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ABSTRACT

Fractional Brownian motions (fBM) and related processes are widely used in financial modeling to capture the
complicated dependence structure of the volatility. In this paper, we analyze an infinite series representation
of fBM proposed in (Dzhaparidze and Van Zanten 2004), and establish an almost sure convergence rate
of the series representation. The rate is also shown to be optimal. We then demonstrate how the strong
convergence rate result can be applied to construct simulation algorithms with path-by-path error guarantees.

1 INTRODUCTION

The fractional Brownian motion {BH(t)}t≥0 with Hurst index H ∈ (0,1) is a centered Gaussian process
with covariance function

Cov
(
BH(s),BH(t)

)
=

1
2
·
(
|s|2H + |t|2H −|s− t|2H). (1)

As an extension of standard Brownian motion (BM), which corresponds to H = 1/2, fBM allows its
disjoint increments to be correlated. In particular, when H > 1/2, the disjoint increments of fBM are
positively correlated, while when H < 1/2, they are negatively correlated. Moreover, based on (1), fBM
is self-similar with index H and stationary. Due to these nice properties, fBM is widely used in financial
modeling, especially when long-rage dependence is observed from empirical studies. For example, Comte
and Renault (1998) propose to model log-volatility using fractional Brownian motion, motivated by the
long memory property of the volatility process. Necula (2002) replaces BM in the Black-Scholes model
with fBM and studies the corresponding option pricing problems. More recently, Gatheral, Jaisson, and
Rosenbaum (2018) study the smoothness of the volatility process from high frequency data and find that
log-volatility behaves essentially as a fBM with H of order 0.1. We also refer to (Hu and Øksendal 2003)
and the references therein for more applications of fBM in finance.

Despite the abundant applications of fBM, the analysis of fBM based models is much more difficult
than the classical BM driven processes. Analytical solutions rarely exist for those problems. One reason
for such an obstacle is that fBM is not a semimartingale. Thus, most tools in stochastic analysis fail to
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be applicable. Moreover, due to the complicated correlation structure, how to simulate fBM efficiently is
also highly nontrivial, see, for example (Dieker 2004).

To overcome these challenges, a natural idea is to approximate fBM via some simpler stochastic processes.
Over the past decades, there are numerous efforts devoted to this problem from several directions. For
example, Delgado and Jolis (2000) and Li and Dai (2011) approximate fBM via Poisson processes. They
construct stochastic integrals using Poisson processes and prove the convergence in law to a fBM. Similarly,
Nathanael (2004) and Lindstrøm (2007) study the approximation of fBM using random walks.

Another line of research is to represent the fBM via wavelet decomposition or other series expansions.
The idea is to write BH(t) in the form

∞

∑
k=1

ψk(t)ξk, (2)

where {ξk}k≥1 are independent standard Gaussian random variables and {ψk(t)}k≥1 are the basis functions.
A pioneering work is (Meyer, Sellan, and Taqqu 1999), where the authors first use wavelet decomposition
of fractional Gaussian noise, and then use integration to obtain corresponding representation for fBM. They
also establish almost sure (a.s.) convergence result for the representation. However, their basis functions
are hard to evaluate, which limits its application in practice. Later, Dzhaparidze and Van Zanten (2004)
develop a series expansion of fBM as an extension of the Wiener’s series representation of BM. Their basis
functions are characterized by the zeros of Bessel functions, which can be calculated numerically. See also
(Dzhaparidze and Van Zanten 2005) and (Iglói 2005) for examples of other series expansions of fBM.

For various approximations of fBM, the rate of convergence is an important measure of the quality
and efficiency of the approximation. However, results on convergence rates are rather limited. When
approximating fBM via Poisson processes or random walks, existing literature focuses on weak convergence
and the rate of convergence is rarely obtained. For series expansions as in (2), Kühn and Linde (2002)
establish the optimal rate of convergence in the L2 norm,

inf

{
E
[

sup
t∈[0,1]

|BH(t)−
n

∑
k=1

ψk(t)ξk|2
]1/2

: BH(t) =
∞

∑
k=1

ψk(t)ξk a.s.

