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Recently, there has been substantial interest in the study of various random networks as mathematical mod-

els of complex systems. As real-life complex systems grow larger, the ability to generate progressively large

random networks becomes all the more important. This motivates the need for efficient parallel algorithms

for generating such networks. Naïve parallelization of sequential algorithms for generating random networks

is inefficient due to inherent dependencies among the edges and the possibility of creating duplicate (parallel)

edges. In this article, we present message passing interface-based distributed memory parallel algorithms for

generating random scale-free networks using the preferential-attachment model. Our algorithms are exper-

imentally verified to scale very well to a large number of processing elements (PEs), providing near-linear

speedups. The algorithms have been exercised with regard to scale and speed to generate scale-free networks

with one trillion edges in 6 minutes using 1,000 PEs.
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1 INTRODUCTION

1.1 Motivation

Advances in hardware, software, and algorithms have enabled the detailed study of complex net-
works. Complex networks such as the Internet [23, 44], biological networks [27], social networks
[33, 36], and various infrastructure networks [13, 18, 34] are abstracted as random graphs for ob-
taining rigorousmathematical results; see, e.g., Reference [18]. The study of these complex systems
have significantly increased the interest in various random graph models [14]. With the growth
of complex networks, it has become necessary to generate massive random networks efficiently.
Many random graph models have been developed in the past to analyze complex systems.

Among them, the first and well-studied model is the Erdős–Rényi model [21]. However, the Erdős–
Rényi model does not exhibit the characteristics observed in many real-world complex systems
[14]. As a result, many other random graph models, such as small-world [45], Barabási–Albert [8,
11], Chung-Lu [39], exponential random graph [25, 42], R-MAT [17], and HOT [16] models, have
been proposed. Furthermore, a smaller network may not exhibit the same behavior of larger net-
works, even if both of the networks are generated using the same model. The structure of larger
networks is fundamentally different from small networks, and many patterns emerge only in mas-
sive datasets [36]. In the areas of network science and data mining as well as social sciences and
physics, large-scale network analysis is becoming a dominant field [10].
Demand for large random networks necessitates efficient, both in terms of running time and

memory consumption, algorithms to generate such networks. Although various random graph
models are being used and studied over the last several decades, even efficient sequential al-
gorithms for generating such graphs were nonexistent until recently. As a step toward meet-
ing this goal, recently efficient sequential algorithms have been developed to generate certain
classes of randomgraphs: Erdős–Rényi [14], small world [14], Preferential Attachment [14, 40], and
Chung-Lu [39]. However, although efficient sequential algorithms are able to generate networks
up to millions of vertices and edges quickly, generating networks with billions of vertices and
edges can take substantially longer. Further, a large memory requirement often makes generation
of such large networks using these sequential algorithms infeasible. Shared memory parallel ma-
chines provide one alternative to overcome the problems. Distributed memory parallel algorithms
provide another natural alternative.
Preferential attachment is a model that generates random scale-free networks, where a new ver-

texmakes connections to some existing vertices that are chosen preferentially based on some of the
properties of those vertices [11]. The preferential attachment model largely explains many struc-
tural properties observed in real-world networks such as power-law degree distribution, long tails,
and high degree vertices or hubs. The model is fundamental to understand how a simple process
can lead to the formation of real-world networks. The model has been widely used for commu-
nity detection [27], biological modeling [12], epidemic spreading [41], evaluating electric grid [18],
scientific collaboration [47], and many other areas. For the preferential attachment model, the ear-
liest known distributed-memory parallel algorithm is given by Yoo and Henderson [46]. Although
useful, the algorithm has two weaknesses: (i) to deal with dependencies and the required complex
synchronization, they presented an approximation algorithm rather than an exact algorithm; and
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(ii) the accuracy of their algorithm depends on several control parameters, which are manually
adjusted by running the algorithm repeatedly. Several other studies were done on the preferential
attachment-based models. Machta and Machta [37] described how an evolving network can be
generated in parallel. Dorogovtsev et al. [20] proposed a model that can generate graphs with fat-
tailed degree distributions. In this model, starting with some random graphs, edges are randomly
rewired according to some preferential choices. A literature review of the recent developments is
presented in Section 6.
In this article, we study the problem of designing a distributed memory parallel algorithm for

generating massive scale-free networks based on the preferential attachment (PA) model. The rest
of the article is organized as follows. Notations and a description of the parallel computationmodel
are given in Section 1.2. In Section 1.3, we describe the problem along with sequential algorithms.
In Section 2, we present our parallel algorithm in a distributed memory architecture for the case
where each vertex connects a single edge to the existing network. In Section 3, we extend the al-
gorithm for the general case where each vertex contributes x ≥ 1 edges to the existing network.
In Section 4, we present and analyze the partitioning and load balancing techniques. Experimental
results showing the performance of our parallel algorithms are presented in Section 5. In Sec-
tion 6, we present a literature review of recent developments on scale-free network generators.
We summarize the findings and indicate potential future work in Section 7.

1.2 Preliminaries and Notations

In the rest of the article, we use the following notations.We denote a networkG (V ,E), whereV and
E are the sets of vertices and edges, respectively, withm = |E | edges and n = |V | vertices labeled as
0, 1, 2, . . . ,n − 1. We denote (u,v ) ∈ E as an undirected edge where u,v ∈ V . If (u,v ) ∈ E, then we
say u and v are neighbors of each other. The set of all neighbors of v ∈ V is denoted by N (v ), i.e.,
N (v ) = {u ∈ V |(u,v ) ∈ E}. The degree ofv is dv = |N (v ) |. Ifu andv are neighbors, then sometime
we say that u is connected to v and vice versa.
We develop parallel algorithms for the message passing interface (MPI)-based distributed mem-

ory system, where each processing element (PE) performs a single process, does not have any
shared memory, and has its own local memory. The PEs can exchange data and communicate with
each other by exchanging messages. The PEs can read and write data from files in a shared file
system. However, such reading and writing of the files are done independently.
We use K, M, B, and T to denote thousands, millions, billions, and trillions, respectively; e.g., 2B

stands for two billion.

1.3 Background: Preferential Attachment Model

The preferential attachmentmodel is amodel for generating randomly evolved scale-free networks
using a preferential attachment mechanism. In a preferential attachment mechanism, a new vertex
is added to the network and connected to some existing vertices that are chosen preferentially
based on some properties of the vertices. In the most common application, preference is given
to vertices with larger degrees: The higher the degree of a vertex, the higher the probability of
choosing it. In this article, we study only the degree-based preferential attachment, and in the rest
of the article, by preferential attachment (PA), we mean degree-based preferential attachment.
Before presenting our parallel algorithms, we briefly discuss the sequential algorithms for gen-

erating PA networks.

Barabási-Albert Model. One way to generate a random PA network is to use a generative model
proposed by Barabási and Albert. Many real-world networks have two important characteristics:
(i) they are evolving in nature and (ii) the network tends to be scale free [11]. They provided a
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model, known as the Barabási-Albert (BA) model, where a new vertex is connected to an existing
vertex that is chosen with probability directly proportional to its current degree.
The BA model works as follows. Starting with a small connected graph of x̂ vertices, in every

time step, a new vertex t is added to the network and connected to x ≤ x̂ randomly chosen dis-
tinct existing vertices: Ft (k ) for 1 ≤ k ≤ x with Ft (k ) < t ; that is, Ft (k ) denotes the kth vertex to
which t is connected. Thus, each phase adds x new edges (t , Ft (1)), (t , Ft (2)), . . . , (t , Ft (x )) to the
network, which exhibits the evolving nature of the model. For each of the x new edges, vertices
Ft (1), Ft (2), . . . , Ft (x ) are randomly selected based on the degrees of the vertices in the current
network. In particular, a new vertex t connects to x distinct existing vertices where each vertex

i < t is selected with probability Pt (i ) =
di∑
j dj

.

The networks generated by the BA model are called the BA networks, which bear the two char-
acteristics of a real-world network mentioned above, i.e., evolving nature and scale-free property.
BA networks have power law degree distribution. A degree distribution is called power law if
the probability that a vertex has degree d is given by Pr [d] ∝ d−γ , where γ is a positive constant.
Barabási and Albert showed this preferential attachment method of selecting vertices results in a
power-law degree distribution [11].
First, we assume x = 1, and for this case, we use Ft for Ft (1). We discuss the general case x ≥ 1

later. One naïve approach is to maintain a list of the degrees of the vertices, and in each time step t ,

generate a uniform random number in
[
1,
∑t−1

i=0 di
]
and scan the list of the degrees sequentially to

find Ft . In this case, phase t takes Θ(t ) time, and the total time is Ω(n2). Batagelj and Brandes give
an efficient algorithmwith running timeO (m) [14]. This algorithmmaintains a list of vertices such
that each vertex i appears in this list exactly di times. The list can easily be updated dynamically
by simply appending u and v to the list whenever a new edge (u,v ) is added to the network. Now
to find Ft , a vertex is chosen from the list uniformly at random. Since each vertex i occurs exactly

di times in the list, we have Pr [Ft = i] =
di∑
j dj

. Although we have described the algorithm using

list for clarity, in practice we use an array for performance instead of list.

CopyModel.As it turns out, the BAmodel does not easily lend itself to an efficient parallelization.
Another algorithm called the copy model [31, 32] preserves preferential attachment and power-law
degree distribution. The copymodel works as follows. Similar to the BAmodel, it starts with a small
connected graph of x̂ vertices and in every time step, a new vertex t is added to the network to cre-
ate x ≤ x̂ connections to existing vertices Ft (�) for 1 ≤ � ≤ x with Ft (�) < t . For each connection
(t , Ft (�)) from vertex t the following steps are executed:
Step 1: First a random vertex k ∈ [0, t − 1] is chosen with uniform probability.
Step 2: Then Ft (�) is determined as follows:

Ft (�) =
⎧⎪⎨⎪⎩
k with probability p (Direct Edge) (1)

Fk (l ) with probability 1 − p (Copy Edge), (2)

where l is the index of a random outgoing connection from vertex k . Note that for a disconnected
vertex k in the initial graph, we also assume Fk (l ) = k for any l where k < x̂ . We also denote
Ft = {Ft (1), Ft (2), . . . , Ft (x )} to be the set of outgoing vertices from vertex t .
It can be easily shown that a connection from vertex t to vertex i is made with probabil-

ity Pr [i ∈ Ft ] = di∑
j dj

when p = 1
2 . Thus, when p = 1

2 , this algorithm follows the Barabási-Albert

model as shown in Theorem 1.1 [2, 3].

