye with 939	

slope 3/2 in the log-log plot. Cases (c-f) are advantageous, and the dashed lines 940	

are guides to the eye with slope 2. The following parameters are used: (a) 941	

Neutral, no death: Lw=Lm=0.7, Dw=Dm=0, 2000 runs. (b) Neutral, with death: 942	

Lw=Lm=0.7, Dw=Dm=0.2, 1366 runs. (c) Advantageous, no death: Lw=0.7, Lm=0.9, 943	

Dw=Dm=0, 2000 runs. (d) Advantageous, no death, larger advantage:  Lw=0.7, 944	

Lm=1.0, Dw=Dm=0, 2000 runs. (e) Advantageous by division, with death:  Lw=0.7, 945	
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Lm=0.8, Dw=Dm=0.2, 1426 runs. (f) Advantageous by death: Lw=Lm=0.7, Dw=0.2, 946	

Dm=0.1, 1396 runs.  The mutation rate is u=5x10-5. 947	

 948	

Fig. 6. Mutants in the 3D expansion: the average number of mutants is plotted as 949	

a function of the total population.  (a) Neutral mutants in a range expansion, with 950	

the corresponding dotted gray guide to the eye with slope 4/3 in the log-log plot. 951	

(b,c) Advantageous mutants in a range expansion, and the solid lines are guides 952	

to the eye with slope 2. (d) Neutral mutants in a 3D flat front expansion, and the 953	

solid guide to the eye has slope 2. (e,f) Advantageous mutants in a colony with a 954	

3D flat expansion, the dashed guides to the eye have slope 4. The following 955	

parameters are used: (a) Neutral, range: Lw=Lm=0.7, Dw=Dm=0.1, u=2x10-5, 107 956	

runs. (b) Advantageous by division, range: yellow Lw=0.4, Lm=0.8, Dw=Dm=0.1, 957	

u=2x10-5, 4x106 runs; red same but u=2x10-7, 66,631 runs. (c) Advantageous by 958	

death, range. (d) Neutral, flat: Lw=Lm=0.8, Dw=Dm=0.1, u=2x10-7,  34,967 runs. (e) 959	

Advantageous by division, flat: Lw=0.4, Lm=0.8, Dw=Dm=0.1, u=2x10-7, 11,369 960	

runs. (f) Advantageous by death, flat: Lw=Lm=0.7, Dw=0.2, Dm=0.1, u=2x10-7,  961	

53,840 runs. 962	
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1 Simulations: additional results

1.1 Agent-based model simulations

In the main text we report on the abundances of advantageous, neutral, and
disadvantageous mutants in spatial and well-mixed system. Some further results
are presented in figure S1. In particular, panels (a) and (b) study advantageous
mutants. In (a), the advantage is manifested through an increased division rate,
and in (b) through a decreased death rate of mutants. Varied is the rate that
is unaffected by the mutation under consideration, which is the death rate in
(a) and the reproduction rate in (b). As expected, we observe that the number
of advantageous mutants is higher in a spatial system (red) compared to the
well-mixed system (black) for both types of mutants. The difference increases
with death rate (see panel (a)) and decreases with the reproduction rate (panel
(b)); in other words, the difference between well-mixed and spatial models is
larger for cells with an overall slower expansion rate.

Next, we turn to disadvantageous mutants. In figure S1(c) we study mutants
characterized by a lower reproduction rate, and in figure S1(d) the mutants’
death rate is higher compared to that for wild type cells. Again, in both panels,
the rate unaffected by mutations is varied, and the mutant abundance in spatial
(red) and well-mixed (black) system compared at the same population size. As
reported in the main text, we observe that mutants with a lower reproduction
rate are more abundant in a spatial model. As seen in panel (c), the differences
becomes smaller with an increased death rate of cells.

In panel (d) of figure S1 we turn to mutants characterized by a larger death
rates. It is reported in the main text that if the disadvantage is sufficiently pro-
nounced, we expect to find more such mutants in a well-mixed system compared
to a spatial system. This is what we see in figure S1(d), when the reproduc-
tion rates are lower than a threshold. This trend reverses, however, when the
reproduction rates become higher. This provides further information about the
phenomenon reported in the main text. The mutant disadvantage must be suf-
ficiently high, for the well-mixed system to accumulate more mutants than the
spatial system, and this advantage is measured against the background repro-
duction rate of the cells. As the reproduction rate gets higher, the difference
between mutant and wild type death rates must also become higher, to observe
more mutants in a well-mixed system compared to the spatial system.

1.2 Patch model simulations

1.2.1 Dependence on reproduction and death rate

We have run numerical simulations of the stochastic patch model to determine
whether spatial arrangement of patches makes a difference for the abundance of
mutants at a given system size. Figure S2 shows the results for neutral (a) and
advantageous (b) mutants, while figure 2 of the main text contains information
about disadvantageous mutants. In figure S2, two types of the patch model are
compared. In the spatial 2D patch model (dark green bars), we used a 2D array

2



Figure S1: The abundance of mutants in spatial 2D simulations (red) and in
a well-mixed system (black), as a function of parameters. (a) Mutants have a
larger reproduction rate (Lw = 0.2, Lm = 0.25); varied is the death rate (equal
for mutants and wild types). (b) Mutants have a smaller death rate (Dw =
0.1, Dm = 0.09); varied is the reproduction rate (equal for mutants and wild
types). (c) Mutants have a smaller reproduction rate (Lw = 0.25, Lm = 0.2);
varied is the death rate (equal for mutants and wild types). (d) Mutants have a
larger death rate (Dw = 0.05, Dm = 0.1); varied is the reproduction rate (equal
for mutants and wild types). The rest of the parameters are as in figure 1(a-e)
of the main text.

of patches, where cells could migrate only between neighboring patches (with
each patch having 8 neighbors as in the Moore model). In the “fragmentation
model” (light green bars) migration could happen between any patches regard-
less of their position. In the latter case, the model cannot be regarded as spatial
per se. Nonetheless, similar trends were observed in both models. For advanta-
geous and neutral mutations, more mutants were observed in the patch model
(a 2D or a fragmented, non-spatial patch system) compared to the well-mixed
system with the same total number of cells; the effect is less pronounced but
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still clearly present in the fragmented system.

Figure S2: Comparison of the number of mutants in stochastic patch model
simulations and a well-mixed system. The bars represent the ratio between the
mean number of mutants in the patch model and the mean number of mutants
in well-mixed systems at equal size, N = 104. Dark green bars correspond
to the 2D patch model with 8 nearest neighbor migration. Light green bars
correspond to the fragmented model where migration happens to all patches.
(a) Neutral mutants. (b) Advantageous mutants. Between 106 and 4 × 107

runs were performed for each bar. Division and death rates are indicated below
each bar. Other parameters are u = 2 × 10−5, k = 100,m = 10−5, n = 31 × 31
patches.

1.2.2 The case of very small patch size

Next, we explore the behavior of the patch model in the regime of very small
patches. It is known that fragmentation/spatial restrictions weaken selection.
In the extreme case of a patch model with very small patch size, this effect
can significantly influence mutant dynamics and even reverse the results for
advantageous mutants. Figure S3 explores this regime.

We observe that in the absence of death, under the patch size of k = 2
and slightly advantageous mutants (figure S3(a)), there are more mutants in
the mass-action compared to the patch model. This reverses when we increase
the path size to k = 3. For a larger mutant advantage (panel (b)), it takes
k = 5 to observe more mutants in the patch model. In the extreme case where
mutants enjoy a 10-fold fitness advantage, even for the patch size k = 100 we
still see more mutants in the mass-action system. This effect disappears if we

4



include death in the system. For example, panel (d) shows how results of panel
(c) change if we increase death rate to a modest dw = dm = 0.01: in the case,
there are significantly more mutants in the patch model. Panel (d) shows the
effect of increasing the death rate, where the number of mutants in the patch
system with small patch size (k = 3) becomes significantly larger than that i
the mass-action model even for small (but non-zero) death rates.

The reason for the reversal of the pattern under very small patch size in
the absence of death is the complete selection suppression experienced in such
system. Increasing patch sizes or death rate allows selection to work, leading to
more mutants in the patch model compared to mass action.