}
= Ω(n−H

√
log(n)). (3)

Most subsequent works on series expansions constructions aim to achieve this optimal rate of convergence;
see, for example, (Iglói 2005) and (Dzhaparidze and Van Zanten 2005). Based on these works, a natural
question to ask is that, can we establish the rate of convergence in a stronger almost sure sense? Specifically,
we would like to show that there exist series expansions of the form (2), which satisfy

sup
t∈[0,1]

|BH(t)−
n

∑
k=1

ψk(t)ξk|= O(n−H
√

log(n)) a.s. (4)

Or equivalently, there exits a constant C ∈ (0,∞) such that

limsup
n→∞

1
n−H

√
log(n)

· sup
t∈[0,1]

|BH(t)−
n

∑
k=1

ψk(t)ξk| ≤C a.s.

Based on (3) and Fatou’s Lemma, we can show that the rate of convergence in (4) is optimal. The almost
sure convergence rate is valuable, not only because that it provides a stronger error guarantee, but also
because that simulation algorithms that achieve path-by-path error guarantees or even exact (unbiased)
simulation algorithms can be developed based on it; see, for example (Pollock, Johansen, and Roberts 2016),
(Blanchet and Chen 2015) and (Blanchet, Chen, and Dong 2017) for more details of such developments.

In this paper, we prove that the series expansion developed in Dzhaparidze and Van Zanten (2004)
achieves the strong error bound as in (4). The contribution is twofold. First, similar techniques can be used
to establish strong approximation results for other series expansions of fBM or other Gaussian processes.
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Second, we illustrate how advanced simulation algorithms that achieves strong error guarantees can be
developed based on the almost sure convergence analysis.

Similar convergence rate results for approximations of fBM have been studied in Garzón, Gorostiza,
and León (2009). They establish an almost convergence rate of O(n−(1−H−δ ) log(n)5/2) for H > 1/2 and
O(n−(H−δ ) log(n)5/2) for H < 1/2, which are weaker than ours. Recently, Chen, Dong, and Ni (2019)
establish (4) for the midpoint replacement (Haar wavelet) construction of fBM. An ε-strong simulation
algorithm for fBM and related processes is also developed there. However, the Haar wavelet construction
has correlated coefficient terms, i.e. ξk’s in (2), which is more costly to generate than the independent
coefficients in (2).

2 MAIN RESULT

In this section we introduce the actual series expansion that we consider and establish the almost sure
convergence rate of the expansion. The proof of some of the results are delayed to Section 4.

According to Dzhaparidze and Van Zanten (2004), fBM BH(t) defined on [0,1] admits the following
infinite series expansion almost surely,

BH(t) =
∞

∑
n=1

√
2cH · sin(xnt)

x1+H
n · |J1−H(xn)|

·W+
n +

∞

∑
n=1

√
2cH ·

(
1− cos(ynt)

)
y1+H

n · |J−H(yn)|
·W−n . (5)

Here Jv(·) is a Bessel function of the first kind with order v. The sequences x1 < x2 < · · · and y1 < y2 < · · ·
are positive real zeros of J−H and J1−H respectively. The constant cH = (π−1Γ(1+2H)sin(πH))1/2, where
Γ(·) denotes the Gamma function. W+

n ’s and W−n ’s are independent standard Gaussian random variables.
Note that Jν(x) with ν >−1, is the solution to the differential equation

x2 d2Jν(x)
dx2 + x

dJν(x)
dx

+(x2−ν
2)Jν(x) = 0.

It possesses an increasing infinite sequence of positive real zeros, and the n-th one is of order n, i.e. xn (or
yn) is O(n). The following lemma characterizes the decay rate of the basis functions in (5).
Lemma 1 There is a constant C0 ∈ (0,∞) such that for all n≥ 1 and t ∈ [0,1],

max
{√

2cH · |sin(xnt)|
x1+H

n · |J1−H(xn)|
,

√
2cH · |1− cos(ynt)|
y1+H

n · |J−H(yn)|

}
≤ C0

nH+1/2 .

For the infinite series expansion (5), we define its truncation at level n as

BH
n (t) =

n

∑
k=1

√
2cH · sin(xkt)

x1+H
k · |J1−H(xk)|

·W+
k +

n

∑
k=1

√
2cH ·

(
1− cos(ykt)

)
y1+H

k · |J−H(yk)|
·W−k .

