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Abstract

Mutant evolution in spatially structured systems is important for a range of
biological systems, but aspects of it still require further elucidation. Adding to
previous work, we provide a simple derivation of growth laws that characterize
the number of mutants of different relative fithess in expanding populations in
spatial models of different dimensionalities. These laws are universal and
independent of “microscopic” modeling details. We further study the
accumulation of mutants and find that with advantageous and neutral mutants,
more of them are present in spatially structured, compared to well-mixed colonies
of the same size. The behavior of disadvantageous mutants is subtle: if they are
disadvantageous through a reduction in division rates, the result is the same, and
it is the opposite if the disadvantage is due to a death rate increase. Finally, we
show that in all cases, the same results are observed in fragmented, non-spatial
patch models. This suggests that the patterns observed are the consequence of
population fragmentation, and not spatial restrictions per se. We provide an
intuitive explanation for the complex dependence of disadvantageous mutant
evolution on spatial restriction, which relies on desynchronized dynamics in
different locations/patches, and plays out differently depending on whether the
disadvantage is due to a lower division rate or a higher death rate. Implications
for specific biological systems, such as the evolution of drug-resistant cell
mutants in cancer or bacterial biofilms, are discussed.
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Introduction

The dynamics of mutant creation and invasion are relatively well understood
under a variety of conditions and assumptions, mostly assuming perfect mixing of
individuals. In the context of constant populations, the fixation probability of
mutants as well as fixation times have been thoroughly defined under various
assumptions in the population genetics literature (KIMURA 1962; PATWA AND WAHL
2008). The emergence of mutants in exponentially growing bacterial populations
is also well studied, based on the famous Luria-Delbruck experiments (LURIA AND
DELBRUCK 1943) and the resulting rich theoretical framework (ZHENG 1999;
KEPLER AND OPREA 2001; DEWANJI et al. 2005; KOMAROVA et al. 2007). This has
been instrumental for understanding the principles according to which antibiotic-
resistant microbes emerge (JOHNSON AND LEVIN 2013), and has also been applied
to studying the emergence of drug resistance in some cancers (GOLDIE AND
CoLDMAN 1983; GOLDIE AND COLDMAN 1998; KOMAROVA AND WODARZ 2005). The
majority of tumors, however, are characterized by the growth of 2D and 3D
spatial structures, and so is the growth of bacteria in biofilms. Recent
experimental and theoretical work (FUSCO et al. 2016) has extended our
understanding of mutant emergence in such spatially structured, expanding
populations. An excess of mutational jackpot events was observed in spatial
compared to well-mixed systems. Such events result from mutations arising at
the surface of expanding, spatially structured populations, surfing at the edge of

range expansions, and appearing as mutant “sectors” or “slices”. These jackpot
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events can occur relatively late in the expansion process, which is in contrast to
well-mixed systems in which mutational jackpot events can only occur early on in
the population growth process (Fusco et al. 2016). Hence, overall, the average
number of mutants when the total population reaches a given threshold size is
significantly larger in spatial compared to non-spatial settings (Fusco et al.
2016). This work was done under the assumption that cells do not die, and
theory and computations were mostly developed in the context of neutral
mutants. A number of other papers studied the spread of mutants in spatial and
fragmented settings. A study by (GRALKA AND HALLATSCHEK 2019) considered the
spread of advantageous mutants focusing on the role of habitat fragmentation. In
(GRALKA et al. 2016) several scaling relationships for individual mutant clones
were derived, including advantageous mutants, in the context of expanding 2D
colonies, both "flat” and radial. Spatial dynamics of disadvantageous mutants
were studied by (OTWINOWSKI AND KRUG 2014), focusing on Write-Fischer
dynamics in constant populations, and by (LAVRENTOVICH et al. 2016), who
looked at the mutational meltdown. The dynamics of advantageous mutants in a

3D patch model was studied by (WACLAW et al. 2015) in the context of tumors.

Here, we build on the existing work and investigate the dynamics of
mutant emergence and growth in spatially structured cell populations assuming
varying death rates, different mutant fitness, different dimensionalities of space,
and different spatial modeling approaches. One of the two main messages of this

paper is to report interesting dynamics observed for disadvantageous mutants,
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which could apply for example to drug-resistant mutants that emerge before the
onset of therapy. If the disadvantage is caused by a larger death rate of the
mutant cells, then we find that in contrast to other scenarios, the number of
mutants at a given size can be larger in a well-mixed compared to the spatial
system. If, on the other hand, the fitness disadvantage arises because of a
slower replication rate, then more mutants are found in the spatial compared to
the non-spatial system, similar to the results obtained for neutral or
advantageous mutants.

The second message is that surprisingly similar results are obtained in
explicitly spatial models and in patch models, where local within-patch dynamics
are governed by perfect mixing, but individuals migrate to other patches.
Interestingly, the results do not depend on the assumption that patches are
spatially arranged, with migration of individuals to nearest neighboring patches.
The same outcomes are observed if migration can occur to any randomly chosen
patch in the system. Therefore, the properties of mutant growth in the spatial
agent-based model might not be the direct consequence of spatial dynamics, but

the consequence of population fragmentation.

In addition, in this paper we provide a simple and straightforward
derivation of scaling growth laws that govern cell expansion in spatially
constrained models. The so-called “surface growth” law of homogeneous cell
colonies in space has previously been described in experiments (FREYER AND

SUTHERLAND 1985; BRU et al. 1998; GUNTHER et al. 2007) and in the modeling
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literature (BRU et al. 2003; BLOCK et al. 2007; KOMAROVA AND WODARZ 2010;
RODRIGUEZ-BRENES et al. 2013; TALKINGTON AND DURRETT 2015; MURPHY et al.
2016). Here we study the laws of mutant generation, spread, and competition
with the wild type individuals, in the context of spatially restricted colony
expansion. We derive formulas that relate the expected number of
disadvantageous, neutral, and advantageous mutants to the total population size
in different spatial dimensions. While some of these laws have been derived
previously (such as the growth laws of neutral mutants (Fusco et al. 2016)),
others are novel or confirm previous numerical observations (see the conjecture

of paper (f) on advantageous mutant growth in 2D expansion),

Materials and methods

Two-dimensional agent-based model

We used a 2-dimensional, agent-based model, where a 2-dimensional square
grid is considered. A spot on the grid can be empty or can contain a cell, which is
either wild-type or mutant. At each time step, the grid is randomly sampled N
times, where N is the total number of cells currently in the system. If the sampled
cell is wild-type, the cell attempts division (described below) with a probability Lw
or dies with a probability Dw. When reproduction is attempted, a target spot is
chosen randomly from the nearest neighbors of the cell (8 neighbors, i.e. the
Moore neighborhood, was used unless otherwise noted). If that spot is empty,

the offspring cell is placed there. If it is already filled, the division event is
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aborted. The offspring cell is assigned wild type with probability 1-u and it is a
mutant with probability u. If the sampled spot contains a mutant cell, the same
processes occur. Attempted division occurs with a probability Lm, and the cell
dies with a probability Dm. The offspring of a mutant cell is always a mutant in the
absence of back mutation. In a different version of the model, a mutant’s
offspring can be of wild-type with probability u. Initial and boundary conditions are
determined by the specific geometric setting investigated. For 2D spatial
simulations, an nxn square domain is considered. At the boundaries of the
domain, a spot is assumed to have fewer neighbors, i.e more division events will
fail. The simulations start with a single wild-type cell, placed into the center of the
grid. Simulations always stop before the boundary of the grid is reached. For 1D
cylinder simulations, we use an nxw rectangular domain of width w. We start with
an array of w wild type cells at the left boundary of the domain, and impose
periodic boundary conditions in the transversal direction. In each simulation, the
cell population is allowed to grow to a size M, and the number of mutant cells at
this size is recorded. Such simulations are performed repeatedly, and the
average number of mutants is calculated. Simulation runs, in which the total cell

population goes extinct due to stochastic effects, are ignored.

Analysis of 2D spatial stochastic models is presented in Section 3 of the
Supplement. Growth laws for different geometries are derived in Section 4 of the

Supplement.
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Modeling exponential growth

To compare the spatial dynamics to a well-mixed system, we considered a
simple stochastic simulation of exponential growth. Denoting the number of wild-
type cells with xw and the number of mutant cells with xm, one of the cell types is
chosen with a probability given by their proportion in the whole cell population.
Wild-types can divide with a probability Lw and can die with a probability Dw.
Mutants can divide with a probability Im and die with a probability dm. Mutations of
wild type cells happen with probability u. As in the spatial system, the average

number of mutants at population size M was determined.

A patch (island / metapopulation) model

We also considered an alternative modeling approach to capture mutant
dynamics in spatially structured populations. Instead of tracking the spatial
location of individual cells, we analyze a model that consists of a two-dimensional
grid of nxn patches or demes. Deme models to approximate spatial dynamics
have been explored before (WACLAW et al. 2015), and our approach is
conceptually related. Within each patch, local dynamics occur where cells are
assumed to mix perfectly. At each time step, cells are allowed to migrate to a
different patch with a given rate. In each local patch, Gillespie simulations

(GILLESPIE 1977) of the following ordinary differential equation model were run:

dx X +y. m

— =]l x(1-u)|1-—=L|-d x.—mx +— X,
dt w 1( )( k ] woi i Z j
Y,

dy. X +y. X +y. m
—t=ul x|1-—"=|+] y|1-—"|—=d y —my +— ,
" uwx,( p ) mYK p ] YTt XY,

neighbors ,j

neighbors ,j
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Wild-type cells are denoted by x;, and mutant cells by yi, where the subscript i
enumerates the spatial locations in a two-dimensional array. Wild type cells
divide with a density-dependent rate lw(1-(x+y)/k), die with a rate dw, and migrate
out of the patch with a rate m. Migration is assumed to occur to one of the eight
neighboring patches, chosen randomly. During replication of the wild-type cells, a
mutant cell can be generated with a probability u. Mutant cells divide with a
density-dependent rate Im(1-(x+y)/Kk), die with a rate dm, and migrate with a rate

m.

In an alternative (fragmentation) model, instead of migrating with rate m/8 per

patch to one of the eight neighboring patches, cells migrate with probability m/(n-
1) per patch to any other patch regardless of its location. This holds for cells in all
the patches in the system, thus removing a spatial component from the migration

process. Otherwise, the equations are identical to the ones above.

Simulations were started with a single wild-type cell in the middle patch. The
simulations were run until the total cell population size, summed over all patches,
reached size M. At this point, the number of mutants summed over all patches
was recorded. This was done repeatedly, and the average number of mutants at
size M was determined. Instances of the simulation that resulted in population

extinction across all patches were ignored.
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For comparison, Gillespie simulations were performed in a non-fragmented, well

mixed system described by the following equations:
. X+y
x=I x(1-u)| 1- —-d x,
w ( )[ nzk j w
. xX+y xX+y
=ul x| 1- +1 y| 1- —d
y w ( nzk ] my( nzk ) m-y

The carrying capacity of the non-fragmented system is taken n? times the

carrying capacity of the individual patches (n? is the total number of patches).
The average number of mutants at population size M was determined in the

same way as in the patch model.

Deterministic (ODE) versions of these models are presented in Section 2 of the

Supplement.

Data availability:
This paper uses mathematical models and does not have new data.
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Results

Generation and spread of mutants in spatial and non-spatial

models

We used a 2-dimensional agent-based model and a patch model (see Materials
and Methods) to explore the spread of mutants in spatial and non-spatial growth
processes. Denote by Lw and Lm the division rates of wild type and mutant cells,
and by Dw and Dn their respective death rates. Below we report the results for

neutral, disadvantageous, and advantageous mutants.

Neutral mutants

First we used the 2-dimensional agent-based model under the same
assumptions as used in (Fusco et al. 2016), i.e. with neutral mutants and zero
death rates (Lw=Lm>0, Dw=Dmn=0). The same type of dynamics is observed as
previously reported, with mutant clones either being engulfed by wild-type cells
after creation, or mutant clones establishing growing sectors. The average
number of mutants at size M is significantly larger for the spatial compared to the

non-spatial system (not shown).

Similar results are observed under the assumption that cells can die
(Lw=Lm>0, Dw=Dmn>0). Mutants either grow as expanding sectors or are engulfed

by the wild-type cells after temporary expansion (Figure 1, inset in (a)). The
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number of mutants at population size M is always larger in the spatial compared
to the non-spatial system (Figure 1(a)). The extent of the difference is larger for
higher death rates and lower reproduction rates, i.e. for populations with a higher
turn-over (Figure 1a). This is because in higher turn-over systems, more
generations are required to reach a given size threshold, resulting in the

amplification of the observed effect.

