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Abstract 

Research studies provided evidence on the energy efficiency of integrating personal thermal comfort 

profiles into the control loop of Heating, Ventilation, and Air-Conditioning (HVAC) systems (i.e., comfort-

driven control). However, some conflicting cases with increased energy consumption were also reported. 

Addressing the limited and focused nature of those demonstrations, in this study, we have presented a 

comprehensive assessment of the energy efficiency implications of comfort-driven control to (i) understand 

the impact of a wide range of contextual factors and their combinatorial effect and (ii) identify the 

operational conditions that benefit from personal comfort integration. In doing so, we have proposed an 

agent-based modeling framework, coupled with EnergyPlus simulations. We considered five potentially 

influential parameters and their combinatorial arrangements including occupants’ thermal comfort 

characteristics, diverse multioccupancy scenarios, number of occupants in thermal zones, control strategies, 

and climate. We identified the most influencing factor to be the variations across occupants’ thermal 

comfort characteristics - reflected in probabilistic models of personal thermal comfort - followed by the 

number of occupants that share a thermal zone, and the control strategy in driving the collective setpoint in 

a zone. In thermal zones, shared by fewer than six occupants, we observed high potentials for energy 

efficiency gain (between 11% to 21% maximum gain) from comfort-driven control. Accounting for a wide 

range of personal comfort profiles, we have also demonstrated probabilistic bounds of energy saving 

potentials from comfort-driven control with a mean of 70-80% chance of energy saving in multioccupancy 

scenarios in a building with multiple thermal zones.  

Keywords: HVAC; Personal Thermal Comfort; Thermal Comfort Models; Human-in-the-loop; Energy 

Efficiency; Thermal Comfort Sensitivity; Multioccupancy 
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1. Introduction 

Comfort-driven control of Heating, Ventilation, and Air-Conditioning (HVAC) systems, which accounts 

for feedback from personal thermal comfort models or profiles in the control loop, has gained attention as 

one of the advanced control techniques for higher energy efficiency. Through our exhaustive literature 

synthesis study [1], we have observed that across the studies that demonstrated the effectiveness of comfort-

driven HVAC control, a median value of 20% of energy saving potentials have been reported. Since such 

outcomes came along with, at least, maintaining the level of user comfort, energy efficiency of HVAC 

systems has been improved by providing comfort with minimum energy use. When it comes to energy use, 

shifting a temperature setpoint (hereinafter a setpoint) according to users’ preferences does not guarantee 

energy saving, and the energy efficiency outcome could be affected by several contextual factors. We have 

further observed that in theses analyses, studies have investigated the impact of different potentially 

influential factors, such as individual thermal comfort characteristics, the number of occupants in a thermal 

zone, the configuration of thermal zones, the control strategy, and climate. Although previous studies have 

investigated energy efficiency, these studies have commonly focused on control framework development 

and looked at limited number of factors and contextual conditions. Therefore, a comprehensive 

understanding of the effect and potentials of comfort-driven control has not been presented in prior studies 

to provide an insight on its efficacy under different contextual circumstances. 

Although studies have demonstrated energy use reduction, in certain cases, reported in the literature, the 

use of comfort-driven HVAC control have brought about increases in energy consumption. [2], through a 

field study of single-occupancy spaces, observed an increase in energy consumption for a subspace by using 

a comfort-driven control strategy. This was associated with the occupants’ thermal preferences that required 

additional conditioning load, compared to the use of conventional setpoint. Another similar example can 

be found in the study by [3], which evaluated the energy implication of the comfort-driven HVAC operation 

in multiple climate zones at different building scales through simulation. They have shown different levels 

of energy savings – an average of 2.1% of energy reduction compared to a fixed building level setpoint of 

22.5 °C and 6.1% of energy increase compared to the Department of Energy (DOE) reference setpoint of 

24.0 °C. Furthermore, as observed in our literature assessment [1], majority of the studies on comfort-driven 

HVAC control have considered the warm Mediterranean climate, where cooling is the dominant 

conditioning mode for most of the year. In other words, due to the prevalence of overcooling in this climate, 

energy saving could potentially be seen when applying comfort-driven HVAC control. Therefore, 

understanding the impact of diversity in personal thermal comfort profiles is critical in identifying the 

energy efficiency bounds of comfort-driven control. 

