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Abstract— This paper presents algorithms to simultaneously
compute the optimal assignments and formation parameters for
a team of robots from a given initial formation to a variable
goal formation (where the shape of the goal formation is given,
and its scale and location parameters must be optimized). We
assume the n robots are identical spheres. We use the sum
of squared travel distances as the objective function to be
minimized, which also ensures that the trajectories are collision
free. We show that this assignment with variable goal formation
problem can be transformed to a linear sum assignment problem
(LSAP) with pseudo costs that we establish are independent of
the formation parameters. The transformed problem can then
be solved using the Hungarian algorithm in O(n®) time. Thus
the assignment problem with variable goal formations using
this new approach has the same O(n®) time complexity as
the standard assignment problem with fixed goal formations.
Results from simulations on 200 and 600 robots are presented to
show the algorithm is sufficiently fast for practical applications.

I. INTRODUCTION

Teams of robots often have to move from one formation to
another as they perform exploration, coverage, and surveil-
lance tasks [1]. Such application scenarios are becoming
increasingly common as the cost of robots continues to
drop. This paper presents algorithms to compute the optimal
assignments and formation parameters for a team of robots
from a given initial formation to a variable goal formation;
here by variable goal formation we mean the desired shape
of the goal formation is given, and its scale and location
parameters can be varied. We use a minimum sum of squared
distances objective to ensure that the resulting trajectories are
collision free. Teams of unmanned aerial vehicles (UAVs)
or ground mobile robots often need to change formations in
order to navigate through narrow passages in an environment
with obstacles. Most work uses a single predefined goal
formation [1] for the team of robots or selects from a set of
predefined formations based on the route. Such approaches
do not exploit the additional flexibility for the goal formation
that is often possible — the formation could be scaled or its
location may be changed to optimize the objective function.
While efficient algorithms for variable formations with fixed
assignments are presented in [2], there is only limited prior
work where both the assignment and the variable formation
are considered simultaneously [3]. This is precisely the gap
that this paper addresses. Further, we show that this variable
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goal formation problem can be transformed to a linear sum
assignment problem (LSAP) [4], which can then be solved
using the Hungarian algorithm in O(n?) time, just like the
standard assignment problem with a fixed goal formation.

The algorithms presented here can also benefit an emerg-
ing novel application: the programming of large teams of
mobile robots [5] or UAVs [6] to create animated light shows
with LEDs mounted on the robots. Here the synchronized
robot formations create visual images for entertainment.
Recently Intel has demonstrated large fleets of its Shooting
Star drones (numbering 300-500 drones) for such visual
performances [7]. The quadrotor drones have LED lights that
change color and intensity to create appealing 3D displays.
The robots must be assigned goal locations and moved
to them along generated collision-free trajectories. These
algorithms would also benefit nanosatellite swarm formations
requiring reconfiguration [8].

Another application domain these algorithms are designed
to address is droplet-based lab-on-chip systems for point-
of-care medical diagnostics. In these light-actuated digital
microfluidic (LADM) systems, discrete droplets of chemicals
are optically actuated using moving patterns of projected
light to perform chemical reactions by repeatedly moving
droplets to mixing formations (e.g., [9], [10], [11], [12]).
By modeling the droplets as robots, we can address the
automated coordination of droplets on the LADM chip,
including determining goal formations that can fit within
specified regions of the chip.

