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Optimal Scheduling of Water
Distribution Systems

Manish K. Singh , Student Member, IEEE, and Vassilis Kekatos , Senior Member, IEEE

Abstract—With dynamic electricity pricing, the operation
of water distribution systems (WDS) is expected to become
more variable. The pumps moving water from reservoirs
to tanks and consumers can serve as energy storage al-
ternatives if properly operated. Nevertheless, optimal WDS
scheduling is challenged by the hydraulic law, according to
which the pressure along a pipe drops proportionally to its
squared water flow (WF). The optimal water flow (OWF) task
is formulated here as a mixed-integer nonconvex problem
incorporating flow and pressure constraints, critical for
the operation of fixed-speed pumps, tanks, reservoirs, and
pipes. The hydraulic constraints of the OWF problem are
subsequently relaxed to second-order cone constraints.
To restore feasibility of the original nonconvex constraints,
a penalty term is appended to the objective of the relaxed
OWF. The modified problem can be solved as a mixed-
integer second-order cone program, which is analytically
shown to yield WDS-feasible minimizers under certain
sufficient conditions. Under these conditions, by suitably
weighting the penalty term, the minimizers of the relaxed
problem can attain arbitrarily small optimality gaps, thus
providing OWF solutions. Numerical tests using real-world
demands and prices on benchmark WDS demonstrate the
relaxation to be exact even for setups where the sufficient
conditions are not met.

Index Terms—Convex relaxation, optimal water flow
(OWF), second-order cone constraints, water flow (WF)
equations.

NOMENCLATURE

Symbol Meaning
M Node set.
Mr ,Mb Node sets of reservoirs and tanks.
P , P Edge set and number of edges.
Pa , P̄a Edge set hosting pumps and its complement.
dt

m Injection at node m and time t.
dt

mn Flow on edge (m,n) at time t.
d̃t

mn , dmn , dmn Flow through pump (m,n) at time t, and
limits.

d (d̃) Pipe (pump) flows at all times.
ht

m , hm Pressure at node m during time t, and limit.
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h Nodal pressures at all times.
cmn Loss (consumption) coefficient of pipe

(pump).
xmn Flow direction (running status) for pipe

(pump).
gmn Pressure added by pump.
αt

m Connectivity status for reservoir or tank m.
h̄m Constant pressure at reservoir m.
βt

m Filling/emptying status of tank m.
�t
m , �m , �m Water level in tank at time t and its limits.

Am Cross-sectional area for tank m.
δ Time interval.
πt Electricity cost at time t.
f(d̃) total pumping cost given pump flows d̃.
A(dt) Incidence matrix based on flow directions at

t.
g(h) Penalty function.
λ Weighing parameter.
M Big-M trick parameter.

I. INTRODUCTION

WHILE water distribution systems (WDS) serve as a crit-
ical infrastructure, there is an increasing emphasis on

improving their reliability, quality, and efficiency. The cost-
intensive installation and maintenance of WDS components,
such as pipelines, pump stations, and reservoirs, have moti-
vated network planning studies [1]–[4]. From an operational
perspective, a recent survey on WDS optimization identifies
pump scheduling and water quality as the two focus areas [5].
Recognizing that 4% of the total electricity consumption in the
USA is attributed to water network operations [6] and that the
electricity cost for pumping constitutes the largest expenditure
for water utilities [7], stresses the significance of optimal WDS
scheduling.

A typical WDS schedule would run pumps mainly at night
when electricity prices are low to transfer water from reservoirs
through pipes and fill up elevated tanks located closer to water
demands. Under the smart city vision, dynamic electricity pric-
ing and demand-response programs incentivize more flexible
WDS schedules to minimize operational costs. For example, a
surplus of residential solar generation around midday could be
locally consumed to run pumps and fill up pumps, thus serving
as an energy storage alternative. Adaptive WDS scheduling and
the anticipated joint dispatching of electric power and water
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networks motivate the need for scalable optimization tools and
more realistic system models.

The operation of WDS is constrained by minimum pressure
requirements; capacity limitations imposed by pumps, pipelines,
and tanks; and a set of hydraulic constraints. It is exactly these
hydraulic constraints that give rise to complex mixed-integer and
nonlinear formulations, and have been dealt so far in three broad
ways [5]. The first class of methods enforces pressure and capac-
ity constraints explicitly, while the hydraulic constraints are in-
cluded implicitly through water network simulation tools, such
as EPANET [8], [9]. Metaheuristic approaches such as genetic
algorithms [7], ant-colony optimization [10], or limited dis-
crepancy search [11] are then used together, along with a WDS
simulator, to obtain an operating point. Some variants replace
the slow but exact simulator with surrogate WDS models based
on artificial neural networks or interpretive structural models
[12], [13]. It has been demonstrated, however, that WDS opti-
mization using metaheuristics coupled with a simulator scales
unfavorably due to the computational effort required [14].

The second class of methods rely on formulating (mixed-
integer) nonlinear programs and handling them via nonlinear
solvers [15]. A mixed-integer second-order cone formulation
for optimal pump scheduling relaxes the hydraulic constraints
to render the problem convex in the continuous variables [16],
[17]. The relaxation is shown to be exact, presuming all pipes
are equipped with pressure-relieving valves and upon ignoring
some pressure tank constraints. The water-power nexus has been
studied in [18], wherein the nonconvex hydraulic constraints are
passed on to a nonconvex solver with no optimality guarantees.
The security of interdependent water-power-gas networks has
been studied from a game-theoretic viewpoint in [19], using the
nonconvex hydraulic constraints.

The third class of methods uses linearization to end up with
a computationally tractable mixed-integer linear program (LP)
formulation [4], [20]. Adopting [17] to find an optimal water-
power flow dispatch, Zamzam et al. [21] handled the nonconvex
constraints arising from both water and electric power networks
via a successive convex approximation technique. The latter
approach features computational advantages without the inac-
curacies of linearization; yet water-flow (WF) directions and the
ON/OFF status of pumps are assumed given. The participation of
WDS in demand response and frequency regulation through
pump scheduling with piecewise linearization of hydraulic con-
straints has been suggested in [22]–[24].

Toward computationally convenient WDS solvers, the con-
tribution of this paper is two-fold. First, a generalized model for
various WDS components is developed in Section II. Some of its
distinct features include separability of binary and continuous
variables, flexibility of bypassing pumps, bidirectional flows,
and precise modeling of tank operation. Second, an optimal wa-
ter flow (OWF) problem to minimize electricity operation cost
for fixed-speed pumps is put forth in Section III. Sections IV
and V develop a convex relaxation, which is later augmented
by a novel penalty term to promote minimizers that are feasible
for the water network. Under specific conditions, the penal-
ized relaxation is shown to yield a minimizer of the original
nonconvex OWF problem. The numerical tests of Section VI

on benchmark WDS corroborate that the proposed relaxations
can yield feasible and optimal WDS dispatches even when the
analytical conditions are grossly violated.