In addition, the selection of a specific comfort-driven HVAC control strategy (i.e., the method for 

integrating personal thermal comfort models into the control loop) can play a part in the observed 

performance of the HVAC systems. As noted, different studies have proposed different methods for 

combining the personal comfort feedbacks into a collective control signal. [4] showed that personal comfort 

deviation minimization could result in improved energy efficiency and [5] further demonstrated that 

additional energy saving could be achieved by also accounting for energy use aspect in a multi-objective 

optimization process. However, in the latter study, they have shown increased energy use by 7.3% in one 

the thermal zone (due to occupants’ preferences), while the other zones had additional reduction in energy 

use by -18.8% and -32.3%. In other words, studies have shown that the implementation of different comfort-

driven control strategies could lead to diverse results based on contextual conditions. Different studies have 

proposed a diverse set of comfort-driven control strategies including accounting for majority vote [6], 

discomfort minimization [4], multi-objective optimization of energy and comfort [5], and personal thermal 

comfort sensitivity [7, 8]. These strategies could result in different outcomes in terms of energy use and 

comfort satisfaction depending on the contextual conditions. 

Moreover, the impact of thermal zone scale on comfort-driven HVAC control is a less explored factor. 

When it comes to occupancy-driven HVAC control, another major modality of Human-In-The-Loop 

(HITL) HVAC control [1], studies have demonstrated the usefulness of having multiple thermal zones, 
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rather than a single thermal zone, to adapt to the sporadic dynamics of occupancy [9, 10]. However, 

according to our extensive literature analyses [1], the impact of occupancy density in thermal zones and the 

resolution of thermal zones (i.e., the number of thermal zones in a building) on the efficiency of comfort-

driven control strategies has been rarely investigated. 

Accordingly, in spite of the valuable demonstrations of potentials in comfort-driven HVAC control, 

understanding the energy use implications of comfort-driven HVAC control strategies calls for further 

investigations. Therefore, we have explored the impact of the aforementioned factors in driving the range 

of energy efficiency of comfort-driven HVAC control. As noted, energy efficiency refers to the effective 

(i.e., optimum) use of energy consumption for achieving thermal comfort satisfaction. In doing so, different 

combinations of these factors have been accounted for in this study to provide a comprehensive assessment 

on their impacts. Also, energy implications of an control strategy that we introduced in our previous studies 

[7, 8, 11] has not been explored. This approach enhances the collective thermal comfort in a multi-

occupancy thermal zone by leveraging thermal comfort sensitivity (i.e., individual responses to temperature 

variations) compared to the strategies that focus only on occupants’ preferred temperatures. 

Therefore, through this study, the following research questions have been explored: 

• What is the impact of occupant diversity, building, and climate features on the energy use of 

comfort-driven HVAC control? 

• What is the impact of comfort-driven control strategies on energy efficiency?  

• What is the probability of energy saving given the diversity in personal comfort preferences?  

• Under what contextual conditions, the use of personal comfort profiles shows higher efficacy? 

The first question aimed to investigate the impact of (1) occupants’ thermal-comfort-related features, (2) 

number of occupants in thermal zones, (3) number of thermal zones in a building, (4) comfort-driven control 

strategy and (5) climate. The second question was investigated to provide insight into the pros and cons of 

each comfort-driven control strategy from different perspectives of energy efficiency. The third question 

seeks to identify the energy efficient circumstances given the uncertainty of diverse thermal comfort 

preferences. Lastly, through the investigations of the first three questions, the fourth question gets answered. 

The rest of this paper is structured as follows. Section 2 discusses the research background on advances of 

comfort-driven HVAC control for energy efficiency enhancement. Section 3 explains the methodology of 

the study. Specifically, we have elaborated on the Agent-Based Model (ABM) that replicates the 

mechanism of comfort-driven HVAC control and its use, coupled with an EnergyPlus prototype of an office 

model developed by Pacific Northwest National Laboratory (PNNL). Section 4 explains the results and 

findings of the study. Section 5 presents the limitations of this study to provide the ground for further 

discussions and research. Lastly in Section 6, the conclusion and future directions of this study are provided. 

2. Comfort-driven HVAC Operation Paradigm 

In conventional control of HVAC systems, thermostats play a central role in acquiring occupants’ feedback 

in the control logic of HVAC systems. However, their unsuitable locations and unclear authority over the 

devices often impede Human-Building Interaction (HBI) [12, 13]. These circumstances lead to 

underwhelming performance of indoor conditioning systems despite their significant role in the total energy 

consumption of building systems and occupants’ thermal comfort [14]. Several studies have shown that the 

office occupants, who often face these limitations [12, 13], reported lower thermal satisfaction, compared 

to the residential occupants [13, 15]. Therefore, research efforts sought to enable the integration of 

contextual thermal comfort information into the control of HVAC systems. Starting from web-based 

surveys [16], which are highly accessible to users, studies have proposed different methods from using 

mobile devices [17, 18] to physiological sensing [19-21] in order to empower enhanced HBI. These 

methods have paved the way for collecting individual users’ feedback on the environment in the form of 

thermal perceptions or preferences as opposed to desired temperature values in the legacy system (as 

thermostat settings). In this new paradigm, an indoor environment could be evaluated by using the personal 
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thermal comfort models developed by using the thermal votes of individual users and other contextual 

environmental and human-related factors (i.e., personalized thermal comfort profiles or models) [22]. These 

models could provide information such as the probability distribution of thermal comfort associated with 

different contextual conditions. 