Then {BH
n (t) : 0 ≤ t ≤ 1}n≥1 forms a sequence of stochastic processes, and BH

n (t) converges to a fBM
BH(t) in C[0,1] almost surely, where C[0,1] is the space of continuous functions endowed with uniform
norm. For the truncation error, BH

n (t)−BH(t), Dzhaparidze and Van Zanten (2004) establish the following
bounds. There exists a constant C ∈ (0,∞) such that

sup
t∈[0,1]

√
E
[(

BH(t)−BH
n (t)

)2]≤C ·n−H and

√
E
[∫ 1

0

(
BH(t)−BH

n (t)
)2dt

]
≤C ·n−H .

Later, Dzhaparidze and van Zanten (2005) extend their convergence rate results to the expected uniform
norm. In particular, we summarize their result in the following lemma.
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Lemma 2 There exists a constant C1 ∈ (0,∞), such that for all n large enough,

E
[

sup
t∈[0,1]

∣∣BH(t)−BH
n (t)

∣∣]≤ (C1/4) ·n−H
√

log(n). (6)

From (3), we also know that the rate of convergence in Lemma 2 is optimal. In what follows, we further
strengthen the convergence rate result, and show that the series expansion (5) achieves O(n−H

√
log(n))

convergence rate almost surely. We next provide a formal definition of the almost sure convergence rate.
Definition 1 Let {Xn}n≥1 be a sequence of random variables and {an}n≥1 a sequence of decreasing positive
numbers. We say that the almost sure convergence rate of Xn is of order an, i.e. Xn = O(an) a.s., if there
exists a constant C ∈ (0,∞) such that

limsup
n→∞

Xn/an ≤C a.s..

Note that the almost sure convergence rate we defined here is a very strong notion of convergence as
we require the existence of finite constant C, not a path dependent random variable. We are now ready to
provide the main result of this paper.
Theorem 1 For any constant K > 2C1, there exist positive constants C2 ∈ (0,∞), such that for n is large
enough,

P
(

sup
t∈[0,1]

∣∣BH(t)−BH
n (t)

∣∣≥ 4K
(1−2−H)2 ·n

−H
√

log(n)
)
≤C2

√
log(n) ·n−Λ, (7)

where Λ = (K−2C1)
2/(8C2

0).
Based on Theorem 1, we have the following corollary, which characterizes the almost sure convergence

rate of BH
n (t).

Corollary 2 For K > 4C0 +2C1, we have

limsup
n→∞

1
n−H

√
log(n)

· sup
t∈[0,1]

|BH(t)−BH
n (t)| ≤

4K
(1−2−H)2 a.s.. (8)

Furthermore, the rate is optimal, i.e.

inf

{
sup

t∈[0,1]
|BH(t)−

n

∑
k=1

ψk(t)ξk|2 : BH(t) =
∞

∑
k=1

ψk(t)ξk a.s.

}
= Ω(n−H

√
log(n)) a.s.

Proof. When K > 4C0+2C1, Λ > 1 and hence, the series
√

log(n) ·n−Λ < ∞ is summable. Using Borel-
Cantelli Lemma, the events {supt∈[0,1] |BH(t)−BH

n (t)| ≥ 4K/(1− 2−H)2 · n−H
√

log(n)} happen finitely
many times almost surely. Thus, we obtain (8).

We next show the optimality of the convergence rate by contradiction. Suppose there exist B̃H
n (t) and

a sequence of decreasing numbers an = o(n−H
√

log(n)) such that

limsup
n→∞

supt∈[0,1] |BH(t)− B̃H
n (t)|

an
≤C a.s..

for some constant C ∈ (0,∞). Then by Fatou’s Lemma, we have

limsup
n→∞

E
[

supt∈[0,1] |BH(t)− B̃H
n (t)|2

]1/2

an
≤ E

[
limsup

n→∞

supt∈[0,1] |BH(t)− B̃H
n (t)|2

a2
n

]1/2

≤C,

i.e., E
[

supt∈[0,1] |BH(t)− B̃H
n (t)|2

]1/2
= o(n−H

√
log(n)), which contradicts the lower bound in (3) (Kühn

and Linde 2002). Hence, n−H
√

log(n) is the optimal rate.
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3 APPLICATION OF THE MAIN RESULT