Theorem 1.1. The Barabási-Albert model is a special case of the copy model when p = 1
2 .
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Table 1. Symbols Used in this Article

Symbol Description
n The number of vertices
V The set of vertices
m The number of edges
E The set of edges
x The number of outgoing edges generated from each new vertex
p The probability of creating a direct edge in the copy model

N (v ) The set of neighbors of vertex v
dv The degree of vertex v

Ft (k ) The outgoing end of kth edge from vertex t
Ft The set of outgoing ends of edges from vertex t

Proof. A vertex i can be selected in Ft in twomutually exclusive ways: (i) i is chosen in the first
step and assigned to an outgoing edge of t in the second step (Equation (1)), which occurs with
probability 1

t
· p or (ii) a neighbor of i , v ∈ {u |i ∈ Fu }, is chosen in the first step (di − x possible

such neighbors), and the outgoing edge to i is selected (out of x outgoing edges from v) in the

second step (Equation (2)), which occurs with probability di−x
t
· (1 − p) · 1

x
, where di is the total

degree of vertex i . Thus, we have

Pr [i ∈ Ft ] =
1

t
· p + di − x

t
· (1 − p) · 1

x

=
xp + (di − x ) (1 − p)

xt

=
xp + (di − x ) (1 − p)

1
2

∑
j dj

⎡⎢⎢⎢⎢⎢⎣
∑
j

dj = 2xt

⎤⎥⎥⎥⎥⎥⎦
. (3)

When p = 1
2 , Pr [i ∈ Ft ] =

di∑
j dj

. �

The copy model is more general than the BA model and produces networks with degree distri-
bution following a power law d−γ , where the value of the exponent γ depends on the choice of
p [32]. Further, it is easy to see that the running time of the copy model is O (m). We found that
the copy model leads to more efficient parallel algorithms for generating preferential attachment
networks and develop our parallel algorithm based on the copy model.
To summarize, Table 1 lists the symbols used in this article.

2 SIMPLIFIED PARALLEL APPROACH FOR x = 1

The dependencies among the edges pose a major challenge in parallelizing preferential attachment
algorithms. In phase t , to determine Ft requires that Fi is known for each i < t . As a result, any
algorithm for preferential attachment seems to be highly sequential in nature: phase t cannot be
executed until all previous phases are completed. However, a careful observation reveals that Ft
can be partially, or sometimes completely, determined even before completing the previous phases.
The copy model helps us exploit this observation in designing a parallel algorithm. However, it
requires complex synchronizations and communications among the PEs. To keep the algorithm
efficient, such synchronizations and communications must be done carefully. In this section, we
present a parallel algorithm based on the copy model. For ease of discussion, we first present our
algorithm for the case x = 1. We present the general case x ≥ 1 in Section 3.
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Fig. 1. A network with seven vertices generated by Algorithm 1: (a) an intermediate instance of the network

in the middle of the execution of the algorithm, (b) the final network. Solid lines show final resolved edges,

and dashed lines show waiting of the vertices. For example, for vertex t = 4, k is chosen to be 2, F4 is chosen
to be set to k = 2 (in Lines 2–5), and thus edge (4, 2) is finalized immediately. For vertex t = 5, k is 3 and F5
is set to be F3 (in Line 7); as a result, determination of F5 is waited until F3 is known. At the end, we have
F5 = F3 = F2 = 1.

Let P be the number of PEs. The set of vertices V is partitioned into P disjoint subsets of ver-
tices V0,V1, . . . ,VP−1; that is, Vi ⊂ V , such that for any i and j, Vi ∩Vj = ∅ and

⋃
i Vi = V . PE Pi

is responsible for computing and storing Ft for all t ∈ Vi . The load balancing and performance
of the algorithm crucially depend on how V is partitioned. The details of vertex partitioning are
presented in Section 4.

2.1 Parallel Algorithm

The basic principle behind our parallel algorithm is as follows. Recall the sequential algorithm
for the copy model. Each PE Pi can independently compute step 1 for each t ∈ Vi , as a random
k ∈ [0, t − 1] is chosen with uniform probability (independent of the vertex degrees). Also, in step
2, if Ft is chosen to be k , Ft is determined immediately. If Ft is chosen to be Fk , then determination
of Ft needs to wait until Fk is known. If k ∈ Vj where i � j, then PE Pi sends a request message to
PE Pj to find Fk . Note that at the time when PE Pj receives this message, Fk can still be unknown.
If so, then Pj keeps this message in a queue called waiting queue until Fk is known. Once Fk is
known, Pj sends back a resolved message to Pi . The basic method executed by a PE Pi is given in
Algorithm 1. An example instance of the execution of this algorithmwith seven vertices is depicted
in Figure 1.

2.2 Analysis of the Simplified Algorithm: Dependency Chains

In our parallel algorithm, it is possible that computation of Ft for some vertex t can wait until Fk
for some other vertex k is known. Such waiting can form a chain, namely, a dependency chain. For
example, as demonstrated in Figure 1, computation of F5 is waiting for F3, which in turn is waiting
for F2, and thus we have chain of dependency 〈5, 3, 2〉. If the lengths of these chains are large,
then the waiting period for some vertices can be quite long, leading to poor performance of the
parallel algorithm. Fortunately, the length of a dependency chain is small, and the performance of
the algorithm is hardly affected by such waiting.
For the ease of analysis, first we formally define a dependency chain for x = 1 and provide a

rigorous analysis showing that themaximum length of a dependency chain is atmostO (logn)with
high probability (w.h.p.). For large n, O (logn) is small compared to n. Moreover, while O (logn)
is the maximum length, most of the chains have much smaller length. It is easy to see that for a
constant p, the average length of a dependency chain is also constant, which is at most 1

p
. For an

arbitrary p, the average length is still bounded by logn as shown in Theorem 2.3. Thus, while for
some vertices a PE may need to wait for O (logn) steps, the PE hardly remains idle as it has other
vertices to work with.
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ALGORITHM 1: Simplified Parallel Algorithm for x = 1

/* Each PE Pi executes the following in parallel: */

1 foreach t ∈ Vi do
2 k ← a uniform random vertex in [0, t − 1]
3 c ← a uniform random real number in [0, 1]

4 if c < p then // i.e., with probability p
5 Ft ← k

6 else

7 Ft ← NULL // to be set later to Fk
8 send message 〈request, t ,k〉 to Pj , where k ∈ Vj

/* Next, PE Pi receives messages sent to it and processes them as follows: */

9 Upon receipt of message 〈request, t ′,k ′〉 from P′j : // note that k ′ ∈ Vi
10 if Fk ′ � NULL then

11 send message 〈resolved, t ′, Fk ′ 〉 to P′j
12 else

13 store t ′ in queue Qk ′

14 Upon receipt of message 〈resolved, t ,v〉:
15 Ft ← v

16 foreach t ′ ∈ Qt do

17 send message 〈resolved, t ′,v〉 to Pj where t ′ ∈ Vj

For the purpose of analysis, first we introduce another chain named a selection chain. In the first
step (Line 2 of Algorithm 1), for each vertex t , another vertex k ∈ [0, t − 1] is selected. In turn for
vertex k , another vertex in [0,k − 1] is selected. We can think that such a selection process creates
a chain called a selection chain. Formally, we define a selection chain St starting at vertex t to be
a sequence of vertices 〈u0,u1,u2, . . . ,ui , . . .ux 〉 such that u0 = t ,ux = 0, and ui+1 is selected for
vertexui for 0 ≤ i < x . Notice that a selection chain must end at vertex 0. The length of a selection
chain St denoted by |St | is the number of vertices in St .

In the next step (see Equation (2) and Lines 2–5 of Algorithm 1), Ft is computed by assigning k
or Fk to it. If Fk is selected to be assigned to Ft , then Ft cannot be determined until Fk is known;
that is, the computation of Ft for vertex t depends on vertex k . In such a case, we say vertex t is
dependent on k ; otherwise, we say vertex t is independent. In turn, vertex k can depend on some
other vertex, and eventually such successive dependencies can form a dependency chain. Formally,
a dependency chain Dt starting at vertex t is a sequence of vertices 〈v0,v1,v2, . . . ,vi , . . .vy〉 such
that v0 = t , vi depends on vi+1 for 0 ≤ i < y, and vy is independent. Notice that if vi ∈ Dt , Dvi

is a subsequence and a suffix of Dt . Also it is easy to see that Dt is a subsequence and a prefix
of St , and we have |Dt | ≤ |St |. Examples of a selection chain and a dependency chain are shown
in Figure 2. Bounds on the length of dependency chains are given in Theorem 2.3. The following
lemmas, Lemmas 2.1 and 2.2, are needed to prove Theorem 2.3.

Lemma 2.1. Let Pt (i ) be the probability that vertex i is in selection chain St starting at vertex t .
Then for any 1 ≤ i < t , Pt (i ) =

1
i
.

Proof. Vertex i can be in St in two ways: (a) vertex i is selected for t (in Line 2 of Algorithm 1);
the probability of such an event is 1

t
; (b) vertex k is selected for t , where i < k < t , with probability

ACM Transactions on Parallel Computing, Vol. 7, No. 2, Article 13. Publication date: May 2020.
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Fig. 2. Selection chain and dependency chain. The entire chain, which is marked by the solid lines, is a

selection chain 〈t ,k, j, i, 2, 1, 0〉, and the sub-chain marked by the thick solid lines is a dependency chain

〈t ,k, j, i〉.