The availability of users’ thermal comfort feedback and their personalized profiles has enabled the comfort-

driven HVAC control – that is, a system could adjust the indoor conditions based on actual and individual 

users’ thermal preferences and sensitivities. Through simulation and field study evaluations, previous 

studies have shown the elevated performance of comfort-driven HVAC systems [2, 4, 5, 23, 24]. These 

studies have proposed specific strategies and frameworks for integrating the personal comfort models into 

the control loops and evaluated their performance. The findings show that such a control paradigm not only 

improves users’ comfort, but also prevents over-conditioning beyond their thermal comfort zones. 

In the course of implementing this strategy, one of the inevitable questions is which setpoint should be 

chosen in multi-occupancy spaces to achieve collectively comfortable environments. The use of thermal 

zones (a number of rooms conditioned simultaneously by an HVAC unit) in current buildings reduces the 

occupancy density in multi-occupancy spaces. As the number of thermal zones decreases addressing the 

conflict between different occupants could be more challenging. As an example, most of residential 

buildings are designed as single thermal zones [25]. In these cases, diverse thermal preferences and 

responses to ambient temperatures from different occupants could complicate the choice of a setpoint [26]. 

Accordingly, studies have introduced several strategies to generate collectively comfortable conditions as 

follows: 

• Majority rule – adjusting a setpoint based on the majority vote [6], 

• Error minimization – identifying a setpoint where the total gap (i.e., errors) between setpoints and 

desired temperatures is minimized [4, 27], 

• Collective learning – updating the PMV model based on collective thermal comfort feedback [23]. 

• Thermal-comfort-sensitivity-based optimization – benefiting from each user’s thermal sensitivity 

in addition to thermal preferences to find an optimal setpoint [8, 11]. 

These control strategies were shown to have potentials for improving users’ thermal comfort as well as 

energy efficiency. In an example study, the majority rule strategy was shown to consume 20% less energy 

while maintaining users’ thermal comfort, compared to the conventional default setpoint setting [6]. The 

error minimization strategy was shown to result in 39% reduction in average daily air flow (i.e., energy 

saving) while keeping the temperature close to users’ thermal preferences [4]. The collective learning 

strategy, proposed by [23], not only saved 10.1% of energy but also improved the overall thermal comfort.  

However, despite the promising results in these studies, each study has used different benchmarks as well 

as different contexts in their studies. Such single demonstrations limit the comprehensive understanding of 

the viability of comfort-driven control strategy. Therefore, as noted, an in-depth understanding of the 

differences between these strategies calls for further assessment under the same context and circumstances. 

In a recent study, [28] have shown the energy implications of a comfort-driven strategy. In this study, the 

setpoint selection was carried out by summing all occupants’ thermal comfort profiles in a thermal zone 

and selecting the setpoint with the maximum probability, similar to [5]. Nonetheless, the impact of having 

diverse number of occupants (with varied preferences) and thermal zones has not been addressed. 

Therefore, this study contributes to the understanding of the efficacy of comfort-driven control strategies 

by (i) investigating the energy efficiency implications derived from diverse comfort-driven HVAC control 

strategies under different contextual conditions as elaborated above, and (ii) quantifying the energy 

efficiency bounds given the uncertainty of occupants’ thermal comfort preferences and contextual 

conditions. 
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3. Methodology 

3.1. Overall framework 

The overall framework of this study is presented in Figure 1. In general, the framework is a combination of 

(1) an Agent-Based Model (ABM) for interaction of users with the environment and (2) a building energy 

use simulation platform (i.e., EnergyPlus [29]). Even though EnergyPlus, developed by the U.S. DOE, is a 

powerful tool, it has limited capabilities in accounting for occupant behavioral dynamics and characteristics 

[30-33]. Hence, to incorporate individuals’ thermal comfort features and implement comfort-driven HVAC 

control according to dynamic thermal comfort demands, we have developed the ABM module in the 

framework. This module enables us to reflect the dynamics of occupants and their interactions with the 

indoor environment as agents, which have their own objectives, behaviors, and properties. Accordingly, 

through the use of ABM, a diverse set of scenarios could be created and tested. The specific application of 

the proposed ABM model, in the context of this study, is the identification of setpoints according to personal 

thermal comfort models and different comfort-driven control strategies. Then, setpoint information is fed 

into the energy simulation environment to assess and quantify the energy implications of HVAC control. 