Figure S3: Behavior of the patch model with very small patches. The number
of mutants in the patch model (blue bars) and mass-action model (yellow bars)
corresponding to the same total population size. Different bars correspond to
different patch size, k. (a-c) No death, (e) in the presence of death. (d) The
numbers of mutants in the patch model and mass action model as functions of
the death rate. Simulation parameters are market at the top of each bar graph.
Other parameters are N = 103, u = 10−3,m = 10−5, global migration in the
patch model. For panel (d), lw = 0.95, lm = 1, k = 3.

1.2.3 Mutant growth curves

Here we present growth curves for the number of advantageous and neutral mu-
tants in the patch model, figure S4. These were obtained by running a large
number of simulations and recording the number of mutants at different popula-
tion sizes. Mean values are presented, and the standard errors are small and not
visible. The blue symbols correspond to runs with advantageous mutants and

5



orange symbols to neutral mutants. For comparison, we also present curves for
the number of advantageous and neutral mutants in well-mixed systems, taken
far from carrying capacity. For non-neutral mutants this is given by formula
(20), and for neutral mutant this simplifies to lwuN lnN/(lw − dw).

Figure S4: The number of mutants in a patch model as a function of the total
population size. Blue circles, advantageous mutants (lm = 1.05), the number
of runs for each point is 27, 061. Orange squares, neutral mutants (lm = 1),
the number of runs for each point is 61, 083. Blue and orange lines represent
advantageous and neutral mutants in a well-mixed system (theoretical, formula
(20)). Other parameters are lw = 1, dw = dm = 0.1,m = 10−5, k = 100, u =
2× 10−5; in the patch model, global migration was implemented.

Fitting a straight line through the data on a log-log scale, we obtain the
following powers: advantageous mutants increase as N1.2, and N1.19. For com-
parison, a similar procedure yielded powers N1.12 and N1.1 for the well-mixed
system (we did not attempt to distinguish between a power law with as power
close to one and an N lnN , which is the “true” growth law in the latter case).

2 Disadvantageous mutants: a deterministic metapop-
ulation model

2.1 Basic formulations and selection mutation balance

Let us denote the wild type population as x(t) and the mutant population as
y(t). Denote the rate of mutations as u, the division and death rates of wild
type cells as lw and dw, and the division and death rates of mutants as lm and
dm. Then the competition dynamics of cells can be formulated as follows:

ẋ = lwx(1− u)

(
1− x+ y

K

)
− dwx, (1)

6



ẏ = (lwxu+ lmy)

(
1− x+ y

K

)
− dmy, (2)

where K is the carrying capacity. If the mutants are disadvantageous, that is, if

ν =
dm
dw
− lm
lw

> 0, (3)

then the selection mutation balance predicts that the equilibrium number of
wild type cells is given by

x̄ = K
(

1− dw
lw

)
, (4)

and the number mutants is

ȳ = x̄u

(
dm
dw
− lm
lw

)−1
(5)

(we only took the largest contributions in terms of small u).
In model (1-2), as the population approaches the carrying capacity, the di-

visions slow down, while deaths remain occurring at a constant rate. We will
refer to this model as division-controlled growth, which follows the terminology
of [? ]. Alternatively, we can assume that as the population grows, the death
rate increases, while the division rate stays constant. In the mass action case,
this can be modeled as follows:

ẋ = lwx(1− u)− dwx
(

1 +
x+ y

K

)
, (6)

ẏ = (lwxu+ lmy)− dmy
(

1 +
x+ y

K

)
. (7)

We will refer to this model as death-controlled growth [? ]. In this case, the
equilibrium population size is

x̄ = K
(
lw
dw
− 1

)
, (8)

and the number of mutants in selection mutation balance is again given by
formula (5).

The early dynamics of wild type and mutant populations in models (1-2)
and (6-7) are identical. Assuming that x + y � K, we can solve the resulting
linear equations exactly, to obtain

xlin(t) = e(lw−dw)t, ylin(t) = lwu
e(lw−dw)t − e(lm−dm)t

(lw − dw)− (lm − dm)
. (9)

2.2 Decreased divisions and increased death

A mutant is disadvantageous if inequality (3) holds. If we fix lw and dw, the
division and the death rates of the wild type cells, this inequality defines a half
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plane in the (lm, dm) space, where mutants are disadvantageous (more precisely,
it is the region above the line dm/lm = dw/lw, see figure S8, the red line). Note
that this definition is not equivalent to using the linear growth rate to define
fitness, because instead of linear initial expansion of the mutants, it measures
their steady state level in the presence of the wild types. For comparison, the
line where the linear growth rates of mutant and wild-type cells are equal to
each other, is shown in figure S8 in green.

The quantity ν defined in (3) can be seen as a measure of fitness disadvan-
tage. Mutants with equal ν have the same level of disadvantage, which is for
the purposes of this paper defined as the same level of the selection mutation
balance equilibrium. The definition of ν (equation (3)) with fixed lw, dw gener-
ates a one-parametric family of types of equal disadvantage. Disadvantage can
be achieved by different combinations of division and death rates, lm, dm. In
particular, if the mutants have the same death rates as the wild types, and their
disadvantage is achieved through lowered division rates, then we have a type
with decreased divisions,

lm = lw(1− ν), dm = dw; (10)

in figure S8, “decreased division” mutants correspond to all the points on the
horizontal dashed line (in the disadvantageous region). If on the other hand,
the division rate of mutants matches that of the wild types, we have a type with
increased death:

lm = lw, dm = dw(1 + ν); (11)

in figure S8, “decreased death” types correspond to disadvantageous points on
the vertical dashed line. Note that if the two types have the same fitness (i.e.
converge to the same selection-mutation balance), the percentage decrease in
the division rate must be equal to the percentage increase in the death rate.
The linear growth rate of the two types is however different, and is given by

lm − dm =

{
lw − dw − νlw, decreased divisions,
lw − dw − νdw, increased death.

We can see that since lw > dw, the “increased death” mutants are always char-
acterized by a faster growth compared to the “decreased divisions” mutants.

Figure S5(a) shows an example of the numbers of mutants under the as-
sumptions of decreased divisions (blue) and increased deaths (yellow); specific
parameter values are given in the figure caption. The behavior of the wild types
can be seen from the dashed green line that shows x(t)/1000. Before the popu-
lation reaches the carrying capacity, the “increased death” mutants grow faster
than the “decreased divisions” mutants. At later times, they both reach the
same selection mutation equilibrium.

A useful representation of this information is given in panel (b) of figure S5,
where we plot the number of mutants, M(x), contained in the system of size
x. This quantity is presented for both types (decreased divisions and increased
death) in figure S5(b).
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Figure S5: Solutions of system (1-2), where the division and death rates of the
wild types are fixed, and the mutant rates are given by equation (10) for the
“decreased divisions” type, and equation (11) for the ‘increased death” type
(only one type of mutant is included at a time). (a) The level of mutants as a
function of time for the two systems; the wild types are given by the green dashed
line, where the value was divided by 1000 to bring it to the same scale. (b) The
number of mutants plotted as a function of the total cell population for the two
types. The parameters are lw = 1; dw = 0.1, ν = 0.3, u = 0.001,K = 100. The
fitness disadvantage is ν = 0.3.

2.3 The patch model

Consider N patches, such that in each patch cells undergo deterministic mass-
action dynamics of divisions and deaths, subject to a carrying capacity K. We
assume that patches communicate with each other through migrations. Let us
denote the migration matrix as M = {Mij}, where Mij is the probability that,
given that a cell from patch i migrates, it is transferred to patch j; we have∑
j 6=iMij = 1 for all i. We explore two types of such matrices:

1. A 1D spatial model: a ring of patches where only migration between
nearest neighbors is possible:

Mij =

{
1/2, |i− j| = 1,
0, otherwise,

(12)

with the additional nonzero values M1N = MN1 = 1/2.

2. A complete graph model: all patches are connected:

Mij =

{
1/(N − 1), i 6= j,
0, i = j.