II. RELATED WORK

Multi-robot assignment and trajectory planning: Multi-
robot assignment and task allocation has been an area of
active research; see Gerkey and Mataric [13] and Dias et
al. [14] for surveys. We first review assignment of multiple
robots to fixed formations. Kloder and Hutchinson [15]
developed a representation for collision-free path planning
of multiple unlabeled robots translating in the plane between
two given formations. They represent a formation by the
coefficients of a complex polynomial whose roots represent
the robot configurations. Turpin, Michael, and Kumar [16]
presented an algorithm for generating robot assignments and
trajectories for a team of robots moving from an initial
formation to a fixed goal formation. The robots are assumed
to be identical with equal radii. They show that by mini-
mizing the sum of the squares of velocities, the generated
trajectories have constant velocities and the resulting as-
signment guarantees that there is no collision between the
robots, under certain initial separation conditions; we build
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on this result. MacAlpine, Price, and Stone [17] developed a
collision-avoiding assignment algorithm that minimizes the
maximum robot travel distance for fixed goal formations.
Morgan et al. [8] developed a distributed auction algorithm
for spacecraft swarm assignment and collision-free trajectory
optimization. Recently Preiss et al. [18] presented an assign-
ment and trajectory optimization algorithm for quadrotors
in the presence of obstacles and downwash constraints. It
uses a spatial grid to generate discretized trajectories and
subsequently refines them into continuous trajectories.

Variable formations with fixed assignments: Derenick
and Spletzer [2] presented the first algorithm to find optimal
parameters for variable goal formations; however it assumes
the robot assignment is given. The scale, orientation, and
translation are all treated as parameters. Using second-order
cone programming techniques for solving the optimization
problem, they show that the theoretical complexity of the
algorithm is O(n!®), and linear in practice.

Assignment for variable formations: Akella [3] pre-
sented the first algorithms for simultaneously solving the
assignment problem and optimizing the formation parameters
for variable goal formations. Here scale and translation are
considered, although separately. The problem minimizes the
completion time, and is solved as a linear bottleneck assign-
ment problem (LBAP). Since the LBAP solution depends
on the order of the costs rather than their actual values,
computational geometry techniques are used to find the
optimal solution.

Formation changes in the presence of obstacles:
Alonso-Mora et al. [19] present algorithms to find convex
regions within the free space of an environment with obsta-
cles, and then use a centralized method for navigating a team
of robots in formation. The obstacles may be static and/or
dynamic. Sequential convex programming is used to find the
optimal parameters for the formation. The individual robots
then use a local planner to avoid any further collision and
account for the dynamics.

III. THE ASSIGNMENT WITH VARIABLE GOAL
FORMATION PROBLEM

Let there be n identical spherical robots with equal ra-
dius R. The initial positions of the robots are given by
Pi = (Piz, Piy, Diz) '3 = 1,...,n. Let the initial formation
be represented by P = (p; ), an n x 3 matrix. The desired
shape is given by n positions s; = (Sjz, 85y, 8j2) ,J =
1,...,n, defined in a local frame such that s; = (0,0,0)"
and with axes parallel to the global frame. Let the desired
shape formation be represented by S = (s), an n x 3
matrix. The goal formation, which is to be computed based
on the optimality criterion, consists of goal positions q; =
(@je,Qjy» =) ",7 = 1,...,n. Let the goal formation be
represented by Q = (q; ), an n x 3 matrix. A translation
vector d = (dy,dy,d.)" is defined such that q; = d. The
robots are assumed to move on straight line paths in an
obstacle-free environment. The objective is to simultaneously
assign the robots from the initial formation P to the goal
formation Q and to find the parameters describing the goal

formation. Further, trajectories need to be generated such that
there are no collisions between the robots.

Selecting the cost as the sum of squared distances enables
generation of trajectories that are collision free under the
condition that the separation of robots in the initial formation
and the goal formation is at least 2v/2R, as shown in [16].
Furthermore, the trajectories are such that the robots move
with constant velocities, and all robots simultaneously start
and reach their goal positions.

The objective of the paper is to develop an algorithm to
compute the optimal assignments and formation parameters
while also ensuring that the trajectories are collision free. An
illustrative example is shown in Fig. 1.

The following subsections describe the goal formation pa-
rameters considered, and their corresponding cost functions.