As noted, we have identified different parameters that could potentially affect the energy use of building 

systems. Accordingly, the framework, in Figure 1, depicts the components, the required data, and the flow 

of the information between different components. In the following subsections, we have described the 

specifics of each component and the required data. 

 

Figure 1. Overall simulation framework — coupled ABM and EnergyPlus Models 

3.2. Agent-based modeling component 

3.2.1. General mechanism 

The developed ABM replicates the mechanism of comfort-driven HVAC control as reflected in Figure 2. 

This mechanism includes multiple agents, including human, Occupant Voting System (OVS), and HVAC 

agents that communicate with each other to seek an optimal setpoint that maximizes human agents’ 

collective thermal comfort. Specifically, human agents report their perceptions about thermal environments 

as thermal votes to OVS agents, and OVS agents generate individual thermal comfort profiles. Then, the 

HVAC agent optimizes the setpoint by requesting feedback from OVS agents. The HVAC agent could use 

alternative control strategies for setpoint optimization. Each thermal zone has agents that interact to derive 

the operational setpoint of that specific zone independent of other zones. Given the simulation nature of our 

study, in the ABM simulations, we have assumed that the conditioned air is equally distributed in a space. 

3.2.2. Human agents’ thermal vote creation 

To understand the impact of the diversity in individual preferences and the corresponding uncertainty in 

driving the energy use, we have created diverse sets of thermal comfort profiles (representing human 

agents) to be leveraged in various scenarios of multioccupancy. To this end, we have leveraged actual 

thermal comfort profiles reported by [34] and developed a data-driven process of thermal comfort profiling. 

This process is composed of three steps as reflected in Figure 3. [34], upon a comprehensive field 
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measurement of personal thermal comfort feedback (collecting numerous thermal votes for several months), 

employed a multinomial logistic regression model to distinguish uncomfortably cool, comfortable, and 

uncomfortably warm states (blue, black, and red lines in Figure 3, respectively). Using this approach, they 

have provided six personal thermal comfort profiles as the outcome of their study. Given that these profiles 

were developed using a large number of votes and across different days of field measurements, we 

leveraged these profiles for creating simulated personal comfort profiles, representing a larger number of 

profiles [7]. To this end, we introduced two random variables to sample from the individual comfort profiles 

by picking (1) a random temperature within the range from 20 to 30°C (𝑇𝑖) and (2) a thermal vote (𝑉𝑖) by 

selecting a random probability in [0,1] that determines the thermal comfort perception state of the occupant 

from the distributions (reflected in the details of Figure 3). Through repeated sampling, we created datasets 

of (𝑇𝑖, 𝑉𝑖) pairs for each occupant. In our study, we assumed that each human agent reports 50 thermal votes 

to the OVS agents (i.e., the OVS system sends the same number of requests to individuals), representing 

the average number employed for personalized comfort profiles in the previous studies (e.g., [4, 35, 36]). 

Depending on user dedication, the number of thermal votes for profile development could vary in reality, 

but we used the same number of thermal votes to minimize the impact of independent variables in our 

analyses. Although thermal comfort perception could vary depending on the context [37] (for example 

across different seasons), given the purpose of the study, we assumed that thermal comfort profiles remain 

constant. This is a realistic assumption given that we conducted our evaluations for a summer season and 

used a probabilistic representation for thermal comfort profile learning. 

 

Figure 2. Mechanisms of interactions and optimization in the developed agent-based model 

 



 7 

 

Figure 3. Process of synthesizing thermal comfort votes and creating (temperature, comfort vote) datasets 

to represent different human agents’ comfort profiles 

3.2.3. Comfort profiling process by Occupant Voting System (OVS) agents 

After compiling thermal votes from human agents (i.e., (𝑇𝑖, 𝑉𝑖) pairs), the OVS agents proceed with the 

profiling process using the Bayesian network modeling method in [36]. This method generates a joint 

probability distribution that identifies the probabilities of being comfortable leveraging reported 

uncomfortably cool, uncomfortably warm, and comfortable votes. With the normality assumption, the 

normal distributions of data points for each one of the triple thermal perception vote types, are jointly 

represented as in Equation (1): 