II. WATER NETWORK MODELING

A WDS can be represented by a directed graph G := (M,P).
Its nodes indexed by m ∈ M correspond to water reservoirs,
tanks, and points of water demand. Reservoirs serve as primary
water sources and constitute the subsetMr ⊂ M. Similarly, the
nodes hosting tanks comprise the subsetMb ⊂ M. The nodes in
Mr ∪Mb do not serve water consumers. This is without loss
of generality, since a potential colocated consumer at a node
m ∈ Mr ∪Mb can be attached to an auxiliary node connected
to the node m through a lossless pipe. Let dt

m be the rate of water
injected into the WDS from node m during period t. Apparently,
for reservoirs dt

m ≥ 0; for demand nodes with water consumers
dt

m ≤ 0; tanks may be filling or emptying; and for junction
nodes dt

m = 0.
The elements of the edge set P of G represent water pipes,

and their cardinality is P := |P|. All edges in P are assigned
an arbitrary direction. The directed edge (m,n) ∈ P models
the pipeline linking nodes m and n. If (m,n) ∈ P , then (n,m)
/∈ P . The WF on edge (m,n) is denoted by dt

mn. If water runs
from node m to node n at time t, then dt

mn ≥ 0; and negative,
otherwise. Flow conservation dictates

dt
m =

∑

k :(m,k)∈P
dt

mk −
∑

k :(k,m )∈P
dt

km ∀m, t. (1)

In addition to water injections and flows, WDS operation is
also governed by pressures. Water pressure is typically surro-
gated by the quantity of pressure head, which is measured in
meters and is linearly related to water pressure [20]. In detail,
a pressure head of h meters corresponds to a water pressure of
hρg̃ pascal, where ρ is the water density in kg/m3 , assumed to
be a known constant and g̃ is the acceleration due to gravity in
m/s2 . The pressure head (also known as piezometric pressure
head) at a node is equal to its geographical elevation plus the
manometric pressure head attributed to the height of the water
column or pumps.

The pressure head or henceforth simply pressure at node m
during time t will be denoted by ht

m . The operation of water
networks requires a minimum manometric pressure at all nodes
m. Adding this common minimum value of manometric pres-
sure to the specific but known geographical elevation of each
node m ∈ M gives a lower limit on its pressure as

ht
m ≥ hm . (2)

Water movement in a pipe results in a quadratic pressure drop. In
detail, the pressure drop across pipeline (m,n) ∈ P is described
by the Darcy–Weisbach equation [20]

ht
m − ht

n = cmn sign(dt
mn )(dt

mn )2 (3)

where the loss coefficient cmn := �m n fm n

4π 2 r 5
m n g̃ depends on the pipe

length �mn ; its inner radius rmn ; and the Darcy friction factor
fmn . Although factor fmn actually depends on flow dmn in a
continuous nonlinear manner, it is typically approximated as
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constant; see [4] and the references therein. The sign function
is defined such as sign(0) = 0 and it ensures that the pressure
drops in the direction of WF. To avoid the discontinuity of
the sign, we propose a mixed-integer model using the big-M
trick for the pressure drop in pipeline (m,n) using the binary
variables {xt

mn}T
t=1 . In particular, the pressure drop equation of

(3) can be equivalently expressed through the constraints

−M(1 − xt
mn ) ≤ dt

mn ≤ Mxt
mn (4a)

−M(1 − xt
mn ) ≤ ht

m − ht
n − cmn (dt

mn )2 ≤ M(1 − xt
mn )

(4b)

−Mxt
mn ≤ ht

m − ht
n + cmn (dt

mn )2 ≤ Mxt
mn (4c)

xt
mn ∈ {0, 1} (4d)

for a large M > 0. If xt
mn = 1, then constraint (4a) guarantees

that dt
mn ≥ 0; constraint (4b) becomes an equality; and (4c)

holds trivially. If xt
mn = 0, the flow changes direction dt

mn ≤ 0;
constraint (4c) becomes an equality; and (4b) holds trivially.
Observe that for dt

mn = 0, the indicator variable xt
mn becomes

inconsequential, and ht
m = ht

n for any value of xt
mn .

To maintain nodal pressures at desirable levels, water utilities
use pumps installed on designated pipes to raise pressure. A
water pipe equipped with a pump may be modeled as an ideal
(lossless) pump followed by a pipe with pressure drop dictated
by (4). The subset of edges representing ideal pumps is denoted
by Pa ⊂ P . The remaining edges comprise the set P̄a := P \
Pa and represent lossy pipes, for which the constraints in (4)
apply. Any reference to pump (m,n) will henceforth refer to
the ideal segment of the pump.

If pump (m,n) ∈ Pa is running during period t, its flow
is constrained to lie within the range dmn ≤ dt

mn ≤ dmn with
dmn ≥ 0 due to engineering limitations [20]. The pump (m,n)
adds pressure gt

mn ≥ 0 so that

ht
n − ht

m = gt
mn . (5)

The pressure gain gt
mn depends on the pump speed and the WF.

This dependence is oftentimes approximated by a quadratic
function [17], [20], [25]. The dependence of gt

mn on WF is
relatively weak and may be ignored without significant loss of
accuracy [17], [26]. Thus, for a fixed-speed pump, the pressure
gain gmn is constant when the pump is running; and zero, oth-
erwise. Oftentimes, when a pump is not running, water can flow
freely in either directions through a bypass valve connected in
parallel to the pump and without incurring any pressure differ-
ence [26]. The operation of a pump along with its bypass valve
can be captured using the big-M trick via the mixed-integer
model for all (m,n) ∈ Pa

ht
m − ht

n = −gmnxt
mn (6a)

−M(1 − xt
mn ) ≤ dt

mn − d̃t
mn ≤ M(1 − xt

mn ) (6b)

dmnxt
mn ≤ d̃t

mn ≤ dmnxt
mn (6c)

xt
mn ∈ {0, 1}. (6d)

The binary variable xt
mn indicates whether pump (m,n)

∈ Pa is running at time t. When the pump is running (xt
mn = 1),

constraint (6a) implies (5); otherwise (xt
mn = 0), it enforces

ht
m = ht

n . For xt
mn = 1, constraints (6b)–(6c) imply that d̃t

mn =
dt

mn and the WF in the pump is kept within the positive lim-
its [dmn , dmn ]. For xt

mn = 0, variable d̃t
mn is set to zero and

dt
mn represents the water flowing through the bypass valve of

the pump. The auxiliary variable d̃t
mn will be useful later in

computing the energy consumption of pump (m,n).
Note that a variable-speed pump model is not a generalization

of a fixed-speed one unless nontrivial upper and lower bounds
on the pump speeds are enforced. For instance, the OWF formu-
lation for variable speed pumps in [17] and [21] cannot be used
for fixed-speed pumps. Although there is an ongoing transi-
tion toward variable-speed pumps, the conventional WDS have
a fleet of fixed-speed pumps, which give way to ON/OFF and
implicit flow control [9], [20], [14]. Thus, this paper considers
fixed-speed pumps.

The pressure at a reservoir can be assumed constant across
days or weeks [17]. Consider reservoir m ∈ Mr whose constant
pressure is h̄m . To draw water from this reservoir, its nodal
pressure ht

m must be smaller than the constant pressure head
h̄m of the reservoir. This is enforced through the constraints

0 ≤ dt
m ≤ Mαt

m (7a)

ht
m ≤ h̄m + M(1 − αt

m ) (7b)

αt
m ∈ {0, 1} (7c)

for all m ∈ Mr and times. The binary variable αt
m indicates if

water is drawn from reservoir m at time t. If αt
m = 1, reservoir

m is connected to the WDS and the constraints in (7) ensure
that dt

m ≥ 0 and ht
m ≤ h̄m . On the other hand, when αt

m = 0,
reservoir m is disconnected, dt

m = 0, and constraint (7b) is
trivially satisfied.