1
t
, and i is in Sk . Hence, for 1 ≤ i < t , we have

Pt (i ) =
1

t
+

t−1∑
k=i+1

1

t
Pr [i ∈ Sk ] ,

tPt (i ) = 1 +

t−1∑
k=i+1

Pk (i ). (4)

Substituting t with t + 1, for any i with 1 ≤ i < t + 1, we have

(t + 1)Pt+1 (i ) = 1 +

t∑
k=i+1

Pk (i ). (5)

By subtracting Equation (4) from Equation (5),

(t + 1)Pt+1 (i ) − tPt (i ) = Pt (i ),

Pt+1 (i ) = Pt (i ). (6)

FromEquation (6) by induction, we have Pk (i ) = Pt (i ) for anyk and t such that 1 ≤ i < min{k, t }.
Now consider k = i + 1. Notice that i is in Si+1 if and only if i is selected for vertex i + 1; that is,
Pi+1 (i ) =

1
i
. Hence, for any t > i , we have

Pt (i ) =
1

i
.

�

Lemma 2.2. Let Ai denote the event that i ∈ St . Then the events Ai for all i , where 1 ≤ i < t , are
mutually independent.

Proof. Consider a subset {Ai1 ,Ai2 , . . . ,Ai� } of any � such events where i1 < i2 < · · · < i� . To
prove the lemma, it is necessary and sufficient to show that for any � with 2 ≤ � < t ,

Pr

⎡⎢⎢⎢⎢⎣
�⋂

k=1

Aik

⎤⎥⎥⎥⎥⎦
=

�∏
k=1

Pr
[
Aik

]
. (7)

We know

Pr

⎡⎢⎢⎢⎢⎣
�⋂

k=1

Aik

⎤⎥⎥⎥⎥⎦
= Pr

⎡⎢⎢⎢⎢⎣
Ai1

������
�⋂

k=2

Aik

⎤⎥⎥⎥⎥⎦
· Pr

⎡⎢⎢⎢⎢⎣
�⋂

k=2

Aik

⎤⎥⎥⎥⎥⎦
.

If it is given that
⋂�

k=2Aik , i.e., i2, . . . , i� ∈ St , by the constructions of selection chains Si2 and
St and since i1 < i2, then we have i1 ∈ St if and only if i1 ∈ Si2 . Then,

Pr

⎡⎢⎢⎢⎢⎣
Ai1

������
�⋂

k=2

Aik

⎤⎥⎥⎥⎥⎦
= Pr

⎡⎢⎢⎢⎢⎣
i1 ∈ Si2

������
�⋂

k=2

Aik

⎤⎥⎥⎥⎥⎦
.
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Let Ri be a random variable that denotes the random vertex selected for vertex i . Now observe
that the occurrence of event i1 ∈ Si2 can be fully determined by the variables in {R j | i1 < j ≤ i2};
that is, event i1 ∈ Si2 does not depend on any random variables other than the variables in {R j | i1 <
j ≤ i2}. Similarly, the events i2, . . . , i� ∈ St do not depend on any random variables other than the
variables in {R j | i2 < j ≤ t }. Since the random variables Ri s are chosen independently at random

and the sets {R j | i1 < j ≤ i2} and {R j | i2 < j ≤ t } are disjoint, the events i1 ∈ Si2 and
⋂�

k=2Aik are
independent; that is,

Pr

⎡⎢⎢⎢⎢⎣
i1 ∈ Si2

������
�⋂

k=2

Aik

⎤⎥⎥⎥⎥⎦
= Pr

[
i1 ∈ Si2

]
.

By Lemma 2.1, we have Pr
[
i1 ∈ Si2

]
= 1

i1
= Pr [i1 ∈ St ] = Pr

[
Ai1

]
, and thus,

Pr

⎡⎢⎢⎢⎢⎣
�⋂

k=1

Aik

⎤⎥⎥⎥⎥⎦
= Pr

[
Ai1

] · Pr
⎡⎢⎢⎢⎢⎣

�⋂
k=2

Aik

⎤⎥⎥⎥⎥⎦
. (8)

Next, by using Equation (8) and applying induction on �, we prove Equation (7). The base case,
� = 2, follows immediately from Equation (8):

Pr

⎡⎢⎢⎢⎢⎣
2⋂

k=1

Aik

⎤⎥⎥⎥⎥⎦
= Pr

[
Ai1

] · Pr [Ai2

]
.

By induction hypothesis, for � − 1 events Aik , 2 ≤ k ≤ �, we have Pr
[⋂�

k=2Aik

]
=∏�

k=2 Pr
[
Aik

]
. Then, using Equation (8) for case 2 < � < t , we have

Pr

⎡⎢⎢⎢⎢⎣
�⋂

k=1

Aik

⎤⎥⎥⎥⎥⎦
= Pr

[
Ai1

] ·
�∏

k=2

Pr
[
Aik

]
=

�∏
k=1

Pr
[
Aik

]
.

�

Theorem 2.3. Let Lt be the length of the dependency chain starting at vertex t and Lmax = maxt Lt .
Then the expected length E[Lt ] ≤ logn and Lmax = O (logn) w.h.p., where n is the number of vertices.

Proof. Let St and Dt be the selection chain and dependency chain starting at vertex t , re-
spectively, and Xt (i ) be an indicator random variable such that Xt (i ) = 1 if i ∈ St and Xt (i ) = 0
otherwise. Then, we have

Lt = |Dt | ≤ |St | =
t−1∑
i=1

Xi (t ).

Let Pt (i ) be the probability that i ∈ St ; that is, Pt (i ) = Pr[Xt (i ) = 1] and E[Xt (i )] = Pt (i ) =
1
i
. By

linearity of expectation, we have

E[Lt ] =
t−1∑
i=1

E[Xi ] =

t−1∑
i=1

1

i
= Ht−1 ≤ log t ≤ logn,

where Ht−1 is the (t − 1)th harmonic number.
By Lemma 2.2, the random variables Xt (i ), for 1 ≤ i < t , are mutually independent. Applying

the Chernoff bound on independent Poisson trials, we have

Pr

⎡⎢⎢⎢⎢⎣
∑
t

Xt (i ) ≥ (1 + δ )μ
⎤⎥⎥⎥⎥⎦
≤
(

eδ

(1 + δ ) (1+δ )

) μ
.
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In the Chernoff bound, we set δ =
6 logn
μ
− 1. Since μ ≤ logn, we have δ > 0. Then,

Pr [Lt ≥ 6 logn] = Pr [Lt ≥ (1 + δ )μ]

≤
(

eδ

(1 + δ ) (1+δ )

) μ
≤
( e

1 + δ

) μ (1+δ )
≤
(

eμ

6 logn

)6 logn

≤
(
e logn

6 logn

) logn6

≤ 1(
6
e

) logn6
≤ 1

n4
.

Thus, with probability at least 1 − 1
n4 , the length of the dependency chain is O (logn). Using the

union bound, it holds simultaneously for all n vertices with probability at least 1 − 1
n3 . Hence, we

can say the length of the dependency chain is O (logn) w.h.p. �

3 GENERALIZED PARALLEL SOLUTION FOR x ≥ 1

In Section 2, we presented the algorithm for the simpler case x = 1. In this section, we modify this
algorithm for the general case where each vertex creates x ≥ 1 edges. The basic structure of the al-
gorithm for the general case is the same as that of the special case x = 1. We focus our discussion
only on the modifications required and the differences between the two cases. The main differ-
ence is that for each vertex t , instead of computing one edge (t , Ft ), we need to compute x edges
(t , Ft (1)), (t , Ft (2)), . . . , (t , Ft (x )). For this general case, the set of vertices {Ft (1), Ft (2), . . . , Ft (x )}
is denoted by Ft . Note that the preferential attachment model does not require all of the x new
edges to be distinct, i.e., the graph may contain duplicate edges. However, depending on the con-
text, a duplicate-free simple graph is often desired. Therefore, we present two parallel algorithms
for generating the graphs with and without duplicate edges. Both of the algorithms start with an
initial graph with the first x vertices labeled 0, 1, 2, . . . ,x − 1. Each of the other vertices from x to
n − 1 generates x new edges.

3.1 Parallel Algorithm with Duplicate Edges

We present the pseudo-code of the parallel algorithm with duplicate edges in Algorithm 2. The
flow of the algorithm closely resembles the Algorithm 1. The major difference is that we execute
the copy model x times in Line 2 and pick a random outgoing edge in Line 8. The waiting queue,
request and response messages are processed in the same fashion as done in Algorithm 1.

3.2 Parallel Algorithm without Duplicate Edges

Now, we present the pseudo-code of the parallel algorithmwithout duplicate edges in Algorithm 3.
There are fundamentally two important issues that need to be handled for the general case: (i) how
we select Ft (�) for vertex t where 1 ≤ � ≤ x , and (ii) howwe avoid duplicate edge creation.Multiple
edges for a vertex t are created by repeating the same procedure x times (Line 2), and duplicate
edges are avoided by simply checking if such an edge already exists and redoing the copy model.
Such checking is done whenever a new edge is created.
For the �th edge of a vertex t , another vertex k is uniformly chosen at random from [0, t − 1]

(Line 3). Edge (t ,k ) is created with probability p (Line 5). However, before creating such an edge
(t ,k ) in Line 7, the existence of such an edge is checked immediately before creating it in Line 6.
We used an array-based binary search tree (BST) to store and check the existence of the duplicate
edges. Note that the search operation of the BST is O (logx ). If the edge already exists at that time,
then the process is repeated again (Line 9). With the remaining 1 − p probability, t is connected to
some vertex in Fk ; that is, we make an edge (t , Fk (�)), such that � is uniformly chosen at random
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ALGORITHM 2: Generalized Parallel Algorithm for x ≥ 1 with Duplicate Edges

/* Each PE Pi executes the following in parallel: */

1 foreach t ∈ Vi do
2 for � = 1 to x do

3 k ← a uniform random vertex in [0, t − 1]
4 c ← a uniform random real number in [0, 1]

5 if c < p then // i.e., with probability p
6 Ft (�) ← k

7 else

8 l ← a uniform random number in [1,x]

9 Ft (�) ← NULL // to be set later to Fl (k )

10 send message 〈request, Ft (�), Fk (l )〉 to Pj , where k ∈ Vj

/* Next, PE Pi receives messages sent to it and processes them as follows: */

11 Upon receipt of message 〈request, Ft ′ (�′), Fk ′ (l ′)〉 from Pj′ : // note that k ′ ∈ Vi
12 if Fk ′ (l

′) � NULL then

13 send message 〈resolved, Ft ′ (�′), Fk ′ (l ′)〉 to Pj′
14 else

15 store 〈Ft ′ (�′), Fk ′ (l ′)〉 in queue Qk ′

16 Upon receipt of message 〈resolved, Ft (�),v〉:
17 Ft (�) ← v

18 foreach 〈Ft ′ (�′), Ft (�)〉∈ Qt do

19 send message 〈resolved, Ft ′ (�′),v〉 to Pj where t ′ ∈ Vj

from [1,x]. Similar to the special case x = 1, if k is in another PE, a request message is sent to that
PE to find Fk (�) (Line 14). The request and response messages are also processed in the same way.