 𝑃(𝑜𝑐|𝑡) =
𝑃(𝑐|𝑡)

𝑃(𝑢𝑐|𝑡) + 𝑃(𝑐|𝑡) + 𝑃(𝑢𝑤|𝑡)
 (1) 

where 𝑃(𝑜𝑐|𝑡) indicates the probability distribution of the overall comfort for a given temperature, 𝑃(𝑢𝑐|𝑡) 

refers to the probability distribution of uncomfortably cool votes, 𝑃(𝑐|𝑡) is the probability distribution of 

comfortable votes, and 𝑃(𝑢𝑤|𝑡)  is the probability distribution of uncomfortably warm votes. Each 

individual probability distributions uses a Gaussian distribution defined by the average and the standard 

deviation of corresponding temperatures for the votes. Figure 4 presents an example illustration for creating 

a personal thermal comfort profile accounting for different classes of thermal comfort perceptions. In other 

words, this profile shows how this human agent changes its thermal satisfaction with respect to variations 

in air temperature. In addition to identifying the ideal temperature for each human agent, these profiles 
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show the rate of change in thermal satisfaction with respect to cooler or warmer conditions – thermal 

comfort sensitivity. More details of this Bayesian network modeling method has been provided in our 

previous study [7]. 

 

Figure 4. Process of creating a personalized comfort profile and its properties 

After identifying each human agent’s thermal comfort characteristics, such as preferred temperatures 

(personal comfort zone) or thermal comfort sensitivity, the OVS agent communicates this information to 

the HVAC agent. In each multioccupancy thermal zone, OVS agent receives a temperature setpoint from 

HVAC agent and queries the comfort profiles of human agents to send their reaction back to the HVAC 

agent for optimization. The reaction will be in the form of comfort satisfaction probability and the rate of 

change in satisfaction probability (for one control strategy). 

3.2.4. HVAC agent’s control strategy 

The HVAC agent utilizes an control strategy to seek an optimal setpoint by communicating with OVS 

agents with the aim of maximizing human agents’ comfort. Figure 5 presents the details of this process and 

its associated steps. Starting from the temperature setback (i.e., a setpoint during vacancy to curtail the 

conditioning load; hereinafter a setback), the HVAC agent evaluates each operable setpoint utilizing a cost 

function to determine the setpoint. The cost functions vary depending on the HVAC control strategies – 

i.e., the approaches that are used to integrate individual personal comfort models for collective conditioning 

of a thermal zone. The cost functions are as presented in Table 1. 

 

Figure 5. The setpoint selection process using different control strategies  

In this study, the following control strategies were evaluated:  

(1) using majority thermal votes (majority rule),  

(2) minimizing collective thermal comfort deviation for a thermal zone (error minimization) 
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(3) thermal-comfort-sensitivity-based optimization 

The collective learning, presented in Section 2, has been excluded as this approach does not account for 

individuals’ characteristics. Each strategy requires a different type of feedback from OVS agents as shown 

in Figure 6. In the first approach, each OVS agent submits a vote among warmer (+1), no change (0) and 

cooler (-1) options for a given temperature setpoint. For each potential setpoint, the HVAC agent sums all 

the thermal votes and proceeds to change the setpoint if the sum has either a positive or negative value. In 

the second approach, the HVAC agent calculates the sum of the deviations between thermal preferences 

(i.e., the temperature that offers 100% of satisfaction to a human agent) and each potential setpoint. Then, 

it selects the setpoint that has the minimum collective error. In the third strategy, the HVAC agent aims to 

maximize the collective probability of being comfortable for all human agents by comparing each human 

agent’s thermal comfort sensitivity. Thermal sensitivity measures the probability of thermal satisfaction 

change by moving from one setpoint to an adjacent one as shown in Figure 6. This strategy accounts for 

thermal votes in the first step to check the range of setpoints that results in a neutral feedback from 

occupants as a group (i.e., sum of votes from all occupants is zero) - where thermal comfort sensitivity 

comes to play in optimization. Then, it evaluates each human agent’s thermal comfort sensitivity in the 

range of collective neutral votes to prioritize the human agents with higher sensitivities - i.e., to avoid higher 

drops in individual comfort due to change in the setpoint. 