As opposed to reservoirs, the water volume in tanks varies
significantly during the day [17]. Variations in water volume
translate to variations in water level, which cause, in turn, varia-
tions in pressure at the bottom of the tank. To model the operation
of tanks, let �t

m denote the water level in tank m ∈ Mb at the
end of period t. To be consistent with the piezometric pressure
head, the water level �t

m includes the geographical elevation of
tank m. If δ is the duration of a control period and Am is the
uniform cross-sectional area for tank m, the water level in tank
m satisfies the dynamics

�t
m = �t−1

m − dt
m δ

Am
. (8)

Due to its finite volume, the water level in tank m is constrained
at all times t as

�m ≤ �t
m ≤ �m . (9)

Typically, the net water exchange from tanks is kept at zero
during the entire period of operation, that is

�0
m = �T

m . (10)

Each tank has two separate paths for filling and emptying;
see Fig. 1. The filling or inlet pipe is connected near the top, and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 01,2020 at 01:58:02 UTC from IEEE Xplore.  Restrictions apply. 



714 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

Fig. 1. Schematic for a water tank sited at node m. The geographi-
cal elevation has been incorporated by referring heights to a common
reference.

the emptying or outlet pipe is connected at the bottom. The two
pipes are controlled by two separate valves. The output pressure
of the valves can be equal to or less than the input pressure.
Therefore, when tank m is being filled in with water at time t,
it should hold ht

m ≥ �m . Conversely, when water flows out of
the tank, it follows that ht

m ≤ �t
m . By closing both the inlet and

outlet valves, the pressure ht
m at node m becomes decoupled

from the pressure at the bottom of the tank �t
m .

To capture the aforementioned tank operation, let us introduce
two binary variables (αt

m , βt
m ) and the auxiliary continuous

variable h̃t
m . The operation of tank m at time t is described by

the constraints

−M(1 − αt
m ) ≤ h̃t

m − ht
m ≤ M(1 − αt

m ) (11a)

−Mαt
m ≤ dt

m ≤ Mαt
m (11b)

−Mβt
m ≤ dt

m ≤ M(1 − βt
m ) (11c)

�m − M(1 − βt
m ) ≤ h̃t

m ≤ �t
m + Mβt

m (11d)

αt
m , βt

m ∈ {0, 1}. (11e)

Variable αt
m indicates if tank m is connected at time and

if it is, the variable βt
m indicates whether the tank is filling.

When the tank is connected (αt
m = 1), constraint (11a) yields

h̃t
m = ht

m and (11b) holds trivially. If additionally the tank is
filling (βt

m = 1), then dt
m ≤ 0 from (11c) and h̃t

m = ht
m ≥ �m

from (11d). If the tank is connected, but emptying (αt
m =

1, βt
m = 0), then dt

m ≥ 0 from (11c) and h̃t
m = ht

m ≤ �t
m from

(11d). When the tank is disconnected (αt
m = 0), constraint

(11b) enforces dt
m = 0, and the pressure in the tank is not re-

lated to the network pressure and the values of βt
m and h̃t

m are
inconsequential.

Valves are a vital flow-control component. Popular models
for valves include an ON/OFF switch model, a linear pressure-
reducing model, and a flow-dependent nonlinear model [17].
Presuming a combination of ON/OFF and linear valves on lossy
pipes, a convex relaxation for OWF was put forth in [17]. Al-
though this simplistic setup can be incorporated here, this paper
addresses the more realistic WDS setup where valves are present
only at reservoirs and tanks.

III. PROBLEM FORMULATION

With dynamic pricing, the objective here is to minimize
the cost of electricity consumed by water pumps. This sec-
tion collects the network constraints listed earlier and defines
the OWF problem. The mechanical power consumed by pump
(m,n) ∈ Pa during period t in watts is given by the product of
the induced pressure difference gmn measured in pascal, times
the WF d̃t

mn in m3 /s [17]. If the overall energy efficiency of the
pump is ηmn , it consumes electric energy δρg̃gm n

ηm n
d̃t

mn during
time t of duration δ. For the fixed-speed pumps considered here,
the pressure gain gmn is constant and we can thus define the
electricity consumption coefficient

cmn :=
δρg̃gmn

ηmn
∀(m,n) ∈ Pa .

The OWF problem can be formally stated as follows. Given
the initial water level in tanks {�0

m}m∈Mb
, the water demands

at consumption nodes {dt
m}m∈M\Mb ∪Mr

, the electricity prices
{πt}T

t=1 , and network parameters (tank capacities, pipe dimen-
sions, pump pressure gains, minimum pressure requirements,
and tank heights), the OWF task aims at minimizing the elec-
tricity cost for running the pumps while meeting water demands
and respecting WDS limitations.

In detail, the pumping cost can be formulated as

f(d̃) :=
T∑

t=1

∑

(m,n)∈Pa

cmnπt d̃
t
mn (12)

where vector d̃ collects the WFs {d̃t
mn}t in all pumps (m,n)

∈ Pa and at all times. To simplify the presentation, the price of
electricity πt is assumed invariant across the WDS for all t. The
OWF problem can be posed as the minimization

min f(d̃) (P1)

over {ht
m}m∈M, {dt

m}m∈Mb ∪Mr
, {dt

mn}(m,n)∈P

{h̃t
m}m∈Mb

, {�t
m}m∈Mb

, {d̃t
mn}(m,n)∈Pa

{xt
mn}(m,n)∈P , {αt

m}m∈Mr ∪Mb
, {βt

m}m∈Mb
∀t

s.to (1), (2), (4), (6)–(11).

Problem (P1) involves the continuous variables {ht
m , dt

m ,
dt

mn , h̃t
m , d̃t

mn} and the binary variables {xt
mn , αt

m , βt
m}. For

fixed-speed pumps, the cost in (P1) is linear. Although most of
the constraints are linear thanks to the big-M trick, constraints
(4b)–(4c) modeling the pressure drop are nonlinear. In fact, each
constraint involves one convex and one nonconvex quadratic in-
equality. To obtain affordable OWF solutions, Section IV relaxes
the nonconvex constraints and derives a mixed-integer problem
that is convex with respect to the continuous variables.

IV. CONVEX RELAXATION

The pressure drop across a lossy pipe (m,n) ∈ P̄a depends
on its WF dt

mn through the quadratic law of (3), which can be
relaxed to a convex inequality as 1) ht

m − ht
n ≥ cmn (dt

mn )2 for
dt

mn ≥ 0 or 2) ht
n − ht

m ≥ cmn (dt
mn )2 for dt

mn ≤ 0.
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Since the sign of dt
mn is captured by the binary variable xt

mn ,
the relaxation can be alternatively performed on (4) to yield

−M(1 − xt
mn ) ≤ dt

mn ≤ Mxt
mn (13a)

−M(1 − xt
mn ) ≤ ht

m − ht
n − cmn (dt

mn )2 (13b)

ht
m − ht

n + cmn (dt
mn )2 ≤ Mxt

mn . (13c)

Comparing (4) to (13), the rightmost inequality of (4b) and
the leftmost inequality of (4c) have been dropped in (13). These
are exactly the nonconvex constraints. Replacing (4) by (13) in
(P1) leads to the relaxed problem

min f(d̃) (P2)

over {ht
m}m∈M, {dt

m}m∈Mb ∪Mr
, {dt

mn}(m,n)∈P

{h̃t
m}m∈Mb

, {d̃t
mn}(m,n)∈Pa

{xt
mn}(m,n)∈P , {αt

m}m∈Mr ∪Mb
, {βt

m}m∈Mb
∀t

s.to (1), (2), (6)–(11), (13).

Problem (P2) is convex with respect to the continuous variables,
and it could be handled by existing mixed-integer off-the-shelf
solvers. As a relaxation, the optimal value of (P2) serves as a
lower bound for the optimal value of (P1). If a minimizer of
(P2) satisfies (13b) or (13c) with equality for all (m,n) ∈ P̄a ,
the relaxation is deemed exact. In this case, the minimizer of
(P2) coincides with the minimizer of (P1). Nonetheless, the
relaxation is not necessarily exact.