The ODEs in each patch are given by equations similar to (1-2) for division-
controlled growth, or (6-7) for death-controlled growth, with K = K and mi-
gration terms included. In the former case, the system at each patch looks like
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this:

ẋi = lwxi(1− u)

(
1− xi + yi

K

)
− dwxi −m

xi − N∑
j=1

Mjixj

 , (13)

ẏi = (lwxiu+ lmyi)

(
1− xi + yi

K

)
− dmyi −m

yi − N∑
j=1

Mjiyj

 , (14)

where xi and yi are the numbers of wild type and mutant cells in patch i,
respectively. The initial value problem is completed with the following initial
condition:

xi(0) =

{
1, i = (N + 1)/2,
0, otherwise,

yi(0) = 0 ∀i (15)

(we assumed an odd number of patches), that is, there is a single wild type cell
in the middle patch, and the rest of the patches are unoccupied.

The results of the N -patch model will be compared with an unfragmented,
mass-action system of size (carrying capacity) K = NK:

Ẋ = lwX(1− u)

(
1− X + Y

KN

)
− dwX, (16)

Ẏ = (lwXu+ lmY )

(
1− X + Y

KN

)
− dmY, (17)

X(0) = 1, Y (0) = 0. (18)

For death-controlled growth, all equations are modified accordingly.

2.4 The number of mutants in fragmented and mass-action
systems

Let us compare the number of mutants obtained in the fragmented system with
migrations and in the mass action system of the same total carrying capacity.
Suppose we are interested in measuring the number of mutant at a total pop-
ulation size Ntot. Then we define the time tfr and tma (for “fragmented” and
“mass-action” respectively) as follows:

N∑
i=1

(xi(tfr) + yi(tfr)) = Ntot, X(tma) + Y (tma) = Ntot.

We want to compare the numbers of mutants,

Mfr(Ntot) =
N∑
i=1

yi(tfr), Mma(Ntot) = Y (tma).

Figures S6(a) and S7(a) show two examples of functions Mfr(Ntot) andMma(Ntot),
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Figure S6: Mutant dynamics in the case of “decreased divisions” mutants. (a)
Comparison of the mutant number as a function of the population size for the
fragmented (blue) and mass-action (red) systems. A particular value of the total
population size, Ntot = 5000, is indicated by a dashed vertical line. (b) The
wild type populations in different patches as functions of time, for t ∈ [0, tfr]
corresponding to Ntot = 5000. The leftmost line corresponds to the middle
patch, and the rest of the lines to consecutive patches moving outward. (d)
Same as (b) for the mutant populations. (c) The total populations (top) and
the mutant populations (bottom) in all the patches at time tfr. The parameters
are N = 201 patches, lw = 1; dw = 0.1, lm = 0.9; dm = 0.1, u = 0.001,K =
100;m = 0.01.

for “decreased divisions” and “increased death” mutants respectively. We ob-
tained numerical solutions of systems (13-14) with initial conditions (15) and
the migration matrix (12) (a 1D ring of patches), to plot Mfr (the blue line) as
a function of the total population size. The corresponding number of mutants
in the mass action system, Mma (the red line), was obtained from system (16-
18). We observe that in figures S6(a) (“decreased divisions”), there are more
mutants in the fragmented, spatial system, and in figures S7(a) (“increased
deaths”), there are more mutants in the mass action system.

Panels (b,c,d) of figures S6 and S7 elucidate some underlying patterns. Pan-
els (b,d) depict population dynamics in the patches. The initial wild type pop-
ulation in the “middle” patch number 101 (out of 200) grows and “seeds” the
neighboring patches, whose population starts increasing, which in turn gives
rise to growth in the next patches, etc, see figures S6(b) and S7(b). Because of
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the symmetries of the ODEs, patches equidistant from the middle have identi-
cal solutions. Figures S6(d) and S7(d) show the numbers of mutants as they
evolve in time, in each patch. Again, the leftmost line corresponds to the middle
patch that was occupied initially. Individual trajectories of mutants in patches
behave differently: “decreased divisions” mutants (figure S6(d)) grow monoton-
ically toward the mutation selection balance (compare the blue line in figure
S5(a)); “increased death” mutants (figure S7(d)) “overshoot” and then decrease
toward the mutation selection balance (compare the yellow line in figure S5(a)).

Figure S8 generalizes these results. It presents the parameter space with
coordinates lm and dm, where the points where Mma(Ntot) = Mfr(Ntot) are
shown as a purple line (parameters other than lm and dm are fixed). In the region
above the purple line (gray shadowing), there are more mutants in the mass
action system, and below it there are more mutants in the fragmented system.
In particular, the system of figure S6 has coordinates (lm, dm) = (0.9, 0.1) and
falls outside the gray region, and the system of figure S7 corresponds to (1, 0.2)
and is inside the gray region; both points are marked by a “∗” in the figure. In
fact, we can see that all the “decreased divisions” mutants (points that lie on the
dashed horizontal line in the disadvantageous region) fall under the purple line,
that is, decreasing division rate leads to having more mutants in the fragmented
system. It is somewhat less straightforward with “increased death” mutants
(disadvantageous mutants on the dashed vertical line): if the increase in death
is sufficiently large, then such points are above the purple line (and there are
more mutants in mass action). For a small increase in death rates, there are
more mutants in the fragmented system.

2.5 A simplified theory of mutant abundance in spatial
and mass-action systems

Simulations in panels (b,d) of figures S6 and S7 were run for time tfr that
corresponds to the fragmented system reaching a specific total size Ntot = 5000,
denoted by the dashed vertical line in panel (a). At that time, the total numbers
of cells per patch and the numbers of mutants per patch are shown in panel (c).
We observe that at time tfr,

(i) not all patches are occupied,

(ii) in most occupied patches, except for the outmost ones, the total popula-
tions have reached the carrying capacity (given by lw(1− dw/lw)), and

(iii) in most patches, the number of mutants is at the selection mutation bal-
ance. The exceptions are again the outmost patches that have not stabi-
lized yet, and the middle patches, where the growth of mutants is slower.

Using the observations of patch dynamics listed above, let us approximate
the number of mutants in a 1D fragmented system. At the time the total
population reaches a size Ntot, we assume that there will be a number of patches
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Figure S7: Mutant dynamics in the case of “increased death” mutants. Same
as in figure S6, except lm = 1, dm = 0.2.

that are completely occupied, with population at carrying capacity, x̄ = K(1−
dw/lw), and a number of patches that have not been reached yet. There are

n =
Ntot

K(1− dw/lw)

such occupied patches. Therefore, the total number of mutants at size Ntot is
given by nȳ, where y is given by equation (5), and we have

Mfr(Ntot) ≈ Ntotu
(
dm
dw
− lm
lw

)−1
. (19)

To calculate the number of mutants in the non-fragmented population, we use
formula (9). We have, using xlin = e(lw−dw)t ≈ Ntot, that

Mma(Ntot) ≈ lwu
Ntot −N

lm−dm
lw−dw
tot

(lw − dw)− (lm − dm)
; (20)

note that this approximation works not only for disadvantageous but for neutral
or advantageous mutants. The solution set of the equation Mfr = Mma using
approximations (19, 20) is shown in figure S8 as a black solid line. Although
it is similar to the full solution (purple line) for small values of lm, it deviates
from it as lm becomes closer to lw.
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Figure S8: Regions in the parameter space (lm, dm), where Mma > Mfr (under
fixed (lw, dw)). The red line indicate sets where mutants and the wild types
have equal fitness (equation (3) with ν = 0; mutants are disadvantageous above
this line); the green line corresponds to equal linear growth rates. The set (21)
is above the dashed horizontal line. The solid black line comes from a numerical
solution of Mma = Mfr with expressions (19,20). The purple solid line is the
solution of the same equation using the values obtained from solving the ODEs.
Ntot = 1000, the rest of the parameters are as in figure S6. The point where
lm = lw and dm = dw is marked by a blue star.

One can further simplify formula (20), assuming that Ntot � N
lm−dm
lw−dw
tot .

Then, solving Mma > Mfr, one obtains a condition that does not depend of
Ntot:

dm
dw
− lm
lw

>
(lw − dw)− (lm − dm)

lw
,

which can be solved for dm to yield:

dm > dw. (21)

In other words, if dm > dw, there are more mutants in the mass action system,
and otherwise there are more mutants in the fragmented system (given that
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the total sizes of the two populations are the same). Figure S8 shows this
approximation as a horizontal dashed line.

2.6 An intuitive explanation

Here we provide an intuitive explanation for the following result:

• If the mutant disadvantage is due to reduced division rates compared to
the wild type, then there tends to me more mutants in the fragmented
system compared to the mass action system of the same size.