Results of this comparison were qualitatively similar to those obtained
from the patch model. The number of neutral mutants at population size M
(assumed much smaller than the maximum system size) was always higher for
the spatial (patch) compared to the well-mixed system (Fig S2(A) of the
Supplement). Interestingly, this result holds for different spatial organizations of
the patch model. In the most spatially restricted system, individuals can only
migrate to and from the eight nearest neighboring patches. In an alternative
model, migration is allowed between any patches regardless of their location. In
either case, a patch model produces significantly more mutants than the mass-
action system. This suggests that it is not the spatial arrangement per se but
fragmentation of the system that may be responsible for the observed increased
number of mutants. The difference is more pronounced for larger cell death rates

(Fig S2(A) of the Supplement).
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Advantageous mutants

If the mutant is advantageous, the dynamics are similar as those observed for
neutral mutants. First, we assume that the advantage is given by a larger division
rate of the mutant cells. The number of mutants at population size M is always
larger in the spatial compared to the well-mixed setting (Fig 1(b,c)); higher death
rates lead to a larger difference between the number of mutants in spatial and
non-spatial settings (Fig S1(a) in the Supplement). Mutants can again either
grow as expanding sectors, or show a temporary growth phase before being
engulfed by wild-type cells, see inset in Fig 1(c). Similar results are obtained if we
assume that the mutant advantage is given through a reduced death rate of
mutant cells (Figure 1bii and Fig S1(b) in the Supplement). These conclusions
remain robust if we use the patch model (either spatially constrained or with
random migration between any two patches) instead of the agent-based model
(Fig S2(B) of the Supplement). We note that the graphs cover a range of
degrees to which the mutant is advantageous, starting from almost neutral up to
a 4-fold advantage (perhaps unrealistically high, where the spatial system is
completely invaded by mutants). The aim was to show that results do not change

for a large parameter range.

Disadvantageous mutants
Disadvantageous mutants are very unlikely to grow as sustained sectors,

especially if the disadvantage is more pronounced (inset in Figure 1(d)). In the

12
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absence of death, after creation, mutants undergo a few cell divisions and are
then engulfed by the expanding wild-type cell population; in the presence of cell
death, they form mutant “islands”, which can become repeatedly generated by

mutations and tend to be outcompeted by wild-type cells.

The average number of mutants when the overall population reaches size
M depends on spatial structure in a more complex way, compared to the case of
neutral mutants. First, we assume that the fitness difference lies in the division
rate of the cells (figure 1(d)). In this case, we observe that the average number of
mutants is always larger for the spatial compared to the well-mixed simulations.
The extent of the difference, however, becomes very small as the extent of the
disadvantage grows. Hence, unless the mutant is almost neutral, the increase in
the number of mutants in the spatial compared to the non-spatial system
becomes negligible. In addition, the difference is most pronounced for small

death rates and diminishes for larger death rates (Fig S1(c) of the Supplement).

A different result is observed if the lower fitness of the mutant strain is brought
about by a higher death rate of mutant cells. If the difference in death rates lies
above a threshold level, the average number of mutants at size M is observed to
be larger in well-mixed compared to spatial simulations (Fig 1(e)), which is the
opposite trend compared to the previous cases, and also the opposite result

compared to those reported in (Fusco et al. 2016). Panel (f) shows more details
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of this behavior. We observe that the number of mutants in a well-mixed system
starts exceeding that of the spatial system when the % death rate increase is
about 16% for this parameter set (when measured at size 103%), but this
percentage decreases for larger population sizes: it is about 12% when
measured at size 10°, and we expect that the effect is observed for even smaller
degrees of disadvantage at lager sizes. This might be relevant for cancer cell
populations, where the number of cells can reach 10'°-10"3. For smaller degrees
of disadvantage, even though there are more mutants in the spatial system, the
difference is drastically reduced compared to that reported for neutral systems
(Fig 1f). This again indicates that a disadvantage in death counters the potential
of spatial structure to increase mutant numbers. Lower reproduction rates result
in more pronounced differences between the number of mutants in spatial and
non-spatial settings (Fig S1(d) of the Supplement). All in all, the effect reported

here is manifested for a wide range of disadvantages.

An analysis of the spatial stochastic model is developed in Section 3 of the
Supplement. Using the pair approximation, we derive a formula for the selection-
mutation balance of mutants away from the colony boundary (formula (36)). This
theory predicts patterns similar to those described above. An intuitive explanation
of disadvantageous mutant behavior under decreased reproduction and

increased death is provided in the next section, see Fig 3.
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To confirm the robustness of these results, we performed simulations with
disadvantageous mutants in a patch model. Again, the outcome of the dynamics
depends on the parameters upon which the disadvantage is based, see Fig 2 for
migration to nearest patches and Fig S12 for global migration. If the mutant has a
lower division rate than the wild-type, the number of mutants at population size M
is larger for the spatial than for the well-mixed scenario. This difference is largest
if cells do not die, and diminishes with increasing cell death rates. If, however,
the mutant is characterized by a larger death rate than the wild-type, then the
opposite result is obtained: the number of mutants at population size M is smaller
in the spatial than in the well-mixed system (as long as the difference in the
death rate lies above a threshold). Again, the results are qualitatively similar for
the spatially restricted (nearest neighbor) and non-restricted (migration to all

patches) models (see yellow symbols in the central panels of Fig 2 and Fig S12).

Deterministic (ODE) versions of the patch models are developed and
analyzed in Section 2 of the Supplement. In particular, Section 2.5 of the
Supplement provides approximate formulas for the numbers of mutants in a
metapopulation model and shows for what division and death parameters the
number of disadvantageous mutants is higher (lower) in the deterministic
metapopulation model compared to the mass-action model. This confirms the
above finding that for mutants with lower division rates, more mutants occur in a
deterministic metapopulation model, and for mutants with sufficiently high death

rates, there are more mutants in mas-action.
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Disadvantageous mutants: an intuitive explanation of growth patterns

An intuitive explanation of this phenomenon can be built by observing the
growth patterns of disadvantageous mutants in a single patch, starting from a
single wild type cell (see Sections 2.5-2.6 of the Supplement for details).
Typically, as the total population increases and reaches its carrying capacity, the
mean number of mutants is an increasing function of the total population size,
and it eventually on average saturates at the selection mutation balance. The
number of mutants however does not grow proportional to the total population
size, in fact, in some cases the percentage of mutants increases with size, and in
others it decreases with size. It turns out that mutants characterized by
decreased division rates, which grow relatively slowly at the initial stages,
gradually increase in fraction and are most abundant at carrying capacity (Fig 3,
blue line panel (a)). On the other hand, mutants with larger death rates grow
relatively fast at the initial stages (because they have the same division rates
equal to those of the wild types, and initially behave like neutral mutants). As time
goes by, however, the larger death rates of mutants start making a difference.
The disadvantageous mutants start being “"weeded out” and decrease in
percentage down to the selection-mutation balance, when the system reaches
carrying capacity (Fig 3, orange line in panel (a)). In other words, if the mutants
are characterized by decreased divisions, we expect to observe the largest

fraction of mutants when the patch reaches its maximum population; in contrast,
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if the mutants are characterized by increased deaths, then the percentage of
mutants is larger at intermediate stages of growth compared to patches that

reach capacity.

Next, we note that a well-mixed system can be viewed as a superposition
of identical, independent smaller patches that all grow simultaneously (figure
3(b)). A (proper) patch model is also a collection of patches, but the growth in
different patches does not happen simultaneously; instead, it starts in one patch,
after a while a second patch starts growing, etc (Fig 3(c)). Therefore, an
important difference between the well-mixed system and a patch system is that in
the latter model, different patches are desynchronized, such that at a given point
in time some patches are completely filled to capacity while others have not

started growing yet.

Keeping this in mind, we can see whether a synchronized (well-mixed) or
a desynchronized (patch) model will contain a larger number of mutants. If the
mutants have decreased division rates and their percentage grows with total
population size, then we are likely to find more mutants in a desynchronized
system (spatial or fragmented) that consists of a number of full patches
(maximum size, maximum mutant percentage), plus a number of empty patches
that do not contribute. In a synchronized (i.e. mixed) system, populations in all

patches will lie below carrying capacity at total size M, resulting in fewer mutants.
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On the other hand, if the mutants have increased death rates and their
percentage is larger at the intermediate stages of population growth, then we
expect to have more mutants in a fully synchronized system (i.e. a mixed
system), which is equivalent to a set of identical patches that are all relatively
early in their growth and thus contain a relatively large percentage of mutants. In
the desynchronized (spatial or fragmented) system, populations in several
patches will have reached carrying capacity when the total population size
reaches M, and thus will have already experienced a decline in mutant

percentages.

Before we proceed, we would also like to address the topic of jack-pot mutation
events (Fusco et al. 2016). One can think of those events as relatively long
lineages of mutants which contribute significantly to the overall expected number
of mutants in a growing colony. These lineages are more likely to grow in a
spatial system, because a disproportionately large fraction of successful division
events happens at the advancing front, thus resulting in the proliferation of
individuals that are most separated from the founding individual, and which are
more likely to have experienced a mutation. This argument certainly holds for
neutral and advantageous mutants, but changes somewhat for disadvantageous
mutants. First of all, jack-pot events are less important in the latter case, because
mutant clones are unlikely to expand and in any location, mutant levels
eventually settle to a low percentage (dictated by selection-mutation balance).

Further, if the disadvantage is manifested through an increase in death, relatively
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long mutant lineages that are more likely to pop up in spatial and fragmented
systems, become progressively diminished by the process of weeding out the
mutants, thus making the jack-pot contributions smaller in spatial/fragmented
systems compared to the mass-action case. This is explored numerically in

section 3.5 of the Supplement.

Growth laws for neutral, advantageous, and disadvantageous

mutants in spatial and non-spatial models

Observations presented so far can be generalized by deriving growth laws of
mutants in different scenarios, see Table 1 and Section 4 of the Supplement for

details.

Consider the type of growth where the population spreads in one direction
(examples of such growth can be found in the geometry of colonic crypts
(MICHOR et al. 2004; LoPEz-GARCIA et al. 2010), or in mitotic zone germ cells in
Caenorhabditis elegans (KERSHNER et al. 2013)). The mathematical abstraction
of this process is the surface of a cylinder, which is a rectangular domain of width
W, with the initial cell configuration aligned along one of the boundaries and
periodic boundary conditions imposed in the transversal direction. The cell
population in this case will engage in a linear growth, such that the mean total

population N=W*L grows as N~t. The number of disadvantageous mutants in this
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setting will scale with the total population as specified in the first column of Table
1 (2D flat), as these mutants will typically form finite “bubbles” and thus their
number will be entirely driven by production. If mutants are neutral, then on
average, each newly created mutant will give rise to a clone that grows linearly in
time, thus giving a quadratic growth law (uN?), see Figure 4, curves (a,b). Finally,
advantageous mutants, when created, will form expanding clones whose width
will grow as the colony proceeds to expand; in other words, advantageous
colonies comprise (on average) increasing fractions of the total population size,
adding an extra power of N to the growth law (uN®), see Figure 4, curves (c-g). In
the case of a 2D flat front expansion, the number of neutral and advantageous
mutants in a colony of a fixed size negatively correlates with the front width: the
number of mutants is inversely proportion to the first power of width, W, for
neutral, and to the second power of W for advantageous mutants, see Section
4.1 of the Supplement. Note that in the extreme case where W=1, we have a
one-dimensional growing array of cells. In this special case (MICHOR et al. 2004),
in the absence of cell death, all mutants regardless of their fitness properties

behave as uNZ2.

Next, consider range expansion in 2D (e.g. yeast colony expansion (CHEN et al.
2014), 2D melanoma cultures (QIN et al. 2016; RODRIGUEZ et al. 2019)), where
the population grows outward as an expanding circle. In this case, the total
population follows the so-called surface growth: N~t?. Mutant cells behave as
specified in the second column of Table 1. In particular, disadvantageous

mutants are again proportional to the total population; neutral mutations are
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expected to give rise to colonies whose size does not increase or decrease as a
fraction of the total population (the 3/2 law), Figure 5(a,b); advantageous
mutations create expanding colonies (the quadratic law), Figure 5(c-f). Note that
our theoretical results for the advantageous mutants in a 2D range expansion

confirm prior numerical results of (GRALKA AND HALLATSCHEK 2019).

In a 3D range expansion, which is relevant for example for most solid tumors or
biofilms (NADELL et al. 2016), the total population engages in a 3D surface growth
such that N~t3. Mutants are predicted to behave as described in the 4" column
of Table 1, and numerical examples confirming the predictions are presented in
Figure 6. The 3D flat front expansion is described in the 3™ column of table 1,
see also curves (d-f) of Figure 6. The growth of advantageous mutants in a
colony with a 3D flat front is characterized by the highest power (the 4" power) of

N. Further details are provided in Section 4.2 of the Supplement.

For comparison, results for non-spatial, exponential growth were derived, for
example, by (IWASA et al. 2006) and are given in the last column of Table 1. The
growth of advantageous mutants in an exponentially expanding population is
given by M(exp, adv)~uN®a"e where a is a parameter that quantifies the mutant
advantage (0=Lm-Dm)/(Lw-Dw)). Note that as a-> «, we have at most M(exp,

adv)~uN?2, and for all finite values of fitness advantage, the power is less than 2.
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These laws are valid under some restrictions specified in Section 4 of the
Supplement. In particular, the laws for advantageous mutants hold for small
mutant advantage, and also on the time scales before all the cells in a growing
colony’s front are replaced by mutants. In the long-term, the replacement of all
cells by advantageous mutants is an inevitable outcome in the presence of

death, and an approximate outcome as t-> oo even in the absence of death.

