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Abstract
Understanding and assessing child verbal communication patterns is critical in facilitating effective language development. 
Typically speaker diarization is performed to explore children’s verbal engagement. Understanding which activity areas 
stimulate verbal communication can help promote more efficient language development. In this study, we present a two-
stage children vocal engagement prediction system that consists of (1) a near to real-time, noise robust system that measures 
the duration of child-to-adult and child-to-child conversations, and tracks the number of conversational turn-takings, (2) 
a novel child location tracking strategy, that determines in which activity areas a child spends most/least of their time. A 
proposed child–adult turn-taking solution relies exclusively on vocal cues observed during the interaction between a child 
and other children, and/or classroom teachers. By employing a threshold optimized speech activity detection using a linear 
combination of voicing measures, it is possible to achieve effective speech/non-speech segment detection prior to conversion 
assessment. This TO-COMBO-SAD reduces classification error rates for adult-child audio by 21.34% and 27.3% compared 
to a baseline i-Vector and standard Bayesian Information Criterion diarization systems, respectively. In addition, this study 
presents a unique location tracking system adult-child that helps determine the quantity of child–adult communication in 
specific activity areas, and which activities stimulate voice communication engagement in a child–adult education space. We 
observe that our proposed location tracking solution offers unique opportunities to assess speech and language interaction 
for children, and quantify the location context which would contribute to improve verbal communication.
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1  Introduction

Speaking and listening are primary communication modes 
in most educational settings. The language environment 
in early childhood is linked to children’s language devel-
opment. Additionally, a rich communicative experience 
early in childhood is essential for school readiness, early 
literacy and academic performance (Hart and Risley 1995; 
Walker et al. 1994). However, to our knowledge, there are 

no studies performed to establish a relation between children 
verbal communication quantity and activity/learning areas. 
Understanding which activity areas stimulate verbal commu-
nication can assist in developing improved context spaces/
stations and thereby contribute to more efficient children 
language development.

For humans, analyzing a large quantity of data is not 
practical, and building real-time solutions that provide 
actionable analysis is cost-prohibitive. On the other hand, 
for machines, scaling to process large quantities of data is 
possible but there is a need to develop robust speech pro-
cessing systems that can bring consistency and reliability 
to the analysis. Access to automatic language environment 
monitoring systems can assist researchers and educators to 
objectively interpret measures of the amount of the childs 
engagement in speech communication (speech produced by 
the child or directed to the child) with respect to a target 
condition, and furthermore identify whether a child requires 

 *	 John H. L. Hansen 
	 John.Hansen@utdallas.edu

1	 Center for Robust Speech Systems, University of Texas 
at Dallas, 2601 N. Floyd Road, EC33, Richardson, 
TX 75080‑1407, USA

2	 Life Span Institute University of Kansas, Kansas City, KS, 
USA

3	 College of Education, University of Kentucky, Lexington, 
KY, USA

http://orcid.org/0000-0003-1382-9929
http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-019-09590-0&domain=pdf


	 International Journal of Speech Technology

1 3

further assistance based on their vocal communication pat-
terns (Hart and Risley 1995; Najafian et al. 2016; Gupta 
et al. 2016).

This study centers on two main issues that must be 
addressed to develop effective children vocal engagement 
assessment solutions:

1.1 � Advanced child–adult diarization system

We develop an advanced near to real-time, noise robust 
system that can measure the duration of child-to-adult and 
child-to-child conversations, and can track the number of 
conversational turn-takings. It allows one to explore the 
amount of child engagement in conversations and deter-
mines how much of the childs interaction involves other 
children versus classroom teachers (Najafian et al. 2016). 
A speech activity detector followed by an i-Vector based 
child–adult turn-taking detection solution is developed. The 
advanced i-Vector based classification system was inspired 
by the success of i-Vector based systems in speaker recogni-
tion, and child age classification systems, but is designed to 
exploit child adult turn-takings with much smaller duration 
speech segments. The LENA1 recording device (Ziaei et al. 
2013) is employed and robust analytical algorithms for a 
machine-based solution are used.

1.2 � Location tracking

In this study a child location tracking method is proposed, 
that to the best our knowledge, is a novel approach to deter-
mine a childs communication activity/learning areas and 
relate this with the quantity of children verbal communica-
tion. Location tracking consists of three components: (1) 
children’s time spent in different language environments, 
(2) adult’s vocal interaction level in these activity areas, (3) 
child’s vocal interaction quantity across time points. From 
the results it can be observed where a child spends more/
less of their time during activities, as well as the amount of 
verbalizations, both spoken and heard. Moreover, this infor-
mation is helpful for educators to quantify interactions in the 
classroom which is essential for supporting a childs social 
and pre-academic learning.

For our experiments, we record and track the location of 
33 children of age 2.5 to 5 years in age across 4 classrooms 
in a high-quality child care center in the United States at 
various time points during the day. Each classroom setting 
has between 14-20 children with typically two adult edu-
cators. Each LENA unit typically captures two way voise 
conversations between primary and secondary speakers.