One important application of the almost sure convergence rate analysis is to develop ε-strong simulation
algorithms. Given a stochastic process X = {X(t) : t ∈ [0,1]}, the ε-strong simulation algorithm aims to
construct a probability space supporting both X a fully simulatable process X̂ε = {Xε(t) : t ∈ [0,1]} such
that

sup
t∈[0,1]

∣∣X̂ε(t)−X(t)
∣∣≤ ε a.s.

for any user specified accuracy ε > 0.
We next introduce a strategy to construct the ε-strong simulation algorithm for fBM based on (7). The

idea is to truncate the infinite series expansion up to a finite but random level such that the error of the
truncated terms are suitably bounded. Specifically, the goal is to find N(ε) such that

sup
t∈[0,1]

|BH
N(ε)−BH(t)| ≤ ε a.s..

To achieve this goal, we use a “record-breaker” strategy introduced in (Blanchet and Sigman 2011).
Specifically, we define a sequence of events (record breakers) that satisfy the following two conditions.

C1) Beyond some random but finite level, there will be no more record breakers;
C2) By knowing that there are no more record breakers, the contribution of the infinite “remaining”

terms are well under control.

The key now is to define the proper sequence of record breakers. We first rewrite the infinite series
expansion (5) as

BH(t) =
∞

∑
n=1

2n−1

∑
k=1

(
λn,k(t) ·V+

n,k + γn,k(t) ·V−n,k
)
, (9)

where

λn,k(t) =

√
2cH · sin(x2n−1+k−1t)

x1+H
2n−1+k−1 · |J1−H(x2n−1+k−1)|

, γn,k(t) =

√
2cH · (1− cos(y2n−1+k−1t)

y1+H
2n−1+k−1 · |J−H(y2n−1+k−1)|

,

and V+
n,k =W+

2n−1+k−1, V−n,k =W−2n−1+k−1. For n≥ 1 and 1≤ k ≤ 2n−1, we also define the partial sums

Sn,k(t) =
k

∑
i=1

(
λn,i(t) ·V+

n,i + γn,i(t) ·V+
n,i

)
,

and

M↑n,k = sup
t∈[0,1]

Sn,k(t), M↓n,k = inf
t∈[0,1]

Sn,k(t).

Let
bn = K ·2−nH√n,

where K > 4C0 +2C1 is a constant. Then the record breaking events can be defined as follows. We say
that a record is broken at level n if

En =
{

max
1≤k≤2n−1

M↑n,k > bn

}⋃{
min

1≤k≤2n−1
M↓n,k <−bn

}
. (10)
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Let N denote the time of the last record breaker. From Theorem 1, we can show that ∑
∞
n=1P(En)< ∞. In

particular, note that, by our choice of K, we have Λ > 1 in Theorem 1. Thus, P(N < ∞) = 1, i.e. C1) is
satisfied. We also note that for n > N,

|BH(t)−BH
n (t)| ≤

∞

∑
k=n+1

bk = O(2−nH√n).

Thus, C2) is also satisfied. Indeed, this truncation strategy achieves the optimal rate of convergence. We
also comment that it is important to rewrite the infinite series expansion in geometrically increasing groups
as in (9), and define the record breaking event for each group to achieve the optimal rate of convergence.
Let n0(ε) = min{n : ∑

∞
k=n+1 bk ≤ ε}. If we can find N, then we can define N(ε) = max{N,n0(ε)}.

We remark that when defining bn, even though any K > 4C0 + 2C1 would work, there is actually a
tradeoff in the choice of K. Specifically, larger values of K lead to larger bn’s, which are less likely to
be broken. As a result, N is more likely to take smaller values. On the other hand, larger values of bn’s
lead to larger values of n0(ε). Thus, how to choose K to balance N and n0(ε) is important for the efficient
implementation of the algorithm.