Once this happens, the growth law will be M~N.

The laws of Table 1 are very general and hold in the presence and in the
absence of cell death, and also in the presence and in the absence of back
mutations (see Materials and Methods). The proportionality coefficients depend
on particularities of the underlying dynamics (for example the type of grid used
and the number of neighbors, as well as the death to division ratios), but the

power laws are universal.

The growth laws derived here have direct consequences for the expected
numbers of mutants in equally sized populations growing in different dimensions
(and mass-action). The proportion of neutral mutants scales as uN for a flat front
(in 2D or 3D), uN"2 for a 2D range expansion, uN'3 in a 3D range expansion,
while it is u log N in exponentially growing populations (see also (Fusco et al.
2016)). That is, the number of neutral mutants is always larger in spatial systems
compared to the well-mixed system. In space, the proportion of neutral mutants

is the largest in low dimensions.
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For advantageous mutants, the proportion of mutants is given by uN?3 for a 2D flat
front and it is uN* for a flat front in 3D, while it is uN? for a range expansion (in 2D
or 3D); itis uN@"@ in exponentially growing populations. Again, it is the smallest

in mass-action.

Finally, for disadvantageous mutants, the power law of mutant growth is the
same in all dimensions (and is given by uN). Therefore the results are more
subtle and depend on the particular setup. As was shown in the previous section,
the behavior depends on whether the disadvantage is manifested through

differences in division or death rates.

Discussion

We have used computational models to study mutant evolution in spatially
structured and fragmented populations, focusing on the average number of
mutants present when the total population size has reached a threshold.
Previous work, including (Fusco et al. 2016), established that for neutral
mutants, spatial restriction results in a larger number of mutants that are present
in a population of a defined size. This was attributed to jackpot events occurring

even at relatively large population sizes in spatially structured populations due to
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the occurrence of range expansion. In contrast, jackpot mutation events can only
occur at very early stages of growth in mixed systems. We extended this analysis
by considering advantageous and deleterious mutants in greater detail, in the
absence and presence of cell death, and assuming that mutant
advantage/disadvantage was manifested through either the division or death
rate. While the results for advantageous mutants were similar to those for neutral
mutants (more mutants in spatial than mixed systems), we found a different trend
for disadvantageous mutants. If disadvantage was mediated by an increase of
the mutant death rate (rather than a decrease in the division rate), then the
difference between the number of mutants in the spatial and well mixed systems
becomes dramatically reduced even for very slightly disadvantageous mutants,
and as the extent of the disadvantage crosses a threshold, the number of
mutants in spatially structured populations becomes smaller than in mixed

systems.

The new insights about disadvantageous mutants have important practical
implications, for example for understanding the presence of drug resistant
mutants prior to the start of treatment in cancers (HORSWELL et al. 2013) or
bacterial populations that form a biofilm (BANIN et al. 2017). According to our
results, spatial structure can make it less likely that mutants are present before
treatment is started, and if they are present, their average numbers can be lower
in spatially structured compared to mixed systems. This requires the

disadvantage to be due to a larger death rate and the extent of the disadvantage
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to lie above a threshold. We have shown that the disadvantage threshold beyond
which this effect is observed becomes lower with larger population sizes,
indicating that this could be especially relevant for cancer and bacterial
populations. Drug resistant mutants have often been shown to be characterized
by a fitness cost compared to drug-sensitive cells (GAGNEUX et al. 2006; SZAKACS
et al. 2014), and this is well-documented in the literature for antibiotic resistance
in bacteria (ANDERSSON AND HUGHES 2010). The extent of the disadvantage
varies depending on the bacterial infection in question, and on the setting in
which bacterial growth is measured (ANDERSSON AND HUGHES 2010). In a number
of cases substantial fithess costs have been documented for drug resistant
bacteria (WICHELHAUS et al. 2002; YU et al. 2005; NILSSON et al. 2006;
ANDERSSON AND HUGHES 2010) (in the absence of compensatory mutations), e.g.
up to 40% fitness reduction in some rifampin-resistant Staphylococcus aureus
populations (WICHELHAUS et al. 2002), with even larger fitness costs reported in
other studies (ANDERSSON AND HUGHES 2010). The fitness cost of resistant
mutants is likely to eventually become reduced or eliminated due to the
acquisition of compensatory mutations (GAGNEUX et al. 2006), but the initial
dynamics of mutant evolution before therapy will be significantly determined by
the original fitness cost of the mutants. The results reported here about the effect
of spatial structure on the evolution of disadvantageous mutations therefore
provides valuable information to better understand the emergence of resistant
strains before the onset of treatment, and thus for our ability to potentially predict

treatment outcomes. This complements other work that has shown an important
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role of space for the dynamics of drug-resistant cells during therapy, through
opening up space for the resistant mutants to grow through competitive release

(ENDERLING et al. 2009; HILLEN et al. 2013; Fusco et al. 2016).

Another interesting result was our finding that qualitatively similar results
are obtained if we consider evolutionary dynamics in fragmented rather than
spatially structured populations. The same outcomes were obtained for a patch
model where individuals in each patch could migrate to any randomly chosen
patch in the system (and not just the neighboring patches). Therefore, the
properties of mutant evolution described here and also in (Fusco et al. 2016)
might not be a particular property of spatial systems, but more generally of
fragmented systems. Our intuitive explanation for the differences in the numbers
of disadvantageous mutants does not rely on any spatial restrictions in cell
migration, but rather on the de-synchronization of mutant dynamics in the

patches of a fragmented system.

In order to understand the intuitive reasons for the observed patterns, it is
helpful to consider different ways in which space/fragmentation could influence
the dynamics of mutants in expanding populations, see Table 2.

(A) How does space/fragmentation affect force of selection? While it is known

in the literature that fragmentation may suppress selection (WRIGHT 1931;
KOMAROVA 2006; GRALKA AND HALLATSCHEK 2019), this notion has to be

applied carefully in each situation. For example, in our setting, we are
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comparing an exponentially growing population where no selection at all
takes place, to a spatially restricted or fragmented system, where in each
patch or spatial location, individuals compete for space, thus leading to a
suppression of weaker types and enhancement of stronger types. An
exception is found in a patch model in the absence of death, see Section

1.2.2 of Supplement.

(B) How do jack-pot events influence mutant accumulation is space? Since in

spatial and fragmented expanding systems, organisms that divide are
more likely to be the ones that are further removed from the founding
organisms (and thus are more likely to have acquired a mutation), jack-pot
events enhance mutant accumulation, although their role is stronger for

advantageous than disadvantageous mutants.

(C) How does desynchronization experienced in spatial and fragmented

systems affect the accumulation of mutants? This is something that we
saw affecting disadvantageous mutants only, because the nature of the
affect relies on convergence of the mutants towards selection-mutation
balance. Mutants with lower division rates gain in relative abundance,
while mutants with higher death rates lose in relative abundance (are
weeded out), resulting, respectively, in their enhancement/suppression in

spatial and fragmented settings compared to non-structured systems.

Table 2 summarizes the three influences (A-C) listed here. We can see that in

the presence of death, there will always be more advantageous mutants in
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space (and with no death, there are situations when we can find more in
mass-action, Supplemental Section 1.2). For disadvantageous mutants, if
they have increased death rates, there could be either more of fewer of them
in space compared to well-mixed systems, as reported here. If they have
decreased divisions, in the presence of death, this table shows that there
could be some variable results, but we have not found a parameter regime
with more such mutants in a well-mixed system (although the difference

becomes vanishingly small for larger degrees of disadvantage.).

Our analysis of mutant evolution in expanding spatial populations led to a
concise derivation of mutant growth laws (see Table 1) in systems of different
dimensionalities and under different assumptions on mutant fitness. In particular,
our formulas coincide with those previously derived for neutral mutants (Fusco et
al. 2016) and confirm numerical predictions for advantageous mutants in 2D

range expansions (GRALKA AND HALLATSCHEK 2019).

Our work builds on and complements previous mathematical and computational
investigations that explored the differences in mutant dynamics between spatial
and non-spatial systems, such as the paper by (Fusco et al. 2016). A variety of
other papers dealt with related topics. For example, deleterious mutants were
studied in by (LAVRENTOVICH et al. 2016) in the context of conversional meltdown,
and it was shown that spatial settings enhance the spread and invasion of

disadvantageous mutants. A study by (OTwINOWSKI AND KRUG 2014) analyzed the
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evolutionary dynamics characterized by a large and constant supply of beneficial
or deleterious mutations in a one-dimensional spatial habitat, by using the
Wright-Fisher (constant population) dynamics. It was found that compared to
non-spatial settings, selection is weakened, adaptation is slower, and fitness
variation is larger. In paper by (GRALKA et al. 2016) it is shown that spatially
structured populations with beneficial mutations can give rise to a higher mutant
count than well-mixed populations, while in other scenarios (GRALKA AND
HALLATSCHEK 2019), fragmentation could reduce selection effects and lead to a
lower mutant count. In general, our work fits into the larger literature concerned
with spatial mutant evolution (HALLATSCHEK 2018; KAYSER et al. 2019; PAULOSE et
al. 2019; PAULOSE AND HALLATSCHEK 2020) and structured populations (FREAN et

al. 2013; HINDERSIN et al. 2016; ALLEN et al. 2017; GIAIMO et al. 2018).

To conclude, this study has demonstrated complex evolutionary dynamics
in populations that are not well-mixed. We demonstrated that evolution can be
influenced in different ways by spatial structure or habitat fragmentation,
depending on the relative fitness of the mutant and depending on the parameter
through which the fitness difference is expressed. These results can also guide
future experiments to address some of the computational observations reported
here. Experimental results from 2-dimensional spatial growth of cells, such as
reported in (Fusco et al. 2016), should be compared to analogous results from a
fragmented system, for example where cells are grown in a collection of different

wells and periodically transferred to other, randomly chosen wells. This could test
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685  our prediction that the mutant growth in the two scenarios follows similar
686 patterns. On a more complex level, it would be interesting to devise an

687  experimental system where the evolutionary dynamics of disadvantageous
688 mutants is studied, comparing scenarios where the disadvantage is brought
689  about by a difference in cell death versus cell division.
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Tables

2D flat 2D range 3D flat 3D range Exponential
Mutant property R Z? e ﬁ

= = ' = @)= @ = ‘/

¢ ¥ 2 8

Disadvantageous | uN uN uN uN uN
Neutral uN2 uN3/2 uN?2 uN4/3 uNInN
Advantageous uN3 uN2 uN* uN?2 uN2e-1)/a

Table 1. The growth laws of mutants in different spatial and non-spatial growth

scenarios, for disadvantageous, neutral, and advantageous scenarios. a is a

parameter that quantifies the mutant advantage, a=(Lm-Dm)/(Lw-Dw).
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862

Mutant type (A) (B) (C)
Advantageous, no death J ) N/A
Advantageous, with death T T N/A
Disadvantageous, no death 0 ) T
Disadvantageous by divisions, with death { T T
Disadvantageous by death \s ) 3

863 Table 2. Summary of the contributions of different mechanisms to mutant

864 accumulation in expanding spatial/fragmeted populations (see text). (A) is the
865  role of fragmentation/spatial restrictions through changing selections strength, (B)
866 is jack-pot events, and (C) is the synchronization phenomenon. Here J means
867  “suppresses mutants in space, compared to exponential growth in well-mixed
868 systems” and T means “enhances mutants in space, compared to exponential
869  growth in well-mixed systems”.

870
871

872 Figure legends

873

874  Fig 1. Comparison of the number of mutants in 2D spatial agent-based model
875  simulations (red) and a well-mixed system (black). In (a-e), the lines represent
876  the mean numbers of mutants in the spatial and non-spatial systems at equal

877  size, N=10%. (a) Neutral mutants, as a function of the death rate. (b-c)
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Advantageous mutants, characterized by increased division rates (b) and
decreased death rates (c), as a function of the fold-advantage. (d-e)
Disadvantageous mutants characterized by decreased division rates (d) and
increased death rates (e), as a function of the fold-disadvantage. Typical 2D
spatial agent-based simulations of range expansion dynamics are shown in the
insets for each mutant type. (f) The ratio of the mean number of mutants in the
2D spatial simulations and that for the well-mixed system, for disadvantageous
mutants with increased death rates, is shown as a function of fold-disadvantage.
The two lines correspond to population sizes of 102 (blue) and 10° (yellow). The
parameters for panels (a-€) (unless otherwise indicated in figure) are: L=0.2,
D=0.1, u=2x10-. For each parameter combination, from 2x10° to 3x107 repeats
were performed; shown are the means; standard errors are too small to see. For
panel (f), Lw=Lm=0.09, Dw=0.05, u=2x10-3. Standard errors are represented by

vertical bars and are not visible.