A. Variable Scale
The goal formation positions can be written in terms of
the scale parameter, o € (0, c0), as:
q; =as; +d (1

The cost ¢f; is given by the squared distance between the

initial position p; and the goal position q;, which in turn is
a function of the scale parameter a.

s = |lpi —qjll5 = (pi —as; —d) " (p; — as; — d) @
= (i~ d) (pi — d) —20(p; — ) s; + s
B. Variable Translation

For variable translation d, the formation positions are:
q; =s;+d 3)
The cost cfj is given by:

oy =llpi —qjll3 = (pi —s; —d) " (ps —s; — d)

4
=p,/pi+ szsj — 2piTsj —2(p; — sj)Td +d'd @

C. Variable Scale and Translation

For variable scale « and translation d, the formation
positions are given by:

q; =as; +d 5)
4l % Goal formation
/&
52 Ep<” O OO
% ; " Initial positi
* Desired shape ¥< nitial positions
> A TP
0F r/] <r/) (+ ‘\U <r/%
ol Assignments * B x
| | | | )
-10 -5 0 5 10
X-axis
Fig. 1. Tllustrative example with ten robots. The circular robots are in two

parallel rows in their initial formation. The desired formation shape is a
star. The objective is to compute the optimal assignment and the optimal
parameters (scale, translation) of the goal formation (indicated by the star
with red lines). The assignments are shown by dotted lines. For clarity, the
robots are not depicted at their goal positions.
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The cost ¢} is given by:

i =|lpi — q;l3 = (pi —as; —d) " (p; — as; — d)
= P;‘rpi + a2s;rsj — 2ap;rsj + 2as;d (6)
—2p/d+d'd

IV. SIMULTANEOUS ASSIGNMENT AND GOAL
FORMATION PARAMETER OPTIMIZATION

The problem of simultaneously computing the optimal
assignment and formation parameters for multiple robots,
while minimizing the sum of squared distances, can be posed
as the following optimization problem:

C = Z Z cijl'ij

i=1 j=1

Minimize

n
subject to Zmij =1 j57=1,...,n

i—1 (7N
ay=1 i=1,..n
j=1

(E”:{O,l} i,j:].,...,’n

The variables c;; represent the cost of assigning robot i to
position j, and are functions of the formation parameters
such as «a,d, depending on the requirements. The binary
variables x;; represent the assignment of the ith robot to the
jth goal position. Let the assignment matrix be X = (z;;).
We first establish some preliminary results.

We now show that even though the costs ¢;; are functions
of the formation parameters, the optimization problem stated
in (7) can be transformed to a Linear Sum Assignment Prob-
lem (LSAP). We derive a modified (pseudo) cost function for
the LSAP, the solution to which results in the same optimal
assignment as the original problem. The pseudo cost function
is identical for goal formations with variable scale, variable
translation, and combined variable scale and translation.

Lemma I: The double summation of the form
dic1 >j—y @itij, where the a; i = 1,...,n are
constants depending only on the index i, is a constant.

Proof: The double summation can be simplified, using
Z;'L:1 z;; = 1 from (7), as:

n n n n
9 SUETED P 98
i=1 j=1 i=1  j=1
n (3
= Z a; = constant.
i=1
| ]
Lemma 2: The double summation of the form
doic1 >y bjxij, where the b;, j = 1,...,n are

constants depending only on the index j, is a constant.
Proof: Similar to Lemma 1, the double summation can

be simplified as:

n n n n
> D biwig =) by @y
i=1 j=1 j=1 =1

9

Z b; = constant.

n

<.
—

|
Lemma 3: The double summation 77, > 0 ;5 is
equal to n.
Proof: From Lemma 1,

n n n
IR SR
i=1

i=1 j=1

(10)

A. Variable Scale

The objective function is based on minimization of the
sum of squared distances, and is a function of the scale
parameter « and assignment X:

Cal@X) =3 > s
i=1 j=1
The coefficients ¢7; are given by (2). The cost Cy is:

n n

Cal@,X) =3 > [(pi =) " (pi — d)zy

i=1 j=1

*20[(131 - d)TSJIEZJ + 0425;3‘7‘1’1']‘]

=d2,+20d"s + 0?2 +20 ) > " (-p/s;m))
i=1 j=1

(1)

with the following constants derived using Lemmas 1 and 2:

A2y =>"> (pi—d) (pi — d)ay;

i=1j=1

= Z(pi - d)T(Pi —d)

n n n
2 _ Tem.. — Ta.
d; = E E S; SjTij = E S; Sj
j=1

1=15=1
n o n n

S = E E ijij = E Sj
i=1 j=1 7j=1

The plot in Fig. 2 shows the cost curves for all permu-
tations of the example of Fig. 3. The optimal assignment
corresponds to the lowest cost curve. Note that the cost
curves do not intersect for positive values of a.