• If the mutant disadvantage is due to increased division rates, then the
result is the opposite, and there tends to be more mutants in the mass-
action system. This is true only if the disadvantage is sufficiently strong.

Figure S9: Time series of total populations sizes in patches for (a) a fragmented
system with migrations according to a 1D spatial pattern and (b) a number of
identical, uncoupled, patches that mathematically are equivalent to the mass
action system.

Let us compare two systems: (i) a fragmented system of N patches of carry-
ing capacity K each, where initially there is a single cell in one patch, and popu-
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lations spread from patch to patch by means of migration, reaching their carry-
ing capacity at different times, and (ii) a mass action system, which can be math-
ematically represented an a equivalent system of N decoupled identical systems
of carrying capacity K, with identical initial conditions xi(0) = 1/N, yi(0) = 0.
Figure S9 shows the simulated total population size in a number of patches, for
(a) a 1D chain of fragmented patches and (b) a mass-action system represented
as N identical patches.

If the target population, Ntot, is the maximum size of the mass-action system
(Nx̄ with x given by formula (4) or (8) in the case of the division-controlled or
death controlled growth, respectively), then the above results do not hold, and
the number of mutants in both fragmented and non-fragmented system is simply
Nȳ, formula (5). Let us instead assume that the total population size, Ntot,
is well below maximum. As a consequence, at size Ntot, each of the identical,
disconnected populations in figure S9(b) that represent the mass action system,
have not reached its maximum size. This is shown by a vertical dashed line that
cuts across the growth phases of the N patches in panel (b). A different picture
is observed in the case of a fragmented system (panel (a)). There, since the
growth in different patches happens at different times, by the time some of the
patches have reached their maximum size, others have hardly started growing.
As a consequence, at total size Ntot, we expect that a number of patches are
“full” and others are “empty”, see panel (b).

Now, we can formulate the problem of maximization of the number of mu-
tants as size Ntot in the following way. We can make up size Ntot out of individ-
ual (identical) patches of size x (precisely, Ntot/x patches). The total number
of mutants is then given by

Mtot(x) = Ntot
M(x)

x
, (22)

whereM(x) is the number of mutants in a single patch of size x. What value of
x maximizes the function Mtot(x)? The answer depends on the function M(x).
If, for example, it is a convex function, then quantity (22) is a growing function
of x, and is maximized by a smaller number of patches, each at its maximum
size (x = x̄). IfM(x) is a concave function, then it Mtot is a decreasing function
of x, and we find a maximum number of mutants if all the N patches contribute
the smallest possible amount into the total.

Functions M(x) have different shapes for different mutant types, see figure
S5(b). For “decreased divisions” mutants, it is always a convex function, and
thus Mtot is maximized by a fragmented system, where at total size Ntot, a
number of patches are already at carrying capacity while other have hardly
began to grow.

For “increased death” mutants, the situation is slightly more complex. We
know that these mutants grow faster than the wild type at the initial stages of
growth (figure S5(a), yellow line), but depending on the degree of disadvantage,
this growth may result in a monotonically growing function y(t) for small degrees
of disadvantage, or in a function y(t) that “overshoots”, for larger degrees of
disadvantage. In the latter cases, the function M(x) has the shape depicted
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in figure S5(b), yellow line. As a consequence, function (22) will have a larger
value for small x (corresponding to the mass-action system where many virtual
identical patches contribute a small amount) than for large x (corresponding to
the fragmented system).

Figure S10: The fraction of mutants as a function of total population size for
“decreased divisions” and “increased death” mutants. Parameters are as in
figure S5.

Figure S10 shows the fraction of mutants as a function of total population
size for “decreased divisions” and “increased death” mutants. For “decreased
divisions” mutants, this is an increasing function of the total population size,
and therefore to increase the percentage of mutants, one needs to maximize
population size. This corresponds to having fewer patches at maximum size.
For “increased death” mutants, the fraction of mutants first increases and the
decreases. It is larger at an intermediate colony size compared to the maximum
size for a large range of sizes, except for the initial stage of growth. Therefore, in
most situations, a colony that is still growing will contain a larger percentage of
mutants than the colony at maximum size. Therefore, we expect more mutations
in the mass action situation where the saturation has not happened yet, and
not in a fragmented system, where most colonies are at maximum size.

2.7 Migrations on a complete graph model: deterministic
and stochastic cases

Note that the intuitive explanation presented above is not specific for a 1D ge-
ometry and holds for any fragmented system where patches are de-synchronized,
that is, they grow to their maximum size at different times. This is a necessary
condition to be able to identify the stage of growth where a subset of patches
is fully grown while the rest are empty. This is why the results described above
(that is, a difference in the behavior of decreased divisions mutants and in-
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creased death mutants) is observed in stochastic simulations where no specific
spatial arrangement of patches is assumed, and migration happens randomly
from a patch to any other patch. In such a stochastic system, some patches will
grow faster than others, and the general growth pattern similar to figure S9(a)
is observed.

This behavior however is not captured by the corresponding system of ODEs.
There, in the presence of equal migration rates to any patch, all patches (except
for the original patch containing the first cell) are synchronized and grow in an
identical manner. In fact, the ODEs in this case can be rewritten as only 2
equations in 2 patches:

ẋ∗ = lwx∗(1− u)

(
1− x∗ + y∗

K

)
− dwx∗ −m

(
x∗ −

1

N − 1
X∗

)
,

ẏ∗ = (lwx∗u+ lmy∗)

(
1− x∗ + y∗

K

)
− dmy∗ −m

(
y∗ −

1

N − 1
Y∗

)
,

Ẋ∗ = lwX∗(1− u)

(
1− X∗ + Y∗

K(N − 1)

)
− dwX∗ −m

(
1

N − 1
X∗ − x∗

)
,

Ẏ∗ = (lwX∗u+ lmY∗)

(
1− X∗ + Y∗

K(N − 1)

)
− dmY∗ −m

(
1

N − 1
Y∗ − y∗

)
,

x∗(0) = 1, y∗(0) = 0, X∗(0) = 0, Y∗(0) = 0.

This system can be thought of as a two-patch model, where the first patch
has population (x∗, y∗) and the carrying capacity K, and the second patch
population (X∗, Y∗) and the carrying capacity K(N − 1). The migration rate
from the small to the large patch is m, and back it is m/(N − 1). Therefore,
because of this artificial symmetry arising from the deterministic description
(which is broken in a stochastic model), the behavior of this system does not
reflect the patterns described above.

3 Disadvantageous mutants: a 2D spatial stochas-
tic model

If mutants are disadvantageous, the quasi-equilibrium level of mutants is defined
by the selection-mutation balance.

Let us calculate equilibrium densities of mutants and wild type cells in a
spatially distributed system at steady state. This will also correspond to the
densities in the core of an expanding system away from the advancing front.

We restrict our description to a 2D square grid, with the von Neumann
neighborhood (that is, each location has 4 nearest neighbors); the methodology
is generalizable to the Moore neighborhood (8 neighbors). We use a method
similar to that of [? ]. Two random variables describe the state of the stochastic
system at each spatial location, x: ρx describes wild type cells, such that

ρx =

{
1, if a wild type cell is at location x,
0, otherwise,
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and ηx describes mutant cells, such that

ηx =

{
1, if a mutant cell is at location x,
0, otherwise.

Note that ρx and ηx cannot be equal to one simultaneously; an empty spot
corresponds to ρx = ηx = 0. We assume that wild type cells have division
and death rates lw and dw, and mutant cells have division and death rates lm
and dm. Wild type cells mutate with probability u, and no back mutations are
considered.

3.1 Equations for the densities

Denote the expectation of ρx and ηx by

〈ρx〉 = ρ, 〈ηx〉 = η,

where we assumed that the expected values do not depend on spatial location,
since we are interested in spatially homogeneous equilibrium solutions. We have

ρ̇ =

〈
lw
Nb

(1− u)(1− ρx)(1− ηx)
∑
k

ρ(k)x − dwρx
〉
, (23)

η̇ =

〈
1

Nb
(1− ρx)(1− ηx)

∑
k

(
lwuρ

(k)
x + lmη

(k)
x

)
− dmηx

〉
, (24)

where the product (1−ρx)(1−ηx) is nonzero only if location x is empty, and the
summation goes over all the neighbors of point x, which reproduce into location
x at rates lw/Nb and lm/Nb if they are wild type of mutant, respectively.