Fig. 2. A systematic study of the number of disadvantageous mutants in mass-
action (blue bars in histograms) and in patch model (yellow bars). Data are
presented for 8 parameter combinations: 1-3 with mutants of decreased division
rates, 4 (the green point) with neutral mutants, and 5-8 with mutants of increased
death rate. We observe that the mean number of mutants in the patch models
with nearest neighbor migrations (depicted by yellow symbols in the central
panel) becomes smaller than that in the mass-action model (blue symbols) if the

disadvantage through death is sufficiently large. The numerical probability
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distributions for the numbers of mutants are also presented for well-mixed and
patch (with nearest neighbor migration) models; about 2x10° simulations were
used for each parameter combination. Please note the logarithmic scale of the
histograms. The rest of the parameters are as follows: u=10-3, m=10", k=100,
100 patches; the number of mutants evaluated at total population 103. See
Supplementary figure S14 for the patch model with global migrations; the results

are very similar.

Fig 3. Disadvantageous mutants — an intuitive picture. (a) The fraction of mutants
(characterized by increased death and by decreased divisions) as a function of
the population size (ODEs, parameters as in Fig S5). Inset: the time-series for
the mutant populations with increased (orange) and decreased (blue) death
rates, together with the wild type population (scaled by 1000 to fit in the same
graph). (b) A schematic representing total population time-series in different
patches in a patch model. (c) Same for the well-mixed model represented as a
collection of identical, synchronous patches. At the same total population size, in
a patch model some populations are at carrying capacity, and some are zero,
while in the well-mixed model, all the “patches” are partially filled. Patches with
populations below carrying capacity have more mutants than patches at carrying
capacity, if the mutants are characterized by increased death. Patches with
populations below carrying capacity have fewer mutants than patches at carrying

capacity, if the mutants are characterized by decreased divisions.
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Fig. 4. Mutants in a colony with a 2D flat front: the number of mutants as a
function of the total population, averaged over 1000 stochastic runs (standard
errors too small to see). Cases (a,b) are neutral, and the corresponding solid
black lines are guides to the eye with slope 2 in the log-log plot. Cases (c-g) are
advantageous, and the dashed lines are guides to the eye with slope 3. The
following parameters are used: (a) Neutral, no death: Lu=Lm=0.7, Dw=Dmn=0. (b)
Neutral, with death: Lw=Lm=0.7, Dw=Dm=0.2. (c) Advantageous, no death: L,»=0.7,
Lm=0.9, Dw=Dm=0. (d) Advantageous, no death, larger advantage: Lw=0.7,
Lm=1.0, Dw=Dm=0. () Advantageous by division, with death: L,=0.7, Lm=0.8,
Dw=Dm=0.2. (f) Advantageous by death: Lu=Ln=0.7, Dw=0.2, Dn=0.1. (g) Same
as (f), but with a wider front: W=1000. The rest of the parameters are u=5x10-,

W=100 (except (g)).

Fig. 5. Mutants in the 2D range expansion: the average number of mutants as a
function of the total population (standard errors too small to see). Cases (a,b)
are neutral, and the corresponding solid black lines are guides to the eye with
slope 3/2 in the log-log plot. Cases (c-f) are advantageous, and the dashed lines
are guides to the eye with slope 2. The following parameters are used: (a)
Neutral, no death: Lw=Lm=0.7, Dw=Dm=0, 2000 runs. (b) Neutral, with death:
Lw=Lm=0.7, Dw=Dm=0.2, 1366 runs. (c) Advantageous, no death: Lv=0.7, Ln=0.9,
Dw=Dm=0, 2000 runs. (d) Advantageous, no death, larger advantage: Lw=0.7,

Lm=1.0, Dw=Dmn=0, 2000 runs. (e) Advantageous by division, with death: L.=0.7,
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Lm=0.8, Dw=Dm=0.2, 1426 runs. (f) Advantageous by death: Lw=Lm=0.7, Dw=0.2,

Dm=0.1, 1396 runs. The mutation rate is u=5x10-"°.

Fig. 6. Mutants in the 3D expansion: the average number of mutants is plotted as
a function of the total population. (a) Neutral mutants in a range expansion, with
the corresponding dotted gray guide to the eye with slope 4/3 in the log-log plot.
(b,c) Advantageous mutants in a range expansion, and the solid lines are guides
to the eye with slope 2. (d) Neutral mutants in a 3D flat front expansion, and the
solid guide to the eye has slope 2. (e,f) Advantageous mutants in a colony with a
3D flat expansion, the dashed guides to the eye have slope 4. The following
parameters are used: (a) Neutral, range: Lv=Lm=0.7, Dw=Dm=0.1, u=2x10-°, 10’
runs. (b) Advantageous by division, range: yellow Lw=0.4, Ln=0.8, Dw=Dm=0.1,
u=2x10", 4x10° runs; red same but u=2x107, 66,631 runs. (c) Advantageous by
death, range. (d) Neutral, flat: La=Lm=0.8, Dw=Dm=0.1, u=2x107, 34,967 runs. (e)
Advantageous by division, flat: Lw=0.4, Ln=0.8, Dw=Dm=0.1, u=2x10-", 11,369
runs. (f) Advantageous by death, flat: Ly=Lm=0.7, Dw=0.2, Dn=0.1, u=2x10",

53,840 runs.
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1 Simulations: additional results

1.1 Agent-based model simulations

In the main text we report on the abundances of advantageous, neutral, and
disadvantageous mutants in spatial and well-mixed system. Some further results
are presented in figure S1. In particular, panels (a) and (b) study advantageous
mutants. In (a), the advantage is manifested through an increased division rate,
and in (b) through a decreased death rate of mutants. Varied is the rate that
is unaffected by the mutation under consideration, which is the death rate in
(a) and the reproduction rate in (b). As expected, we observe that the number
of advantageous mutants is higher in a spatial system (red) compared to the
well-mixed system (black) for both types of mutants. The difference increases
with death rate (see panel (a)) and decreases with the reproduction rate (panel
(b)); in other words, the difference between well-mixed and spatial models is
larger for cells with an overall slower expansion rate.

Next, we turn to disadvantageous mutants. In figure S1(c) we study mutants
characterized by a lower reproduction rate, and in figure S1(d) the mutants’
death rate is higher compared to that for wild type cells. Again, in both panels,
the rate unaffected by mutations is varied, and the mutant abundance in spatial
(red) and well-mixed (black) system compared at the same population size. As
reported in the main text, we observe that mutants with a lower reproduction
rate are more abundant in a spatial model. As seen in panel (c), the differences
becomes smaller with an increased death rate of cells.

In panel (d) of figure S1 we turn to mutants characterized by a larger death
rates. It is reported in the main text that if the disadvantage is sufficiently pro-
nounced, we expect to find more such mutants in a well-mixed system compared
to a spatial system. This is what we see in figure S1(d), when the reproduc-
tion rates are lower than a threshold. This trend reverses, however, when the
reproduction rates become higher. This provides further information about the
phenomenon reported in the main text. The mutant disadvantage must be suf-
ficiently high, for the well-mixed system to accumulate more mutants than the
spatial system, and this advantage is measured against the background repro-
duction rate of the cells. As the reproduction rate gets higher, the difference
between mutant and wild type death rates must also become higher, to observe
more mutants in a well-mixed system compared to the spatial system.

1.2 Patch model simulations
1.2.1 Dependence on reproduction and death rate

We have run numerical simulations of the stochastic patch model to determine
whether spatial arrangement of patches makes a difference for the abundance of
mutants at a given system size. Figure S2 shows the results for neutral (a) and
advantageous (b) mutants, while figure 2 of the main text contains information
about disadvantageous mutants. In figure S2, two types of the patch model are
compared. In the spatial 2D patch model (dark green bars), we used a 2D array
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Figure S1: The abundance of mutants in spatial 2D simulations (red) and in
a well-mixed system (black), as a function of parameters. (a) Mutants have a
larger reproduction rate (L., = 0.2, L,,, = 0.25); varied is the death rate (equal
for mutants and wild types). (b) Mutants have a smaller death rate (D,, =
0.1, D,, = 0.09); varied is the reproduction rate (equal for mutants and wild
types). (c) Mutants have a smaller reproduction rate (L,, = 0.25, L,,, = 0.2);
varied is the death rate (equal for mutants and wild types). (d) Mutants have a
larger death rate (D,, = 0.05, D,, = 0.1); varied is the reproduction rate (equal
for mutants and wild types). The rest of the parameters are as in figure 1(a-e)
of the main text.

of patches, where cells could migrate only between neighboring patches (with
each patch having 8 neighbors as in the Moore model). In the “fragmentation
model” (light green bars) migration could happen between any patches regard-
less of their position. In the latter case, the model cannot be regarded as spatial
per se. Nonetheless, similar trends were observed in both models. For advanta-
geous and neutral mutations, more mutants were observed in the patch model
(a 2D or a fragmented, non-spatial patch system) compared to the well-mixed
system with the same total number of cells; the effect is less pronounced but



still clearly present in the fragmented system.
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Figure S2: Comparison of the number of mutants in stochastic patch model
simulations and a well-mixed system. The bars represent the ratio between the
mean number of mutants in the patch model and the mean number of mutants
in well-mixed systems at equal size, N = 10*. Dark green bars correspond
to the 2D patch model with 8 nearest neighbor migration. Light green bars
correspond to the fragmented model where migration happens to all patches.
(a) Neutral mutants. (b) Advantageous mutants. Between 10° and 4 x 107
runs were performed for each bar. Division and death rates are indicated below
each bar. Other parameters are v = 2 x 107°,k = 100,m = 107°,n = 31 x 31
patches.

1.2.2 The case of very small patch size

Next, we explore the behavior of the patch model in the regime of very small
patches. It is known that fragmentation/spatial restrictions weaken selection.
In the extreme case of a patch model with very small patch size, this effect
can significantly influence mutant dynamics and even reverse the results for
advantageous mutants. Figure S3 explores this regime.

We observe that in the absence of death, under the patch size of k& = 2
and slightly advantageous mutants (figure S3(a)), there are more mutants in
the mass-action compared to the patch model. This reverses when we increase
the path size to k = 3. For a larger mutant advantage (panel (b)), it takes
k = 5 to observe more mutants in the patch model. In the extreme case where
mutants enjoy a 10-fold fitness advantage, even for the patch size k = 100 we
still see more mutants in the mass-action system. This effect disappears if we



include death in the system. For example, panel (d) shows how results of panel
(c) change if we increase death rate to a modest d,, = d,, = 0.01: in the case,
there are significantly more mutants in the patch model. Panel (d) shows the
effect of increasing the death rate, where the number of mutants in the patch
system with small patch size (k = 3) becomes significantly larger than that i
the mass-action model even for small (but non-zero) death rates.

The reason for the reversal of the pattern under very small patch size in
the absence of death is the complete selection suppression experienced in such
system. Increasing patch sizes or death rate allows selection to work, leading to
more mutants in the patch model compared to mass action.
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Figure S3: Behavior of the patch model with very small patches. The number
of mutants in the patch model (blue bars) and mass-action model (yellow bars)
corresponding to the same total population size. Different bars correspond to
different patch size, k. (a-c) No death, (e) in the presence of death. (d) The
numbers of mutants in the patch model and mass action model as functions of
the death rate. Simulation parameters are market at the top of each bar graph.
Other parameters are N = 103, u = 1072, m = 1075, global migration in the
patch model. For panel (d), I, =0.95,1,, = 1,k = 3.

1.2.3 Mutant growth curves

Here we present growth curves for the number of advantageous and neutral mu-
tants in the patch model, figure S4. These were obtained by running a large
number of simulations and recording the number of mutants at different popula-
tion sizes. Mean values are presented, and the standard errors are small and not
visible. The blue symbols correspond to runs with advantageous mutants and



orange symbols to neutral mutants. For comparison, we also present curves for
the number of advantageous and neutral mutants in well-mixed systems, taken
far from carrying capacity. For non-neutral mutants this is given by formula
(20), and for neutral mutant this simplifies to l,uN In N/(l, — dy).

10— . . e
Advantageous, patch model oo
L]
L
1000F " Neutral, patch model . ‘
(%) .
o+ °
C [ ]
i 10 ° Advantageous,
=] well-mixed
E 10 ]
++
L ]
1 ]
Neutral, well-mixed
0.1 - .

500 1000 50001 x 10% 5x10% x 10°

Population size

Figure S4: The number of mutants in a patch model as a function of the total
population size. Blue circles, advantageous mutants (I, = 1.05), the number
of runs for each point is 27,061. Orange squares, neutral mutants (I, = 1),
the number of runs for each point is 61,083. Blue and orange lines represent
advantageous and neutral mutants in a well-mixed system (theoretical, formula
(20)). Other parameters are I, = 1,dy = dp, = 0.1,m = 1075,k = 100,u =
2 x 107?; in the patch model, global migration was implemented.

Fitting a straight line through the data on a log-log scale, we obtain the
following powers: advantageous mutants increase as N'-2, and N!''°. For com-
parison, a similar procedure yielded powers N''1?2 and N'-! for the well-mixed
system (we did not attempt to distinguish between a power law with as power
close to one and an N In N, which is the “true” growth law in the latter case).