To study the feasible sets of (P1) and (P2), let h collect the
nodal pressures {ht

m}m,t ; vector d the WFs {dt
mn}t for all

(m,n) ∈ P; and d̃ has been defined after (P1). Define the pro-
jection of the feasible set of (P1) into (d̃,d,h) as S1 , and the
projection of the feasible set of (P2) into (d̃,d,h) as S2 . The
next result shows there exists a bijection between S1 [respec-
tively, S2] and the feasible set of (P1) [respectively, (P2)].

Lemma 1: The s := {d̃,d,h} components of any feasible
point of (P1) and (P2) are sufficient to characterize the feasible
point, modulo some inconsequential variables.

Proof: It will be shown that upon fixing (d̃,d,h), the re-
maining variables listed under (P1)–(P2) can be determined,
with only possible ambiguities on the values of inconsequen-
tial variables as detailed below. Given d, the water injections
{dt

n}n,t are set by (1). Subsequently, the water levels {�t
m}m,t

are set by the iterative computation of (8) starting from the
known initial tank level �0

m .
The binary variables capturing flow directions in lossy pipes

can be recovered as

xt
mn =

⌊
sign(dt

mn ) + 1
2

⌋
∀(m,n) ∈ P̄a , t

where �a	 denotes the floor function. If dt
mn = 0, the value of

xt
mn is inconsequential and the aforementioned mapping sets it

to zero. The binary variables pump statuses are set as xt
mn =

sign(d̃t
mn ) for (m,n) ∈ Pa .

The variables governing reservoirs and tanks are set as

αt
m = | sign(dt

m )| ∀m ∈ Mb (14a)

βt
m =

⌊
1 − sign(dt

m )
2

⌋
∀m ∈ Mb (14b)

h̃t
m = αt

m ht
m ∀m ∈ Mb . (14c)

If tank m is disconnected at time t, then αt
m = 0 and

the values of βt
m and h̃t

m become inconsequential. In that
case, the mapping in (14) sets them to zero without harming
feasibility. �

Lemma 1 asserts that (P1) and (P2) can be equivalently ex-
pressed only in terms of s := {d̃,d,h}. The remaining variables
have been introduced merely to avoid discontinuous or nondif-
ferentiable functions (e.g., sign or absolute value) as well as
products between continuous and binary variables. In light of
Lemma 1 and with a slight abuse in terminology, we will hence-
forth refer to S1 [respectively, S2] as the feasible set of (P1)
[respectively, (P2)]. Due to the relaxation, it holds S1 ⊆ S2 .

When it comes to (P1), a feasible point can be constructed
only by its {d̃,d} components, since a feasible h can be re-
covered from {d̃,d} as follows. Given {d̃,d}, the variables
{xt

mn , αt
m , βt

m , dt
m , �t

m} can be set as in the proof of Lemma 1.
The values of pressure differences across pipes can be found by
(4) and (6a). The next question is how to recover pressures from
pressure differences.

To express pressure differences at time t = 1, . . . , T , let us
define an edge-node incidence matrix depending on the WF di-
rections at time t. Define dt as the subvector of d collecting
water flows only at time t. Then, introduce the P × |M| inci-
dence matrix A(dt) so that if its pth row corresponds to pipe
p = (m,n), then its (p, k) entry is

Ap,k (dt) :=

⎧
⎪⎨

⎪⎩

− sign2(dt
mn ) + sign(dt

mn ) + 1 , k = m

sign2(dt
mn ) − sign(dt

mn ) − 1 , k = n

0 , otherwise.

In this way, vector A(dt)ht captures the pressure differences
taken across the direction of WFs. For zero flows, the standard
pipe direction (m,n) is selected without loss of generality.

If (ht , d̃t) are the subvectors of (h, d̃) corresponding to time
t, the pressure differences can be expressed as

A(dt)ht = b(d̃t ,dt) ∀t (15)

where b(d̃t ,dt) is the mapping induced by (4) and (6a). Since
{d̃,d} is feasible for (P1), the overdetermined system in (15)
is consistent. However, its solution is not unique: The all-one
vector 1 belongs to the nullspace of A(dt) by definition, so if
ht satisfies (15), then ht + c1 satisfies (15) too for any c.

Satisfying (15) alone is not sufficient for ht to be feasible for
(P1). It should also satisfy the inequality constraints (2), (7b),
(11a), and (11d). These constraints are abstractly expressed as

h(d̃,d) ≤ h ≤ h(d̃,d). (16)

Given {d̃,d} for a feasible point of (P1), a feasible pres-
sure vector h can be found by ensuring (15) and (16). A water
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Fig. 2. Possible cases for the feasibility of a minimizer obtained by (P2).
Problem (P3) converts case C2.a.i to C1. Moreover, under the conditions
of Lemma 3, it also converts case C2.b to C2.a.

utility would implement h by controlling the pressures at reser-
voir valves. The aforementioned procedure proves the following
claim.

Lemma 2: Any feasible point of (P1) is characterized by
its {d̃,d} components modulo some inconsequential variables.
A vector of feasible pressures h can be recovered by solving
the LP

find h

s.to (15)–(16). (17)

Let H(d̃,d) be the set of vectors h solving the feasibility
problem in (17). Lemma 2 implies that any solution to (17)
provides a feasible point for (P1).

Given Lemma 2, let us see if one can find a feasible point for
(P1) by solving (P2). Consider a minimizer s1 := {d̃1 ,d1 ,h1}
of (P1) attaining the cost f1 := f(d̃1). Consider also a min-
imizer s2 := {d̃2 ,d2 ,h2} of (P2) with f2 := f(d̃2) with
f2 ≤ f1 due to the relaxation. The following cases can be iden-
tified for s2 as illustrated in Fig. 2:

C1. If the relaxation is exact, then h2 ∈ H(d̃2 ,d2); the costs
agree f2 = f1 ; and s2 can be implemented in lieu of s1 .

C2. If the relaxation is inexact, vector h2 satisfies only the
equations in (15) related to pumps, whereas some of
the constraints related to lossy pipes in (13) are satis-
fied with strict inequalities. In this case, one may try
to recover a vector of physically feasible pressures by
enforcing (15) and (16). The following subcases are
identified.
C2.a. The linear system of (15) is consistent for

b(d̃2 ,d2). Again, two cases can be identified.
C2.a.i. The LP in (17) is feasible for (d̃2 ,d2)

with ȟ2 ∈ H(d̃2 ,d2). The point š2 :=
{d̃2 ,d2 , ȟ2} is feasible for (P1) and at-
tains the cost f̌2 := f(d̃2) = f2 . Because
š2 is feasible for (P1), the optimal cost has
been attained, that is, f̌2 = f2 = f1 .

C2.a.ii. The LP in (17) is infeasible for (d̃2 ,d2).
A feasible point for (P1) cannot be
recovered.

C2.b. The linear system of (15) is inconsistent for
b(d̃2 ,d2). A feasible point for (P1) cannot be
recovered.

Cases C1 and C2.a.i are computationally useful since they
recover an optimal point. On the other hand, cases C2.a.ii and
C2.b, do not provide any useful output. Based on numerical tests
with different WDS networks and under various pricing/demand
scenarios, we have empirically observed that:

1) Case C1 occurs rarely.
2) Case C2.a.i is encountered frequently in radial networks.
3) Case C2.b occurs frequently in meshed networks.