The reminder of this paper is organized as follows: In 
Sect. 2 the challenges in diarization for child-adult scenario 
are highlighted. Section 3 describes the child–adult data set. 
In Sect. 4 we review related systems. We present details of 
our diarization system in Sect. 5, and provide experimental 
results in Sect. 5.4. In Sect. 6 our novel location tracking 
approach is described. Conclusions are drawn in Sect. 7.

2 � Challenges in diarization for child–adult 
scenario

Childrens speech diarization within a naturalistic educa-
tion space is a more challenging task than traditional adults 
speech diarization for a range of reasons as follows:

–	 Acoustic and linguistic characteristics of children’s 
speech.

–	 Childs vocal system is smaller than an adult’s, which 
changing size and shape over development. This leads to 
higher variability of child speakers and is more difficult 
to separate male and female children speakers.

–	 Child speakers have a higher variability in speaking rate.
–	 Children generally display a a higher degree of sponta-

neous speech, which may be ill-formed, or incomplete 
sentences.

–	 Paralinguistic evens are more common for children, such 
as non-speech vocalizations as laughter, crying, shouting, 
yawning, coughing, or sneezing.

–	 Due to a lack of social/communication experience, chil-
dren speech will have a higher degree of overlap in natu-
ralistic conversation interactions.

–	 Children are more likely to seamlessly change conversa-
tional topics rapidly.

Due to these features, naturalistic child child speech 
diarization is significally more challenging than traditional 

Fig. 1   General diarization system

1  http://www.lenaf​ounda​tion.org.

http://www.lenafoundation.org
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diarization of single or two-speaker adult speech in teleph-
ony or broadcast news scenarios.

The proposed general diarization system employed in 
this study is illustrated in Fig. 1. Children speech tend to 
be significantly overlapping, because typically children lack 
social communication skills. So, while the adult may follow 
traditional conversational turn-taking protocol, children will 
speak with little regard to expected sentence bounders. With 
the such ill-formed spontaneous speech, traditional mentory 
of performance such as when become almost meaningless 
for this scenario. Therefore, other measures of conversa-
tional assessment may be necessary.

3 � Data set

For speech data collection, a light weight compact digital 
audio recorder LENA device (Ziaei et al. 2013) is worn 
(e.g., for the data used in these experiments, this included 
33 children of age 2.5 to 5 years old). The LENA unit cap-
ture as much as 16 h of continuesly recorded audio within a 
day, thought total recording per child here is typically 4–7 h. 
The audio is recorded throughout a typical day at an educa-
tion/childcare center, at three time periods where the child 
was participating in different education/social activities. 
We used 4.5 h of audio recording gathered by the LENA 
unit attached to 18 children (approximately 15 min each) 
to train our speech analysis systems. In our experiments, a 
threefold cross validation scenario was used, so no speaker 
appeared simultaneously in the training and test sets. For 
system evaluation, data was partitioned into labeled seg-
ments. The labels identify whether the segment belongs to 
the following categories.

–	 Non-speech: the stream of background noise, silence, 
music or conversation produced by other children or 
adults who are generally more than 8 feet away from the 
primary child speaker.

–	 Speech:

–	 Primary child: speech initiated by the child wearing 
the LENA unit.

–	 Secondary child: speech originated by other children 
and directed at the primary child within his/her close 
proximity.

–	 Adult: speech originated by a close adult and directed 
at the primary child within his/her close proximity.

From the manual human transcribed labels gathered, it was 
estimated that 52%, 22%, 10%, and 16% of our speech data-
base belongs to non-speech, adult speech, secondary child 
speech, and primary child speech categories respectively 
(see Fig. 2).

Table 1 reports average segment and turn durations within 
the database across primary child, secondary child and adult. 
The average segment duration for each class refers to the aver-
age time during which a certain class is active. Conversely, 
the average turn duration refers to the average time during 
which there is no change in segment activity and is thus always 
smaller than the average speaker duration.

For location data collection purposes a real-time location 
tracking system Ubisense device (Woźniak et al. 2013) was 
worn by all participating children. Ubisense relies on receivers 
and transmitters, which communicate using ultra wide band 
radio frequencies to report the childs location every second. 
These communications are logged by PC running the Ubisense 
Location Engine software packages (Woźniak et al. 2013). 
With proper calibration, the accuracy of Ubisense is ± 15 cm 
under ideal measurement conditions, and ± 30 cm in chal-
lenging measurement conditions (Phebey 2010). Ubisense has 
been used in a variety of commercial and research endeavors 
(Swedberg 2011; Riehle et al. 2008; Connaghan et al. 2009).

Fig. 2   Percentage of hand-labeled four way classes of data in the 
database, namely adults, primary child, secondary child, and non-
speech

Table 1   Ground-truth analysis for the dataset

Segment class Average duration (s) Average 
turn dura-
tion (s)

Primary child 1.9 1.8
Secondary child 1.8 1.6
Adult 2.2 2.1
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4 � Related systems