The remaining task is to find the last record breaking level N. This is a highly nontrivial task, as the
level of the last record breaker is not a stopping time with respect to the filtration generate by the series
expansion, i.e. it depends on the information of the infinitely many “future” levels. Often times, rare-event
simulation techniques are employed to overcome this obstacle (see for example Blanchet, Chen, and Dong
(2017)). This is because the record breaking events are often events with very small probability. More
specifically, we define the sequence of record breaking times as follows. τ0 = 0 and for i = 1,2, . . . , if
τi−1 < ∞,

τi = inf{n≥ τi−1 +1 : En happens};
otherwise, τi = ∞. Note that N = sup{τi : τi < ∞}. The key challenge is how to sample these random times
efficiently. This can be achieved by combining rare-event simulation techniques with acceptance-rejection
method. In particular, the idea is to construct a tilted probability measureP∗ such thatP∗(τi+1 <∞|τi = l) = 1
and the likelihood ratio between P and P∗ over the record breaking path is bounded by 1. Then given V+

n,k’s
and V−n,k’s for 1≤ k ≤ 2n−1 and 1≤ n≤ τi = l, the algorithm will first generate V+

n,k’s and V−n,k’s under the
tilted measure for 1 ≤ k ≤ 2n−1 and n = l + 1, . . . ,τi+1, and then generate a uniform random variable U
independent of everything else. If U < dP/dP∗1, we accept the path as the path to the next record breaking
level. Otherwise, we claim that τk+1 = ∞, i.e. there is no more record breaker. We leave the construction
of the measure P∗ as a future task. We acknowledge that it can be a very challenging task. This is because
we are dealing with uncountably many partial sums, Sn,k(t) for 0≤ t ≤ 1. In other words, the supremum
and infimum, M↑n,k and M↓n,k, are taken over continuous functions. Thus, it is very hard to locate (in terms
of t) the next record breaking event.

4 PROOF OF THE MAIN RESULT

In this section, we provide the proof of Lemma 1 and Theorem 1. Lemma 1 is a direct result of the fact
that the n-th zero of Bessel function is of order n. Its proof is based on first order expansion of the Bessel
function.

The proof of Theorem 1 is more involved. Following the record breaker construction in Section 3, we
first rearrange the series expansion into groups. This allows us to bound the probability of the event

sup
0≤t≤1

|BH(t)−BH
n (t)| ≥ 4K/(1−2−H)2 ·n−H

√
log(n)

in Theorem 1 by the probability of the record breakers. Then we develop bounds for the probability of
the record breaking events. There, we construct a proper nonnegative submartingale, which allows us to

1Here we are using dP
dP∗ to denote the likelihood ratio of the generated path.



Chen and Dong

apply Doob’s martingale inequality with respect to the level index. We also apply Borel-TIS inequality
with respect to the time index, utilizing the fact that BH

n (t) is a centered Gaussian process.

Proof of Lemma 1. We begin the proof by presenting some properties of Bessel function. Consider a
Bessel function of the first kind: Jν(x) with order ν >−1. It is well-known that Jν(x) has the decomposition

Jν(x) =
1
2
(
H(1)

ν (x)+H(2)
ν (x)

)
, (11)

where H(1)
ν (x) and H(2)

ν (x) denote the Hankel functions of the first and second kind. Furthermore, the first
order expansions of H(1)

ν (x) and H(2)
ν (x) are

H(1)
ν (x) =

√
2

πx
· exp

{
i(x−νπ/2−π/4)

}
·
(
1+R1(x)

)
,

H(2)
ν (x) =

√
2

πx
· exp

{
− i(x−νπ/2−π/4)

}
·
(
1+R2(x)

)
,

(12)

where the reminders R1(x) and R2(x) satisfy the following estimation ((Olver 1997)),

|Ri(x)| ≤
4ν2−1

4
· exp

{
|ν2−1/4| · |x|−1} · |x|−1, i = 1,2. (13)

Combining (11)-(13), we obtain

|Jν(x)| ≥
√

2
πx
·
(∣∣cos(x−νπ/2−π/4)

∣∣− (4ν
2−1)/4 · exp

{
|ν2−1/4| · |x|−1} · |x|−1

)
.

In the following, we use jν ,k to denote the k-th positive zero of Jν(x) and let

βν ,k = (k+ν/2−1/4)π.

Then using the McMahon’s asymptotic representation of the zeros of Bessel function (McMahon 1894),
we have

jν ,k = βν ,k−
4ν2−1
8βν ,k

− (4ν2−1)(28ν2−31)
544β 3

ν ,k
+O(β−5

ν ,k ).