Let us consider the von Neumann neighborhood (Nb = 4). In the right hand
side of equation (23), the terms is the summation have the form

〈(1−ρx)(1−ηx)ρ(k)x 〉 = 〈ρ(k)x 〉−〈ρxρ(k)x 〉−〈ρ(k)x ηx〉+〈ρ(k)x ρxηx〉 = ρ−W−I, (25)

and in equation (24) there are also terms of the form

〈(1−ρx)(1−ηx)η(k)x 〉 = 〈η(k)x 〉−〈ρxη(k)x 〉−〈η(k)x ηx〉+〈η(k)x ρxηx〉 = η−I−M. (26)

In the expressions above, we have 〈ρxρ(k)x η
(k)
x 〉 = 0, because either η

(k)
x or ρ

(k)
x

is zero at location x(k), and the three types of dyads are defined as follows:

• W = 〈ρxρ(k)x 〉 is the probability to have two wild type cells at two neigh-
boring locations,

• I = 〈ρxη(k)x 〉 is the probability to have a wild type cell and a mutant at
two neighboring locations,

• M = 〈ηxη(k)x 〉 is the probability to have two mutant cells at two neighbor-
ing locations.
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Figure S11: Steps in the derivation of equations for a two-component system of
wild type and mutant cells. Blue circles denote wild type, and purple denote
mutant cells. (a) Three configurations, whose correlations appear in equations
(27) and (28). (b) Three types of correlations needed for equations for W , I,
and M .

Figure S11(a) illustrates these three configurations. In terms of these three
correlations, equations (23) and (24) can be rewritten as

ρ̇ = lw(1− u)(ρ−W − I)− dwρ, (27)

η̇ = lwu(ρ−W − I) + lm(η − I −M)− dmη. (28)

The correlations for the three dyads that appear in these equations require their
own equations to close the system. Let us derive an equation for W . We have

Ẇ =

〈
2(1− ρx)(1− ηx)ρ(k)x

∑
j

ρ(j)x
lw
Nb

(1− u)− 2dwW

〉
,

where we assume that one of the points in the dyad contains a wild type cell

(term ρ
(k)
x ), while the other point is empty (term (1 − ρx)(1 − ηx)), and that

one of its neighbors (location x(j)) contains a wild type cell, which reproduces
faithfully into point x at rate lw(1− u)/Nb. Note that either of the two points
could be empty, which results in the multiplier 2 in the first term on the right
hand side. Similarly, either of the dyad’s locations can experience cell death,
resulting in the negative rate 2dw. In order to calculate the average, we need to
consider terms

〈(1− ρx)(1− ηx)ρ(k)x ρ(j)x 〉. (29)

Note that here and below, the operation of averaging makes the expression
independent on the actual location x. Further, the superscripts (k) and (j) do
not refer to any specific neighbor of x, but to any neighbor of x; in particular,
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location x(j) may be the same or different than location x(k). In the case when
the two locations are different, correlation (29) is presented in figure S11(b), on
the left.

In equations for Ṁ and İ, the following expressions appear in addition to
(29):

〈(1− ρx)(1− ηx)ρ(k)x η(j)x 〉, 〈(1− ρx)(1− ηx)η(k)x η(j)x 〉.

These correlations are shown in figure S11(b), center and right. Therefore,
denoting by a and b either ρ or η, we evaluate the average of the form

〈(1− ρx)(1− ηx)a(k)x b(j)x 〉, (30)

which corresponds to a dyad with one of the locations (location x) empty, and
the other (location x(k)) containing type “a”, while a neighbor of x (location
x(j)) contains type “b”. First let us assume that location x(j) is different from
location x(k). Under von Neumann neighborhoods this implies that x(j) are x(k)

are not each other’s neighbors, because on a square grid, there could not be a
non-degenerate triangle with diameter 1 or less. Expression (30) is equal to

P (b(j)x = 1|a(k)x = 1, ρx = ηx = 0)P (a(k)x = 1, ρx = ηx = 0) ≈
P (b(j)x = 1|ρx = ηx = 0)P (a(k)x = 1, ρx = ηx = 0) =

P (b
(j)
x = 1, ρx = ηx = 0)P (a

(k)
x = 1, ρx = ηx = 0)

P (ρx = ηx = 0)
(31)

The expression in the denominator is calculated as follows:

P (ρx = ηx = 0) = 〈(1− ρx)(1− ηx)〉 = 〈1− ρx − ηx + ρxηx〉 = 1− ρ− η.

Depending on the types at location x, the expressions in the numerator of (31)
can be of two types:

P (ρ(k)x = 1, ρx = ηx = 0) or P (η(k)x = 1, ρx = ηx = 0),

and they are calculated in (25) and (26) respectively.
Next, we assume that location x(j) is the same as x(k). Then, if types “a” and

“b” in expression (30) are different, then we obtain 〈(1−ρx)(1−ηx)ρ
(k)
x η

(k)
x = 0.

If the types are the same, then we obtain expression (25) or (26). To summarize,
expressions of type (30) are given as follows:

〈(1− ρx)(1− ηx)ρ(k)x ρ(j)x 〉 =

{
(ρ−W−I)2

1−ρ−η , x(j) 6= x(k),

ρ−W − I, x(j) = x(k),

〈(1− ρx)(1− ηx)ρ(k)x η(j)x 〉 =

{
(ρ−W−I)(η−I−M)

1−ρ−η , x(j) 6= x(k),

0, x(j) = x(k),

〈(1− ρx)(1− ηx)η(k)x η(j)x 〉 =

{
(η−I−M)2

1−ρ−η , x(j) 6= x(k),

η − I −M, x(j) = x(k).
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The equation for W is then given by

Ẇ =
lw
2

(1− u)

(
ρ−W − I +

3(ρ−W − I)2

1− ρ− η

)
− 2dwW. (32)

Similarly, the other two equation can be derived:

İ =
3

4
[lw(1− u) + lm]

(ρ−W − I)(η − I −M)

1− ρ− η
+
lwu

4
lm

(
ρ−W − I +

3(ρ−W − I)2

1− ρ− η

)
− (dw + dm)I, (33)

Ṁ =
3lwu

2

(ρ−W − I)(η − I −M)

1− ρ− η
+
lm
2

(
η − I −M +

3(η − I −M)2

1− ρ− η

)
− 2dmM. (34)

The closed system of equations for ρ, η,W, I, and M is given by equations (27),
(28), (32), (33), and (34).

3.2 Selection mutation balance solution

Solving these equations in steady state exactly is difficult, but if the mutation
rate u � 1, we can find the approximate solution. We start by setting u = 0
and obtaining the steady state solution. Apart from the trivial solution and a
negative solution, there are two symmetric solutions where only one type sur-
vives (competitive exclusion). We will use the one where the wild type excludes
mutants:

ρ(0) = 1 +
3dw

dw − 3lw
, W (0) = 1− 6dw

dw − 3lw
− 4dw

lw
, η(0) = I(0) = M (0) = 0,

(35)
where the superscript corresponds to the zeroth order in the expansion in terms
of small u. Note that the expression for ρ(0) is identical to the steady state
density of the one-component system given by equation (??) with ξ = dw/lw.
We then look for the first correction by substituting

ρ = ρ(0) + uρ(1), η = uη(1), W = W (0) + uW (1), I = uI(1), M = uM (1),

inserting in the system of 5 equations, keeping only the first order of expansion
in u, and solving for ρ(1), . . . ,M (1). We obtain

η = η(1)u =
dwlw(4dw − 3lw)(4d2m + 3dmlw + dwlm)u

dm(dw − 3lw)(4dm + 3lw)(dmlw − dwlm)
.

This is the equilibrium solution corresponding to mutation-selection balance in
the presence of spatial interactions. This approach is valid as long as the wild
type is advantageous (inequality (3)). In the opposite scenario, this solution is
unstable, and the system converges to the mutants excluding the wild type.

Under selection-mutation balance, of interest is the equilibrium proportion
of mutants in the system given by

νvN =
η(1)u

ρ(0)
=

dwlw(4d2m + 3dmlw + dwlm)u

dm(4dm + 3lw)(dmlw − dwlm)
. (36)
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In the absence of death (dw = dm = 0), we obtain the limiting value

νvN,D=0 =
(3lw + lm)u

3(lw − lm)
.