Duplicate edges can also be created during the execution of Line 19. For example, suppose vertex
t creates two edges (t , Fk (�)) and (t , Fk ′ (�

′)). Also, assume both k and k ′ are not in the same PE as
t . Hence, request messages are sent to the PEs containing k and k ′ to resolve Fk (�) and Fk ′ (�

′). If
the �th edge of k and �′th edge of k ′ both connect to the same vertex u, then Fk (�) = Fk ′ (�

′) = u.
Hence, t may create a duplicate edge (t ,u), which could not be detected early. To deal with such
duplicate edges, after receiving a resolved message 〈resolved, Ft (�),v〉, the adjacency list of t is
checked to find whether edge (t ,v ) already exists (Line 20). If the edge does not exist, then it is
created. Otherwise, the copy model is re-executed for this edge (Lines 25–34). In case of direct edge
(Lines 28–31), a new random k is selected and connected if it does not exist in Ft . In case of copy
edge, a new l is selected (Line 33), and a new request message is sent (Line 34). Then the process
goes to Line 14 to receive the re-sent message. Note that each PE maintains a counter of the num-
ber of messages it sent and yet to receive. The message processing part of the algorithm (Line 14 to
Line 34) resumes until all the PEs have received the response messages for all the request messages
it sent. We do not show the details of the counters in the algorithm for the sake of simplicity.

3.3 Analysis of Dependency Chains

For the general case x ≥ 1, each new vertex creates x new edges. Similar to the earlier case, each
of these edges forms a selection and a dependency chain. Notice that all of the x selection chains
originating from a new vertex are independent of each other, because they independently execute
the copy model (irrespective of other outgoing edges from the same vertex) and follow the exact
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ALGORITHM 3: Generalized Parallel Algorithm for x ≥ 1

/* Each PE Pi executes the following in parallel: */

1 foreach t ∈ Vi do
2 for � = 1 to x do

3 k ← a uniform random vertex in [0, t − 1]
4 c ← a uniform random real number in [0, 1]

5 if c < p then // i.e., with probability p
6 if k � Ft then
7 Ft (�) ← k

8 else

9 go to line 3

10 else

11 l ← a uniform random number in [1,x]

12 Ft (�) ← NULL // to be set later to Fl (k )

13 send message 〈request, Ft (�), Fk (l )〉 to Pj , where k ∈ Vj

/* Next, PE Pi receives messages sent to it and processes them as follows: */

14 Upon receipt of message 〈request, Ft ′ (�′), Fk ′ (l ′)〉 from Pj′ : // note that k ′ ∈ Vi
15 if Fk ′ (l

′) � NULL then

16 send message 〈resolved, Ft ′ (�′), Fk ′ (l ′)〉 to Pj′
17 else

18 store 〈Ft ′ (�′), Fk ′ (l ′)〉 in queue Qk ′

19 Upon receipt of message 〈resolved, Ft (�),v〉:
20 if v � Ft then
21 Ft (�) ← v

22 foreach 〈Ft ′ (�′), Ft (�)〉∈ Qt do

23 send message 〈resolved, Ft ′ (�′),v〉 to Pj where t ′ ∈ Vj

24 else // Re-executing copy model
25 k ← a uniform random vertex in [0, t − 1]
26 c ← a uniform random real number in [0, 1]

27 if c < p then // i.e., with probability p
28 if k � Ft then
29 Ft (�) ← k

30 else

31 go to line 25

32 else

33 l ← a uniform random number in [1,x]

34 re-send message 〈request, Ft (�), Fk (l )〉 to Pj , where k ∈ Vj

same procedures with the same probabilities as shown in Lemmas 2.1 and 2.2. We already showed
that the maximum length of a selection chain is at most 6 logn with probability 1 − 1

n4 in Theo-
rem 2.3. For the general case, there are O (nx ) such chains. Using the union bound, the probability
that the maximum length is 6 logn for any of the O (nx ) selection chains is at least O (1 − x

n3 ). As
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Fig. 3. Experimental result shows that the maximum length of dependency chain is O (logn). The horizontal
axis (in log scale) represents the number of vertices and the vertical axis represents the length of the depen-

dency chain. Filled circles show the maximum length of dependency chain for each pair of n and x . The solid
line represents a logarithmic fit of the function y = a logn + c . Here, we used p = 1

2 .

x ≤ n, we can say that the length of the dependency chain is still O (logn) w.h.p. Note that this
bound holds only when parallel edges are allowed. However, when parallel edges are avoided, for
a large graph the effect is negligible as our experimental results show (see Figure 3).

Experimental Validation.Wealso experimentally evaluated themaximum length of dependency
chain using our general algorithm (Algorithm 3). In this experiment, we varied the number of ver-
tices n from 1K to 64M . For each n, we also varied x from 1 to 128. For each possible combination
of values of n and x , we calculated the maximum length of dependency chain by repeating the
algorithm several times. Figure 3 shows the maximum length of the dependency chain for each
combination of n and x . We also plotted a fitted line of the function y = a logn + c using logarith-
mic regression. The fitted line has a correlation of 0.97. Therefore, the figure clearly suggests that
the maximum length of dependency chain varies logarithmically with n and is independent of x .

3.4 Validating the Degree Distribution

During the execution of copy model, a new vertex t has to select x distinct vertices out of t existing
vertices 0, 1, 2, . . . , t − 1 to make x edges. Let Pt (i ) be the probability that vertex i is connected to
vertex t . Then,

Pt (i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
t
+ (1 − p)

t−1∑
k=x

1
t
Pk (i ) i < x̂ (initial vertices),

p

t
+ (1 − p)

t−1∑
k=i+1

1
t
Pk (i ) i ≥ x̂ .

(9)

Therefore, during the generation of edges from vertex t , vertex i is selected with probability
Pt (i ). To demonstrate the degree distribution of the expected network from the probability dis-
tribution defined in Equation (9), we compute the probabilities numerically for n = 10,000, x = 4,
and p = {0.01, 0.5, 0.99}. The expected degree of a vertex t is given by

E[di ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
k=i+1

Pk (i ) i < x̂ (initial vertices),

x +
n−1∑
k=i+1

Pk (i ) i ≥ x̂ .

(10)
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Fig. 4. Expected degree distribution of the algorithm for n = 10,000, x = 4, and p = {0.01, 0.5, 0.99}. With

different values of p, different shapes of the degree distribution are achieved.

Figure 4 shows the expected degree distribution by rounding off the expected degrees of each
vertex to its nearest integer value. As demonstrated in the figure, with p = 0.5, we have the typ-
ical shape of the degree distribution of a Barabási-Albert network. By varying p, we can gener-
ate different shapes of degree distributions. In the experimental section, we will show that our
implementation produces a similar form of degree distribution for massive generated networks
validating the implementation.

3.5 Bounding the Maximum Number of Regeneration of Edges

As noted earlier, with x > 1, there is a possibility of making a duplicate edge during the edge
creation process. As we are interested in only generating simple graphs with no self-loop or no
parallel edges, we avoid the creation of duplicate edges by checking for potential duplicate edge
and executing the copy model again if necessary. However, if the number of regeneration of edges
is very large, then the algorithm will be inefficient and parallelization will suffer. Fortunately, as
we show in this section, the number of regeneration of edges is not very large for most of the
practical scenarios and parallelization does not suffer.
Let 〈ui1 ,ui2 , . . .uix 〉 denotes the x unique vertices to be picked, i.e.,ui1 � ui2 � · · · � uix , with the

probability distribution shown in Equation (9). We are interested to know how many trials would
be required to pick the x unique vertices from t available vertices. It is not difficult to see that the
problem is a variation of the famous Coupon Collector’s Problem [15, 22], where the probability is
not the same for different objects and x ≤ t distinct objects have to be picked instead of the whole
t objects. Unfortunately, there are no close form results on the expected number of trials required.
In [24], the authors presented a formulation of the problem as follows. Let Xk denote the number
of trials to get kth unique vertices given that k − 1th vertices are unique. Note thatX1 = 1, the first
vertex, is always unique.X2 denotes the number of trials required to get a different vertex thanui1 .
Therefore, the total number of trials are:X = X1 + X2 + X3 + · · · + Xx . Then, the expected number
of trials is given by Reference [24]:

E [Xk ] =

t−1∑
i1�i2�· · ·�ik−1=1

pi1pi2 . . .pik−1
p (i1)p (i1, i2)p (i1, i2, i3) . . .p (i1, i2, i3, . . . , ik−1)

, (11)

where, p (i1, i2, i3, . . . , ik ) = 1 − Pt (ui1 ) − Pt (ui2 ) − . . . − Pt (uik ). Unfortunately, the formulation is
too complex to compute beyond several hundreds vertices.
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Fig. 5. Experimental results show that the maximum number of required trials is O (x logx ). We used n =
100K.

Fig. 6. Experimental results show that the number of required trials reduces as t becomes larger and larger

than x . We used n = 100K and p = 1
2 .