Note that for any k ∈ Z, |cos(β1−H,k +H/2 ·π−π/4)|= 1. Thus when n is large enough,

|J−H(yn)|>
√
(2πyn)−1. (14)

Similarly, we can also prove that, for n large enough,

|J1−H(xn)|>
√

(2πxn)−1. (15)

To continue our proof, we need two results about the sizes of { jν ,k}k≥1 and {βν ,k}k≥1.
1) The interlacing of zeros of Bessel functions (Watson 1995). Let jν ,1 < jν ,2 < · · · be the positive real
zeros of Jν(x), arranged in ascending order of magnitude, then for ν >−1,

0 < jν ,1 < jν+1,1 < jν ,2 < jν+1,2 < · · ·
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2) Lower bound for the real zeros of Bessel functions (Gatteschi and Giordano 2000). For −1/2 ≤
ν ≤ 1/2 and k ≥ 1, we have jν ,k ≥ βν ,k.
Based on above results, by setting ν =−H and 1−H, we obtain the following lower bounds for xn and yn,

xn = j−H,n > j1−H,n−1 > β1−H,n−1 =
(
n+(1−H)/2−5/4

)
·π, (16)

yn = j1−H,n ≥ β1−H,n−1 =
(
n+(1−H)/2−1/4

)
·π.

Combining inequalities (14)-(16), we have

x1+H
n |J1−H(xn)|>

√
(2π)−1 ·πH+1/2 ·

(
n+(1−H)/2−5/4

)H+1/2 and

y1+H
n |J−H(yn)|>

√
(2π)−1 ·πH+1/2 ·

(
n+(1−H)/2−1/4

)H+1/2
,

which imply that there exists a positive constant C0 such that for all n≥ 1 and t ∈ [0,1],

max
{√

2cH · |sin(xnt)|
x1+H

n · |J1−H(xn)|
,

√
2cH · |1− cos(ynt)|
y1+H

n · |J−H(yn)|

}
≤ C0

nH+1/2 .

Hence, we finish the proof of Lemma 1.

Proof of Theorem 1. Similar to the definition of the record breakers in Section 3, we rearrange the
elements of the infinite series expansion (5) by groups, where the n-th group contains 2n−1 elements. Then
we can rewrite the truncation error BH(t)−BH

n (t) as

BH(t)−BH
n (t) =

∞

∑
m=`n

2m−1

∑
i=tm

(
λm,i(t) ·V+

m,i + γm,i(t) ·V−m,i

)
,

where `n = dlog2(n+1)e, tm = 1{m > `n}+(n+1−2`n−1) ·1{m = `n}. Note that `n is the “group” that n
belongs to. t`n the position of n in the `n-th group. tm = 1 for m > `n. Based on these notations, we define,
with a slight modification to our definitions in Section 3,

Sm,k(t) =
k

∑
i=tm

(
λm,i(t) ·V+

m,i + γm,i(t) ·V−m,i

)
M↑m,k = sup

0≤t≤1
Sm,k(t), M↓m,k = inf

0≤t≤1
Sm,k(t).

Now for bm = K ·2−mH√m with K > 2C1, the record breaking event is defined as

Em =
{

max
tm≤k≤2m−1

M↑m,k > bm

}⋃{
min

tm≤k≤2m−1
M↓m,k <−bm

}
,

We first note that

sup
t∈[0,1]

∣∣BH(t)−BH
n (t)

∣∣≤ ∞

∑
m=`n

sup
t∈[0,1]

∣∣Sm,2m−1(t)
∣∣≤ ∞

∑
m=`n

max
{
|M↑m,2m−1 |, |M↓m,2m−1 |

}
.

Hence, if none of the events {Em}m≥`n happens, we have

sup
t∈[0,1]

∣∣BH(t)−BH
n (t)

∣∣≤ ∞

∑
m=`n

bm.
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Let ζ = ∑
∞
m=`n

2−mH√m. Then

(1−2−H) ·ζ = 2−`nH
√
`n +

∞

∑
m=`n+1

2−mH · (
√

m−
√

m−1)≤ 2−`nH
√

`n +
2−`nH

1−2−H .