Table 1. Feedback type and cost function for different Each comfort-driven control strategies 

# Control strategy Feedback type Cost function 

1 
Using majority thermal 

vote 

Thermal vote: warmer (+1), no 

change (0), cooler (–1). 
∑ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑣𝑜𝑡𝑒𝑠 

2 

Optimizing collective 

thermal comfort 

deviation (error) 

Error: deviation between desired 

and operable setpoints (e.g., 2.4°C). 
𝑎𝑟𝑔𝑚𝑖𝑛(∑ 𝐸𝑟𝑟𝑜𝑟) 

3 
Using thermal comfort 

sensitivity 

Thermal vote and rate of change in 

probability of being comfortable 

(PC) 

𝑎𝑟𝑔𝑚𝑎𝑥 (∑ 𝑃𝐶) 

 𝑖𝑓 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑣𝑜𝑡𝑒 𝑖𝑠 𝑧𝑒𝑟𝑜 
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Figure 6. Calculation of feedback type in each control strategy 

More details and the pseudo code of each control strategy could be found in our previous study [7]. In 

addition, as shown in [7], having a high resolution operational setpoint interval (e.g., 0.1°C) could aid in 

creating a slightly better collectively acceptable environment, but the impact is marginal. Therefore, we 

chose 0.5°C as the operable setpoint interval, which is practical and flexible for users. This ABM for HBI 

has been used in cooperation with a building energy simulation model, which has been elaborated in the 

following subsection. 

3.3. Energy simulation component 

3.3.1. Prototype building model 

In order to evaluate the energy implications of comfort-driven control for different parameter combinations, 

the ABM simulates the HBIs and passes the information to energy simulation model. To do so, we have 
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(PNNL). This model has the total floor area of 511 m2 in one floor with windows fractions of 24.4% for 
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of this model is air-source heat pump with gas furnace as back up and the cooling type is air-source heat 

pump with maximum, and minimum supply air temperature of 40ºC and 13.8ºC, respectively. The major 
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considering that this model (1) covers all 8 U.S. climate zones and (2) has five thermal zones with different 

sizes and occupancy capacities (as shown and described in Figure 7 and Table 2, respectively) and facilitates 

our analyses for diverse set of scenarios. Specifically, we could simulate different conditions by changing 

the number of occupants, the number of thermal zones, and setting the climate conditions.  
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Table 2. Details of thermal zones in the office building model for our study taken from [38] 

Thermal zone name Area (m2) Volume (m3) Occupancy capacity 

Core 150 457 9 

Perimeter top 113 346 7 

Perimeter bottom 113 346 7 

Perimeter left 67 205 4 

Perimeter right 67 205 4 

Total 510 1559 31 

 

 

Figure 7. Schematics of prototype small office building, developed by PNNL for EnergyPlus simulation 

[38] 

3.3.2. Control and experimental scenarios 

We considered different values for each one of the aforementioned parameters. Furthermore, a number of 

parameters in the analyses were set to be the same (i.e., default parameters) across all the scenarios to 

facilitate the interpretation of the results and focus on the parameters of the study. The adopted parameters 

for different scenarios and the method for their calculations are as elaborated below. 

Default parameters: Table 3 shows the default parameters used in this study. For the period of analyses, 

the summer season has been chosen. Although the data used for creating the personal thermal comfort 

models were collected through a longitudinal survey over three years [34], with the assumption that thermal 

comfort profiles might not vary significantly in a season, we chose the summer season. The setback was set 

to be at 29.44°C (i.e., 85°F), which was the initial temperature in the EnergyPlus model by PNNL. 

Moreover, a uniform occupancy profile was considered for the environment – full occupancy from 9:00 am 

to 6:00 pm during weekdays and vacancy during weekends. 

Table 3. Default constant parameters and their values in energy simulation 

Parameter Value 

Period of simulation Summer (June to August) 

Occupancy profile 100% from 9:00 am to 6:00 pm during weekdays 

Temperature setback  29.44°C (85°F) 

Thermal comfort profiles: As indicated in Table 2, given the full capacity of the prototype building, we 

generated sets of 31 human agents with different thermal behaviors using our proposed ABM simulation 

OVS agent component. With the aim of addressing the impact of having diverse groups of occupants with 

different thermal comfort characteristics in a building, we have chosen two sets of 31 human agents with 

distinguishable patterns for our analyses. These two sets represent cases in which most of the occupants in 

a building prefer a warmer environment or a cooler environment. These representative occupant profiles 

help us consider the impact of a wide range of occupant diversity in assessing the uncertainty of energy 

efficiency potentials. More details on this process is presented in Section 4. 
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Climate conditions: In order to account for the impact of varied climate conditions, three locations, with 

moderate climates, were selected given their different temperature characteristics as shown in Table 4. We 

excluded locations with extreme climates. 