Lemma 4: If two different assignments X* = (z;;) and
X? = (z7;) have the same cost value at some value of @ > 0,
they have the same costs at all values of «.

Proof: Consider the two different assignments, X! =

(zi;) and X* = (x7;) with the corresponding cost functions

6710



Co(a,X1) and C,(cr, X?). The two cost functions intersect
at some value of «. Leaving aside the trivial case when o =
0, simplifying the equation C,(c, X!) = C,(a, X?) shows
that these two curves intersect when:

O3 (alsh) =303 (-pTs)

i=1 j=1 i=1 j=1

12)

Since (12) is independent of «, the equation C,(ca, X1) =
Cq(cr, X2) will be true at any value of .. Hence the two cost
curves are identical. (If X! is the optimal assignment, then
X2 is also optimal with the same cost.) [ ]
The above lemma establishes that an optimal cost curve
does not intersect with a non-optimal one since intersection
of an optimal cost curve with another cost curve implies
coincidence of the two curves. Coincidence of cost curves
can potentially lead to multiple optimal solutions. One ex-
ample scenario with multiple optimal solutions is when all
p; are perpendicular to all s; (e.g., p; = (Piz,0,0)7 and
s; = (0,5;,,0) ). Here the cost curves are equal for all the
assignments; any assignment would be optimal.
Corollary 5: The optimal assignment at a positive value
of « is the optimal assignment at any positive value of a.
Proof: Since an optimal cost curve does not intersect
with a non-optimal curve for o > 0, it is optimal over the
entire range of its formation parameter «. It is therefore
sufficient to compute the optimal assignment at any positive
value of a. [ ]
Further, a new assignment problem can be formulated with
pseudo costs obtained solely from the assignment-dependent
component of (11). The pseudo cost function is given by:

(13)
where k;; = fpiTsj

The costs k;; are constants and hence, the cost function
K(X), along with the constraints given in (7), forms an
LSAP. Let the optimal assignment obtained, using the Hun-
garian algorithm, be X* with optimal pseudo cost £*. Once
the optimal assignment is obtained, the values of x;; can be
substituted in the original cost function.

=
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Fig. 2. Plot of cost curves Cq (e, X) for all the permutations of assignment
X = (z;) for the three-robot example of Fig. 3.

PSEUDO-COST-ASSIGNMENT(P, S, n)
// P = (p,]) is n x 3 matrix for initial positions

1 K3

2 // S=(s])is n x 3 matrix for desired shape positions
3 fori=1ton

4 for j=1ton

5 Kij = —Pj s

6 (X*,K*) = HUNGARIAN-LSAP(k;;)

7 return (X*, C*)

Convexity of the cost function: At the optimal assign-
ment X*, the cost is given by:

Ca(e, X*) =d2; +2ad s + 20K* + a°d? (14)
The function is a quadratic with a positive leading coefficient.
Hence, it is convex. The globally optimal scale parameter,

«*, is obtained by evaluating the value at which the derivative
of Cq(a, X*) vanishes.

of =

K*+d's
R

S

5)

The globally optimal cost is then given by C,(a*, X*).

VARIABLE-SCALE-FORMATION(P, S, d, n)

1 (X*,K*) = PSEUDO-COST-ASSIGNMENT(P, S, n)
2 Compute o* from (15)

3 return ( o, X*)

Computational complexity: The optimal assignment X*
and pseudo cost K* can be obtained in O(n?) using the
Hungarian algorithm. The optimal scale a® can be com-
puted in O(nw) time where w is the dimensionality of
the workspace. Therefore the computational complexity of
solving the variable scale formation problem is O(n?).