Due to the lack of close form solutions and intractable form of exact solution, we instead analyze
the maximum number of trials using the copy model itself. First, we analyze the maximum number
of trials required per vertex to select x distinct vertices. To do this, we ran the copy model for
different x and p values. For each combination of x and p the copy model is executed 15 times. In
each of the executions of the copy model, we collected the maximum number of trials needed for a
vertex. In Figure 5, we present the average of the maximum number of trials vs. x for different set
ofp probabilities. We also added error bars and shades denoting 95% confidence intervals. Next, we
fitted a line with an equation of the form x logx that explains 99.94% of the variability. Therefore,
we can say that the maximum number of trials required is O (x logx ) for any value of p with at
least 95% confidence.
Although the maximum number of trials is O (x logx ), not all vertices require that many trials.

In fact, as t becomes larger than x the number of trials required becomes smaller. In Figure 6, we
show the number of trials required in each vertex for different values of x with p = 0.5. Only the
first 1,000 vertices are shown for clarity. As observed from the figure, the number of trials reduces
significantly within the first few vertices and becomes very small as t 
 x . Therefore, the retrial
policy to avoid duplicate edges does not affect the algorithm significantly.
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Fig. 7. Experimental results show that the maximum number of retrials is O (x logx ). We used n = 100K.

Finally, we demonstrate the overhead incurred for executing copy model with x > 1. The over-
head is defined as the average number of trials required in excess of x per vertex. For comparing
the overhead for different configurations of n, x , and p, we denote the overhead as a percentage
over x . For the best cases, the overhead should be close to 0%. In Figure 7, we show the average
percentage overhead per vertex for n = 100K vertices and different x and p values. As observed
from the figure, overhead varies with x and p. The overhead is very big when p is very close to
0. That is because most of the vertices are copy edges and few of the vertices have very high
and skewed selection probability compared to other vertices. However, values of p close to 0 are
mostly of theoretical interest rather than the more practical scenarios that have large values of p.
For almost all practical purposes, the average overhead per vertex is very small.

3.6 Analysis of Waiting Queue Size

In our parallel algorithm, after receiving a request message for an edge Fk (l ) (Line 14 of Algo-
rithm 3), a PE sends a corresponding response message immediately if the edge Fk (l ) is already
known. Otherwise, the request message is stored in a queue called the waiting queue (Line 18 of
Algorithm 3). If a PE receives a large number of such request messages whose responses could not
be sent immediately, then the size of the waiting queues becomes large, leading to a large memory
requirement and the parallel algorithm yields poor performance. Fortunately, the number of such
request messages is not large. In this section, we provide a rigorous analysis showing that the
maximum number of items for the waiting queue of a vertex is O (x logn) with high probability
as shown in Theorem 3.1.

Theorem 3.1. The maximum number of items to be stored in the waiting queue of a vertex is

O (x logn) with high probability.

Proof. Assume that the lth outgoing edge of a vertex t executes the copy model and creates
an edge with the endpoint of the �th edge of a vertex k , i.e., Ft (l ) = Fk (�) (Copy Edge). A request
message 〈Ft (l ), Fk (�)〉 is sent to PE Pj where k ∈ Vj . If Fk (�) is not known at the time of receiving
the message, then the request will be put on a queue Qk for vertex k in PE Pj . The queue Qk is
called the waiting queue for vertex k . Once Fk (�) is known, all the messages in Qk for that edge
will be processed and a corresponding response message will be sent (Line 23 of Algorithm 3).
Therefore, while creating a copy edge (t , Fk (�)), the request message will be put in the waiting

queue Qk consisting of three events: (1) t selects Fk (�), (2) t chooses to make the copy edge with
probability 1 − p, and (3) Fk (�) is not known. According to the step 1 of the copy model, t picks
Fk (�)with probability

1
t−1

1
x
. Furthermore, Fk (�) is already knownwith probability at leastp (Direct
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Edge). Therefore, Fk (�) is not known with probability at most 1 − p. Let Pt (k� ) denote the prob-
ability that any outgoing edge from vertex t makes a copy edge (t , Fk (�)) and the corresponding
request message is put in the waiting queue Qk . Therefore, we have

Pt (k� ) = Pr
[
Fk (�) is selected

]
× Pr

[
copy edge is created

]
× Pr

[
Fk (�) is not known

]

≤ 1

t − 1
1

x
(1 − p) (1 − p)

≤ (1 − p)2 1

x (t − 1) . (12)

Let Xt (k� ) be an indicator random variable such that Xt (k� ) = 1 if a request message from ver-
tex t is stored in Qk for the copy edge Fk (�), and Xt (k� ) = 0 otherwise. Vertex t creates x edges
independently and each of these edges stores a request message in Qk for the edge Fk (�) with
probability Pr[Xt (k� ) = 1] = Pt (k� ). Therefore, we have

E [Xt (k� )] = xPt (k� ) ≤ (1 − p)2 1

(t − 1) .

Let Yk be a random variable that denotes the total number of messages stored inQk . According
to the parallel algorithm, Qk can store messages from vertex k + 1 to n − 1. Each of the vertex
creates x edges independently. Thus, by the definition of Yk , we have

Yk =
n−1∑
t=k+1

x∑
�=1

Xt (k� ).

Therefore,Yk is simply a sum of independent Bernoulli random variables. The expected number
of request messages stored in the queue Qk is given by

E
[
Yk

]
=

n−1∑
t=k+1

x∑
�=1

E [Xt (k� )]

≤
n−1∑
t=k+1

x∑
�=1

(1 − p)2 1

(t − 1)

≤ (1 − p)2x
n−1∑
t=k+1

1

t − 1

≤ (1 − p)2x
n−2∑
i=k

1

i

≤ (1 − p)2x (Hn−2 − Hk−1)

≤ (1 − p)2xHn−2

≤ (1 − p)2x logn. (13)

Applying the Chernoff bound on independent Bernoulli random variables, we have

Pr

⎡⎢⎢⎢⎢⎣
n−1∑
t=k+1

x∑
�=1

Xt (k� ) ≥ (1 + δ )μ
⎤⎥⎥⎥⎥⎦
≤
(

eδ

(1 + δ ) (1+δ )

) μ
.

In the Chernoff bound, we set δ =
5x logn

μ
− 1. In this case, μ ≤ (1 − p)2x logn, where 0 ≤ p ≤ 1.

Note that when p = 1 no copy edge will be created, therefore, no item will be placed in the waiting
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Fig. 8. The maximum size of the waiting queues changes logarithmically with n.

queue and the maximum number of items in Qk is 0. For p < 1, we have δ > 0. Then,

Pr [Yk ≥ 5x logn] = Pr

⎡⎢⎢⎢⎢⎣
n−1∑
t=k+1

x∑
�=1

Xt (k� ) ≥ (1 + δ )μ
⎤⎥⎥⎥⎥⎦

≤
(

eδ

(1 + δ ) (1+δ )

) μ
≤
( e

1 + δ

) μ (1+δ )

≤
(

eμ

5x logn

)5x logn

≤
(
e (1 − p)2x logn

5x logn

) logn5x

≤ 1(
5x
e

) logn5x
(1 − p) < 1

≤ 1

n3
[x ≥ 1].

Thus, with probability at least 1 − 1
n3 , the number of items in the waiting queue is O (x logn).

Using the union bound, it holds simultaneously for all the n waiting queues with probability at
least 1 − 1

n2 . Hence, we can say the maximum number of items in the waiting queue of any vertex
is O (x logn) w.h.p. �

3.7 Experimental Validation of WaitingQueue Size

In this section, we experimentally evaluate how the maximum size of the waiting queues varies
with n, p, and x as shown in Theorem 3.1.
In Figure 8, we plot the maximum size of the waiting queues by varying n for a set of different

x . We set p = 1
2 in these experiments. In the figure, the circles represent the maximum size of the

waiting queues collected experimentally, and the solid lines present a fit functiony = a logn + c for
different values of x . Both axes are plotted in log scale. The figure demonstrates that the maximum
size of a waiting queue is proportional to logn.
In Figure 9, we plot the maximum size of the waiting queues by varying x for a set of different n.

We also set p = 1
2 in these experiments. In the figure, the circles represent the maximum waiting

queue size collected experimentally, and the solid lines present a linear fit function y = ax + c
for different values of n. The figure demonstrates that the maximum size of a waiting queue is
proportional to x .
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Fig. 9. The maximum size of the waiting queues changes linearly with x .

Fig. 10. The maximum size of the waiting queues changes with (1 − p)2.

In Figure 10, we plot the maximum size of the waiting queues by varyingp for a set of different n
and x . In the figure, the circles represent themaximumwaiting queue size collected experimentally,
and the solid lines present a quadratic fit function y = a(1 − p)2 + c for different values of n and x .
The figure demonstrates that the maximum size of a waiting queue is proportional to (1 − p)2.

4 PARTITIONING AND LOAD BALANCING OF PARALLEL EXECUTION

Recall the formal definition of partitioning of the set of verticesV = {0, 1, . . . ,n − 1} into P subsets
V0,V1, . . . ,VP−1 as described at the beginning of Section 2. A good load balancing is achieved by
properly partitioning the set of vertices V and assigning each subset to one PE. Vertex partition-
ing has significant effects on the performance of the algorithm. In this section, we study several
partitioning schemes and their effects on load balancing and the performance of the algorithm. In
our algorithm, we measure the computational load in terms of the number of vertices per PE, the
number of outgoing messages (request message) from a PE, and the number of incoming messages
(response messages) to a PE.
There are several efficiency issues related to the partitioning of the vertices as described below.

It is desirable that a partitioning of the vertices satisfies the following criteria.

• For any given k ∈ V , finding the PE Pj , where k ∈ Vj (Line 8, Algorithm 1), can be done
efficiently, preferably in constant time without communicating with the other PEs.
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• The partitioning should lead to a good load balancing. The degrees of the vertices vary
significantly, and a vertex with a larger degree causes more messages to work with. As a
result, naïve partitioning may lead to poor load balancing.