Table 4. Climate zone type, location, and characteristics used for simulations 
Zone type Location Characteristics 

2B Tucson, Arizona Hot and dry 

4B Albuquerque, New Mexico Mixed and dry 

6B Great Falls, Montana Cold and dry 

Number of thermal zones: In our simulations, the following (one single zone, as well as three thermal 

zones) configurations were adopted from the five thermal zones, defined in the PNNL prototype model, as 

shown in Figure 8. By diversifying the number of thermal zones, we have intended to gauge the impact of 

the thermal zones’ resolution in a building. Using the original five thermal zones results in unnecessarily 

complicated combinations of human-agents and increased computational time. To this end, we considered 

thermal zones to be combined by applying the same setpoint for the zones. In case #1, all the zones were 

considered to act as one unified thermal zone. In case #2, we combined (1) the perimeter left and top zones 

and (2) the perimeter bottom and right zones to have three zones in total. 

 

Figure 8. Thermal zone resolution adjustment and associated compositions 

Number of occupants (i.e., human agents) in case #1: In this case, we have explored how the number of 

occupants in a single thermal zone (the whole building as one thermal zone) for a wide range of 

multioccupancy scenarios will affect the performance of comfort-driven strategies. To explore the impact 

of having varied number of human agents (𝑘) with diverse thermal comfort preferences, we considered 

different combinations of 6, 12, 18, and 24 human agents at a time out. However, as reflected in Table 5, 

we constrained the total number of human agents (𝑛𝑡) to be less tan 31 for each 𝑘 to avoid the utilization 

of all possible combinations. Increasing the total number of human agents (𝑛𝑡) substantially increases the 

number of combinations (𝑁𝑐). For example, selecting groups of 12 human agents among 31 will result in 

141,120,525 cases as calculated by using Equation (2). To this end, the 𝑛𝑡, for each 𝑘, was manually chosen 

so that 𝑁𝑐  is sufficiently low and more than 1,000 combinations. However, for statistical analysis, we 

repeated the selection of combinations for 100 times per each 𝑘 value to create a wide range of variability. 

 𝑁𝑐 =
𝑛𝑡!

𝑘! (𝑛𝑡 − 𝑘)!
 (2) 

Table 5. Occupants’ (i.e., human agents) sub-group selection and their associated combinations for 

simulations in a single thermal zone 
Total number of 

human agents 

Number of human agents in a 

single thermal zone 

Number of 

combinations 

Number of 

repetitions 

Total number of 

combinations 

13 6 1,716 100 171,600 

16 12 1,820 100 182,200 

21 18 1,330 100 133,000 

27 24 2,925 100 292,500 

Thermal zone design

Thermal zone #1 Thermal zone #1

Thermal zone #2

Thermal zone #3

Case #1 - # of thermal zone: 1 Case #2 - # of thermal zone: 3
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Number of occupants (i.e., human agents) in case #2: For case #2 in Figure 8, we used the same total 

number of human agents in the building but distributed them in three thermal zones. Accordingly, different 

combinations of human agents were created in each thermal zone, compared to the case #1. This change 

created much larger number of combinations. Considering all possible combinations of arranging different 

thermal comfort profiles in adjacent thermal zones would have been computationally expensive while not 

necessary in answering the questions in this study. Hence, to simplify the approach, the following steps 

were taken: 

1. We randomly sampled the number of human agents (6, 12, 18, and 24) out of total 31 data sets. 

2. The selected human agents were considered to be equally distributed in three thermal zones. Hence, 

the possible combinations in each thermal zone (𝐶(𝑘,
𝑘

3
); e.g., 𝐶(6,2) or 𝐶(12,4)) were calculated. 

3. The previous steps were repeated several times to create sufficiently diverse cases for our analyses 

(Table 6 has shown the detailed information). The outcome could represent different sets of thermal 

comfort profiles in shared thermal zones. 

4. Then, for each set of human agents, through the developed ABM, we acquired optimized setpoints 

for different comfort-driven control strategies. The outcome of this step was sets of the possible 

combination of setpoints for different combinations of the human agents. In other words, for a 

group of diverse human agents and for different combinations of multioccupancy scenarios in each 

zone, the ranges of possible setpoints were identified. Given three thermal zones and different 

possible sets of setpoints in each zone, we created different combinations of setpoints in adjacent 

thermal zones. 

5. Through the EnergyPlus simulation, the energy use for different combinations of setpoints in 

adjacent thermal zones were calculated. As one example combination, 9,100 kWh is consumed by 

having 20.5°C in thermal zone #1 and #2 and 21.0°C in thermal zone #3). 