An example assignment with variable scale formation
problem for » = 3 robots and its optimal assignment are
shown in Fig. 3.

Goal formation
Initial positions
Desired shape points|
Goal positions
Assignment

ix0+ |

Y -axis

-10 -5 0 5 10
X-axis

Fig. 3. An example assignment with variable scale formation problem with
three robots. The radius R of the robots is 0.5 units. The initial formation
of the robots is P = ((—6,—6), (—4, —6), (—2, —6)). The desired shape
is S = ((0,0), (—2, —4), (3, —4)). The translation parameter d = (0,4)"
is given. The optimal value of « is 1.9111, which corresponds to the lowest
cost curve in Fig. 2. The goal formation positions are q; = as; + d.
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B. Variable Translation

The objective is a function of the translation parameter d
and the assignment X:

The coefficients cfj are given by (4). The cost Cy is:

n n
Ca(d, X) = ZZ pl PiZij + s S;Tij — QpZ—ijij
i=1 j=1

—2(pi - Sj)Tdﬂl‘ij + deJZij]
:d2+d2+nde—2(

+QZZ

=1 j=1

—s)'d
ijw

(16)

where the following constants are derived using Lemmas 1,
2, and 3:

n n n
d2=>">"p/piri;=>_p/pi
=11 =1

p= Zszxm —sz

=1 j5=1

Using (16) and reasoning similar to Lemma 4, we can show
that the cost surfaces for two different permutations of the
assignment will not intersect for any value of d, unless
Yy >oj_1 Py sjxij is equal for the two assignments; in
this case the cost surfaces coincide for the two permutations
at all values of d. Using arguments similar to Corollary 5,
it is sufficient to solve for the optimal assignment at any
feasible value of d. The optimal assignment corresponds to
the lowest cost Cy(d, X) surface.

The pseudo cost function for this LSAP is the same as
that for the variable scale and is given in (13).

Convexity of the cost function: At the optimal assign-
ment X*, the cost is given by:

Ca(d,X*) =d> +d?+2K* —2(p—s)'d+nd'd (17)

The Hessian of Cy(d,X*) is a symmetric matrix with all
positive and identical eigenvalues, and therefore is positive
definite. The cost function is hence convex. The globally
optimal translation parameter d* can now be obtained by
evaluating the value at which the derivative of C4(d,X*)
vanishes.

ds = (p B S)

n

(18)

The optimal cost is given by Cy4(d*, X*). Similar to the
variable scale formation problem, the computational com-
plexity of solving the variable translation formation problem
is also O(n?). An example of the optimal assignment for
variable translation formation for n = 4 robots is shown in
Fig. 4.

—-- Goal formation
+ Initial positions

% Goal positions
\ ----- Assignment

Y -axis
o
;

cNoMIo]

'
ot
(==}
ot

10
X-axis

Fig. 4. An example assignment with variable translation formation problem
with four robots. The radius R of the robots is 0.5 units. The desired
shape is a rectangle, specified by S = ((0,0), (0, —6), (10, —6), (10, 0)).
The initial formation is P = ((0,4), (0,1), (0,—1), (0,4)). The optimal
translation parameter is d = (—5,3)'. The goal formation positions are
q; =s; + d.

VARIABLE-TRANSLATION-FORMATION(P, S, n)

1 (X*,K*) = PSEUDO-COST-ASSIGNMENT(P, S, n)
2 Compute d* from (18)

3 return (X*, d*)

C. Variable Scale and Translation

The objective function is a function of the scale parame-
ter «, the translation parameter d, and the assignment X:

>3 et

i=1 j=1

CadadX

The coefficients c;?‘jd are given by (6). Therefore

n n
_ T 26 Tg g T p..
=> 3 (p) piwij + s sjxi; — 20p] 524
=1 j=1

Cad(Oé, d, X)

+20tS;rdSCij — 2p7—rdllfu —+ dexij)
=d2+a’d2+nd'd+2as"d

—2pTd+2aZZ

i=1 j=1

SJ :c”
(19)

We can show, using (19) and reasoning similar to Lemma 4,
that the 4D cost surfaces for two different permutations of the
assignment will not intersect for any positive value of « or
any value of d, unless >2i", 3", p, sjz;; is equal for the
two assignments; in this case the cost surfaces coincide for
the two permutations at all values of a and d. The optimal
assignment for the variable scale and translation formation
can therefore be solved by evaluating at any feasible («, d).
The pseudo cost function for this LSAP is same as that for
variable scale and is given in (13).