• As we discuss later, combining multiple messages (to the same destination) and using an
MPI_send operation for them can increase the efficiency of the algorithm. However, com-
bining multiple messages may not be possible with an arbitrary partitioning as it may cause
deadlocks.

With the objective of satisfying the above criteria, we study the three partition schemes:

(1) Consecutive Partitioning,
(2) Round-robin Partitioning,
(3) Segmented Partitioning.

4.1 Consecutive Partitioning

In this partitioning scheme, the vertices are assigned to the PEs sequentially. Partition Vi starts
at vertex ni and ends at ni+1 − 1, where n0 = 0 and n

P
= n. That is, Vi = {ni ,ni + 1, . . . ,ni+1 − 1}

for all i . With the consecutive vertex partitioning, the only decision to be made is the number of
vertices to be assigned to each setVi . The simplest way to do so is to assign an equal number of ver-

tices in each set, i.e., |Vi | =
⌈
n
P

⌉
for all i . We call such a partitioning scheme the Simple Consecutive

Partitioning (SCP).

4.1.1 Simple Consecutive Partitioning. As discussed earlier, the sizes of the partitions are almost

equal. Let B =
⌈
n
P

⌉
. Then, the size of a partition is either B or B − 1. PartitionVi includes the vertices

from iB to (i + 1)B − 1. Finding the rank of the PE from a vertex u is pretty straightforward in the

SCP scheme. For a vertex u ∈ Vi , the rank of the PE Pi is given by i =
⌊
u
B

⌋
.

4.1.2 Optimal Consecutive Partitioning. The simple consecutive partitioning scheme satisfies
Criterion A and C above; however, it is clear that such partitioning can lead to poor load balancing.
The computation in each PE Pi involves the following three types of load:

A. generating random numbers and some other processing for each vertex t ∈ Vi ,
B. sending request messages for the vertices in Vi and receiving their replies, and
C. receiving request messages from other PEs and sending their replies.

The computational load for load type A and B above is directly proportional to the number of
vertices in partition Vi . Computational load for load type C depends not only on the number of
vertices in a PE but also on i , the rank of the PE.With simple consecutive vertex partitioning (SCP),
a lower ranked PE receives more request messages than a higher ranked PE, because with j < k ,
we have E[Mj ] > E[Mk ], where Mk is the number of request messages received for vertex k (see
Lemma 4.1).

Lemma 4.1. Let Mk be the number of request messages received for vertex k . Then E[Mk ] = (1 −
p) (Hn−1 − Hk ), where Hk is the kth harmonic number.

Proof. Vertex k receives a request message from vertex t > k if and only if t randomly picks
k and decides to assign Fk to Ft . The probability of such an event is (1 − p) 1

t
. Then the expected

number of messages received for vertex k is given by

n−1∑
t=k+1

(1 − p) 1
t
= (1 − p) (Hn−1 − Hk ).
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Fig. 11. Distribution of the vertices among PEs for actual solutions of Equation (15) and its linear approxi-

mation.

�

Next, we calculate the computational load for each PE with an arbitrary number of vertices as-
signed to the PEs. To do so, we make the following simplifying assumptions: (i) Sending a message
takes the same computation time as receiving a message, and (ii) p = 1

2 (the same analysis will
follow for arbitrary p by simply multiplying each term with 2(1 − p)). The number of vertices in
PE Pi is ni+1 − ni . Then computation cost for load of type A and B is c (ni+1 − ni ) for some constant
c . Following Lemma 4.1, the expected load for type C in PE Pi is

ni+1−1∑
k=ni

(Hn−1 − Hk ) = (ni+1 − ni )Hn−1 −
ni+1−1∑
k=ni

(Hk )

= (ni+1 − ni )Hn−1 − (ni+1Hni+1 − niHni ) + (ni+1 − ni )
= (ni+1 − ni ) (Hn−1 + 1) − (ni+1Hni+1 − niHni ). (14)

The second to the last line follows from Equation (2.36) on page 41 of Reference [28]. Thus, using
another constant b = 1 + c , the total computational load at PE Pi is

c (Pi ) = (ni+1 − ni ) (Hn−1 + b) − (ni+1Hni+1 − niHni ).

The combined load for all PEs is c ′n for some constant c ′ and desired load in each PE is c ′n
P
. Thus,

ni , for all i , can be determined by solving the following system of equations, which is unfortunately
nonlinear:

n0 = 0,

n
P
= n − 1,

c (Pi ) = (ni+1 − ni ) (Hn−1 + b) − (ni+1Hni+1 − niHni ) =
c ′n

P
. (15)

4.1.3 Linear Consecutive Partitioning. A good load balancing can be achieved by solving the
above system of equations. However two major difficulties arise:

• It seems the only way the above equations can be solved is by numerical methods, which
can take a prohibitively large time to compute.

• Criterion A for load balancing may not be satisfied, leading to poor performance.

To overcome these difficulties, guided by experimental results, we approximate the solution of
the above system of equations with a linear function and call the resultant partitioning scheme
linear consecutive partitioning (LCP). Figure 11 shows the distribution of the vertices among PEs
for actual solutions of Equation (15) and linear approximation. As we will see later in Section 5, our
approximate scheme LCP provides a very good load balancing and performance of the algorithm.
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As in the LCP scheme, the number of vertices is increasing linearly with i (the ranks of the PEs), the
number of vertices in PE Pi follows the arithmetic progression a, a + d, a + 2d, . . . , a + (P − 1)d ,
that is, the number of vertices in PE Pi is Bi = a + id , where d is the slope of the line for linear
approximation as shown in Figure 11. Slope d can be approximated easily by sampling two points

on the actual line. Partition Vi has the vertices from
∑i−1

j=0 (a + jd ) = i
(2a+(i−1)d )

2 to
∑i

j=0 (a + jd ) −
1 = (i + 1) (2a+id )2 − 1. Finding the rank of the PE for vertex u is more complicated in this scheme.
Given a vertex u, we need to find the PE Pi such that u ∈ Vi . Vertex u satisfies the following
inequality:

i−1∑
j=0

(a + jd ) ≤ u <
i∑
j=0

(a + jd ),

i (2a + (i − 1)d )
2

≤ u <
(i + 1) (2a + id )

2
. (16)

Solving the inequality Equation (16), we have

i =
⎢⎢⎢⎢⎢⎣
−(2a − d ) +

√
(2a − d )2 + 8du
2d

⎥⎥⎥⎥⎥⎦
. (17)

Determining partition parameters a and d . The parameters a and d are determined using
the number of vertices n and the number of PEs P . Parameter d is the slope of the straight line
y = a + dx , where y represents the number of vertices in the PE with rank x = i . We calculate d
by finding two points on this straight line. Putting i = 0 and i = P − 1 in Equation (15), we can
compute n1 and nP−1. Then, the number of vertices in the first PE is n1 − n0 = n1 and the number
of vertices in the last PE is nP − nP−1 = n − 1 − nP−1. Hence, we have

d =
n − 1 − nP−1 − n1

P
.

Now, we have

P−1∑
j=0

(a + jd ) = n,

P (2a + (P − 1)d )
2

= n,

a =
n

P
− (P − 1)d

2
. (18)

Message Buffering. The PEs exchange two types of messages: request messages and resolve
messages. For each vertex t , a PE may need to send one request message and receive one resolve
message. If PE Pi has multiple messages destined to the same PE, say PE Pj , then PE Pi can
combine them into a single message by buffering them instead of sending them individually. Each
PE can do so by maintaining P − 1 buffers, one for each of the other PEs. If the messages are not
combined, then for large n there can be a large number of outstanding messages in the system, and
the system may not be able to deal with such a large number of messages at a time, limiting our
ability to generate a large network. Further message buffering reduces overhead of packet headers
and thus improves efficiency.

4.2 Round-robin Partitioning (RRP)

In this scheme, vertices are distributed in a round-robin fashion among all PEs. Partition Vi con-
tains the vertices 〈i, i + p, i + 2p, . . . , i + kp〉 such that i + kp ≤ n < i + (k + 1)p; that is, Vi = {j |j
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mod P = i}. In other words, vertex i is assigned to setVi mod p . Similar to SCP, in this RRP scheme
the number of vertices in the sets is almost equal. The number of vertices in a set is either �n/p�
or �n/p�. The difference between the number of vertices in two sets is at most 1.
From Lemma 4.1, it is clear that the expected number of received messages decreases monoton-

ically with increasing vertex labels. Round-robin partitioning on such a monotonic distribution
typically performs better. For the round-robin vertex partitioning scheme, the computational load
among PEs is well-balanced as shown in Lemma 4.2.

Lemma 4.2. The difference between the computational load for any two PEs is at most O (logn),
while the total computational load is Ω(n).

Proof. The expected number of request messages received for vertex k is (Hn−1 − Hk ) (see
Lemma 4.1). Other loads for any vertex are constant. Then the total load for vertex k is CL(k ) =
(Hn−1 − Hk ) + b, for some constant b. Thus, the total load for PE Pi with partition Vi = {j |j
mod P = i} is PL(i ) = ∑k ∈Vi (Hn−1 − Hk + b).

Notice that for anyk1 < k2,CL(k1) > CL(k2). As a result, we have PL(i1) > PL(i2) for any i1 < i2.
Thus, the largest difference between the loads of two PEs is

PL(0) − PL(P − 1) =
∑
k ∈V0

(Hn−1 − Hk + b) −
∑

k ∈VP−1

(Hn−1 − Hk + b) (19)

≤ (Hn−1 + b) ( |V0 | − |VP−1 |) −
∑
k ∈V0

Hk +
∑

k ∈VP−1

Hk . (20)

If n is a multiple of P , then we have

|V0 | − |VP−1 | = 0, (21)

∑
k ∈VP−1

Hk <
∑
k ∈V0

Hk + Hn , (22)

and thus, PL(0) − PL(P − 1) < Hn = O (logn). (23)

Otherwise,

|V0 | − |VP−1 | = 1, (24)

∑
k ∈VP−1

Hk ≤
∑
k ∈V0

Hk , (25)

and thus, PL(0) − PL(P − 1) ≤ Hn−1 + b = O (logn). (26)

�

The RRP Scheme also satisfies Criterion A: given a vertex, finding the PE to which the vertex
belongs can be computed in constant time. Finding the rank of PE Pi for a given vertex u ∈ Vi is
determined by i = u mod P .