Our child–adult turn-taking detection system has some 
similarities with the speech diarization systems, since it 
requires detecting turn change points as the source of the 
audio segment changes. In this section, the state of the 
in this area is revised, and in the next section it will be 
compared the performance of our advanced system with a 
state-of-the-art diarization system for the child–adult turn-
taking tracking. The state-of-the-art system for broadcast 
news speaker diarization is composed of 5 steps. First, 
music and jingle regions are removed using Viterbi decod-
ing. Next, an acoustic segmentation followed by a Hier-
archical Agglomerative Clustering (HAC) splits and then 
groups the signal into homogeneous parts according to 
speakers and background. In this step, each segment or 
cluster is modeled by a Gaussian distribution with a full 
covariance matrix, and the Bayesian Information Crite-
rion (BIC) (Barras et al. 2006) is employed both as sim-
ilarity measure and as stop criterion. Next, a Gaussian 
Mixture Model (GMM) is trained for each cluster via the 
Expectation-Maximization (EM) algorithm. The signal is 
then re-segmented through a Viterbi decoding. The sys-
tem finally performs another HAC, using the Cross-Like-
lihood Ratio (CLR) (Reynolds et al. 1998) measure and 
GMMs trained with the Maximum A Posteriori algorithm 
(MAP) (Gauvain and Lee 1991). Using this diarization 
routine, several broadcast news and meeting diarization 
toolkits have proposed in the literature, namely the CMU 
Segmentation tool Siegler et al. (1997), the LIUM open-
source speaker diarization toolbox (Meignier and Merlin 
2010), the AudioSeg Audio segmentation toolkit (Gravier 
et al. 2010), the speaker diarization and recognition library 
ALIZE (Bonastre et  al. 2008), the SHoUT diarization 
toolkit (Huijbregts 2008), the diarization system by LIA 
and CLIPS laboratories (Meignier et al. 2006), the IDIAP 
DiarTK toolkit (Vijayasenan and Valente 2012) where 
clustering and segmentation are based on the information 
bottleneck principle, and finally the recent work by Yella 
(2015) based on Information Bottleneck with Side Infor-
mation (IBSI) which suppresses artifacts of background 
noise and non-speech segments at the conversation cluster-
ing phase. These systems can perform better when there 

are pauses between conversational turn-takings rather than 
spontaneous speech.

One of the main issues with most of these speaker dia-
rization systems is the lack of a simple approach that can 
robustly and efficiently be applied to audio segments with-
out the need for expensive agglomerative cluster merging 
and retraining, parameter tuning or adjusting minimum 
duration constraints for Viterbi realignment (Anguera et al. 
2012; Tranter and Reynolds 2006). Previously the problem 
of clustering efficiency for large sets of speaker segments has 
been addressed by employing complete-linkage clustering 
(Ghaemmaghami et al. 2011), however the use of Viterbi 
realignment in their diarization module has resulted in inef-
ficiencies when processing long recordings. A cluster-voting 
approach has been proposed in (Ghaemmaghami et al. 2015) 
which took advantage of multiple clustering decisions in 
order to make a more informed clustering decision without 
requiring Viterbi realignment to rectify incorrect clustering 
decisions.

5 � Child–adult diarization system

One of the main issues with most of the speaker analysis and 
diarization systems is the lack of a simple approach that can 
robustly and efficiently be applied to audio segments without 
the need for expensive agglomerative cluster merging and 
retraining, parameter tuning or adjusting minimum duration 
constraints for Viterbi realignment. In this section our base-
line system is decribed, that is an i-Vector based child–adult 
diarization with a Support Vector Machine (SVM) (Cortes 
and Vapnik 1995) (Sect. 5.1), then we modify this system by 
exploiting a Threshold Optimized Speech Activity Detector 
(TO-COMBO-SAD) (Ziaei et al. 2014) for separating the 
speech/non-speech segments at the beginning (Sect. 5.2). 
Finally, a speaker diarization system is described, that has 
been successfuly used previously in the broadcast news dia-
rization task (Meignier and Merlin 2010) (Sect. 5.3).

5.1 � Baseline system

In this section the description is provided of our baseline 
i-Vector based child–adult turn-taking detection system with 
35.6% classification error rate. The system is illustrated in 

Fig. 3   i-Vector based child–
adult event classification system
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Fig. 3. The i-Vectors (Dehak et al. 2011a; Bahari et al. 2014) 
can best describe the coordinates of the audio features in a low 
dimensional space. The i-Vectors were successfully applied to, 
namely speaker recognition (Dehak et al. 2011b) language, 
and accent recognition areas. The advanced child–adult turn-
taking detection system was inspired by the success of i-Vec-
tors in age-group identification task for children and adults 
(Safavi et al. 2014). During the i-Vector approach only one 
single space (total variability space) is defined for describ-
ing all types of both speaker and session variabilities in an 
utterance as described below. In order to be able to capture 
rapid child–adult conversational turns while capturing useful 
information about the speaker in this study we segmented the 
audio recordings into 1.5 s cuts. In our system the rank of 
the i-Vector space is quite small (e.g., 25) compared with the 
number used in speaker recognition (e.g., 300) (Dehak et al. 
2011a) or accent/language recognition (e.g., 500) due to the 
short estimation window.

5.1.1 � Feature extraction and voice activity detection (VAD)

The speech is segmented into 25-ms frames with a shift of 
10-ms between frames, and a Hamming window applied to 
each frame. The short-time magnitude spectrum, obtained 
by applying the FFT, is passed to a bank of 27 Mel-spaced 
triangular band-pass filters. Each speech frame is then repre-
sented as a 42-dimensional Mel Frequency Cepstral Coeffi-
cients (MFCCs) feature vectors consisting of 0th to 12th-order 
Cepstral coefficients, log energy, and all delta and delta-delta 
variants.