6712



Convexity of the cost function: At the optimal assign-
ment X*, the cost is:

Cod(a,d, X*) = d§+a2d§+2alC*—2pTd—|—2ostd—|—nde
(20)
The Hessian of the cost function is symmetric with eigen-

values {2n,2n,d? +n £ /(d2 +n)? — 4s4}, where
sa=>_ Y llsi—sjl?

i=1 j=i+1

All of the eigenvalues are nonnegative, implying a positive

semidefinite Hessian matrix and so, a convex cost function.

The globally optimal scale and translation parameters, a*

and d*, can now be obtained by evaluating the value at which
the gradient of Cnq(c, d, X*) vanishes.

. DP's+nk*
- s's—nd?

(p—a’s)

n

The optimal cost is given by Cnq(a*,d*, X*). Similar to the

variable scale formation problem, the computational com-

plexity of solving the combined variable scale and translation

formation problem is also O(n?).

21
d* =

VARIABLE-SCALE-TRANSLATION-FORMATION(P, S, n)
1 (X*,K*) = PSEUDO-COST-ASSIGNMENT(P, S, n)

2 Compute o* and d* from (21)

3 return (o*, d*, X*)

D. Invariance of the Optimal Assignment

Theorem 6: The optimal assignment for a given initial
formation and a desired shape is invariant, and independent
of the goal formation’s scale and/or translation parameters.

Proof: The VARIABLE-SCALE-FORMATION,
VARIABLE-TRANSLATION-FORMATION, and VARIABLE-
SCALE-TRANSLATION-FORMATION algorithms all use the
same PSEUDO-COST-ASSIGNMENT algorithm to compute
the optimal assignment. The PSEUDO-COST-ASSIGNMENT
algorithm depends only on the initial formation P and the
desired shape S. [ |

The optimal formation parameters are computed by opti-
mizing the appropriate cost function given in (14), (17), or
(20). This also implies that for a given initial formation and
desired shape, we need to compute the optimal assignment
just once initially. Then given the feasible «, d ranges, we
can compute the optimal formation rapidly in time linear in
the number of robots.

V. TRAJECTORY GENERATION AND COLLISION
AVOIDANCE

The robots move with constant velocity straight-line trajec-
tories such that they start simultaneously and reach their re-
spective goal positions simultaneously at some final time ;.
Let the maximum allowable speed for the robots be v. The
final time is then given as:

sz‘ _Q¢(i)”2

where ¢(i) denotes the index of the goal position to which
robot ¢ is assigned, i.e., j such that z;; = 1. The constant
velocity trajectories x;(t) are then given as:

Qp(i) — Pi

xi(t):pi—&-( tf )t, te0,t].

These trajectories, for an assignment that minimizes the sum
of squared distances, are collision-free under the following
separation conditions, defined in [16]:

Ip: — pjll2 > 2V2R
lla; — aj||2 > 2V2R,

(22)

ij=1,2,...,ni#j (23)

Since the initial positions of the robots are given, the user
has to ensure that the distance between them is greater
than 2v/2R, as specified in (22). For the variable translation
formation, the condition in (23) becomes ||s; — s;|l2 >
2+/2R. Thus, the user needs to ensure that the distance
between the shape positions meets the requirement.