2 Disadvantageous mutants: a deterministic metapop-
ulation model

2.1 Basic formulations and selection mutation balance

Let us denote the wild type population as x(¢) and the mutant population as
y(t). Denote the rate of mutations as w, the division and death rates of wild
type cells as [, and d,,, and the division and death rates of mutants as [,, and
dpm- Then the competition dynamics of cells can be formulated as follows:

i = lyr(l—u) <1—x2y>—dwx, (1)



y = (lpzu+lny) (1 - x;y) —dpy, (2)

where K is the carrying capacity. If the mutants are disadvantageous, that is, if

=" _ TS 3
Ve T, (3)

then the selection mutation balance predicts that the equilibrium number of

wild type cells is given by
=K (1 - dw) , (4)
L

—1
y=au (G- o)

(we only took the largest contributions in terms of small u).

In model (1-2), as the population approaches the carrying capacity, the di-
visions slow down, while deaths remain occurring at a constant rate. We will
refer to this model as division-controlled growth, which follows the terminology
of [? ]. Alternatively, we can assume that as the population grows, the death
rate increases, while the division rate stays constant. In the mass action case,
this can be modeled as follows:

and the number mutants is

i o= lwx(l—u)—dwx<1+x;;y>7 (6)

. +

g = (wrutlny) —dny <1 + :C,Cy) : (7)
We will refer to this model as death-controlled growth [? ]. In this case, the

equilibrium population size is

x:K(Z—l), (8)

and the number of mutants in selection mutation balance is again given by
formula (5).

The early dynamics of wild type and mutant populations in models (1-2)
and (6-7) are identical. Assuming that z + y < K, we can solve the resulting
linear equations exactly, to obtain

ollw—du)t _ (L —dp)t

in(l) = (= )t in(l :lw .

(9)

2.2 Decreased divisions and increased death

A mutant is disadvantageous if inequality (3) holds. If we fix I,, and d,,, the
division and the death rates of the wild type cells, this inequality defines a half



plane in the (I, d,,) space, where mutants are disadvantageous (more precisely,
it is the region above the line d.,, /I, = dy /Ly, see figure S8, the red line). Note
that this definition is not equivalent to using the linear growth rate to define
fitness, because instead of linear initial expansion of the mutants, it measures
their steady state level in the presence of the wild types. For comparison, the
line where the linear growth rates of mutant and wild-type cells are equal to
each other, is shown in figure S8 in green.

The quantity v defined in (3) can be seen as a measure of fitness disadvan-
tage. Mutants with equal v have the same level of disadvantage, which is for
the purposes of this paper defined as the same level of the selection mutation
balance equilibrium. The definition of v (equation (3)) with fixed l,,, d,, gener-
ates a one-parametric family of types of equal disadvantage. Disadvantage can
be achieved by different combinations of division and death rates, l,,,,d,,. In
particular, if the mutants have the same death rates as the wild types, and their
disadvantage is achieved through lowered division rates, then we have a type
with decreased divisions,

I = lo(1 =),  dm = duy; (10)

in figure S8, “decreased division” mutants correspond to all the points on the
horizontal dashed line (in the disadvantageous region). If on the other hand,
the division rate of mutants matches that of the wild types, we have a type with
increased death:

I =lw, dn=dy(l+v); (11)
in figure S8, “decreased death” types correspond to disadvantageous points on
the vertical dashed line. Note that if the two types have the same fitness (i.e.
converge to the same selection-mutation balance), the percentage decrease in
the division rate must be equal to the percentage increase in the death rate.
The linear growth rate of the two types is however different, and is given by

Lo_d — { ly — dy — Vi, decreased divisions,

ly — dy — vd,y,, increased death.

We can see that since [, > d,,, the “increased death” mutants are always char-
acterized by a faster growth compared to the “decreased divisions” mutants.

Figure S5(a) shows an example of the numbers of mutants under the as-
sumptions of decreased divisions (blue) and increased deaths (yellow); specific
parameter values are given in the figure caption. The behavior of the wild types
can be seen from the dashed green line that shows 2(t)/1000. Before the popu-
lation reaches the carrying capacity, the “increased death” mutants grow faster
than the “decreased divisions” mutants. At later times, they both reach the
same selection mutation equilibrium.

A useful representation of this information is given in panel (b) of figure S5,
where we plot the number of mutants, M(z), contained in the system of size
x. This quantity is presented for both types (decreased divisions and increased
death) in figure S5(b).
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Figure S5: Solutions of system (1-2), where the division and death rates of the
wild types are fixed, and the mutant rates are given by equation (10) for the
“decreased divisions” type, and equation (11) for the ‘increased death” type
(only one type of mutant is included at a time). (a) The level of mutants as a
function of time for the two systems; the wild types are given by the green dashed
line, where the value was divided by 1000 to bring it to the same scale. (b) The
number of mutants plotted as a function of the total cell population for the two
types. The parameters are [, = 1;d,, = 0.1,v = 0.3,u = 0.001, K = 100. The
fitness disadvantage is v = 0.3.

2.3 The patch model

Consider N patches, such that in each patch cells undergo deterministic mass-
action dynamics of divisions and deaths, subject to a carrying capacity K. We
assume that patches communicate with each other through migrations. Let us
denote the migration matrix as M = {M;;}, where M;; is the probability that,
given that a cell from patch ¢ migrates, it is transferred to patch j; we have
> jziMig =1 for all i. We explore two types of such matrices:

1. A 1D spatial model: a ring of patches where only migration between
nearest neighbors is possible:

o J 12 fi-gl=1,
Mi; = { 0, otherwise, (12)

with the additional nonzero values Miy = My, = 1/2.

2. A complete graph model: all patches are connected:

_J/(N=1), i#],
M, _{0’ J

gl 1=7.

The ODEs in each patch are given by equations similar to (1-2) for division-
controlled growth, or (6-7) for death-controlled growth, with X = K and mi-
gration terms included. In the former case, the system at each patch looks like



this:

i = lywi(1l—u) (1—”31;%

N
) - du,l‘i —m | T; — Zszwj s (13)
7j=1

N
(lwmiu + lny;) (1 - zKyl) —dpyi —m {yi — Y Myy; |, (14)
=1

Yi

where x; and y; are the numbers of wild type and mutant cells in patch i,
respectively. The initial value problem is completed with the following initial

condition: ( y
(1, i=(N+1)/2
zi(0) = { 0, otherwise,

(we assumed an odd number of patches), that is, there is a single wild type cell
in the middle patch, and the rest of the patches are unoccupied.

yi(0) =0 Vi (15)

The results of the N-patch model will be compared with an unfragmented,
mass-action system of size (carrying capacity) K = NK:

X = [,X(1-u) (1 - XK}Y) —dpX, (16)
YV = (luXu+lY) (1 - XK}Y> —d,Y, (17)
X(0)=1, Y(0)=0. (18)

For death-controlled growth, all equations are modified accordingly.

2.4 The number of mutants in fragmented and mass-action
systems

Let us compare the number of mutants obtained in the fragmented system with
migrations and in the mass action system of the same total carrying capacity.
Suppose we are interested in measuring the number of mutant at a total pop-
ulation size Nyo¢. Then we define the time ¢y, and ¢,,, (for “fragmented” and
“mass-action” respectively) as follows:

N

Z(xz(tfr) + yz(tf'r‘)) = Ntota X(tma) + Y(tma) = Ntot~
i=1

We want to compare the numbers of mutants,
N
Mfr(Ntot) = Zyz(tfr)y Mma<Ntot) = Y(tma)-
i=1
Figures S6(a) and S7(a) show two examples of functions My, (Nyo) and Mi,q(Niot),
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Figure S6: Mutant dynamics in the case of “decreased divisions” mutants. (a)
Comparison of the mutant number as a function of the population size for the
fragmented (blue) and mass-action (red) systems. A particular value of the total
population size, N, = 5000, is indicated by a dashed vertical line. (b) The
wild type populations in different patches as functions of time, for ¢ € [0,%,]
corresponding to Ni,; = 5000. The leftmost line corresponds to the middle
patch, and the rest of the lines to consecutive patches moving outward. (d)
Same as (b) for the mutant populations. (c) The total populations (top) and
the mutant populations (bottom) in all the patches at time t¢,. The parameters
are N = 201 patches, I, = 1;d,, = 0.1,1,,, = 0.9;d,, = 0.1,u = 0.001, K =
100;m = 0.01.

for “decreased divisions” and “increased death” mutants respectively. We ob-
tained numerical solutions of systems (13-14) with initial conditions (15) and
the migration matrix (12) (a 1D ring of patches), to plot My, (the blue line) as
a function of the total population size. The corresponding number of mutants
in the mass action system, M,,, (the red line), was obtained from system (16-
18). We observe that in figures S6(a) (“decreased divisions”), there are more
mutants in the fragmented, spatial system, and in figures S7(a) (“increased
deaths”), there are more mutants in the mass action system.

Panels (b,c,d) of figures S6 and S7 elucidate some underlying patterns. Pan-
els (b,d) depict population dynamics in the patches. The initial wild type pop-
ulation in the “middle” patch number 101 (out of 200) grows and “seeds” the
neighboring patches, whose population starts increasing, which in turn gives
rise to growth in the next patches, etc, see figures S6(b) and S7(b). Because of
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the symmetries of the ODEs, patches equidistant from the middle have identi-
cal solutions. Figures S6(d) and S7(d) show the numbers of mutants as they
evolve in time, in each patch. Again, the leftmost line corresponds to the middle
patch that was occupied initially. Individual trajectories of mutants in patches
behave differently: “decreased divisions” mutants (figure S6(d)) grow monoton-
ically toward the mutation selection balance (compare the blue line in figure
S5(a)); “increased death” mutants (figure S7(d)) “overshoot” and then decrease
toward the mutation selection balance (compare the yellow line in figure S5(a)).

Figure S8 generalizes these results. It presents the parameter space with
coordinates l,, and d,,, where the points where Mp,q(Niot) = My, (Niot) are
shown as a purple line (parameters other than l,,, and d,,, are fixed). In the region
above the purple line (gray shadowing), there are more mutants in the mass
action system, and below it there are more mutants in the fragmented system.
In particular, the system of figure S6 has coordinates (l,,,d,,) = (0.9,0.1) and
falls outside the gray region, and the system of figure S7 corresponds to (1,0.2)
and is inside the gray region; both points are marked by a “x” in the figure. In
fact, we can see that all the “decreased divisions” mutants (points that lie on the
dashed horizontal line in the disadvantageous region) fall under the purple line,
that is, decreasing division rate leads to having more mutants in the fragmented
system. It is somewhat less straightforward with “increased death” mutants
(disadvantageous mutants on the dashed vertical line): if the increase in death
is sufficiently large, then such points are above the purple line (and there are
more mutants in mass action). For a small increase in death rates, there are
more mutants in the fragmented system.

2.5 A simplified theory of mutant abundance in spatial
and mass-action systems

Simulations in panels (b,d) of figures S6 and S7 were run for time ¢y, that
corresponds to the fragmented system reaching a specific total size Ny, = 5000,
denoted by the dashed vertical line in panel (a). At that time, the total numbers
of cells per patch and the numbers of mutants per patch are shown in panel (c).
We observe that at time ¢,

(i) not all patches are occupied,

(ii) in most occupied patches, except for the outmost ones, the total popula-
tions have reached the carrying capacity (given by 1, (1 — dy /1)), and

(iii) in most patches, the number of mutants is at the selection mutation bal-
ance. The exceptions are again the outmost patches that have not stabi-
lized yet, and the middle patches, where the growth of mutants is slower.

Using the observations of patch dynamics listed above, let us approximate
the number of mutants in a 1D fragmented system. At the time the total
population reaches a size N, we assume that there will be a number of patches

12
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Figure S7: Mutant dynamics in the case of “increased death” mutants. Same
as in figure S6, except l,,, = 1,d,, = 0.2.

that are completely occupied, with population at carrying capacity, z = K (1 —
dw/ly), and a number of patches that have not been reached yet. There are

Ntot
K(l - dw/lw)

n =

such occupied patches. Therefore, the total number of mutants at size Ny is
given by ng, where y is given by equation (5), and we have

Ay L\
Mfr(Ntot) ~ Niotu T T . (19)

To calculate the number of mutants in the non-fragmented population, we use
formula (9). We have, using x5, = e('w=%)* ~ N, that

Ly —dim,

Niot = Nygi ™™
(lw - dU)) - (lm - dm),

note that this approximation works not only for disadvantageous but for neutral
or advantageous mutants. The solution set of the equation My, = M,,, using
approximations (19, 20) is shown in figure S8 as a black solid line. Although
it is similar to the full solution (purple line) for small values of [,,,, it deviates
from it as [, becomes closer to l,,.