Spurred by these observations and to improve the chances
for an exact relaxation of (P1), the next section adds a penalty
term in the objective of (P2). It then studies the feasibility and
optimality of this penalized convex relaxation.

V. PENALIZED CONVEX RELAXATION

Toward an exact relaxation of (P1), define the penalty

g(h) :=
T∑

t=1

∑

(m,n)∈P̄a

|ht
m − ht

n | (18)

which sums up the absolute pressure differences across lossy
pipes and over all times. Let us formulate a penalized convex
relaxation by replacing the cost of (P2) by

min f(d̃) + λg(h) (P3)

s.to (1), (2), (6)–(11), (13)

for λ > 0. Sections V-A and V-B next study, respectively, the
feasibility and optimality of (P3).

A. Improving Feasibility

Although (P2) and (P3) share the same feasible set, this sec-
tion shows that (P3) features two advantages over (P2) as de-
picted in Fig. 2:

a1) Problem (P3) eliminates the occurrence of C2.a-i. The
problem instances falling under C2.a-i with (P2), fall
under the useful case C1 for (P3).

a2) Under some conditions, problem (P3) does not en-
counter the unfavorable case C2.b either.

The following result establishes advantage a1) and is shown
in the Appendix.

Theorem 1: If s3 := {d̃3 ,d3 ,h3} is a minimizer of (P3)
and H(d̃3 ,d3) is nonempty, then h3 ∈ H(d̃3 ,d3).

From Theorem 1 and Lemma 2, the next result follows.
Corollary 1: Under the assumptions of Theorem 1, the min-

imizer s3 := {d̃3 ,d3 ,h3} of (P3) is feasible for (P1).
Corollary 1 asserts that if the WFs obtained from (P3) can

be mapped to physically feasible pressures, then the minimizer
of (P3) contains already physically feasible pressures and this
shows advantage a1). In other words, instead of having to solve
(P2) first and then (17) to recover a feasible OWF schedule, a
feasible schedule can be found by solving (P3) alone.

Before moving to a2), some graph theory preliminaries are
reviewed. Given an undirected graph G := (M,P), its degree
is the number of incident edges. A graph is connected if there
exists a sequence of adjacent edges between any two of its
nodes. A minimal set of edges PT preserving the connectivity
of a connected graph constitutes a spanning tree of G; is denoted
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by T := (M,PT ); and apparently |PT | = |M| − 1. The edges
that do not belong to a spanning tree T are referred to as links
with respect to T . A cycle is a sequence of adjacent edges
without repetition that starts and begins at the same node. A tree
is a connected graph with no cycles. In a directed graph, each
edge is assigned a directionality. A path from node m to n is
defined as a sequence of directed edges originating from m and
terminating at n. Given the undirected graph (M,P) modeling
a WDS and the vector dt of flows at time t, let us define the
directed graph (M,P(dt)), where edge p runs from node m to
node n if dt

m,n ≥ 0; and vice versa, otherwise.
To show a2), we study the consistency of (15). Had the WDS

graph been a tree, the edge-node incidence matrix would have
been full row-rank [27]. Hence, (15) would have been consistent
for any b(d̃t ,dt ). This implies that possible inconsistencies in
(15) arise from cycles in G. Because studying the generic case
of cycles is not obvious, we consider the special case of a cycle
where all but one node has degree 2. This subset of edges will be
henceforth called a ring. A ring can be rooted at the node with
a degree larger than two. We provide conditions under which a
minimizer of (P3) satisfies the constraints in (13) with equality
for all edges of a ring.

Lemma 3: Let s3 = {d̃3 ,d3 ,h3} be a minimizer of (P3)
and dt

3 be the subvector of d3 collecting the flows at time t.
If the directed graph (M,P(dt

3)) contains a ring R ⊆ P(dt
3)

rooted at node m, such that
1) all nodes incident to R have identical pressure limit h;
2) all nodes incident to R but m host no tanks or reservoirs;
3) all edges in R host no pumps;

then ht
i − ht

j = cij (dt
ij )

2 for all directed edges (i, j) in R.
Leveraging Lemma 3, the ensuing result shows the advantage

a2) of (P3) over (P2) for a large class of WDSs.
Theorem 2: Let s3 := {d̃3 ,d3 ,h3} be a minimizer of (P3)

and (d̃t
3 ,d

t
3) be the subvectors of (d̃3 ,d3) corresponding to

time t. The system of equations in (15) is consistent for s3 at
time t, if all undirected cycles in (M,P(dt

3)) constitute rings
satisfying the conditions of Lemma 3.

To appreciate the claim of Theorem 2, recall that for a point
to be feasible for (P1), it is sufficient to satisfy (15) and (16).
Since A(dt)1 = 0, the next result can be inferred.

Corollary 2: Under the assumptions of Theorem 2, if the
left or right inequality in (16) is omitted, then a minimizer of
(P3) is feasible for (P1).

Corollary 2 asserts that (P3) can be advantageous for cop-
ing with OWF tasks with no upper bounds on pressures; see
also [16]. An important problem complying with this setup is
the WF task. Different from OWF, the WF problem solves the
WDS equations over a single period upon specifying nodal wa-
ter demands and reference pressure. In a recent work [28], we
have dealt with the WF task using similar penalization, which
is shown to yield the unique WF solution for a broader class of
WDSs.

B. Optimality

The previous section documented the advantages of (P3) over
(P2) in terms of providing physically feasible OWF schedules

Fig. 3. Benchmark WDS. The length for lossy pipes and head gain for
pumps are shown in meters.

under the conditions of Lemma 3 and Theorem 2. However, the
objective in (P3) differs from the one in (P1): If a minimizer
s3 = {d̃3 ,d3 ,h3} of (P3) is feasible for (P1), it will achieve,
in general, a larger pumping cost than a minimizer of (P1), that
is, f(d̃3) ≥ f1 . However, this suboptimality gap diminishes for
decreasing λ as explained later. We first review a general result
on biobjective optimization [29, Sec. 4.7.5]:

Lemma 4 (see [29]): Consider the minimization problem

xλ := arg min
x∈X

fa(x) + λfb(x)

for some real-valued functions fa(x) and fb(x) defined on X .
If λ2 > λ1 ≥ 0, then fa(xλ2 ) ≥ fa(xλ1 ).

Identifying functions (fa , fb) of Lemma 4 to functions (f, h)
in the objective of (P3) implies that for decreasing λ, a minimizer
of (P3) gives lower f(d̃3(λ)). However, the feasibility of s3
for (P1) is not guaranteed. If the conditions of Lemma 3 and
Theorem 2 are met and s3 is feasible for (P1), then f(d̃3) ≥ f1 .
Next, for λ = 0, problem (P3) degenerates to (P2), and gives a
lower bound on f1 . Overall, we get that

f(d̃2) ≤ f1 ≤ f(d̃3(λ)). (19)

From Theorems 1 and 2, the advantage of the penalty term g(h)
does not depend on the value of λ as long as λ > 0. So under
the conditions of Lemma 3 and Theorem 2, one can choose ar-
bitrarily small λ to tighten the right-hand inequality in (19). The
caveats behind the bounds of (19) are the conditions assumed by
Lemma 3 and Theorem 2. Even though these conditions were
grossly violated during the tests of Section VI, the inequali-
ties in (19) were frequently tightened to equalities. Albeit (P2)
oftentimes attained the optimal cost f1 , its minimizer was not
feasible for (P1). In fact, there is no obvious way of converting
the minimizer of (P2) to a feasible point. Instead, problem (P3)
found a minimizer for (P1) in most of the tests.