5.1.2 � UBM

Speech from the training set is used to estimate the parameters 
of the Universal Background Model (UBM).

5.1.3 � Baum‑Welch statistics

The UBM trained in the previous stage can now be used for 
extracting the zero- and first-order Baum-Welch statistics 
centralized over the UBM mean.

5.1.4 � Extracting the i‑Vectors

For child or adult utterances, the value of T-matrix and 
i-Vector (mean of posterior distribution) are estimated itera-
tively using the EM algorithm. In the Expectation step, T is 
assumed to be known, and w is updated. In the Maximization 
step, w is assumed to be known and T is updated. For utter-
ance, u, in the Expectation step, the i-Vector w is updated 
using the current value of the T-matrix, and the Baum-Welch 
statistics extracted from the UBM. In our system, the UBM 
was trained on the training subset of the dataset using vari-
ous number of UBM components and T-matrix ranks. Our 
system uses a UBM with 256 components, and a T-matrix 
of rank 25 (chosen empirically).

5.1.5 � SVM

A multi-class SVM classifier with linear Kernel is trained 
to classify the i-Vectors into 3 classes. The test speakers 
i-Vector is scored against each SVM (using a one against 
all approach). The class which gives the maximum score 
determines the label of the test segment.

5.2 � System advancements

In this section our threshold optimized i-Vector based 
child–adult turn-taking detection system with 28% clas-
sification error rate is presented. As shown in Fig. 4, the 
advanced system classifies the given audio into four main 

Fig. 4   Main stages of the child–
adult turn-taking system
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categories of non-speech, adult (teacher) speech, primary 
and secondary child speech using a Support Vector Machine 
(SVM) classifier (Cortes and Vapnik 1995). Our system uses 
Speech Activity Detection (SAD). This system starts by 
removing the non-speech regions (environmental noise such 
as crowd and music noise) using a TO-COMBO-SAD Ziaei 
et al. (2014) (Fig. 5). This speech activity detection has been 
particularly effective in multiple RATS evaluations (Sadjadi 
and Hansen 2013; Graciarena et al. 2013). During SAD sev-
eral noise robust features are computed at a frame level for 
each audio segment and the combined feature vectors are 
projected into a single dimension (by using Principal Com-
ponent Analysis) for the speech and non-speech discrimina-
tion task. This feature is efficiently obtained from a linear 
combination of the voicing measures, namely harmonicity, 
clarity, prediction gain, and periodicity as described bellow. 
After applying SAD, the previously described i-Vector based 
child–adult turn-taking detection system is applied to the 
speech segments.

5.2.1 � Feature extraction

The audio signal is blocked into 25 ms frames (10 ms over-
lap). To extract the periodicity, harmonicity, and clarity, we 
choose a pitch period duration within the interval of (Delano 
and Snell 2006; Barras et al. 2006) ms (or equivalently [62.5, 
500] Hz in the frequency domain), where the lower limit is 
imposed by the analysis frame length, and the fact that each 
frame should at least cover two pitch periods for a reliable 
voicing estimate.

5.2.2 � Normalized autocorrelation estimation

Estimation of time domain voicing measures, such as harmo-
nicity, clarity and prediction gain rely on normalized auto-
correlation value proposed in (Boersma 1993). It has been 
shown that normalization by autocorrelation of the window 
function effectively mitigates the impact of strong formants 
on the maximum autocorrelation peak in the pitch range, 
obviates the need for low-pass filtering and/or center-clip-
ping and compensates for the windowing effect. For noise 
robust pitch estimation, the deterministic autocorrelation of 
a short-time windowed segment needs to be computed.

5.2.3 � Harmonicity feature

Harmonicity is defined as the relative height of the maxi-
mum autocorrelation peak in the plausible pitch range 
For voiced segments the harmonicity shows sharp peaks. 
Clarity feature: clarity is defined as the relative depth of 
the minimum average magnitude difference function in 
the plausible pitch range. The clarity exhibits large values 
for voiced and speech-like segments, while maintaining a 
minimum for background sounds.

5.2.4 � Prediction gain feature

The prediction gain is defined as the ratio of the signal 
energy to the linear prediction residual signal energy. 
From the Levinson–Durbin recursion intermediate set of 
parameters is obtained that can be equated to the reflection 
coefficients of an acoustic tube model of the vocal tract.

5.2.5 � Periodicity feature

The periodicity can thus be used to effectively discrimi-
nate speech from non-speech sounds. In the Short Time 
Fourier Transform (STFT) domain, the harmonics of the 
pitch frequency are apparent in the magnitude spectrum 
of speech during voiced and speech-like segments. This 
observation serves as the basis for the harmonic product 
spectrum (HPS) technique which has been widely applied 
for pitch detection in noisy environments. The periodicity 
is especially impervious to noise and other background 
sounds, since their spectral harmonics cannot combine 
coherently in the HPS. The frequency-compressed cop-
ies coincide at the fundamental frequency and re-inforce 
the amplitude, while other harmonics are attenuated in 
the final product. The periodicity is computed as in the 
plausible pitch range.