3.3 Comparison with mass-action

We would like to compare the proportion of mutants under selection mutation
balance in space and in mass-action. In mass action we have

ẋ = lw(1− u)− dwx, (37)

ẏ = = lwux+ (lm − dm)y, (38)

where x and y is the expected number of wild type and mutant cells respectively.
The proportion of mutant cells at a given size N is calculated by using x(0) =
e(lw−dw)t and evaluating the solution y(t) of equation (38) at time t = lnN/(lw−
dw). Forming the fraction, we obtain the proportion at mutants at size N :

νma =
lwu

(
1−N−

lw−dw−(lm−dm)
lw−dw

)
lw − dw − (lm − dm)

.

One can see that this quantity grows with the size N , while νvN is independent
of the population size.

In figure S12 we study the quantity

ln

(
νvN
νma

)
,

which is greater than 0 of the numerator is larger than the denominator. This
quantity is presented as a contour plot in panel (a), as we vary lm and dm (for
fixed values of lw and dw). The red line in the figure indicates the region where
the mutants are disadvantageous and we expect to observe selection-mutation
balance (this is given by inequality (3)). Positive regions (below the purple
dashed line) correspond to having more mutants in the spatial system compared
to the mass action system. Negative regions (above the purple dashed line) are
regions where there are fewer mutants in the spatial system than in the mass
action system.

Figure S12(b) focuses on two particular scenarios. The top panel presents
the case where the division rates of mutants and wild type cells are the same,
and the disadvantage is manifested through lm < lw. We can see that in such
cases, νvN > νma, that is, we have more mutants in space. The bottom panel
shows the case where lm = lw, and the mutants have a larger death rate than
the wild types. In this case, if the disadvantage is sufficiently large, we have
fewer mutants in space than in the mass action system.

23



Figure S12: Comparison of the spatial and mass action system. (a) The quan-

tity ln
(
νvN
νma

)
is presented as a contour plot as a function of lm and dm, for

fixed values of lw and dw. The red line indicates the region where mutants are
disadvantageous (inequality (3)). The contours’s values are indicated, and the
zero contour is marked with a dashed purple line. (b) Top panel: the same
quantity plotted as a function of lm, with dm = dw. Bottom panel: the same,
as a function of dm, with lm = lw. The rest of the parameters are given by
u = 2× 10−5, N = 105, lw = 1, and dw = 0.3.

3.4 Comparison with computations

The expected number of mutants predicted theoretically was compared with
results of numerical simulations. This was done in the following way. At size N ,
the number of mutants (in the von Neumann case) is predicted to be NuνvN ,
see equation (36). Solving the equation NuνvN = const, we can obtain the pairs
(lm, dm) of mutant kinetic rates corresponding to a predicted given number of
mutants in a system of size N . Figure S13(a) shows the predicted number of mu-
tant as a contour plot. The closer to the “neutrality” line (see inequality (3)) the
larger the predicted number of mutants. Solution of equation NuνvN = const is
shown in panel (b), and for 5 points from the solution set, the predicted number
of mutants (given by 10) is compared with the numerically obtained mean (plot-
ted together with the standard deviation, panel (c)). We can see that for larger
mutant division rates, the deviation from the theory becomes significant. Panel
(d) shows a histogram of numbers of mutants for the parameters corresponding
the 5th point. One can see that the distribution has a long tail and a very large
standard deviation. This is the consequence of “slices” that cannot be handled
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Figure S13: The level of mutants in the spatial (von Neumann) system: analyt-
ical approximation and numerical results. (a) The quantity NuνvN is presented
as a contour plot as a function of lm and dm, for fixed values of lw and dw.
Mutants are disadvantageous above the red line (inequality (3)). The contours’
values are specified. (b) Solution lm of equation NuνvN = 10 as a function
of dm; the 5 points used in panel (c) are marked in red and numbered. (c)
The comparison of predicted (10, horizontal red line) and simulated number of
mutants in the 5 parameter pairs from panel (b). Simulated means and stan-
dard deviations are shown (out of 2.5 × 106 runs). (d) For the 5th parameter
combination, the numerically obtained histogram of the number of mutants is
shown. The rest of the parameters are u = 2 × 10−5, N = 105, lw = 0.08, and
dw = 0.015.

by the present method.

3.5 Jack-pot events

In Fig. 2 of the main text we studied the mean and the distribution of the num-
ber of disadvantageous mutants in mass-action systems and in a metapopulation
model, were the demes were arranged in a 1D array, and migration happened be-
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tween neighboring demes. Here we present results for a metapopulation model
where migration was equally likely among all demes, see figure S14. We can see
that regardless of the structure of the deme-to-deme network, the results are
very similar.

Figure S14: Disadvantageous mutants: probability distributions of mutant num-
bers in mass-action and metapopulation simulations. Both decreased divisions
and increased death mutants are investigated, with division and death rates
given in the left upper panel (compared to the rates of the wild type, denoted
by the green circle). The bar graphs represent numerical histograms for mass
action simulations (blue) and metapopulation simulations (yellow), where the
demes were all connected to each other; between 1.8 × 105 and 2.0 × 105 sim-
ulations were run for each parameter combination, and the number of mutants
recorded when the total population reached 1000. The mean numbers of mu-
tants are shown for all the simulations in the central panel, with yellow markers
corresponding to the metapopulation model (migration among all demes), and
the blue markers to the mass-action model.

In order to compare the number of rare (“jackpot”) events in different models
and for different parameters, we designed a function that quantifies the spread
of the distribution or the “fatness” of its tail (heavy-tailedness). For each set
of data, Y , representing the numbers of mutants in each of the runs performed
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for a given parameter set for a given model, we used the quantile function

F (Y, q) = Q(Y, 1− q),

defined as follows. Let YqL and YqR are two subsets of Y such that Y = YqL∪YqR
and all the elements of YqL are smaller or equal to all the elements of YqR; we
will refer to parameter q as “threshold”. We further assume that

|YqR| = d|Y |qe,

where |.| denotes the number of elements and d.e denotes ceiling. Then we set

Q(Y, 1− q) = min(YqR).

It follows from this definition that the function F (Y1, q) > F (Y2, q) for all q in
a vicinity of 0, as long as set Y1 has a higher number of large outliers compared
to Y2, or if Y1 is drawn from a distribution with a heavier tail compared to Y2.

Figure S15 presents the plots of the heavy-tailedness function F (Y, q) for the
8 cases studied in figure S14, with Y representing the mass-action model (blue),
the metapopulation model where all demes are connected (yellow), and the 1D
metapopulation model with only neighboring demes connected (green). The
bottom row of graphs represents the cases where the disadvantageous mutants
are characterized by a decreased division rate (except case 4, which describes
neutral mutants). In the top row the disadvantageous mutants are character-
ized by increased death rates. We can see that the heavy-tailedness generally
increases toward the neutral case. We also observe the following patterns:

• In the bottom row, for small thresholds, q, the yellow and green lines
are above the blue line, which means that if the mutants have decreased
division rates, the fragmented (metapopulation) models are characterized
by a higher heavy-tailedness (more jack-pot events) compared to the well-
mixed system.

• This trend weakens and reverses in the graphs of the top row, from right
to left (away from neutral mutants). In other words, if the mutants
have increased death rates, and the disadvantage is sufficiently large, the
fragmented (metapopulation) models are characterized by a lower heavy-
tailedness (fewer jack-pot events) compared to the well-mixed system.

These trends go hand in hand with the results on the expected number of
mutants (figure S14, middle graph). For mutants with decreased division rates
or slightly increased death rates, there are more jack-pot events in the metapop-
ulation models, and the expected number of mutants is also higher, compared to
the well-mixed model. On the other hand, if the mutants are characterized by
significantly higher death rates, the trend reverses, and there are more jack-pot
events and more mutants on average in the mass-action system.
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Figure S15: The prevalence of jack-pot events in different models. The heavy-
tailedness (quantile) function F (Y, q) is plotted vs q for the mass-action model
(blue), the metapopulation model where all demes are connected (yellow), and
the 1D metapopulation model with only neighboring demes connected (green).
The calculations are based on the simulations of figure S14 and figure 2 of the
main text. Case numbering and parameters are as in figure S14.