Mma(Ntot) ~ lwu (20)
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solution of the same equation using the values obtained from solving the ODEs.
Niot = 1000, the rest of the parameters are as in figure S6. The point where
lm = ly and d,,, = d,, is marked by a blue star.
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One can further simplify formula (20), assuming that N, > N,w =% .
Then, solving M,,, > Mjp,, one obtains a condition that does not depend of
Niot:

dﬂ_lﬂ (lw_dw)_(lm_dm)

do Lo I !

which can be solved for d,, to yield:

Ay, > dy. (21)

In other words, if d,, > d,, there are more mutants in the mass action system,
and otherwise there are more mutants in the fragmented system (given that
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the total sizes of the two populations are the same). Figure S8 shows this
approximation as a horizontal dashed line.

2.6 An intuitive explanation

Here we provide an intuitive explanation for the following result:

e If the mutant disadvantage is due to reduced division rates compared to
the wild type, then there tends to me more mutants in the fragmented
system compared to the mass action system of the same size.

o If the mutant disadvantage is due to increased division rates, then the
result is the opposite, and there tends to be more mutants in the mass-
action system. This is true only if the disadvantage is sufficiently strong.
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Figure S9: Time series of total populations sizes in patches for (a) a fragmented
system with migrations according to a 1D spatial pattern and (b) a number of
identical, uncoupled, patches that mathematically are equivalent to the mass
action system.

Let us compare two systems: (i) a fragmented system of N patches of carry-
ing capacity K each, where initially there is a single cell in one patch, and popu-
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lations spread from patch to patch by means of migration, reaching their carry-
ing capacity at different times, and (ii) a mass action system, which can be math-
ematically represented an a equivalent system of N decoupled identical systems
of carrying capacity K, with identical initial conditions z;(0) = 1/N,y;(0) = 0.
Figure S9 shows the simulated total population size in a number of patches, for
(a) a 1D chain of fragmented patches and (b) a mass-action system represented
as N identical patches.

If the target population, Ny, is the maximum size of the mass-action system
(NZ with x given by formula (4) or (8) in the case of the division-controlled or
death controlled growth, respectively), then the above results do not hold, and
the number of mutants in both fragmented and non-fragmented system is simply
N7, formula (5). Let us instead assume that the total population size, Ni.t,
is well below maximum. As a consequence, at size Ny, each of the identical,
disconnected populations in figure S9(b) that represent the mass action system,
have not reached its maximum size. This is shown by a vertical dashed line that
cuts across the growth phases of the N patches in panel (b). A different picture
is observed in the case of a fragmented system (panel (a)). There, since the
growth in different patches happens at different times, by the time some of the
patches have reached their maximum size, others have hardly started growing.
As a consequence, at total size Ny, we expect that a number of patches are
“full” and others are “empty”, see panel (b).

Now, we can formulate the problem of maximization of the number of mu-
tants as size Ny, in the following way. We can make up size Ng,; out of individ-
ual (identical) patches of size x (precisely, Niot/x patches). The total number
of mutants is then given by

Mtot(l”) = Niot Mgfx)7 (22)

where M(z) is the number of mutants in a single patch of size x. What value of
x maximizes the function M;.¢(2)? The answer depends on the function M(x).
If, for example, it is a convex function, then quantity (22) is a growing function
of x, and is maximized by a smaller number of patches, each at its maximum
size (z = Z). If M(x) is a concave function, then it M, is a decreasing function
of z, and we find a maximum number of mutants if all the IV patches contribute
the smallest possible amount into the total.

Functions M(z) have different shapes for different mutant types, see figure
S5(b). For “decreased divisions” mutants, it is always a convex function, and
thus My, is maximized by a fragmented system, where at total size Ny, a
number of patches are already at carrying capacity while other have hardly
began to grow.

For “increased death” mutants, the situation is slightly more complex. We
know that these mutants grow faster than the wild type at the initial stages of
growth (figure S5(a), yellow line), but depending on the degree of disadvantage,
this growth may result in a monotonically growing function y(t) for small degrees
of disadvantage, or in a function y(¢) that “overshoots”, for larger degrees of
disadvantage. In the latter cases, the function M(z) has the shape depicted
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in figure S5(b), yellow line. As a consequence, function (22) will have a larger
value for small z (corresponding to the mass-action system where many virtual
identical patches contribute a small amount) than for large x (corresponding to
the fragmented system).
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Figure S10: The fraction of mutants as a function of total population size for
“decreased divisions” and “increased death” mutants. Parameters are as in
figure S5.

Figure S10 shows the fraction of mutants as a function of total population
size for “decreased divisions” and “increased death” mutants. For “decreased
divisions” mutants, this is an increasing function of the total population size,
and therefore to increase the percentage of mutants, one needs to maximize
population size. This corresponds to having fewer patches at maximum size.
For “increased death” mutants, the fraction of mutants first increases and the
decreases. It is larger at an intermediate colony size compared to the maximum
size for a large range of sizes, except for the initial stage of growth. Therefore, in
most situations, a colony that is still growing will contain a larger percentage of
mutants than the colony at maximum size. Therefore, we expect more mutations
in the mass action situation where the saturation has not happened yet, and
not in a fragmented system, where most colonies are at maximum size.

2.7 Migrations on a complete graph model: deterministic
and stochastic cases

Note that the intuitive explanation presented above is not specific for a 1D ge-
ometry and holds for any fragmented system where patches are de-synchronized,
that is, they grow to their maximum size at different times. This is a necessary
condition to be able to identify the stage of growth where a subset of patches
is fully grown while the rest are empty. This is why the results described above
(that is, a difference in the behavior of decreased divisions mutants and in-
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creased death mutants) is observed in stochastic simulations where no specific
spatial arrangement of patches is assumed, and migration happens randomly
from a patch to any other patch. In such a stochastic system, some patches will
grow faster than others, and the general growth pattern similar to figure S9(a)
is observed.

This behavior however is not captured by the corresponding system of ODEs.
There, in the presence of equal migration rates to any patch, all patches (except
for the original patch containing the first cell) are synchronized and grow in an
identical manner. In fact, the ODEs in this case can be rewritten as only 2
equations in 2 patches:

T = lpze(l—u) <1 - x*;y*> —dypTs —m (x* - Nl—lX*> ,

U = (loTeu + Lnys) (1 - x*K+y*) —dmYs —m (y* - NllY*) )
X, = LX.(1-u) (1 - %) —dyX, —m (N]L_IX - x> ,
V. = (uXeu+inY.) <1 - %) —dyYs —m (Nl_ly - y> :

2.00)=1, 5(0)=0, X,(0)=0, Y.(0)=0.

This system can be thought of as a two-patch model, where the first patch
has population (z.,y.) and the carrying capacity K, and the second patch
population (X,,Y,) and the carrying capacity K(N — 1). The migration rate
from the small to the large patch is m, and back it is m/(N — 1). Therefore,
because of this artificial symmetry arising from the deterministic description
(which is broken in a stochastic model), the behavior of this system does not
reflect the patterns described above.

3 Disadvantageous mutants: a 2D spatial stochas-
tic model

If mutants are disadvantageous, the quasi-equilibrium level of mutants is defined
by the selection-mutation balance.

Let us calculate equilibrium densities of mutants and wild type cells in a
spatially distributed system at steady state. This will also correspond to the
densities in the core of an expanding system away from the advancing front.

We restrict our description to a 2D square grid, with the von Neumann
neighborhood (that is, each location has 4 nearest neighbors); the methodology
is generalizable to the Moore neighborhood (8 neighbors). We use a method
similar to that of [? ]. Two random variables describe the state of the stochastic
system at each spatial location, x: p, describes wild type cells, such that

| 1, if a wild type cell is at location z,
Pz 0, otherwise,
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and 7, describes mutant cells, such that

| 1, if a mutant cell is at location z,
e = 0, otherwise.

Note that p, and 7, cannot be equal to one simultaneously; an empty spot
corresponds to p, = 1, = 0. We assume that wild type cells have division
and death rates [, and d,,, and mutant cells have division and death rates ,,
and d,,. Wild type cells mutate with probability u, and no back mutations are
considered.

3.1 Equations for the densities
Denote the expectation of p, and 7, by
(pz) =p,  (M2) =,

where we assumed that the expected values do not depend on spatial location,
since we are interested in spatially homogeneous equilibrium solutions. We have

. b
b= (-0 pa- ) o - dups ) (23
- <Z\1fb(1 = pa)(1 = 1) 3 (Lol + L) — dmnz>, (24)

k

where the product (1—p,)(1—n,) is nonzero only if location x is empty, and the
summation goes over all the neighbors of point x, which reproduce into location
x at rates L, /Ny and I, /Ny if they are wild type of mutant, respectively.

Let us consider the von Neumann neighborhood (N, = 4). In the right hand
side of equation (23), the terms is the summation have the form

(1=pa) (1=12)p%) = (p) = (pup) = (10 + (0 patia) = p—W =1, (25)

and in equation (24) there are also terms of the form

(1=p2) (L=n2)nP) = () = (panl®) = (I na) + (0¥ pone) = n—I—M. (26)

In the expressions above, we have <pzp§f)ng€)) = 0, because either nék) or pék)

is zero at location z(®), and the three types of dyads are defined as follows:

o W = <pxpgk)> is the probability to have two wild type cells at two neigh-

boring locations,

o [ = (pwng(gk)> is the probability to have a wild type cell and a mutant at

two neighboring locations,
o M = (nmn,gk)> is the probability to have two mutant cells at two neighbor-
ing locations.
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Figure S11: Steps in the derivation of equations for a two-component system of
wild type and mutant cells. Blue circles denote wild type, and purple denote
mutant cells. (a) Three configurations, whose correlations appear in equations
(27) and (28). (b) Three types of correlations needed for equations for W, I,
and M.

Figure S11(a) illustrates these three configurations. In terms of these three
correlations, equations (23) and (24) can be rewritten as

po= lwl—u)lp—W—=1I)—=dup, (27)
0= lyulp—W —I)+ln(n—1—M)—dnn. (28)

The correlations for the three dyads that appear in these equations require their
own equations to close the system. Let us derive an equation for W. We have

. s
W= <2(1 — pa) (1= 12)p) Zpiﬂﬁb(l —u) - 2de>,
J

where we assume that one of the points in the dyad contains a wild type cell
(term pgck))7 while the other point is empty (term (1 — p,)(1 — 1)), and that
one of its neighbors (location x(j)) contains a wild type cell, which reproduces
faithfully into point x at rate l,,(1 — u)/Np. Note that either of the two points
could be empty, which results in the multiplier 2 in the first term on the right
hand side. Similarly, either of the dyad’s locations can experience cell death,
resulting in the negative rate 2d,,. In order to calculate the average, we need to
consider terms

(1= pa) (1 = 1) ptF) p0). (29)

Note that here and below, the operation of averaging makes the expression
independent on the actual location x. Further, the superscripts (k) and (j) do
not refer to any specific neighbor of x, but to any neighbor of z; in particular,

20



location (/) may be the same or different than location z(*). In the case when
the two locations are different, correlation (29) is presented in figure S11(b), on
the left. . .
In equations for M and I, the following expressions appear in addition to
(29): ' ‘
(1= pe) (1 =m)pP0D), (1= pa) (1= ma)n D).

These correlations are shown in figure S11(b), center and right. Therefore,
denoting by a and b either p or n, we evaluate the average of the form

(1= pz)(1 = nw)agck)bgcj)>v (30)

which corresponds to a dyad with one of the locations (location x) empty, and
the other (location z(®)) containing type “a”, while a neighbor of z (location
x()) contains type “b”. First let us assume that location x(7) is different from
location z(*). Under von Neumann neighborhoods this implies that (/) are z(*)
are not each other’s neighbors, because on a square grid, there could not be a

non-degenerate triangle with diameter 1 or less. Expression (30) is equal to
P(bg) =1lpz =0z = O)P(a;k) =1,p, =1, =0) =
P(paz =Mz = 0)

The expression in the denominator is calculated as follows:

(31)

P(PzZ%ZO):<(1—Px)(1—7lz)>=<1—Pm—77a:+/)z77m>:1—P—77-

Depending on the types at location z, the expressions in the numerator of (31)
can be of two types:

P(pgck) =10 =1 = 0) or P(m(ck) =10 =0z = O)a

and they are calculated in (25) and (26) respectively.

Next, we assume that location 2() is the same as 2(*). Then, if types “a” and
“b” in expression (30) are different, then we obtain ((1—p,)(1 —nz)pgk)n;k) =0.
If the types are the same, then we obtain expression (25) or (26). To summarize,
expressions of type (30) are given as follows:

{ (W1 () £ pk),

l—p—m

p—W =1, 20 =gk
{ (o= W_D-T-M) = () 4 z(k),

(1= pa) (1 = m2)pF p) =

1—p—n

_ _ (F) (1Y  —

<(1 - pm)(l - nw)na(ck)n:(pj)> =

=T G) ),
n—1I1—-M, z0) =g,



The equation for W is then given by

oy 3(p—W —1)?
Similarly, the other two equation can be derived:
. 3 (p—-W-D(n—I-M) Il,u 3(p—W —1)?
I = —[l,(1- —_ -W-I+—-—
2wl =)+ ln] [p— ot (P W
. —-W-DNin—-1-M —1— M)>?
v = Swrle=W-Dn ) | Im n—I—M—i—M —2d,,M. (34)
2 1—-p—n 2 1—p—n

The closed system of equations for p,n, W, I, and M is given by equations (27),
(28), (32), (33), and (34).