When n is large enough, since `n = dlog2(n+1)e,
∞

∑
m=`n

bm = K ·ζ ≤ 2K
(1−2−H)2 ·2

−`nH
√

`n ≤
4K

(1−2−H)2 ·n
−H
√

log(n).

As a result, we have{
sup

t∈[0,1]

∣∣BH(t)−BH
n (t)

∣∣≥ 4K
(1−2−H)2 ·n

−H
√

log(n)
}
⊆

∞⋃
m=`n

Em.

In the following, we focus on controlling the probability P(Em). For each n and k = tm · · · ,2m−1, we use

F m
k = σ

{
(V+

m,tm ,V
−
m,tm), · · · ,(V

+
m,k,V

−
m,k)
}

to denote the natural filtration of stochastic process Sm,k(t).
First, we notice that {M↑m,k} is a submartingale and {M↓m,k} is a supermartingale with respect to filtration

{F m
k }, since

E
[
M↑m,k+1|F

m
k
]
= E

[
sup

t∈[0,1]
Sm,k+1(t)|F m

k
]
≥ sup

t∈[0,1]
E
[
Sm,k+1(t)|F m

k
]
= sup

t∈[0,1]
Sm,k(t) = M↑m,k,

and

E
[
M↓m,k+1|F

m
k
]
= E

[
inf

t∈[0,1]
Sm,k+1(t)|F m

k
]
≤ inf

t∈[0,1]
E
[
Sm,k+1(t)|F m

k
]
= inf

t∈[0,1]
Sm,k(t) = M↓m,k.

Now fix a constant θ > 0. eθx is a strictly increasing convex function. Hence,

E
[
exp{θM↑m,k+1}|F

m
k
]
≥ exp

{
θE[M↑m,k+1|F

m
k ]
}
≥ exp{θM↑m,k},

where the first inequality follows from conditional Jensen’s inequality and the second inequality follows
from the fact that eθx is increasing and {M↑m,k} is a submartingale. This implies that {exp{θM↑m,k}} is a
nonnegative submartingale with respect to {F m

k }. Applying Doob’s martingale inequality, we have that
for all θ > 0,

P
(

max
tm≤k≤2m−1

M↑m,k ≥ bm

)
= P

(
max

tm≤k≤2m−1
exp{θM↑m,k} ≥ exp{θbm}

)
≤ E

[
exp{θM↑m,2m−1}

]/
exp{θbm}.

Let M+
m := M↑m,2m−1 = supt∈[0,1] Sm,2m−1(t). Then

M+
m ≤ sup

t∈[0,1]
|Sm,2m−1(t)| ≤ sup

t∈[0,1]
|BH(t)−BH

2m−1−1+tm(t)|+ sup
t∈[0,1]

|BH(t)−BH
2m−1(t)|

Using Lemma 2, when m is large enough, we have

E[M+
m ]≤C1/4 · (2m−1−1+ tm)−H

√
log(2m−1−1+ tm)+C1/4 · (2m−1)−H

√
log(2m−1)

≤C1 ·2−mH√m.
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On the other hand, for the variance of Sm,2m−1(t), using Lemma 1, we obtain that for any t ∈ [0,1] and m
large enough,

E
[
Sm,2m−1(t)2]≤ 2C2

0 ·
2m−1

∑
k=tm

(2m−1 + k−1)−(2H+1) ≤ 2C2
0 ·

2m−1

∑
k=1

(2m−1 + k−1)−(2H+1) ≤ 4C2
0 ·2−2mH .

Furthermore,

sup
t∈[0,1]

E
[
Sm,2m−1(t)2]≤ 4C2

0 ·2−2mH .