5.2.6 � Spectral flux (SF) feature

The SF (Scheirer and Slaney 1997), is a feature capable of 
measuring the degree of variation in the spectrum across 
time. The negative of perceptual SF exhibits small values 
for non-speech segments (background sounds/silence), 

Fig. 5   Applying TO-COMBO-
SAD prior to event classifica-
tion
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while maintaining a maximum value for speech segments. 
the speech segments.

5.2.7 � Principal component analysis (PCA)

A 5-dimensional vector is formed by concatenating the 
above named features. Each feature dimension is normalized 
(zero mean unit variance).The normalized feature vectors are 
linearly mapped into a 1-dimensional feature space using 
the PCA algorithm (Zhao et al. 1988). The 1-dimensional 
combo feature is smoothed via a 3-point median filter to 
serve as soft-decisions for the SAD (referred as Combo-
SAD feature).

5.2.8 � SAD threshold estimation

The Combo-SAD feature has a bimodal distribution in 
which speech and non-speech classes are well separated. In 
this step, the mixture means are used to compute the SAD 
threshold and speech/pause decisions are made. We exploit 
this property by fitting a 2-mixture GMM to the feature and 
estimating a detection threshold, � from a weighted average 
of the mixture means, where � , �hs and �hp are the weight 
factor, hypothesized speech and non-speech mixture means, 
respectively. Next, the means of this GMM are projected 
into the Combo SADs single-dimension decision making 
space, where m̂j is the j mixture mean of the M-mixture 
GMM, and mj is the corresponding projected value. Here, 
m̂j represents the prior model of speech (since it was built 
with speech data from annotated corpora), while �ts can be 
viewed as the posterior model of speech (since it is built 
based on Combo-SAD features from data). If �hs ≥ �ts then 
we trust the posterior model of speech and use it for decision 
making. Alternatively, if �hs ≥ �ts , then we use the prior 
model of speech for decision making. Then speech/pause 
decisions are made using the SAD threshold value � is based 
on a simple convex combination. During both training and 
testing of the child–adult turn-taking detection system only 
the segments labeled as speech are given as inputs.

5.3 � LIUM speaker diarization toolkit

In this section we describe the application of the LIUM 
speaker diarization system (Meignier and Merlin 2010) for 
child–adult and non-speech classification with 38.5% error 

rate. This diarization process can break down into three main 
stages.

5.3.1 � Feature extraction

The inputs to this system are 13 MFCCs with coefficient C0 
as energy, computed every 10 ms using a 20 ms window.

5.3.2 � Segmentation based on BIC

The initial segment boundaries are determined according 
to a Generalized Likelihood Ratio (GLR), computed using 
Gaussians with full covariance matrices. The Gaussians are 
estimated over a 2 s window sliding along the whole sig-
nal. A segment boundary (i.e. change point), is present in 
the middle of the window when the GLR reaches a local 
maximum.

5.3.3 � BIC Clustering

The Universal Background Model (UBM) is adapted (Maxi-
mum A Posteriori) MAP for each cluster. The clustering is 
based on a bottom-up hierarchical agglomerative clustering 
(Siegler et al. 1997). In the initial set of clusters, each seg-
ment is a cluster. The two closest clusters are then merged at 
each iteration until the BIC stop criterion is satisfied. Each 
cluster, is modeled by a full covariance Gaussian during the 
segmentation process. The BIC penalty factor is computed 
over the length of the two candidate clusters.

5.3.4 � Segmentation based on Viterbi decoding

A Viterbi decoding is performed to adjust segment bound-
aries. A cluster is modeled by a Hidden Markov Model 
(HMM) with only one state, represented by a GMM with 
8 components learned by maximum-likelihood expectation 
maximization over the set of class label segments. A hierar-
chical clustering for speaker models (using GMMs) is car-
ried out over the clusters generated by the Viterbi decoding.

5.3.5 � Speech detection

Our system is trained to distinguish between primary child, 
secondary child, adult and non speech classes. In order to 
identify and remove music regions, the audio is segmented 

Table 2   Confusion matrix for 
the i-Vector SVM system with 
1.5s segments

i-Vector SVM system Error rate (%) Adult Prim.child Sec. child Non-speech

Adult 19.5 – 3.2 7.3 9.1
Prim. child 34 6 – 9 19
Sec. child 35.6 5.6 10.6 – 19.37
Non-speech 42.7 10.8 15 16.9 –
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into speech and non-speech regions using a Viterbi decoding 
with 8 one-state-HMMs, comprising of 1 model of silence, 1 
model of background crowd noise, 1 model of music, 3 mod-
els of speech (primary child, secondary child, adult speech).

5.4 � Results and analysis

In this section, firstly a confusion matrix for our i-Vector 
SVM based diarization system is showed. During the scor-
ing the misclassification errors, are measured at a frame 
level by comparing the hypothesis classification with the 
reference segmentation generated by hand according to the 
audio content. Our experimental results show that apply-
ing TO-COMBO-SAD prior to an i-Vector based classifica-
tion (Sect. 5.2) results in up to 21.34% and 27.3% relative 
classification error rate reduction compared to the baseline 
system (Sect. 5.1) and standard speaker diarization system 
(Sect. 5.3) respectively.