Message buffering. For consecutive vertex partitioning (both naïve and LCP), message buffering
(combining messages) does not require any special care to avoid deadlock. In SCP and LCP, since
PE Pi may wait only for PE Pk such that k < i , there cannot be a circular waiting among the PEs,
and therefore deadlock cannot arise.
However, in the RRP scheme, deadlock can occur if the messages are not buffered carefully. The

request messages can be buffered as it is done in SCP or LCP. The resolved message can also be
buffered, but it needs to be done in a special way to avoid deadlock. To avoid deadlock, resolved
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Fig. 12. Segmented partitioning with P = 3 PEs.

messages must be sent out from the buffer (even if the buffer is not full yet) after processing every
group of received messages (when buffering is used, messages are sent and received in groups).
Sending the resolved messages cannot wait any longer. Otherwise, it can cause circular waiting
among the PEs leading to a deadlock situation.

4.3 Segmented Partitioning

So far, we have studied partitioning schemes where the entire set of vertices are partitioned into
P subsets and each PE works on a partition. In this section, we present another fine-grained par-
titioning technique called Segmented Partitioning.
In the segmented partitioning technique, first the entire set of vertices is partitioned into k

consecutive subsets S1, S2, S3, . . . , Sk called segments (similar to the consecutive partitioning). From
the copymodel definition, clearly vertices on a segment Si may only depend on vertices on segment
S j where i ≥ j but not vice versa. Let Bi = |Si | denote the number of elements (also called the
segment size) in segment Si where 1 ≤ i ≤ k . Next, the parallel algorithm is executed in k rounds
where round i executes the parallel algorithm for all the vertices in segment Si . In round i , the
Bi vertices in segment Si are further partitioned into P subsets V0 (Si ),V1 (Si ), . . .VP−1 (Si ) (using
the previous schemes) and executed in parallel using the P PEs. After a round is completed, every
edge originating from the vertices in the segment is completely determined. We used segmented
partitioning technique for SCP, LCP, and RRP schemes. The technique is illustrated in Figure 12.
As we will see in the experimental section, the segmented partitioning has several benefits.

First, the technique offers fine grained tuning of load balancing. It also reduces the size of the
waiting queue dramatically, as before going into the next round, all the edges are already processed.
Therefore, the maximum size of the waiting queue reduces to O ((1 − p)2x log n

k
), where k is the

number of segments and the total number of items in the waiting queue is reduced with increasing
segment size. Additionally, the memory consumption is also reduced.
However, as segment size keeps increasing beyond some point, we start losing any advantages

because of the synchronization issues that need to be performed in each round. Therefore, there
is an optimal value of k . We experimentally varied k to determine the optimal value for each
partitioning scheme.
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Fig. 13. The degree distribution (in log - log scale) of the network generated by our parallel algorithms. The

network is generated with n = 109 and x = 4.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our algorithms experimentally. The accuracy of our
parallel algorithm is demonstrated by showing that the algorithm produces networks with power-
law degree distribution. Then, we present the strong and weak scaling of the algorithms. These
algorithms scale very well with the number of PEs. We also present experimental results showing
the impact of the partitioning schemes on load balancing and performance of the algorithms.

Experimental Setup.We used a high-performance computing cluster of 4,600 IBM Power System
AC922 nodes. Each node consists of two IBM POWER9 processors and 512 GB of DDR4 memory.
The POWER9 processor is built around IBM’s SIMD Multi-core (SMC) having 22 SMCs per pro-
cessor. The nodes are connected to a dual-rail EDR InfiniBand network in a Non-blocking Fat Tree
topology. For the MPI-based implementation of our algorithms, we used IBM Spectrum MPI from
IBM XL Compilers.
In the experimental evaluation, we used each core of the IBM POWER9 processor (SMC) as a

PE and used up to 1,000 PEs. Each of the algorithms we considered generates the network in main
memory, and the run time does not include the time required to write the graph to disk.

5.1 Validating Scale-free Property with Degree Distribution

The degree distribution of the graph generated by our parallel algorithm is shown in Figure 13 in
a log - log scale. We used n = 1B vertices and x = 4 that generates a network with 4B edges. As
shown in the figure, the copy model produces power-law degree distributions for various values
of p. When p = 0.5, the degree distribution is the same as the BA model. As the figure shows,
the distribution is heavy tailed, which is a distinct feature of the real-world power-law networks.
The exponent γ of this power-law degree distribution is measured to be 2.7, which supports the
fact that for a finite average degree of a scale-free network, the exponent γ satisfies 2 < γ < ∞
[19]. When p is very close to 0, the network is mainly built on copy edges, therefore, there is a
higher level of bias toward the higher degree vertices as evident from the longer tail. However,
when p is close to 1, the network mainly consists of direct edges, and we do not see long tails, a
salient property of many real world networks. The above results show that copy model is more
general and capable of generating many interesting degree distributions. Further, it shows that our
algorithms produce scale-free networks very accurately.
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Fig. 14. Vertex and message distribution for the partitioning schemes (n = 227, x = 64, p = 0.5). Note that

part of the lines for RRP and SCP are overlapping in the figures.

5.2 Performance of Partitioning Schemes and Segment Sizes

Vertex partitioning has significant effects on load balancing and performance of the algorithm. In
Section 4, we discussed three partitioning schemes SCP, LCP, and RRP, and theoretically analyzed
them. In this section, we experimentally study these schemes and their effect on the performance
of the algorithm. In these experiments, we used n = 227 vertices, x = 64 edges per vertex, p = 0.5,
and 400 PEs, which are sufficient to demonstrate the behavior and differences of the partitioning
schemes. For each of the three schemes, we measure the computational load in the PEs by the
number of vertices per PE, the number of outgoing messages from the PEs, and the number of
incoming messages to the PEs. The results are shown in Figure 14.

Vertex Distribution. The vertex distribution is shown in Figure 14(a). For SCP and RRP, ver-
tices are distributed uniformly among the PEs, and each PE has about 336K vertices. For LCP, the
number of vertices in the PEs are increasing linearly with the rank of the PEs.

MessageDistribution. In a consecutive partitioning (SCP and LCP), PEPi sends outgoing request
messages to PEsP0 toPi−1 and receives incomingmessages fromPEsPi+1 toPP−1. For each vertex,
a PE sends a request message with probability at most 1 − p (see Equation (2)). Thus, the expected
number of request messages sent by a PE is proportional to the number of vertices in the PE, as
shown in Figure 14(b). Note that in the SCP and LCP schemes, PE P0 does not need to send any
request messages at all.
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Fig. 15. Size of waiting queue for different segment sizes (n = 227, x = 64, p = 0.5).

Fig. 16. Total amount of messages (in bytes) communicated among PEs (n = 227, x = 64, p = 0.5).

Figure 14(c) shows the number of incoming request messages for each PE. It is clear that a lower
ranked PE receives more messages than a higher ranked PE in consecutive partitioning (SCP and
LCP) as suggested by Lemma 4.1. In the RRP scheme, both incoming and outgoing messages are
evenly distributed among the PEs.

Total Load Distribution. Besides sending and receiving messages, for each vertex, a PE can incur
a constant other computational cost. Thus, for analysis purposes, we measure the total computa-
tional load of a PE as the sum of the number of vertices in the PE and the number of incoming and
outgoing messages. Figure 14(d) shows the total load for the three partitioning schemes. The RRP
scheme distributes the load almost perfectly among the PEs. Load balancing in the LCP scheme
is also quite good. However, the SCP scheme distributes the load very poorly. These experimental
results verify our theoretical analysis given in Section 4.

Size of the Waiting Queue. With the segmented partitioning scheme, the total size of the wait-
ing queues is reduced with increasing segment size as shown in Figure 15. Therefore, segmented
partitions yield better performance in our algorithm.

Message Volume. Figure 16 shows the total volume of the messages to be exchanged among the
PEs for different partitioning schemes. Note that in the copy model, the expected number of copy
edges is (1 − p) fractions of all the edges and the PEs need message exchange to resolve copy edges
that do not reside in the same PE. Therefore, the total volume of the messages does not differ by
much in the different configurations of partitioning schemes as shown in the figure.
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Fig. 17. Total number of MPI_Send and MPI_Recv calls (n = 227, x = 64, p = 0.5).

Number of MPI Messages. Figure 17 shows the total number of MPI_Send and MPI_Recv calls
among different PEs for different partitioning schemes. The number of MPI calls depends on mes-
sage buffering as discussed in Section 4. In this experiment, we used a message buffer of size 1,024.
Note that although the message volume is at the similar level for all of the algorithms (Figure 16)
consecutive partitions (SCP and LCP) tend to send a smaller number of MPI messages. Although it
might indicate a more efficient message transfer, however, in reality, it exhibits less frequent sync
among the PEs leading to increased idle time. Also note that in RRP, to avoid deadlock scenario, we
sent out response messages as soon as a batch of request messages is received and processed. For
this reason, RRP exhibits higher number of MPI message compared to the consecutive schemes.
As the number of stages is increased for each partitioning scheme, the number of MPI messages

tend to decrease before increasing as most evident in the RRP scheme. This can be attributed to the
flushing of message buffers and dependency chains. In the RRP scheme, we need to flush message
buffers for each batch of messages a PE processes to avoid circular waiting. When the number
of segments is smaller, the segment size and the lengths of dependency chains in each segment
are larger. It requires more flushing of message buffers due to dependency chains and hence the
number of MPI messages becomes large. However, if the number of segments is larger, then the
segment size and the length of dependency chains are smaller. In this case, the number of MPI
messages is dominated by the number of segments. This suggests that there might be an optimal
segment size that reduces the MPI message communication. Next, we experimentally evaluate the
best segment size that works in practice.