4 Neutral and advantageous mutants in a range
expansion

4.1 Derivation of the growth laws

To derive the laws of mutant growth reported in the main text, we can use the
following simple calculations. Let us assume that the death rate of cells is equal
to zero, and consider cells growing in different geometries.

2D flat front. Assume that cells grow along the surface of a cylinder of
width W . This represents a one-directional growth process, where during each
generation, we assume that W new cells appear, and the the total population
is given by N = LW , where L represents the number of layers. The value of L
is proportional to the number of generations, and thus to the physical time, t:

L ∝ t.

The following calculation estimates the growth law of mutants. Every time a
new layer (of width W ) is added, the mean number of new mutations is given
by Wu. Suppose that mutants are neutral. Then, each such mutation will give
rise to an array of daughter mutant cells of width 1, see figure S16. The length
of this array is given by L− i, if i is the layer at which the mutation occurred.
Therefore, the total expected number of neutral mutants is a cylinder of length
L is given by

Mneut
2D flat =

L∑
i=1

Wu
L∑

j=i+1

1 =
uWL(L− 1)

2
≈ uWL2

2
=

u

2W
N2, (39)
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where we assumed L � 1. Note that in this derivation we assumed that the
number of mutants is small compared to the total population, and individual
mutant clones do not interact. In a more precise calculation, the number of wild
type cells in each layer is smaller than W because of the existence of mutants,
and thus the ate of new mutant production is smaller than Wu. We however
assume that uLW � 1, such that the number of mutants is relatively small.

Note that the number of neutral mutants decreases with W , see figure
S17; the largest number of mutants is achieved in the case of W = 1, a one-
dimensional expanding array of cells.

Figure S16: The conceptual model for mutant number calculations, the case
of neutral mutants in a colony growing along the surface of a cylinder (2D flat
front).

Figure S17: The number of mutants during a 2D flat front expansion decays with
the front width. Formula (39) is presented with N = 10000 and u = 5× 10−5.

Next, let us consider advantageous mutants. In this case, each new mutant
gives rise to a triangular clone. In the first layer, the width of the clone is 1, in
the next layer it is 1 + s, and in the kth layer it is 1 + (k−1)s, where parameter
s ≥ 0 measures the advantage of the mutants (with s = 0 corresponding to
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neutral mutants). Therefore, we have

Madv
2D flat =

L∑
i=1

Wu
L∑

j=i+1

(1 + (j − (i+ 1))s) = uWL(L− 1)

(
1

2
+
s(L− 2)

6

)
(40)

≈ uWsL3

6
=

us

6W 2
N3,

where for the approximation, we assumed that Ls � 1. Also, for this simple
calculation to be valid, we need to assume that the wedges created by mutants
do not come close to the cylinder’s width, W , that is, Ls � W . In particular,
formula (40) can be valid for small values of W > 1, but only for mutants that
are neutral for practical purposes (s� 1).

Note that when N is fixed, the total number of cell divisions that the system
has undergone is also fixed. The number of mutants however is vastly different
depending on the spatial configuration. It is the highest for W = 1 (one row of
cells) and decreases drastically with the width of the cylinder. This is consistent
with the notion that spatial restrictions result in a heightened number of mu-
tants, the 1D space (W = 1) being the most spatially restrictive system. The
reason for this is that in 1D, a mutant, once created, blocks the whole range of
expansion and prevents wild type cells from reproducing. The wider the front,
the weaker this effect. Further, we note that in the special case where W = 1,
mutant advantage does not play a role, and the number of advantageous, neu-
tral, and even disadvantageous mutants is given by the same formula, equation
(39).

2D: circular range expansion. Next we turn to the dynamics of neutral
mutants on a circle. Let us suppose that the radius of the circle is R and
N = πR2. The size of the colony increases via surface growth with N ∝ t2 and

R ∝ t.

As the range expansion proceeds, the circular layer of radius r will on average
give rise to 2πru new mutations. Each mutation will result in a wedge expanding
outwards. If the new mutation occurred in layer with radius r, the number of
mutating cells in layer r is 1. The number of mutants in the next layer is
given by r+1

r , because under the assumption of mutant neutrality, the fraction
of mutants in each new layer of radius j > r (with surface 2πj) should stay
constant and equal to 1

2πr . For layer j, the number of mutants is then given by
j/r. This gives rise to the following calculation:

Mneut
2D range =

R∑
r=1

2πru
R∑

j=r+1

j

r
=

2

3
πR(R2 − 1)u ≈ 2πR3u

3
=

2u

3π1/2
N3/2

(the approximation is valid for R� 1).
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For advantageous mutants in a growing 2D circle, the fraction of mutants
will grow with each layer:

Madv
2D range =

R∑
r=1

2πru
R∑

j=r+1

(1 + (j − (r + 1))s)
j

r
= πR(R2 − 1)u

(
2

3
+

1

4
s(R− 2)

)

≈ πR4su

4
=
su

4π
N2, (41)

where we assumed Rs � 1. For this approximation to be valid, the mutant
wedges should not exceed the circumference of the colony. Strictly speaking,
this results in the condition Rs << 2πR, that is, s � 1. For larger values of
s, the events where the mutant covers the whole surface of the colony are no
longer negligible.

3D flat front. In a 3D space, let us first consider a solid cylinder of constant
radius R0, where initially the cells are situated as a layer at the bottom of the
cylinder, and proceed to grow by adding layers of size πR2

0. Each generation
contributes πR2

0u new mutants, and as the colony grows to length L (and volume
2πR2

0L), we have in the neutral case:

Mneut
3D flat =

L∑
i=1

2πR2
0u

L∑
j=i+1

1 = πR2
0uL(L− 1) ≈ πR2

0uL
2 =

u

πR2
0

N2,

which is similar to the 2D flat front expansion. If the mutants are advantageous,
then their number will increase from layer to layer, giving rise to conical wedges.
This gives rise to the following calculation:

Madv
3D flat =

L∑
i=1

2πR2
0u

L∑
j=i+1

(1 + (j − (i+ 1))s)2

=
L(L− 1)πR2

0u

6

[
(L2 − 3L+ 2)s2 + 4(L− 2)s+ 6

]
≈ πR2

0s
2uL4

6
=

s2u

6π3R6
0

N4,

where Ls � 1 for the approximation, and the approach is valid as long as the
wedge radius is smaller than that of the cylinder, sL� R0.

3D range expansion. Next we consider a 3D expanding sphere. For a sphere
of radius R, we have N = 4/3πR3 and the surface is given by 4πR2. The size of
the colony increases via 3D surface growth with N ∝ t3. Each spherical layer of
radius r will on average give rise to 4πr2u new mutations. Each mutation will
result in a conical wedge expanding outwards. If the new mutation occurred in
layer with radius r, the number of mutating cells in layer r is 1. The number
of mutants in a layer of radius j > r is given by (j/r)2, because under the
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assumption of mutant neutrality, the fraction of mutants in each new layer
should stay constant (and equal to 1

4πr2 ). Therefore, we write:

Mneut
3D range =

R∑
r=1

4πr2u
R∑

j=r+1

(
j

r

)2

= πR(R2−1)(R+2/3)u ≈ πR4u =
34/3u

π1/344/3
N4/3

(the approximation is again valid for R� 1).
If the mutant in a growing 3D sphere is advantageous, the fraction in each

layer will increase according to the fitness advantage s and stretch from layer
to layer in the same way as for the neutral mutants. We therefore have,

Madv
3D range =

R∑
r=1

4πr2u
R∑

j=r+1

(1 + (j − (r + 1))s)2
(
j

r

)2

=
πuR(R2 − 1)

90

[
(20R3 − 48R2 − 5R+ 42)s2 + (72R2 − 90R− 108)s+ 90R+ 60

]
≈ 2

9
πs2uR6 =

s2u

8π
N2.

As before, the approximation holds if Rs � 1. The method assumes that the
mutant colony’s size in each layer does not come close to the surface area, which
amounts to the inequality s� 1.

Exponential (non-spatial, mass-action) growth. Finally, for exponen-
tially growing population, similar formulas could be derived. In particular, for
neutral mutants, we have

Mneut
exp = Nu lnN,

and for advantageous mutants with advantage α (which is the ratio of the net
growth rate of mutants and the net growth rate of wild type cells), we have

Madv
exp =

α

(α− 1)2
α−1
α

N
2α−1
α ,

see [? ], equation (14c), see also equation (13) for a more general formula.
A summary of some of the results is presented in table 1 of the main text.