Table 2 shows the confusion matrix corresponding to our 
baseline i-Vector system, using the data segments from the 
childcare center database. The segment length 1.5 seconds 
is chosen impractically. Comparing the individual class error 
rates (second column) across Table 2, it can be seen that our 
system achieves lower error rates for adult and primary child 
classification, and the error rates increase for non-speech and 
secondary child classification.

Comparing the individual class error rates (second col-
umn) across Tables 3 and 2, it is observed that using the 
TO-COMBO-SAD prior to the i-Vector based baseline 
classification has resulted in up to 22% error rate reduc-
tion within each individual class. In both systems the lowest 
error rate belongs to the adult classification, and the high-
est error rates belong to the non-speech classification. The 
non-speech confusion with other classes can be explained 
by the broad nature of its class (music, background noise, 

crowd noise, singing). There is a considerable amount of 
background noise (including far distance child and adult 
speech) within our childcare center database, and this may 
be the reason behind the mis-recognition of child and adult 
speech segments as a non-speech group. For instance in the 
baseline system 9.1%, 19%, and 19.37%, and in the TO-
COMBO-SAD based system 6.8%, 12%, and 13.12% of the 
errors occurred as a result of confusion between the, namely 
adult, primary child, and secondary child classes and the 
non-speech class respectively (last column).

The highest confusions occurred between the second-
ary child and non-speech classes. For instance, in the base-
line and the TO-COMBO-SAD based systems 19.37% and 
13.12% of the classification errors in the secondary child 
classification (4th row) and 16.9% and 15.2% (last row) of 
the classification errors in the non-speech classification are 
due to the confusions between the secondary child speech 
and non-speech groups respectively. This might be due to the 
fact that a considerable amount of child speech from a dis-
tant proximity exists within the crowd noise (non-speech).

Table 4 presents the effect of segment duration on clas-
sification error rate for the TO-COMBO-SAD i-Vector 
SVM system. The lowest error rate is achieved when using 
segment duration of 1.5s. Previous research has shown 
that longer audio segments will result in capturing more 
speaker dependent information in the i-Vector space. On 
the other hand, selecting longer audio segments will result 
in missed turn-taking points and increasing the classifica-
tion error rates. This is also evident from our results. For 
instance for audio segments of length 1 s (first column, 
Table 4) enables the system to capture rapid turn-takings, 
however this limits the amount of useful information 

Table 3   Confusion matrix for the i-Vector SVM TO-COMBO SAD 
system with 1.5s segments

i-Vector 
SVM system 
(%)

Error rate Adult Prim.child Sec. child Non-speech

Adult 13.6 – 2.3 4.5 6.8
Prim. child 23 4 – 7 12
Sec. child 26.2 4.4 8.7 – 13.12
Non-speech 35.6 8.3 12.1 15.2 –

Table 4   Effect of segment 
duration on the classification 
error

Child–adult turn-taking detection Error rate Error rate Error rate Error rate

Segments duration 1 s 1.5 s 2 s 3 s
TO-COMBO-SAD i-Vector SVM 32.1% 28 % 30.3% 31%
T-Matrix rank 20 25 150 200

Table 5   Child identity and background information

Child ID Age Gender Speech 
develop-
ment

Primary language

1 3 years, 2 months Male Typical Turkish
2 3 years, 3 months Male Delayed English
3 3 years, 1 months Female Typical English
4 3 years, 2 months Male Typical Turkish
5 3 years, 2 months Female Typical English
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that can be captured in the i-Vector space. However, no 
dramatic change in error rate has been resulted after 
increasing the length of audio segments from 1.5 to 3 s. 
This may be due to the fact that, using longer audio seg-
ments (e.g. 2 and 3 s) will result in estimation of more 
informative i-Vector features (T-matrix with higher rank 
are found more effective; (Table 4). Hence, the improve-
ments resulted by using i-Vectors estimated from longer 
segments has helped with compensating for the errors 
occurred as a result of missing the rapid turn-takings dur-
ing the conversation (Table 4).

6 � Location tracking system

In this section our aim is explore a novel childs location 
tracking approach, which can quantify childs vocal interac-
tion in different activity/learning environments. A case study 
is presented from 5 children which include 3 males and 2 
females. One of these children has a developmental delay 
while the remaining are typically developing. As shown in 
Table 5 two-fifth of these children have been exposed to non-
English primary language. The data was collected in a high-
quality child care center in the United States. As illustrated 
in Fig. 6, the center has 7 different activity areas: art, block, 
book, dramatic play, cubbies, manipulatives, and science.