For the case when the scale is variable, the separation
condition for the goal positions, assuming s; # s;, can be
written as:

Oé||Si — SjHQ > 2\@R
or, a > ™"

2v2R

where Ozmi" = 1
min [|s; — s;|[2

Vi,j=1,...,n,1# j.
In general, practical applications restrict the permissible
values of the parameters. For example, a limit has to be
placed on the maximum value of scale; limits for the trans-
lation parameters also need to be specified so that the goal
formation does not lie outside the workspace. The following
constraints can then be specified:

d € [dy,d2],

min

a € [max (™", aq), as]

where d;,ds, a1, as are limits on the parameters specified
according to the application. As the objective function is
convex and quadratic and the parameter constraints are
linear, the minimization of the cost function (20) can be
solved as a convex quadratic program (QP). Further, the
KKT conditions (see e.g., [20]) provide the necessary and
sufficient conditions to find the globally optimal solution.

VI. EXAMPLES

Our first example demonstrates the algorithm’s ability to
perform assignment with variable goal formations for a large
number of robots, motivated by entertainment applications
using UAVs [6], [7]. A formation of 600 identical robots
of radius 0.25 units was initially set up as a rectangular
grid (Fig. 5). The first desired shape consisted of the letters
UNCC, where each letter has 150 constituent robots. Then
the next desired shape was changed to ICRA. Computation
of the optimal solution for the first formation change took
about 45 seconds while the second took about 80 seconds.
These computations were on a standard laptop (Intel i7-
7700HQ, 2.80GHz CPU with 16GB RAM) using MATLAB
with no performance optimization. The variable formation
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The supplemental video contains animated simulations of

both the above examples.

Fig. 6 illustrates such a scenario, where 200 robots initially

in cylindrical formation change to a spherical formation to
scales is decided by the aperture of the opening and the
range of the translation parameter is determined by feasible

locations for the goal formation. It took around 2 seconds to

pass through an opening in the wall. The feasible range of
solve the problem.
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the desired shape is selected

s

Simulation of 600 robots moving from an initial formation to two successive goal formations for an assignment problem with variable scale

In environments with obstacles and narrow passages,
robots may need to change their formations to efficiently
pass through, as shown in [19]. Depending on the shape and

and translation. The left column shows the formations, while the right column additionally shows the robot paths to the next formation for the computed
size of the narrow passages

assignments. (a) Initial formation of the robots in a rectangular grid. (b) Intermediate snapshot of the robots moving towards the UNCC goal formation.

(c) The robots at the UNCC goal formation. (d) Intermediate snapshot of the robots moving towards the second goal formation of ICRA. (e) The robots at

the ICRA goal formation.
and a valid range of formation parameters is determined.

the complexity of the Hungarian algorithm used to solve the

the dimension of the parameter space, and is dominated by
LSAP with the pseudo costs.

parameters were scale « and translation d

Fig. 5.
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Fig. 6. A variable scale and translation example with 200 robots where the
robot formation changes to pass through the circular opening in the wall.
(Top) Initial cylindrical formation and desired spherical shape of the robot
formation. (Bottom) An intermediate formation, the goal formation, and
final location of the formation after passing through the circular opening.

VII. CONCLUSION

This paper presents algorithms to compute the optimal
assignments and formation parameters for a team of robots
from a given initial formation to a variable goal formation;
here variable formation means that the desired shape of the
formation is given, and its scale and location parameters
must be optimized. We used the sum of squared robot travel
distances as the objective function to be minimized. For the
case of n identical spherical robots separated by 2v/2R at
their initial and goal positions, this objective ensures that the
trajectories are collision free. We showed that the assignment
with variable goal formation problem can be transformed to
a linear sum assignment problem, which can be solved using
the Hungarian algorithm. Thus using the presented approach,
the assignment problem with variable scale and translation
goal formations has the same O(n?) time complexity as the
assignment problem with fixed goal formations. Results from
simulations on 200 and 600 robots show the algorithm is
sufficiently fast for practical applications.

Our algorithm assumes that the environment is free of ob-
stacles. One future direction is to compute the valid ranges of
formation parameters in an environment with obstacles and
optimize over them. Extension of the current kinematic robot
model to dynamics models will also be explored. Future work
also includes characterizing the variable goal formation when
allowing rotation of the desired shape. Experiments on a team
of robots are also planned.
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