Optimal Segment Size. Although an increasing segment size reduces the size of waiting queue,
it also reduces concurrency. Therefore, if the segment size is increased beyond some limit, then
the performance would start to decrease. To figure out the best segment size, we ran a wide set
of experiments varying the number of vertices (226, 227, 228), number of edges per vertex (16, 32,
64, 128), PEs (100, 200, 400, 800), and different segment sizes for a fixed p = 1

2 . We measure the
performance of each experimental run by the million edges produced per second per PE. The per-
formance results are presented in Figure 18. Each straight line connecting the points represents the
same configuration of n, x , and P but varying segment size. Our experimental results suggest that
the optimal segment size S can be calculated as S = CS × nx

P log P whereCS is a constant that depends

on the processing capabilities of the computing cluster. In our cluster, the value of CS =
1

12,000 . As

shown in the figure, the best performance peaks among all the experimental configuration runs
tend to maximize around the calculated step size. Our further experiments suggest that the value
of S works for most of the other cases quite well.
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Fig. 18. Performance of our algorithms for different segment sizes.

Fig. 19. Performance of our algorithms for different message buffer sizes.

Optimal Message Buffer Size. Next, we experimentally evaluate the best message buffer size. To
figure out the best message buffer size, we ran a wide set of experiments varying the number of
vertices (226, 227, 228), number of edges per vertex (16, 32, 64, 128), PEs (100, 200, 400, 800), segment
size of S = CS × nx

P log P , and message buffer sizes (2, 16, 128, 1,024, 8,192, 65,536, 524,288) for a fixed

p = 1
2 . We also measure the performance of each experimental run by the million edges produced

per second per PE. The performance results are presented in Figure 19, which shows that as the
buffer size is increased the performance increases. However, beyond message buffer size of 1,024,
there is no discernible gain observed. Therefore, a message buffer size of 1,024 is being used in the
production large case runs.

Effect of p on Performance. If p is reduced, then most of the edges produced consists of copy
edges, therefore requiring more message exchanges. Asp is increased toward 1, most edges consist
of direct edges. Therefore communication is reduced. This is shown in Figure 20.

5.3 Parallel Execution and Scalability

Strong Scaling. Strong scaling of a parallel algorithm shows its performance with an increasing
number of PEs keeping the problem size fixed. Figure 21 shows speedup factors of our algorithms
with segmented and unsegmented techniques using SCP, linear consecutive LCP, and RRP parti-
tioning schemes, as the number of PEs increases with problem size n = 100M and x = 60. Speedup
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Fig. 20. Performance of segmented partitioning on p.

Fig. 21. The strong scaling of our parallel algorithms for the problem size n = 100M and x = 60.

factors are measured asTs/Tp , whereTs andTp are the running time of a sequential algorithm and
the parallel algorithm, respectively. We have implemented the sequential version of our algorithm
in C++. This sequential implementation outperforms the best available implementation of the BA
model given in the NetworkX graph algorithm library [29]. As the sequential algorithm cannot
generate more than 6B edges due to memory limitations, we choose n = 100M and x = 60. We
varied the number of PEs from 1 to 1,024 for this experiment.
Parallelization of network algorithms is notoriously hard. Furthermore, we have observed that

the problem of generating a scale-free random network is quite sequential in nature due to the
dependencies among the edges. As Figure 21 shows, the speedups of our algorithms are increasing
almost linearly with the number of PEs. Given the sequential nature of the problem, our algorithms
show very good speedup. Further, the speedup of segmented versions performs better. Note that
both Segmented-SCP and Segmented-RRP are performing the best, due to better load balancing
and reduced queue size.

Weak Scaling. Weak scaling measures the performance of a parallel algorithm when the input
size per PE remains constant. For this experiment, we varied the number of PEs from 1 to 1,000.
With the number of PEs, the input size is also increased proportionally: for P PEs, a network with
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Fig. 22. Weak scaling of our parallel PA algorithm.

107P edges is generated. Figure 22 shows the weak scaling of our algorithms with the increasing
number of PEs.
In a perfect weak scaling case, the run time is expected to remain constant as the number of

PEs (P ) increases. However, in practice, communication among PEs increases with P , leading to
an increase in run time. Our algorithm with the LCP and RRP schemes shows very good weak
scaling, almost constant run time. Again, due to poor load balancing in the SCP scheme, we have
worse weak scaling.

Generating LargeNetworks.Ourmain goal for designing this algorithm is to generate very large
random networks. Using our algorithm with the Segmented RRP scheme, we are able to generate
a network with one trillion (240) edges, with n = 234 and x = 64. Using 1,000 PEs, the generation
of the network takes 84.79 seconds with duplicate edges and 324.60 seconds without any duplicate
edges.

Comparison with KaGen.We also compare the performance of our algorithm to the best avail-
able distributed memory algorithm to generate Barabási–Albert networks named KaGen [26, 43].
KaGen is available as an open source library from https://github.com/sebalamm/KaGen. We com-
piled KaGen in our same computing cluster with the most optimization level (-O3) of the C++
compiler. KaGen generates graphs with duplicate edges. To generate the same graph with one
trillion edges (n = 234 and x = 64), KaGen took 73.83 seconds using 1,000 PEs in our cluster. In
comparison, our algorithm with duplicate edges take 84.79 seconds in the same cluster. However,
our algorithm is more general and can produce a more general class of power–law graphs. Note
that the BA generator of KaGen is reported to generate 1015 edges within 3,600 seconds using
16,384 [43].

6 RELATEDWORK

Although the concepts of random networks have been used and well studied over the last sev-
eral decades, efficient algorithms to generate the networks were not available until recently. The
first efficient sequential algorithm to generate Erdős-Rényi and Barabási-Albert networks was pro-
posed in Reference [14]. A distributed memory-based algorithm to generate preferential attach-
ment networks was proposed in Reference [46]. However, their algorithm was not exact, rather an
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Table 2. Runtime Performance Recent Power-law Network Generators

Implementation Edges
Generator
Model

Duplicate
Edges PEs

Runtime
Second

Million Edges/
PE/Second

This article 1012 Copy No 1,000 324.60 3.39
This article 1012 Copy Yes 1,000 84.79 12.97
KaGen [26, 43] 1012 BA Yes 1,000 73.83 14.89
Sanders et al. [43] 1015 BA Yes 16,384 3,600 16.95
Alam et al. [4] 2.5 × 1011 Chung-Lu No 1,024 12 20.35
Kepner et al. [30] 1.15 × 1012 Kronecker Yes 41,472 1 27.65
MP-BA [38] 6.6 × 1010 BA Yes 1 GPU 2,675 24.87/GPU
Alam et al. [5, 6] 2 × 109 Copy No 1 GPU 2.3 869.57/GPU
Alam et al. [7] 1.6 × 1010 Copy No 4 GPUs 7 571.43/GPU

approximate algorithm and required manually adjusting several control parameters. The first ex-
act distributed-memory-based parallel algorithm using the copy model was proposed in Reference
[3]. Another distributed-memory-based parallel algorithm using the Barabási-Albert model was
proposed in References [38, 43]. However, instead of using pseudo-random number generators,
they used hash functions to generate the networks. A shared-memory-based parallel algorithm
using the copy model was proposed in Reference [9].
Several other theoretical studies were done on the preferential attachment-based models.

Machta and Machta [37] described how an evolving network can be generated in parallel.
Dorogovtsev et al. [20] proposed a model that can generate graphs with fat-tailed degree distribu-
tions. In this model, starting with some random graphs, edges are randomly rewired according to
some preferential choices. There exist other popular network models to generate networks with
power law degree distribution. R-MAT [17] and stochastic Kronecker graph (SKG) [35] models
can generate networks with power–law degree distribution using matrix multiplication. Due to
its simpler parallel implementation, the Graph500 group [1] choose the SKG model in their super-
computer benchmark. Recently, a massively parallel network generators based on the Kronecker
model was presented in Reference [30]. Highly scalable generators for Erdős-Rényi, 2D/3D ran-
dom geometric graphs, 2D/3D Delaunay graphs, and hyperbolic random graphs are described in
Reference [26]. The corresponding software library release also includes an implementation of the
algorithm described in Reference [43]. An efficient and scalable algorithmic method to generate
Chung–Lu, block two–level Erdős–Rényi (BTER), and stochastic blockmodels were also presented
in Reference [4]. Their algorithm can generate power–law networks with a given expected power–
law degree distribution. Recently there is a trend of using Graphics Processing Unit (GPU) for
graph problems. A GPU-based preferential attachment-based algorithm using the copy model was
proposed in References [5, 6]. A multi-GPU implementation of the preferential attachment-based
algorithm using the copy model with the hash functions was presented in Reference [7].
A summary of runtime performances of parallel algorithms to generate power-law networks is

presented in Table 2. All the corresponding numbers are collected from the corresponding paper.
Although the underlying machines and architectures are different among these implementations,
the numbers present a broad depiction of performance of these implementations. For comparative
analysis among these implementations, we define the number of edges generated by each PE per
second as our metrics. In this article, we used a generalized copy model to generate the power–
law networks that still have dependencies and communications among PEs. Using hash functions
instead of using pseudo-random generators can eliminate the communications and dependencies
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and hence yields better performance [43]. The Chung–Lu model also performs well to generate
a power–law degree distribution although it does not preserve the network structure defined by
the Barabási–Albert or the copy models [4]. Kronecker products are also very effective to generate
power–law networks that require pre-computed matrices [30]. The GPU-based algorithms offer a
significant improvement on performance, even with the most constraint copy model without any
relaxation on a single GPU [5, 6]. The multi-GPU algorithm scales well with larger networks by
leveraging hash functions [7].

7 CONCLUSION

We developed a parallel algorithm to generate massive scale-free networks using the preferential
attachment model. We analyzed the dependency nature of the problem in detail, which led to the
development of an efficient parallel algorithm for the problem. Various vertex partitioning schemes
and their effect on the algorithm were discussed as well. Our algorithm produces networks that
strictly follow power-law distribution. The linear scalability of our algorithm enables us to produce
one trillion edges in just six minutes. It will be interesting to develop scalable parallel algorithms
for other classes of random networks in the future.
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