VI. NUMERICAL TESTS

The new OWF solver was evaluated on the benchmark WDS
of [21] and [26], which is shown in Fig. 3. It consists of 10
nodes including 2 reservoirs and a tank; 3 fixed-speed pumps;
and 7 lossy pipes. All lossy pipes have a diameter of 0.4 m and
friction coefficient fm,n = 0.01. The efficiency for all pumps
is 85% and for their motors, it is 95%, resulting in an overall
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Fig. 4. Per-node water demand across time.

Fig. 5. Top: Electric power consumed by pumps during hour t. Pumps
(1, 4) and (2, 5) were turned on during the same hours of lower electricity
prices, whereas pump (3, 7) was not operated. Albeit the two pumps add
the same pressure gain, they exhibit different electricity consumption
due to different WFs. Bottom: Water level in tank node 10 at the end of
hour t.

efficiency of η = 0.81. The minimum and maximum WFs for
all pumps are 100 and 1500 m3/hr, respectively. The pres-
sure at reservoir nodes 1 and 2 is accordingly −2.5 and 5 m.
The minimum pressure requirement hm for nodes 3 to 10 is
{10, 7, 12, 10, 5, 10, 10, 10} m. Tank node 10 has an area of
A10 = 490.87 m2 ; water level limits �10 = 10 and �10 = 30 m;
and initial water level �0

10 = 20 m.
The WDS was scheduled hourly for a horizon of T = 12 h for

the demands of Fig. 4; see [21]. The prices {πt}12
t=1 were set to

the average day-ahead locational marginal prices during 8:00–
20:00 on April 1, 2018 from the PJM market, and are shown in
Fig. 5. The OWF tests were solved using the MATLAB-based
optimization toolbox YALMIP along with the mixed-integer
solver Gurobi [30], [31]. All tests were run on a 2.7 GHz, Intel
Core i5 computer with 8 GB RAM.

TABLE I
PUMPING COST ATTAINED BY (P3) FOR DIFFERENT λ’S

We first checked whether the convex relaxation was ex-
act. A minimizer of (P3) was deemed feasible for (P1) if
|ht

m − ht
n | − cmn (dt

mn )2 ≤ 10−4 for all pipes and times. A
minimizer for (P3) was obtained in 8.34 s for λ = 0.1. The
minimizer was, in fact, feasible for (P1). Fig. 5 presents the
power consumed by pumps (top) and the water level in tank
10 (bottom). The pumps run for the hours with the lowest
prices over which tank node 10 is filled, as expected. The
tank is emptied during the hours of higher electricity prices,
and its level is brought to its initial level at the end of the
horizon.

The modeling accuracy of the minimizer obtained by (P3)
was also tested against the standard simulation software
EPANET [8]. The water injections obtained for the previous
example by our mixed-integer second-order cone program (MI-
SOCP)-based solver were fed into the WF solver of EPANET to
calculate the related pressures over the standard network model.
The pressures found by the two models differed only by 0–0.91 ft
across all nodes and times, with the median deviation being
0.21 ft. These differences are relatively insignificant, consider-
ing that the average nodal pressure is on the order of 35 ft.

We next evaluated the effect of λ on the feasibility and op-
timality of a minimizer of (P3) with respect to (P1). We first
solved (P2) to obtain a lower bound f(d̃2) on f1 . As a heuristic
for setting λ, we computed S :=

∑T
t=1

∑
(m,n)∈P̄a

cmn (dt
mn )2

from the minimizer of (P2), and chose λ = 1 so that λS was
approximately f(d̃2)/100. For λ = 1, the minimizer of (P3)
was feasible for (P1) and provided an upper bound for f1 . To
tighten (19), problem (P3) was solved for decreasing values of
λ, obtaining the results of Table I. The minimizer of (P3) for
λ = 0.1 was feasible for (P1) and attained the same pumping
cost as f(d̃2). The infeasibility observed for λ = 0.01 is at-
tributed to the numerical accuracy of the solver, and such cases
could be avoided by increasing λ. Hence, the minimizer of (P3)
constitutes a minimizer for (P1) as well. It is worth stressing
that even though the benchmark WDS of Fig. 3 does not meet
the conditions of Lemma 3 and Theorem 2, exact relaxation has
been achieved.

Similar tests were conducted for the PJM prices between
March 10–19, 2018 during 5:00–17:00 shown in Fig. 6. The
results are summarized in Table II. For all 10 days, problem
(P3) succeeded in finding a feasible point for the values of
λ reported in Table II. Moreover, the upper and lower bounds
f(d̃3) and f(d̃2) were close, implying small suboptimality gaps.
It is worth stressing that the relaxation in (P2) was inexact for
all tests. Albeit cost f(d̃2) was equal to f(d̃3) (and, therefore,
equal to the optimal cost f1 as well) for some cases, there is
no obvious way to obtain an OWF dispatch from the minimizer
of (P2).
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TABLE II
SUBOPTIMALITY GAP ATTAINED BY FEASIBLE POINTS OBTAINED THROUGH (P3)

Fig. 6. Day-ahead PJM electricity prices [¢/kWh] for March 10–19,
2018.

Fig. 7. EPANET Example Network-2 of a WDS from Cherry Hills, CT,
USA [32].

The feasibility of a minimizer obtained from (P3) was also
evaluated on the EPANET Example Network-2 representing a
WDS from Cherry Hills, CT [32], which is shown in Fig. 7.
This WDS consists of 40 pipes, 34 demand nodes, one tank,
and one pump station. Observe that none of the cycles in this
WDS satisfy the assumptions of Lemma 3. We modified the
network by representing the pump station as a reservoir with
pressure 100 ft connected to a fixed-speed pump with a head
gain of 100 ft. Assuming that all nodes need to be at the same
reference elevation, the minimum pressure requirement for all
nodes was set to 90 ft. The pipe friction coefficients cmn s, tank
dimensions, and the base nodal demands dm s were derived
from the related EPANET file.

Fig. 8. Maximum errors in nodal pressures and pipeline flows in the
minimizer of (P3) obtained for the WDS of Fig. 7.

To empirically evaluate the feasibility of a minimizer of (P3),
we generated 100 triplets of hourly nodal demands upon scaling
the base demand by an independent uniform random variable
within [0, 1]. These hourly demands were used to solve 100
instances of the OWF problem on a horizon of T = 3 h with
λ = 10. The maximum value of |ht

m − ht
n | − cmn (dt

mn )2 for
all pipes and times was recorded for all 100 instances. These
values were found to lie within [8 · 10−5 , 0.56] with their me-
dian at 0.017. To further understand the physical feasibility of
the obtained minimizers, the nodal demands, tank injections,
pump status, and reservoir pressures were used to solve a WF
problem to find the resulting nodal pressures and pipeline flows.
A constrained energy function minimization-based WF solver
was used from [28]. The true pipeline flows and nodal pres-
sures obtained from the WF solver were then compared to the
corresponding values from the minimizers of (P3) to quantify
the error. The ranked maximum absolute differences in nodal
pressures and pipeline flows for the 100 problem instances are
shown in Fig. 8. Considering that the nodal pressures are around
90–190 ft and network demands are in the order of 200 GPM,
the feasibility gap for a minimizer of (P3) is small for a large
number of problem instances. Specifically, in 90% of the in-
stances, the maximum error in computed pressures was less
than 0.04 ft, while the maximum error in computed flows was
less than 10.3 GPM.

On the computational side, the running times for the 100 OWF
instances laid in the range of [7.5, 39.1] s, with their median at
39 s. The time horizon was limited to T = 3 to reduce the
running time and focus on the feasibility of (P3). Observe that
MI-SOCP problems are hard in general, and their computational
complexity is not polynomial with respect to the number of
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Fig. 9. Simple WDS for which the relaxation is inexact.