In what follows, we use µm and σ2
m to denote E[M+

m ] and supt∈[0,1]E[Sm,2m−1(t)2], respectively. Then by
Borel-TIS inequality, for any x > 0, we have

P(M+
m −µm > x)≤ exp

{
−x2/(2σ

2
m)
}
. (17)

Thus,

E
[
exp{θM+

m }
]
= E

[
exp
{

θM+
m ·1{M+

m ≤ µm}+θM+
m ·1{M+

m > µm}
}]

= E
[
exp
{

θM+
m ·1{M+

m ≤ µm}
}
· exp

{
θM+

m ·1{M+
m > µm}

}]
≤ exp{θ µm} ·E

[
exp
{

θM+
m ·1{M+

m > µm}
}]

,

Moreover,

E
[
exp
{

θM+
m ·1{M+

m > µm}
}]

= E
[∫ ∞

0
1
{

exp
{

θM+
m ·1{M+

m > µm}
}
> t
}

dt
]

=
∫

∞

0
P
(
M+

m ·1{M+
m > µm}> log t/θ

)
dt

=
∫ 1

0
1dt +

∫ eθ µm

1
P(M+

m > µm)dt +
∫

∞

exp{θ µm}
P
(
M+

m > log t/θ
)
dt

≤ exp{θ µm}+
∫

∞

exp{θ µm}
exp
{
−
(
log t/θ −µm

)2/2σ
2
m

}
dt,

where the last inequality follows from Borel-TIS inequality (17) by setting x = log t/θ − µm > 0. Note
also that∫

∞

exp{θ µm}
exp
{
−
(
log t/θ −µm

)2/2σ
2
m

}
dt =

∫
∞

0
θ exp

{
−x2/(2σ

2
m)+θ(x+µm)

}
dx

= θ exp
{

θ µm +θ
2
σ

2
m/2
}
·
√

2πσ2
m ·
∫

∞

0

1√
2πσ2

m
· e−

(x−σ2
mθ)2

2σ2m dx

≤ θ exp
{

θ µm +θ
2
σ

2
m/2
}
·
√

2πσ2
m.

Above all, we have

P
(

max
tm≤k≤2m−1

M↑m,k ≥ bm

)
≤ E

[
exp{θM+

m }
]
/exp{θbm}

≤ exp{θ µm} ·E
[

exp{θM+
m ·1(M+

m > µm)}
]/

exp{θbm}

≤ exp
{

θ(µm−bm)
}
·
(
exp{θ µm}+θ exp

{
θ µm +θ

2
σ

2
m/2
}
·
√

2πσ2
m
)

= exp
{

θ(2µm−bm)
}
+θ

√
2πσ2

m · exp
{

θ(2µm−bm)+σ
2
mθ

2/2
}
.
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Recall that we have proved that µm ≤ C1 · 2−mH√m and σ2
m ≤ 4C2

0 · 2−2mH . Also recall that we choose
bm = K2−mH√m for K > 2C1. Then we have

P
(

max
tm≤k≤2m−1

M↑m,k ≥ bm

)
≤ exp

{
θ(2C1−K)2−mH√m

}
+2C0θ

√
2π ·2−mH exp

{
θ(2C1−K)2−mH√m+2−2mH

θ
2 ·2C2

0
}
.

This inequality holds for any θ > 0, and when we choose θ = (K−2C1)2mH√m/(4C2
0)> 0, we obtain

P
(

max
tm≤k≤2m−1

M↑m,k ≥ bn

)
≤exp

{
−(K−2C1)

2m/(4C2
0)
}

+(K−2C1) ·
√

2πm/(2C0) · exp
{
−(K−2C1)

2m/(8C2
0)
}
.

Similarly, we can build the same upper bounds for the probability of the downward crossing events, i.e.,
{mintm≤k≤2m−1 M↓m,k ≤−bm}.

Lastly, we obtain that there exist some positive constant C2 and Λ = (K−2C1)
2n/(8C2

0) such that for
n large enough,

P
(

sup
t∈[0,1]

∣∣BH(t)−BH
n (t)

∣∣≥ 4K
(1−2−H)2 ·n

−H
√

log(n)
)

≤
∞

∑
m=`n

P(Em)≤
∞

∑
m=`n

P
(

max
tm≤k≤2m−1

M↑m,k ≥ bm

)
+

∞

∑
m=`n

P
(

min
tm≤k≤2m−1

M↓m,k ≤−bm

)
≤C2n−Λ

√
log(n).

This concludes the proof of Theorem 1.

We conclude this section by commenting that our proof only depends on the decay rate of basis functions
and the fact that the coefficients are centered Gaussian random variables. It does not rely on the specific
form of basis functions. Hence, the analysis is potentially applicable to other infinite series expansions of
fBM or infinite series expansions of other Gaussian processes.
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