After applying the child–adult turn-taking detection to 
the data recorded from the case study children, we man-
aged to estimate the percentage of the time each child 
engages in the communication with other children and 
adults (Sect. 5.2). For each child, three location recordings 

were chosen from three typical days at three different Time-
Points within one classroom at a childcare center (giving 
us a total of 9 h of evaluation data per child). There were 
a number of none-speech occurrences during the recorded 
audio files (music, and crowd noise) in this study all those 
occurrences were removed. For Time-Point #1 and #3, audio 
files were recorded during the morning where the posted 
class schedule consisted of science, arts, blocks, and free 
play. For Time-Point #2 audio files were recorded during 
the afternoon where the schedule consisted of free play, art, 

Fig. 6   Activity areas within a child care center

Fig. 7   Time (%) that five 
children spent at seven different 
activity areas at three different 
Time-Points
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hand washing, having snacks, nap and quite time. Analysis 
are carried out during three distinct Time-Points. The 3 h 
Time-Points shown in Figs. 7, 8, 9, 10, and 11 are not neces-
sarily synced. This is because the non-speech frames from 
the audio labels and also missing locations from the location 
labels are removed from the analysis. The experiments take 
into account:

–	 Primary child: speech initiated by the child wearing the 
LENA unit.

–	 Secondary child: speech originated by other children and 
directed at the primary child within his/her close proxim-
ity.

–	 Adult: speech originated by an adult and directed at the 
primary child within his/her close proximity.

In the following sections the effect of different language 
environment for verbal communication quantity is explored. 
We present an analysis of children vocal interaction quan-
tity through location tracing, that is based on three types of 
observations:

–	 Time that children spent at different learning areas 
(Sect. 6.1).

–	 Adult-child verbal interaction level with respect to dif-
ferent learning environments (Sect. 6.2).

–	 Quantity of verbal communication (i) child–child, (2) 
child–adult (Sect. 6.3).

Finally, analysis and discussions taking into account all 
these observations are provided in Sect. 6.4.

6.1 � Children’s time spent in language environments

In this section we analyze the child’s language environment, 
and study at what percentage of time each child is vocalizing 
in each activity area. Understanding which activity areas 

Fig. 8   Heat map adult word count vocalizations per minute
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Fig. 9   Level of interaction between children and other children and 
adults, Time-Point #1
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Fig. 10   Level of interaction between children and other children and 
adults, Time-Point #2
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Fig. 11   Level of interaction between children and other children and 
adults, Time-Point #3
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stimulate verbal communication can be helpful for more 
efficient language development.

Figure 7 illustrates time, which children spent at different 
activity areas, at different Time-Points. The statistics are col-
lected from 5 children, during Time-Points #1, #2 and #3. It 
is interesting to make the following observations:

(1)	 Time spent by each child in different learning areas dur-
ing different Time-Points. It can be seen that Child #1, 
Child #4, Child #5 during Time-Point #1 spent a fair 
amount of time in the area of books, but during Time-
Points #2, #3 in the area of block. Child #2 during all 
the Time-Points prefered the area of science. Analyz-
ing the case of Child #3, it is seen that in the Time-
Point #1 dominating zone was science, and during the 
other Time-Points it was area of block. Children spent 
least amount of their time in sensory and manipulatives 
activity areas.

(2)	 What learning areas are the most popular among chil-
dren during different Time-Points. As it is illustrated in 
the Fig. 7, during the Time-Point #1 the most domina-
tive are learning environments of books and science. 
All the children spent most of their time in the block 
area during Time-Point #2 and Time-Point #3.

6.2 � Adult’s vocal interaction level in different 
activity areas

An intervention is important to stimulate child’s voice com-
munication. In order to understand the need of child assis-
tance, we explore in which learning areas children demand 
more verbal assistance. Figure 8 displays the heat map of the 
adult word count vocalizations per minute in each activity 
area. The hot red spots indicate the highest adult-to-child 
interaction lever, and the blue spots shows the lowest one. It 
can be observed that teachers were mostly vocalizing dur-
ing the art activities that belongs to the academic zone. As 
well, teachers had hight vocal interactions in play zone, more 
specifically in books, science, and routine zone near the sink, 
lunch table, and cubbies area. In contrast to it, the teachers 
had the lowest verbal interaction level in blocks and manipu-
latives areas that belong to the academic zone.

6.3 � Children’s vocal interaction quantity 
during different time points

Figures 9, 10, and 11, help to understand the childs lan-
guage environment by estimating the time of vocal interac-
tion during Time-Point #1, Time-Point #2, Time-Point #3, 
respectively. We explore how much time in percentage each 
of five children spent talking. At the same time we take into 
account verbal communication of (i) secondary child, (ii) 
primary child, (iii) adult. The statistics shows the quantity 

of communication between children and with adults, that can 
help to explore which child need more teacher assistance. It 
can be observed that teachers spent more time interacting 
with child #4 during Time-Point #1, with child #3 during 
Time-Point #2. Meanwhile during Time-Point #3 all children 
interact with adults on average the same amount of time. In 
contrast to it, teachers direct the least amount of communica-
tion for child #5 during all Time-Points.

6.4 � Analysis and discussions

In the previous subsections three types of observations to 
quantify the children vocal interaction were presented: (1) 
time that children spent at different learning environments, 
(2) quantity of vocal communication directed by adult in 
learning environments, (3) level of verbal communication 
between children, and children’s communication with adults. 
In this section we relate and analyze all these different types 
of observations.