TABLE III
INEXACT RELAXATION FOR THE WDS OF FIG. 9

variables and constraints, and it may change significantly across
problem instances.

Finally, to provide an example of inexact relaxation, we built
the WDS of Fig. 9. Problem (P3) and the OWF scheme of
[16] were solved on this WDS for minimum pressures at nodes
3, 4, and 5, set to 6, 0, and 0. This setup features a unique
feasible point: Since all edges but (1, 3) are lossless, nodes
2–5 must have equal pressures. Because h3 = 6 m, the second
reservoir with h̄2 = 5 m cannot supply water, and the entire
demand must be fulfilled by reservoir 1. This feasible point
is shown in Table III, along with the minimizers of (P3) and
[16]. Both relaxed schemes yielded an infeasible point for (P1).
The solver of [16] was not tested on the 10-node WDS earlier
because it presumes: 1) variable-speed pumps with speeds that
can reach zero and 2) that once a solution (d̃,d) is found, a
feasible pressure h can always be obtained.

VII. CONCLUSION

To cater a more adaptive WDS operation, optimal pump
scheduling has been formulated here as an OWF task. Dif-
ferent from existing formulations, the developed OWF model
includes critical pressure constraints capturing the operation of
tanks, reservoirs, pipes, and valves. The original mixed-integer
nonconvex problem has been modified to a MI-SOCP over a
relaxed feasible set. Moreover, its objective is augmented by a
judiciously designed penalty term, so that under specific con-
ditions, this modified problem formulated as an MI-SOCP can
recover minimizers of the original problem. Numerical tests
validate that by properly tuning penalization parameter λ, the
modified problem solves the original OWF over different sce-
narios of water demand and electricity pricing.

Off-the-shelf MI-SOCP solvers have improved significantly
over the last few years, yet MI-SOCP’s bear no computa-
tional complexity guarantees. Although a related MI-SOCP-
based solver that we have developed in [28] for the WF problem
scales well with the network size, that is not always the case here
for (P3). The running time of (P3) depends on water demands,
electricity prices, and the values of M ’s involved in the big-
M constraints. To accelerate (P3), future research could pursue
two directions. First, one could exploit the temporal dynamics
of OWF. Water system decisions are coupled across time only
through the tank operation of (8). Therefore, one could select
tank levels {�t

m}m∈Mb
as the system states, discretize their val-

ues based on the desired approximation/complexity tradeoff,
and handle (P3) using approximate dynamic programing. Sec-
ond, based on prior experience, the WDS operator may be able
to fix some of the binary variables capturing the flow direc-
tions on pipes and the operating statuses of pumps/reservoirs,
to prespecified values.

Other pertinent research directions include generalizing our
OWF formulation toward scheduling variable-speed pumps
and/or incorporating stochasticity in water demands and elec-
tricity prices. Finally, the developed framework could be readily
used for jointly scheduling WDS and electric power distribution
networks to realize the vision for smart cities.

APPENDIX

Proof of Theorem 1: Being a minimizer, s̃3 is also feasible
for (P3). A feasible point of (P3) satisfies only those equations
in (15) related to pumps. The equality constraints in (15) corre-
sponding to lossy pipes are replaced by one-sided linear inequal-
ity constraints in (P3). To express these facts in a matrix-vector
notation, partition A(dt) into submatrix Ap(dt) collecting the
rows of A(dt) related to pumps; and submatrix Al(dt) collect-
ing the rows related to lossy pipes. The rows of A(dt) can be
permuted without loss of generality so that

A(dt) =
[
Ap(dt)
Al(dt)

]
. (20)

Likewise, the mapping b(d̃t ,dt) in (15) can be partitioned into
bp(d̃t) andbl(dt). A vectorh is feasible for the relaxed problem
(P3) if instead of (15), it satisfies

Ap(dt)ht = bp(d̃t) ∀t (21a)

Al(dt)ht ≥ bl(dt) ≥ 0 ∀t. (21b)

Granted H(d̃3 ,d3) is nonempty by hypothesis, there ex-
ists an ȟ3 ∈ H(d̃3 ,d3) so that š3 := {d̃3 ,d3 , ȟ3} satisfies
(15) and (16). Because š3 satisfies (15), it satisfies the con-
straints (21b) with equality. Thus, vector š3 is feasible for
(P3). Moreover, the cost of (P3) for š3 is f(d̃3) + λg(ȟ3) =
f3 + λ

∑T
t=1 ‖Al(dt

3)ȟ
t
3‖1 , where f3 := f(d̃3), and ȟt

3 and
dt

3 are accordingly the subvectors of ȟ3 and d3 , collecting the
entries corresponding to time t. Since š3 satisfies (21b) with
equality, the cost becomes f3 + λ

∑T
t=1 ‖bl(dt

3)‖1 .
Proving by contradiction, suppose h3 /∈ H(d̃3 ,d3). This im-

plies that h3 does not satisfy the left-hand side of (21b) with
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equality. Instead, there exists a sequence of εt ≥ 0, such that
Al(dt

3)h
t
3 = bl(dt

3) + εt for all t and
∑T

t=1 εt �= 0. Evaluating
the objective of (P3) for the minimizer s3 yields

f(d̃3) + λg(h̃3) = f3 + λ

T∑

t=1

‖Al(dt
3)h

t
3‖

= f3 + λ

T∑

t=1

(
‖bt

l (d
t
3)‖1 + ‖εt‖1

)

> f3 + λ

T∑

t=1

‖bt
l (d

t
3)‖1

where the second equality stems from bl(dt)≥0 and εt ≥0
for all t; and the strict inequality holds because λ > 0 and∑T

t=1 εt �= 0. This inequality contradicts the optimality of s3 ,
and nullifies the hypothesis that h3 /∈ H(d̃3 ,d3). �

Proof of Theorem 2: Let T := (M,PT ) be a spanning tree
of (M,P(dt

3)). Reorder the equations in (15) as
[
AT (dt

3)

AT̄ (dt
3)

]
ht =

[
bT (d̃t

3 ,d
t
3)

bT̄ (d̃t
3 ,d

t
3)

]
(22)

where AT (dt
3) and bT (d̃t

3 ,d
t
3) are the rows of A(dt

3) and
b(d̃t

3 ,d
t
3) corresponding to the edges in PT ; and AT̄ (dt

3) and
bT̄ (d̃t

3 ,d
t
3) are the rows corresponding to the edges in P \ PT .

As an edge-node incidence matrix for a tree, matrixAT (dt
3) is

full row-rank [27] and, hence, system AT (dt
3)h

t = bT (d̃t
3 ,d

t
3)

is consistent. The rows of AT̄ (dt
3) correspond to the links

defined by T . By the hypothesis, every undirected cycle in
(M,P(dt

3)) is a ring. Then, all but one of its edges belong to
T , and the remaining edge belongs to T̄ . In fact, every edge in
T̄ must belong to a ring. Since by the conditions of Lemma 3, no
pumps are allowed on a ring, and every equation in the bottom
part of (22) corresponds to a lossy pipeline (k, l) and will be of
the form ht

k − ht
l = ckld

2
kl .

Since we refer to time t, the superscript t is omitted to the
unclutter notation. Consider link (k, l) ∈ T̄ that belongs to the
pair of parallel paths P1 and P2 with origin node m and desti-
nation n. Without loss of generality, also let (k, l) ∈ P1 . From
Lemma 3, it holds that hi − hj = cij d

2
ij for all (i, j) ∈ P1 ∪ P2 .