4.2 Comparison with numerical simulations

We have run numerical simulations to check the results derived in the previous
section. Below we comment on the applicability and limitations of the formulas
derived.

4.2.1 Roughness considerations

If we use formula (39) to approximate simulation results for neutral mutants,
in the absence of death, in a colony growing on the surface of a cylinder, we
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notice that it gives a slight systematic underestimation of the number of mutants
corresponding to N cells. Here we investigate the source of this error.

To understand the source of this inconsistency, we note that the idealized
model of figure S16 is not realistic. The real front propagates to the right as a
jagged line. For example, under the Moore neighborhood, cells can divide into 8
nearby spots, including the diagonal spots and positions up or down. There are
two important differences between the idealized model of figure S16 and the real
picture. (i) The real, jagged, front is longer (the idealized vertical front is the
shortest), and (ii) cells do not always divide to the right, and as a consequence,
cell divisions are less efficient: sometimes two neighboring cells “decide” to
divide into the same spot, thus preventing some divisions from happening. Let
us compare the number of successful divisions in the idealized and in the natural
model. In the idealized model, the number of successful divisions per update is
exactly W . For the natural model, the first factor above increases the expected
number of successful divisions, while the second factor reduces the number of
successful divisions. The overall effect turns out to be negative, that is, fewer
than W successful divisions are performed. This suggests that the effective
width of the cylinder is less than W , and therefore the expected number of
mutants corresponding to the same population size is larger than that predicted
for the idealized model.

Roughness considerations have been investigated thoroughly in [? ? ].
In particular, the authors studied the statistics of the mutant “bubbles” and
“wedges”. It turns out that their shape is affected, in a predictable way, by
the front roughness, which was shown by using the previous theoretical and
numerical results of [? ] and [? ]. Further, these considerations allow for cal-
culating the scaling laws of the probability distribution of mutant clone sizes [?
], and influence the probability distribution of the number of mutants, but not
its mean. This can be seen, for example, if we use formula (5) of the Methods
in [? ] with the scaling exponents α and β estimated for flat and rough fronts,
see Table 1: the resulting dependence of mutant clone size on the total popula-
tion N remains the same. The proportionality constant, however, is roughness
dependent, as follows from formula (4) in the Methods in [? ].

This is consistent with our findings. Even though our idealized model used to
derive mutant growth laws underestimates the “constant”, it correctly predicts
the power laws in different growth geometries and for different mutant types
(disadvantageous, neutral, and advantageous).

4.2.2 2D flat front expansion

For the 2D flat front geometry (the surface of a cylinder), we set up the initial
condition for the agent-based simulation to be a one layer (a circle) of wild type
cells that coincides with the circumference of one of the cylinder’s bases (and
has length W ). Simulations are run repeatedly for a fixed number of time steps,
and the mean trajectory (that is, the mean number of wild type cells and the
mean number of mutants, as functions of time-step) is then calculated. Finally,
the number of mutants is plotted as a function of the total population size.
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Examples for neutral mutants (that is, mutants that have the same division
and death rates as the wild type cells) are presented in figure 4 of the main
text, curves (a) and (b). We can see that both in the absence (a) and in
the presence (b) of death, the mutant population as a function of the total
population approaches a power law with the exponent 2 (the black dashed lines
corresponding to cases (a) and (b) of figure 4 of the main text have slope 2 in
the log-log plot, see table 1). There are more mutants in the presence (b) than
in the absence (a) of death.

Figure S18: Advantageous mutants under a 2D flat front expansion: deviation
from the cubic law for large sizes. (a) In the absence of death (Lx = 0.7, Ly =
1.0, Dx = Dy = 0, see curve (d) of figure 4 of the main text) and (b) in the
presence of death (Lx = Ly = 0.7, Dx = 0.2, Dy = 0.1, see curve (f) of figure
4). Top panels: the number of mutants as a function of the total number of
cells; the dashed straight lines have slope 3. Bottom panels: (a) a numerically
obtained CDF of the probability for a given colony to have its front completely
dominated by mutants by a given size; (b) a numerically obtained CDF of the
probability for a given colony to have its wild type population extinct by a given
size.

Advantageous mutants are presented by curves (c-g) of figure 4 of the main
text; note that the dashed lines drawn through these curves all have slope 3
in the log-log coordinates (table 1). Curves (c) and (d) correspond to systems
without death, and mutants having a larger division rates compared to wild
type cells. The advantage is larger in case (d) compared to case (c) (and thus
there are more mutants observed at the same population size). In both cases,
we can see that the curves have slope 3 up to a certain population size, after
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which they deviate from the cubic law. For those larger sizes, mutants grow
slower as a function of size (quadratically). The reason for this deviation from
the cubic law is as follows. As the colony grows and reaches larger sizes, ad-
vantageous mutant clones that grow out and increase in size start reaching the
width W , that is, take up the whole width of the cylinder. After that, the mu-
tant colony can no longer expand in width, but instead it grows linearly. This
is illustrated in figure S18(a), where the top panel replots the purple line (case
(d)) of figure 4 of the main text, and the bottom panel studies the statistics of
mutant invasion. For each run, we recorded the total colony size at which the
population of wild type cells stopped increasing (given that this happened in
the time-span of the simulation). This indicates that, in the absence of death,
all the front positions are taken up by mutants and wild type cells can no longer
divide. The numerically obtained CDF is presented in the panel. We can see
that the probability for the mutants to dominate the front becomes significant
around size 104, which coincides with the size where the number of mutants
starts deviating from the cubic law (the upper panel).

Next, we turn out attention to curves (e) and (f) of figure 4. They represent
systems in the presence of death, where mutant advantage is manifested through
increased division rate (e) and decreased death rate (f). We can see again that
the curves follow a cubic law. A deviation from this law (and a slow-down
of the growth as a function of total size) is also observed for larger sizes. The
mechanism of this deviation is however somewhat different from the case of zero
death. Figure S18(b, top panel) replots curve (f) of figure 4. Since cells die, the
eventual outcome of all the simulations is the extinction of the (disadvantageous)
wild type. The CDF of the colony size by which the wild type goes extinct is
presented in the bottom panel of figure S18(b). The probability of wild type
extinction becomes significant around size 2×104, where the number of mutants
starts deviating from the cubic growth (see the top panel).

Finally, we compare curves (f) and (g) of figure 4. They represent systems
with the same parameters (where the mutant advantage is manifested through
a lowered death rate), except the cylinder width is W = 100 for curve (f) and
it is W = 1000 for curve (g). Notice that the dashed black lines for the two
curves differ by a factor of 100, representing the inverse square dependence of
the number of mutants on the cylinder width, see formula (40) (there are 100
times fewer cells in the cylinder that is 10 times wider).

4.2.3 Growth on a circle (2D range expansion)

For simulations studying 2D range expansion, we started with 1 wild cell, and
let the colony expand on a 2D grid for 800 time-steps, for. 2000 runs for each
parameter combination. In each case, the numbers of wild type and mutant cells
were averaged over all the runs that did not result in population extinction1.
The results for several representative cases are presented in figure 6 of the main

1Extinction was not a problem in the cylindrical geometry, because the initial condition
contained 100 or more cells, and very few runs resulted in extinction
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text, where for each parameter combination the number of non-extinct runs is
given in the figure caption.

There are 6 curves plotted in figure 5 of the main text. As in figure 4, cases
(a,b) correspond to neutral mutants, and cases (c-f) to advantageous mutants;
please note that all the division and death rates in curves (a-f) of figure 5 are
identical to curves (a-f) of figure 4.

The black dashed lines for curves (a,b) in figure 5 have slope 3/2, as predicted
for neutral mutant growth in a circle. As in the case of the cylinder, there are
more mutants in the presence (b) than in the absence (a) of death.

The slope for curves (c-f) in figure 5 is 2, as predicted for the growth of
advantageous mutants in a circle, see table 1. Again, we observe deviation fro
the predicted power law for large system sizes. In the absence of cell death
(cases (c,d)) this happens as the mutants become more likely to spread and
occupy all the surface locations, blocking the wild type cells from divisions. In
the presence of death, this deviation is associated with the increased likelihood
of wild type extinction.
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