3.2 Selection mutation balance solution

Solving these equations in steady state exactly is difficult, but if the mutation
rate u < 1, we can find the approximate solution. We start by setting u = 0
and obtaining the steady state solution. Apart from the trivial solution and a
negative solution, there are two symmetric solutions where only one type sur-
vives (competitive exclusion). We will use the one where the wild type excludes
mutants:
3w o g 8w A o) p) g0 _
dyw — 3y’ dy — 3ly ly ’
(35)
where the superscript corresponds to the zeroth order in the expansion in terms
of small u. Note that the expression for p(®) is identical to the steady state
density of the one-component system given by equation (??) with & = dy,/l,,.
We then look for the first correction by substituting

p(O) =1 +

PZP(O)+UP(1), 7727“7(1)7 WZW(O)+UW(1), I:uI(l), M:uM(l),

inserting in the system of 5 equations, keeping only the first order of expansion
in u, and solving for p™ ..., M® . We obtain

W, dulw(ddy — 31,) (4d%, + 3dmly + dulmn)u
" A (o — 3ly) (A, + 310) (dmley — duplm)

This is the equilibrium solution corresponding to mutation-selection balance in
the presence of spatial interactions. This approach is valid as long as the wild
type is advantageous (inequality (3)). In the opposite scenario, this solution is
unstable, and the system converges to the mutants excluding the wild type.

Under selection-mutation balance, of interest is the equilibrium proportion
of mutants in the system given by

n=n

n(l)u dwlw(4d$n + 3dm,lw + dwlm)u
UyN = = . (36)
PO dp (4dpm + 3lu) (Al — duplin)

22



In the absence of death (d,, = d,, = 0), we obtain the limiting value

(3luy + I )u

V’UN,D:O - 3(lw — lm) .

3.3 Comparison with mass-action

We would like to compare the proportion of mutants under selection mutation
balance in space and in mass-action. In mass action we have

T = lp(l—u)—dyz, (37)

= =lyux + (I — dn)y, (38)

where x and y is the expected number of wild type and mutant cells respectively.

The proportion of mutant cells at a given size N is calculated by using 20 =

ellw=dw)t and evaluating the solution y(t) of equation (38) at time ¢ = In N/(l,, —
dy). Forming the fraction, we obtain the proportion at mutants at size N:

Ly (1= N™HHEE)
Vma =
lw - dw - (lm - dm)

One can see that this quantity grows with the size IV, while v,y is independent
of the population size.
In figure S12 we study the quantity

In (V'UN> 7
Vma

which is greater than 0 of the numerator is larger than the denominator. This
quantity is presented as a contour plot in panel (a), as we vary l,, and d,, (for
fixed values of l,, and d,). The red line in the figure indicates the region where
the mutants are disadvantageous and we expect to observe selection-mutation
balance (this is given by inequality (3)). Positive regions (below the purple
dashed line) correspond to having more mutants in the spatial system compared
to the mass action system. Negative regions (above the purple dashed line) are
regions where there are fewer mutants in the spatial system than in the mass
action system.

Figure S12(b) focuses on two particular scenarios. The top panel presents
the case where the division rates of mutants and wild type cells are the same,
and the disadvantage is manifested through [,, < [,,. We can see that in such
cases, VyN > Vma, that is, we have more mutants in space. The bottom panel
shows the case where [,,, = [,,, and the mutants have a larger death rate than
the wild types. In this case, if the disadvantage is sufficiently large, we have
fewer mutants in space than in the mass action system.
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Figure S12: Comparison of the spatial and mass action system. (a) The quan-
tity In (%) is presented as a contour plot as a function of [,, and d,,, for

fixed values of [, and d,,. The red line indicates the region where mutants are
disadvantageous (inequality (3)). The contours’s values are indicated, and the
zero contour is marked with a dashed purple line. (b) Top panel: the same
quantity plotted as a function of [,,, with d,, = d,,. Bottom panel: the same,
as a function of d,,, with [, = [,,. The rest of the parameters are given by
u=2x10"5% N =10%1, =1, and d,, = 0.3.

3.4 Comparison with computations

The expected number of mutants predicted theoretically was compared with
results of numerical simulations. This was done in the following way. At size N,
the number of mutants (in the von Neumann case) is predicted to be Nuwv,y,
see equation (36). Solving the equation Nuwv, y = const, we can obtain the pairs
(Im, dm) of mutant kinetic rates corresponding to a predicted given number of
mutants in a system of size N. Figure S13(a) shows the predicted number of mu-
tant as a contour plot. The closer to the “neutrality” line (see inequality (3)) the
larger the predicted number of mutants. Solution of equation Nuv,y = const is
shown in panel (b), and for 5 points from the solution set, the predicted number
of mutants (given by 10) is compared with the numerically obtained mean (plot-
ted together with the standard deviation, panel (c)). We can see that for larger
mutant division rates, the deviation from the theory becomes significant. Panel
(d) shows a histogram of numbers of mutants for the parameters corresponding
the 5th point. One can see that the distribution has a long tail and a very large
standard deviation. This is the consequence of “slices” that cannot be handled
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Figure S13: The level of mutants in the spatial (von Neumann) system: analyt-
ical approximation and numerical results. (a) The quantity Nuv,y is presented
as a contour plot as a function of I, and d,,, for fixed values of [, and d,,.
Mutants are disadvantageous above the red line (inequality (3)). The contours’
values are specified. (b) Solution I,, of equation Nuv,y = 10 as a function
of d,,; the 5 points used in panel (c) are marked in red and numbered. (c)
The comparison of predicted (10, horizontal red line) and simulated number of
mutants in the 5 parameter pairs from panel (b). Simulated means and stan-
dard deviations are shown (out of 2.5 x 10° runs). (d) For the 5th parameter
combination, the numerically obtained histogram of the number of mutants is
shown. The rest of the parameters are v = 2 x 107°, N = 105, I, = 0.08, and
dy, = 0.015.

by the present method.

3.5 Jack-pot events

In Fig. 2 of the main text we studied the mean and the distribution of the num-
ber of disadvantageous mutants in mass-action systems and in a metapopulation
model, were the demes were arranged in a 1D array, and migration happened be-
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tween neighboring demes. Here we present results for a metapopulation model
where migration was equally likely among all demes, see figure S14. We can see
that regardless of the structure of the deme-to-deme network, the results are
very similar.
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Figure S14: Disadvantageous mutants: probability distributions of mutant num-
bers in mass-action and metapopulation simulations. Both decreased divisions
and increased death mutants are investigated, with division and death rates
given in the left upper panel (compared to the rates of the wild type, denoted
by the green circle). The bar graphs represent numerical histograms for mass
action simulations (blue) and metapopulation simulations (yellow), where the
demes were all connected to each other; between 1.8 x 10° and 2.0 x 10° sim-
ulations were run for each parameter combination, and the number of mutants
recorded when the total population reached 1000. The mean numbers of mu-
tants are shown for all the simulations in the central panel, with yellow markers
corresponding to the metapopulation model (migration among all demes), and
the blue markers to the mass-action model.

In order to compare the number of rare (“jackpot”) events in different models
and for different parameters, we designed a function that quantifies the spread
of the distribution or the “fatness” of its tail (heavy-tailedness). For each set
of data, Y, representing the numbers of mutants in each of the runs performed

26



for a given parameter set for a given model, we used the quantile function

defined as follows. Let Y, and Y, are two subsets of Y such that Y = Y, UY R
and all the elements of Y,y are smaller or equal to all the elements of Y, r; we
will refer to parameter ¢q as “threshold”. We further assume that

Yer| = [1Y]q],
where |.| denotes the number of elements and [.] denotes ceiling. Then we set
Q(Y,1—¢q) = min(Yyr).

It follows from this definition that the function F(Y7,q) > F(Y3,q) for all ¢ in
a vicinity of 0, as long as set Y7 has a higher number of large outliers compared
to Y5, or if Y7 is drawn from a distribution with a heavier tail compared to Y5.
Figure S15 presents the plots of the heavy-tailedness function F(Y, q) for the
8 cases studied in figure S14, with Y representing the mass-action model (blue),
the metapopulation model where all demes are connected (yellow), and the 1D
metapopulation model with only neighboring demes connected (green). The
bottom row of graphs represents the cases where the disadvantageous mutants
are characterized by a decreased division rate (except case 4, which describes
neutral mutants). In the top row the disadvantageous mutants are character-
ized by increased death rates. We can see that the heavy-tailedness generally
increases toward the neutral case. We also observe the following patterns:

e In the bottom row, for small thresholds, ¢, the yellow and green lines
are above the blue line, which means that if the mutants have decreased
division rates, the fragmented (metapopulation) models are characterized
by a higher heavy-tailedness (more jack-pot events) compared to the well-
mixed system.

e This trend weakens and reverses in the graphs of the top row, from right
to left (away from neutral mutants). In other words, if the mutants
have increased death rates, and the disadvantage is sufficiently large, the
fragmented (metapopulation) models are characterized by a lower heavy-
tailedness (fewer jack-pot events) compared to the well-mixed system.

These trends go hand in hand with the results on the expected number of
mutants (figure S14, middle graph). For mutants with decreased division rates
or slightly increased death rates, there are more jack-pot events in the metapop-
ulation models, and the expected number of mutants is also higher, compared to
the well-mixed model. On the other hand, if the mutants are characterized by
significantly higher death rates, the trend reverses, and there are more jack-pot
events and more mutants on average in the mass-action system.
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Figure S15: The prevalence of jack-pot events in different models. The heavy-
tailedness (quantile) function F(Y,q) is plotted vs ¢ for the mass-action model
(blue), the metapopulation model where all demes are connected (yellow), and
the 1D metapopulation model with only neighboring demes connected (green).
The calculations are based on the simulations of figure S14 and figure 2 of the
main text. Case numbering and parameters are as in figure S14.

4 Neutral and advantageous mutants in a range
expansion

4.1 Derivation of the growth laws

To derive the laws of mutant growth reported in the main text, we can use the
following simple calculations. Let us assume that the death rate of cells is equal
to zero, and consider cells growing in different geometries.

2D flat front. Assume that cells grow along the surface of a cylinder of
width W. This represents a one-directional growth process, where during each
generation, we assume that W new cells appear, and the the total population
is given by N = LW, where L represents the number of layers. The value of L
is proportional to the number of generations, and thus to the physical time, ¢:

L o t.

The following calculation estimates the growth law of mutants. Every time a
new layer (of width W) is added, the mean number of new mutations is given
by Wu. Suppose that mutants are neutral. Then, each such mutation will give
rise to an array of daughter mutant cells of width 1, see figure S16. The length
of this array is given by L — 4, if i is the layer at which the mutation occurred.
Therefore, the total expected number of neutral mutants is a cylinder of length
L is given by

L L

new uWL(L—1) uWL* u

My5ha =Y Wu Y 1= 5 R = WNQ, (39)
i=1 j=i+1
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where we assumed L > 1. Note that in this derivation we assumed that the
number of mutants is small compared to the total population, and individual
mutant clones do not interact. In a more precise calculation, the number of wild
type cells in each layer is smaller than W because of the existence of mutants,
and thus the ate of new mutant production is smaller than Wu. We however
assume that «LW < 1, such that the number of mutants is relatively small.

Note that the number of neutral mutants decreases with W, see figure
S17; the largest number of mutants is achieved in the case of W = 1, a one-
dimensional expanding array of cells.
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Figure S16: The conceptual model for mutant number calculations, the case
of neutral mutants in a colony growing along the surface of a cylinder (2D flat
front).
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Figure S17: The number of mutants during a 2D flat front expansion decays with
the front width. Formula (39) is presented with N = 10000 and u =5 x 107°.

Next, let us consider advantageous mutants. In this case, each new mutant
gives rise to a triangular clone. In the first layer, the width of the clone is 1, in
the next layer it is 14 s, and in the kth layer it is 1+ (k — 1)s, where parameter
s > 0 measures the advantage of the mutants (with s = 0 corresponding to
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neutral mutants). Therefore, we have

1 L—-2
Mgt = ZWu Z (14 (j—(i+1))s) =uWL(L —1) (2 + 5(6)> (40)
j=i+1
quL3 us
0 = N3
6 6W?2 ’

where for the approximation, we assumed that Ls > 1. Also, for this simple
calculation to be valid, we need to assume that the wedges created by mutants
do not come close to the cylinder’s width, W, that is, Ls < W. In particular,
formula (40) can be valid for small values of W > 1, but only for mutants that
are neutral for practical purposes (s < 1).