Summing these constraints along P1 and P2 yields
∑

(i,j )∈P1

(hi − hj ) =
∑

(i,j )∈P1

cij d
2
ij = hm − hn (23a)

∑

(i,j )∈P2

(hi − hj ) =
∑

(i,j )∈P2

cij d
2
ij = hm − hn (23b)

so that (23a) is equal to (23b). Separating the contribution of
edge (k, l) from P1 in the leftmost and central parts of (23a)
provides

hk − hl =
∑

(i,j )∈P2

(hi − hj ) −
∑

(i,j )∈P1 \(k,l)

(hi − hj ) (24a)

ckld
2
kl =

∑

(i,j )∈P2

cij d
2
ij −

∑

(i,j )∈P1 \(k,l)

cij d
2
ij . (24b)

Note that the pressure drop equations along for all edges
(i, j) ∈ P1 ∪ P2 \ (k, l) are rows in the system AT (dt

3)h
t =

bT (d̃t
3 ,d

t
3). From (33), the pressure drop equation correspond-

ing to edge (k, l) ∈ T̄ has been expressed as a linear combi-
nation of the rows of AT (d3)h = bT (d̃3 ,d3). The argument
holds for all equations in the bottom part of (22), thus making
the overall system in (15) consistent. �

Proof of Lemma 3: Since this proof refers to a particular
time, the superscript t is omitted for simplicity. Given a point
{d̃,d,h}, an edge will be called (in)exact if constraint (13) is
satisfied with (in)equality for that point. Since all nodes incident
to R excluding m host no tanks or reservoirs, they must have
nonpositive injections. Therefore, its two incident edges cannot
both have outgoing WFs from (1). This implies that the ring can
either consist of two parallel paths, or a directed cycle. In the
latter case, adding the constraints hi − hj ≥ cij (dij )2 aroundR
would give

∑
(i,j )∈R cij d

2
ij ≤ hm − hm = 0, implying dij = 0

for all edges in R, which is a contradiction. Thus, the ring R
consists of two parallel paths from m to some node n, henceforth
called P1 and P2 .

The rest of the proof proceeds in two steps. The first step
shows that there exists a minimizer of (P3) with at most one
inexact edge in R. The second step reduces the number to none.

For the first step, we will modify the pressure vector in s3 to
construct ŝ3 := {d̃3 ,d3 , ĥ3} for which there exists at most one
inexact edge in R. The new point ŝ3 is feasible for (P3) and
attains smaller or equal cost than s3 . To do so, for each node k
incident to R excluding m and n, assign the pressure consistent
with (3) along the path Pmk from m to k

ĥk := hm −
∑

(i,j )∈Pm k

cij d
2
ij ≥ hk ≥ h

where the first inequality stems from summing up the constraints
hi − hj ≥ cij d

2
ij for all edges (i, j) along Pmk , and guarantees

that ĥk is feasible.
For the terminal node n, assign the pressure

ĥn := min
l∈{1,2}

⎧
⎨

⎩hm −
∑

(i,j )∈Pl

cij d
2
ij

⎫
⎬

⎭ . (25)

Adding the constraints hi − hj ≥ cij d
2
ij for all edges (i, j) in

Pl and P2 separately, yields

hm − hn ≥
∑

(i,j )∈Pl

cij d
2
ij , l ∈ {1, 2}. (26)

Hence, we get that

hn ≤ min
l∈{1,2}

⎧
⎨

⎩hm −
∑

(i,j )∈Pl

cij d
2
ij

⎫
⎬

⎭ = ĥn (27)

implying ĥn ≥ hn ≥ h.
Since the pressures on the nodes withinR have been increased

and they are not upper bounded in the absence of tanks or
reservoirs, point ŝ3 is feasible. The difference in the objective
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of (P3) attained by s3 and ŝ3 is

f(d̃3) + λg(h3) − f(d̃3) − λg(ĥ3)

= λ
∑

(i,j )∈R

(
|hi − hj | − |ĥi − ĥj |

)
.

Since all directed edges in P1 and P2 have positive flows
∑

(i,j )∈R
|hi − hj | =

∑

(i,j )∈P1

(hi − hj ) +
∑

(i,j )∈P2

(hi − hj )

= 2(hm − hn ).

Applying the same argument for ĥ3 , it follows that:

f(d̃3) + λg(h3) − f(d̃3) − λg(ĥ3) = 2λ(ĥn − hn ) ≥ 0.
(28)

If for s3 there exist inexact edges in both P1 and P2 , then
(26) holds with strict inequality for both paths. It follows from
(27) that ĥn > hn , and so ŝ3 contradicts the optimality of s3 .
This proves that all inexact edges in R must belong exclusively
to P1 or P2 . In the latter case, the inequality in (27) holds with
equality, and from (28), the point ŝ3 becomes a minimizer of
(P3). Note that ŝ3 has at most one inexact edge in R, and that is
the last edge in P1 or P2 .

For the second step of this proof and proving by contradiction,
suppose there exists exactly one inexact edge for the minimizer
s3 in P1 . That means that (26) holds with inequality for l = 1,
and equality for l = 2, implying

∑

(i,j )∈P1

cij d
2
ij <

∑

(i,j )∈P2

cij d
2
ij . (29)

From d3 , construct a WF vector ď3 with entries

ďij =

⎧
⎪⎨

⎪⎩

dij + ε , (i, j) ∈ P1

dij − ε , (i, j) ∈ P2

dij , (i, j) ∈ P \ (P1 ∪ P2)

(30)

for some ε > 0. This redistribution of flows satisfies (1). More-
over, for increasing ε, the left-hand side of (29) increases and the
right-hand side decreases. This is because cij d

2
ij is an increasing

function for positive dij . The goal is to select ε, so that
∑

(i,j )∈P1

cij ď
2
ij =

∑

(i,j )∈P2

cij ď
2
ij <

∑

(i,j )∈P2

cij d
2
ij . (31)

While increasing ε to achieve (31), some of the {ďij}(i,j )∈P2

may become negative. This case is ignored for now.
Next, construct a new pressure vector ȟ3 by changing the

entries of h3 corresponding to the nonroot nodes in R as

ȟk := hm −
∑

(i,j )∈Pm k

cij ď
2
ij . (32)

For k = n, the sum in the right-hand side of (32) can be evaluated
over P1 or P2 , since these two sums are equal from (31). The
constructed pressures for nodes incident to R satisfy

ȟk ≥ ȟn > hn ≥ h. (33)

The first inequality holds because node n has the largest value
for the sum in (32); and the second inequality holds because

ȟn = hm −
∑

(i,j )∈P2

cij ď
2
ij > hm −

∑

(i,j )∈P2

cij d
2
ij = hn .

The inequalities in (33) prove that ȟ3 and, hence, the point
š3 := {d̃3 , ď3 , ȟ3} is feasible for (P3). The difference in the
objective of (P3) attained by s3 and š3 is

f(d̃3) + λg(h3) − f(d̃3) − λg(ȟ3) = 2λ(ȟn − hn ) > 0

which contradicts the optimality of s3 .
Since all water injections at nonroot nodes over R are non-

positive, the WFs are nonincreasing along P2 . This implies that
dij ≥ dn1 ,n for all (i, j) ∈ P2 , where (n1 , n) is the last edge of
P2 . Thus, by increasing ε, the flow dn1 ,n may become negative.
In that case, the edge (n1 , n) is removed from P2 and appended
to P1 , forming a new pair of parallel paths with n1 as the new
terminal node. The second step of this proof can be repeated on
the new parallel paths. �
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