It is interesting to compare the language environment 
across different children and compare the level of interac-
tion for each individual child across Time-Points which 
involves different activities. The illustrations show that dur-
ing Time-Point #1 (Fig. 9), the average duration of conversa-
tion directed by the teacher to the primary child reaches its 
maximum and the average duration of conversation directed 
by other children to the primary child reaches a minimum 
compared to Time-Points #2 (Fig. 10) and #3 (Fig. 11). 
The amount of conversation directed to a child by the adult 
likely depend on the type of activity the child engages in. 
At Time-Point #1 the average duration of child–child inter-
action (conversation between primary and secondary chil-
dren) is on average only 3.5 times higher than the amount 
of child–adult interaction (conversation directed at the child 
by the teacher).

This amount shows the nature of activity environment 
that child is exposed to was more teacher oriented compared 
to that of activities shown in Figs. 9, 10, and 11 for which 
this value reaches to 4.20 and 3.8 respectively.

During Time-Point #1 (Fig. 9), on average a smaller 
amount of speech was directed to child #4 by other children 
is bellow average. This may be because the childs primary 
language is not English and more efforts are needed to help 
engage him or her in conversations.

This can also be explained using information from 
Figs. 7, 8. Figure 7 shows that child #4 spent 31% of his 
time in the books and science areas respectively, while the 
other children spent a majority of their time in the blocks 
and science area. As it is illustrated in Fig. 8, the books 
activity area involves the higher amounts of speech from 
the teacher to the children. This may explain the smaller 
amount of child–child conversation for child #4 is due to 
the nature of activities he has been engaged to. Despite 
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the fact that child #2 had symptoms of development delays 
on average, a relatively high amount of conversation was 
between this child and other children and teachers.

During Time-Point #2 (Fig. 10) which included the 
afternoon activities, the amount of speech directed by 
teachers to children is reduced compared to Time-Point #1. 
This can be explained by Figs. 7 and 8. As it is shown in 
Fig. 7, the average amount of time spent by children in the 
science area was reduced considerably and now a majority 
of children spent up to 40 percent of their time in the block 
activity area. In 8 it is observed that in block area teachers 
almost do not vocaly interact with children.

Across all three Time-Points, the highest relative aver-
age amount of speech produced by primary and secondary 
children takes place during Time-Point #3 (Fig. 11). This 
may be explained by Fig. 7 that shows on average highest 
amount of time was spent on block activities (child–child 
communication oriented). Also during Time-Point #3 the 
average amount time spent in the book area is the lowest 
across all three time points, which may explain why the 
average amount of speech directed to children by adults is 
reduced compared to other Time-Points across all children.

We presented a novel approach, that helps to quantify a 
level of children vocal interaction through location track-
ing. Collectively, children’s time spent in different areas 
(Fig. 7), the heat map of teachers vocal interaction (Fig. 8), 
and the Time-Points corresponding to 5 children in Figs. 9  
10, and 11 allow us to gain a wider perspective of child 
communication with teachers and peers in the classroom 
across different activity areas. Our analysis plots support 
our ability to:

–	 Determine which children are less engaged in voice 
communication.

–	 Assess how much communication children have with 
other children in specific activity areas.

–	 Determine which activities stimulate greater voice 
communication between child–teacher and child–child.

–	 Determine which activity areas individual children or 
all children within a given classroom on average spent 
their time (e.g., on average the largest and smallest 
amount of time was spent in the blocks and manipula-
tives areas, respectively).

Providing teachers the information about the language 
environment, children experience and the locations they 
occupy, will allow early educators to better arrange inter-
actions in the classroom that support childrens social and 
pre-academic learning. Our system provides a framework 
that may be useful in finding patterns in the global and 
local cues which provide the discrimination on the level 
of childs engagement in vocal communication.

7 � Conlusion

In this paper we presented a language monitoring system 
using (1) a child–adult turn-taking, (2) a novel location 
tracking approach. A close to real-time (1.5 seconds delay) 
child–adult speech turn-taking system was introduced. Our 
experimental results show that applying TO-COMBO-SAD 
prior to i-Vector based classification results in up to 27.3% 
and 21.34% relative error rate reduction compared to the 
baseline results produced by the LIUM speaker diarization 
system and the baseline i-Vector based system respectively.

Looking at the confusion matrix of the TO-COMBO-
SAD i-Vector based system it can be observed, that our sys-
tem achieves lower error rates for adult and primary child 
classification and the error rates increase for non-speech 
and secondary child classification. Comparing the confu-
sion matrix of the TO-COMBO-SAD i-Vector based system 
with that of the baseline i-Vector system, it was showed that 
applying this speech activity detector is quite beneficial and 
results in reducing the number of errors occurred due to the 
confusion between speech and non-speech segments. It was 
also showed the effect of segment duration on classification 
performance. The best results were achieved by using seg-
ments with 1.5s duration. Using segments of shorter length 
limits the amount of useful speaker dependent information 
captured in the i-Vector space, and using longer segments 
will result in missing rapid turn-taking points.

A novel case study was presented to show the importance 
of speech and location analysis in building a foundation for 
the analysis of child language environment. We relied on 
three types of observations: (1) children’s time spent in dif-
ferent language environments, (2) the heat map of adult’s 
vocal interaction level in different activity areas, (3) chil-
dren’s vocal interaction quantity during different time points. 
These results can help us to understand where a child spends 
more/less time during specific classroom activities as well as 
the amount of verbalizations, both spoken and heard, which 
may affect their interest in specific activity areas.
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