Note that when N is fixed, the total number of cell divisions that the system
has undergone is also fixed. The number of mutants however is vastly different
depending on the spatial configuration. It is the highest for W =1 (one row of
cells) and decreases drastically with the width of the cylinder. This is consistent
with the notion that spatial restrictions result in a heightened number of mu-
tants, the 1D space (W = 1) being the most spatially restrictive system. The
reason for this is that in 1D, a mutant, once created, blocks the whole range of
expansion and prevents wild type cells from reproducing. The wider the front,
the weaker this effect. Further, we note that in the special case where W = 1,
mutant advantage does not play a role, and the number of advantageous, neu-
tral, and even disadvantageous mutants is given by the same formula, equation
(39).

2D: circular range expansion. Next we turn to the dynamics of neutral
mutants on a circle. Let us suppose that the radius of the circle is R and
N = 7R2. The size of the colony increases via surface growth with N o 2 and

R t.

As the range expansion proceeds, the circular layer of radius r will on average
give rise to 2mru new mutations. Each mutation will result in a wedge expanding
outwards. If the new mutation occurred in layer with radius r, the number of
mutating cells in layer r is 1. The number of mutants in the next layer is
given by le, because under the assumption of mutant neutrality, the fraction
of mutants in each new layer of radius j > r (with surface 27j) should stay
constant and equal to ﬁ For layer j, the number of mutants is then given by
j/r. This gives rise to the following calculation:

Afneu 2 2 R3u 2u
2D It‘ange Z 2mru Z ; g']TR(RQ — 1)U ~ T = 37(_1/2 N3/2
Jj=r+1

(the approximation is valid for R > 1).
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For advantageous mutants in a growing 2D circle, the fraction of mutants
will grow with each layer:

R .
2 1
Mélfl)vrange = Z 2mru Z 1 + (-7 - (7’ + 1))3)% = ﬂ'R(R2 - l)u (3 + ZS(R - 2))
Jj=r+1

71'R4su _ U
4 dr”

where we assumed Rs > 1. For this approximation to be valid, the mutant
wedges should not exceed the circumference of the colony. Strictly speaking,
this results in the condition Rs << 27 R, that is, s < 1. For larger values of
s, the events where the mutant covers the whole surface of the colony are no
longer negligible.

3D flat front. In a 3D space, let us first consider a solid cylinder of constant
radius Ry, where initially the cells are situated as a layer at the bottom of the
cylinder, and proceed to grow by adding layers of size mR3. Each generation
contributes 7 R2u new mutants, and as the colony grows to length L (and volume
2mRZL), we have in the neutral case:

L
M3 oy, = Z 27R3u > 1=nR3uL(L — 1)~ rR3ul® = ? N2,
Jj=i+l

which is similar to the 2D flat front expansion. If the mutants are advantageous,
then their number will increase from layer to layer, giving rise to conical wedges.
This gives rise to the following calculation:

M3 ey = Z?wRou Z (14— (i+1))s)*
J=i+1
L(L—1
= %[(L2—3L+2)52+4(L—2)3+6]
N T R2s2ul? _ s2u
~ 6 ~ 6m3RST

where Ls > 1 for the approximation, and the approach is valid as long as the
wedge radius is smaller than that of the cylinder, sL < Ry.

3D range expansion. Next we consider a 3D expanding sphere. For a sphere
of radius R, we have N = 4/37R® and the surface is given by 47 R?. The size of
the colony increases via 3D surface growth with N o t3. Each spherical layer of
radius r will on average give rise to 47r?u new mutations. Each mutation will
result in a conical wedge expanding outwards. If the new mutation occurred in
layer with radius r, the number of mutating cells in layer r is 1. The number
of mutants in a layer of radius j > r is given by (j/7)?, because under the
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assumption of mutant neutrality, the fraction of mutants in each new layer
should stay constant (and equal to ﬁ) Therefore, we write:

R R -\ 2

new j

M3D ;ange = E 47‘&'7‘211, E (7‘) = WR(RZ—l)(R+2/3)u ~ 7TR4U = WN4/3
r=1 j=r+1

(the approximation is again valid for R > 1).

If the mutant in a growing 3D sphere is advantageous, the fraction in each
layer will increase according to the fitness advantage s and stretch from layer
to layer in the same way as for the neutral mutants. We therefore have,

R R ] 2
Mg = S e S (L (G (4 1))s)? ()

r=1 j=r+1 "
R(R? — 1
- % [(20R® — 48R — 5R + 42)s> + (T2R* — 90R — 108)s + 90R + 60]
2 5 6 s2u 9
~ = = —N=-.
971'5 uR .

As before, the approximation holds if Rs > 1. The method assumes that the
mutant colony’s size in each layer does not come close to the surface area, which
amounts to the inequality s < 1.

Exponential (non-spatial, mass-action) growth. Finally, for exponen-
tially growing population, similar formulas could be derived. In particular, for

neutral mutants, we have
M2 — Nyln N,

exp

and for advantageous mutants with advantage o (which is the ratio of the net
growth rate of mutants and the net growth rate of wild type cells), we have

[0 2a—1
(a —1)2°%

adv __

exp — )

see [? ], equation (14c), see also equation (13) for a more general formula.
A summary of some of the results is presented in table 1 of the main text.

4.2 Comparison with numerical simulations

We have run numerical simulations to check the results derived in the previous
section. Below we comment on the applicability and limitations of the formulas
derived.

4.2.1 Roughness considerations

If we use formula (39) to approximate simulation results for neutral mutants,
in the absence of death, in a colony growing on the surface of a cylinder, we
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notice that it gives a slight systematic underestimation of the number of mutants
corresponding to N cells. Here we investigate the source of this error.

To understand the source of this inconsistency, we note that the idealized
model of figure S16 is not realistic. The real front propagates to the right as a
jagged line. For example, under the Moore neighborhood, cells can divide into 8
nearby spots, including the diagonal spots and positions up or down. There are
two important differences between the idealized model of figure S16 and the real
picture. (i) The real, jagged, front is longer (the idealized vertical front is the
shortest), and (ii) cells do not always divide to the right, and as a consequence,
cell divisions are less efficient: sometimes two neighboring cells “decide” to
divide into the same spot, thus preventing some divisions from happening. Let
us compare the number of successful divisions in the idealized and in the natural
model. In the idealized model, the number of successful divisions per update is
exactly W. For the natural model, the first factor above increases the expected
number of successful divisions, while the second factor reduces the number of
successful divisions. The overall effect turns out to be negative, that is, fewer
than W successful divisions are performed. This suggests that the effective
width of the cylinder is less than W, and therefore the expected number of
mutants corresponding to the same population size is larger than that predicted
for the idealized model.

Roughness considerations have been investigated thoroughly in [? 7 ].
In particular, the authors studied the statistics of the mutant “bubbles” and
“wedges”. It turns out that their shape is affected, in a predictable way, by
the front roughness, which was shown by using the previous theoretical and
numerical results of [? | and [? ]. Further, these considerations allow for cal-
culating the scaling laws of the probability distribution of mutant clone sizes [?
], and influence the probability distribution of the number of mutants, but not
its mean. This can be seen, for example, if we use formula (5) of the Methods
in [? ] with the scaling exponents o and 8 estimated for flat and rough fronts,
see Table 1: the resulting dependence of mutant clone size on the total popula-
tion N remains the same. The proportionality constant, however, is roughness
dependent, as follows from formula (4) in the Methods in [? ].

This is consistent with our findings. Even though our idealized model used to
derive mutant growth laws underestimates the “constant”, it correctly predicts
the power laws in different growth geometries and for different mutant types
(disadvantageous, neutral, and advantageous).

4.2.2 2D flat front expansion

For the 2D flat front geometry (the surface of a cylinder), we set up the initial
condition for the agent-based simulation to be a one layer (a circle) of wild type
cells that coincides with the circumference of one of the cylinder’s bases (and
has length ). Simulations are run repeatedly for a fixed number of time steps,
and the mean trajectory (that is, the mean number of wild type cells and the
mean number of mutants, as functions of time-step) is then calculated. Finally,
the number of mutants is plotted as a function of the total population size.
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Examples for neutral mutants (that is, mutants that have the same division
and death rates as the wild type cells) are presented in figure 4 of the main
text, curves (a) and (b). We can see that both in the absence (a) and in
the presence (b) of death, the mutant population as a function of the total
population approaches a power law with the exponent 2 (the black dashed lines
corresponding to cases (a) and (b) of figure 4 of the main text have slope 2 in
the log-log plot, see table 1). There are more mutants in the presence (b) than
in the absence (a) of death.
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Figure S18: Advantageous mutants under a 2D flat front expansion: deviation
from the cubic law for large sizes. (a) In the absence of death (L, = 0.7, L, =
1.0, D, = D, = 0, see curve (d) of figure 4 of the main text) and (b) in the
presence of death (L, = L, = 0.7, D, = 0.2, D,, = 0.1, see curve (f) of figure
4). Top panels: the number of mutants as a function of the total number of
cells; the dashed straight lines have slope 3. Bottom panels: (a) a numerically
obtained CDF of the probability for a given colony to have its front completely
dominated by mutants by a given size; (b) a numerically obtained CDF of the
probability for a given colony to have its wild type population extinct by a given
size.

Advantageous mutants are presented by curves (c-g) of figure 4 of the main
text; note that the dashed lines drawn through these curves all have slope 3
in the log-log coordinates (table 1). Curves (c) and (d) correspond to systems
without death, and mutants having a larger division rates compared to wild
type cells. The advantage is larger in case (d) compared to case (c¢) (and thus
there are more mutants observed at the same population size). In both cases,
we can see that the curves have slope 3 up to a certain population size, after
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which they deviate from the cubic law. For those larger sizes, mutants grow
slower as a function of size (quadratically). The reason for this deviation from
the cubic law is as follows. As the colony grows and reaches larger sizes, ad-
vantageous mutant clones that grow out and increase in size start reaching the
width T, that is, take up the whole width of the cylinder. After that, the mu-
tant colony can no longer expand in width, but instead it grows linearly. This
is illustrated in figure S18(a), where the top panel replots the purple line (case
(d)) of figure 4 of the main text, and the bottom panel studies the statistics of
mutant invasion. For each run, we recorded the total colony size at which the
population of wild type cells stopped increasing (given that this happened in
the time-span of the simulation). This indicates that, in the absence of death,
all the front positions are taken up by mutants and wild type cells can no longer
divide. The numerically obtained CDF is presented in the panel. We can see
that the probability for the mutants to dominate the front becomes significant
around size 104, which coincides with the size where the number of mutants
starts deviating from the cubic law (the upper panel).

Next, we turn out attention to curves (e) and (f) of figure 4. They represent
systems in the presence of death, where mutant advantage is manifested through
increased division rate (e) and decreased death rate (f). We can see again that
the curves follow a cubic law. A deviation from this law (and a slow-down
of the growth as a function of total size) is also observed for larger sizes. The
mechanism of this deviation is however somewhat different from the case of zero
death. Figure S18(b, top panel) replots curve (f) of figure 4. Since cells die, the
eventual outcome of all the simulations is the extinction of the (disadvantageous)
wild type. The CDF of the colony size by which the wild type goes extinct is
presented in the bottom panel of figure S18(b). The probability of wild type
extinction becomes significant around size 2 x 10%, where the number of mutants
starts deviating from the cubic growth (see the top panel).

Finally, we compare curves (f) and (g) of figure 4. They represent systems
with the same parameters (where the mutant advantage is manifested through
a lowered death rate), except the cylinder width is W = 100 for curve (f) and
it is W = 1000 for curve (g). Notice that the dashed black lines for the two
curves differ by a factor of 100, representing the inverse square dependence of
the number of mutants on the cylinder width, see formula (40) (there are 100
times fewer cells in the cylinder that is 10 times wider).

4.2.3 Growth on a circle (2D range expansion)

For simulations studying 2D range expansion, we started with 1 wild cell, and
let the colony expand on a 2D grid for 800 time-steps, for. 2000 runs for each
parameter combination. In each case, the numbers of wild type and mutant cells
were averaged over all the runs that did not result in population extinction!.
The results for several representative cases are presented in figure 6 of the main

IExtinction was not a problem in the cylindrical geometry, because the initial condition
contained 100 or more cells, and very few runs resulted in extinction
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text, where for each parameter combination the number of non-extinct runs is
given in the figure caption.

There are 6 curves plotted in figure 5 of the main text. As in figure 4, cases
(a,b) correspond to neutral mutants, and cases (c-f) to advantageous mutants;
please note that all the division and death rates in curves (a-f) of figure 5 are
identical to curves (a-f) of figure 4.

The black dashed lines for curves (a,b) in figure 5 have slope 3/2, as predicted
for neutral mutant growth in a circle. As in the case of the cylinder, there are
more mutants in the presence (b) than in the absence (a) of death.

The slope for curves (c-f) in figure 5 is 2, as predicted for the growth of
advantageous mutants in a circle, see table 1. Again, we observe deviation fro
the predicted power law for large system sizes. In the absence of cell death
(cases (c,d)) this happens as the mutants become more likely to spread and
occupy all the surface locations, blocking the wild type cells from divisions. In
the presence of death, this deviation is associated with the increased likelihood
of wild type extinction.
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