6. Since the probability distribution of the selected setpoints in step #4 is calculated for different 

combinations of human agents (e.g., 20.0°C – 10%, 21.0°C – 20%, and 22.0°C – 30%), we could 

compute the possibility of a setpoint combination. For example, when all three thermal zones have 

20.0°C as the setpoint, the probability of such a case is 10% × 10% × 10% = 0.1%. By using 

these probabilities, the distribution of energy use for all combinations were calculated. 

Table 6. Number of human agents in thermal zones and the numbers of combinations for simulation 

analyses for simulations in multiple zones 

Number of 

thermal zones 

Total number of 

human agents 

Number of human agents Number of 

repetitions 

Total number of 

combinations Thermal 

zone #1 

Thermal 

zone #2 

Thermal 

zone #3 

3 

6 2 2 2 1,000 15,000 

12 4 4 4 100 49,500 

18 6 6 6 100 1,856,400 

24 8 8 8 2 1,470,942 

3.4. Comparison with a benchmark:  

In the evaluations, we set up the benchmark setpoint to be 22.5°C as it is the commonly used temperature 

setpoint in the previous studies [3, 39] and the conventions in practice. Therefore, the energy consumption 

difference (𝐸𝑑𝑖𝑓𝑓) is calculated using Equation (3). 

 𝐸𝑑𝑖𝑓𝑓 =
(𝐸𝑐𝑜𝑚𝑓 − 𝐸𝑏𝑒𝑛)

𝐸𝑏𝑒𝑛
× 100 (3) 

in which 𝐸𝑏𝑒𝑛 is the energy consumption for the benchmark setpoint and 𝐸𝑐𝑜𝑚𝑓 is the energy consumption 

for the comfort-driven control. In calculating the energy saving potentials, the mean value of energy savings 

for each control strategy was used as 𝐸𝑐𝑜𝑚𝑓. 
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As discussed, comfort-driven control could result in either less or more energy consumption depending on 

the occupant thermal comfort characteristics, the combinations of occupants in thermal zones, and the 

outside temperature, compared to the conventional benchmark operation. Given that we are interested in 

assessing the energy saving potentials and their combinatorial bounds for the comfort-driven control, in 

presenting the results, we specified the percentages of the cases that result in energy savings compared to 

the benchmark setpoint (specified by a darker shade in the background as shown in Figure 9). In other 

words, we are presenting a rough estimate of the cumulative distribution function (CDF) value for energy 

consumption cases that are less than the benchmark energy consumption – i.e., 𝑃(𝐸𝑐𝑜𝑚𝑓 ≤ 𝐸𝑏𝑒𝑛). In this 

figure, the bars that are overlapping with the shaded background, represent the possibility of energy saving. 

 

Figure 9. The quantification of energy saving potentials compared to the control based on benchmark 

setpoint 

3.5. Energy efficiency of comfort-driven control  

As energy use in context of HVAC control is for occupant thermal comfort, energy efficiency should 

account for the amount of energy use and the level of occupant thermal comfort. Therefore, in addition to 

the energy consumption assessments, for each control strategy, we have quantified the thermal comfort 

improvement. Similar to the calculation of energy consumption difference (Equation (3)), the improvement 

of thermal comfort (𝑇𝐶𝑖𝑚𝑝) is calculated as below. 

 𝑇𝐶𝑖𝑚𝑝 =
(𝑇𝐶𝑐𝑜𝑚𝑓 − 𝑇𝐶𝑏𝑒𝑛)

𝑇𝐶𝑏𝑒𝑛
× 100 (4) 

in which 𝑇𝐶𝑏𝑒𝑛 is the probability of being comfortable using the benchmark setpoint (22.5°C). Similarly, 

the 𝑇𝐶𝑐𝑜𝑚𝑓 represents the average probability of comfort for each control strategy. 

Lastly, to demonstrate the overall performance (𝑂𝑝 ) in terms of energy efficiency, we have used the 

following indicator: 

 𝑂𝑝 = 𝑇𝐶𝑖𝑚𝑝 − 𝐸𝑑𝑖𝑓𝑓 (5) 

Given that both metrics are in [0,1], the subtraction of energy difference from comfort improvements will 

boost the thermal comfort efficiency for reduced energy consumption (i.e., 𝐸𝑑𝑖𝑓𝑓 < 0). That is, less energy 

use by the comfort-driven control leads to a negative value and we count such cases as positive. To the 

contrary, an increase in the energy use penalizes the improvement in thermal comfort gain. 

4. Results and Findings 

In running the analyses, as noted, we selected two sets of 31 diverse thermal comfort profiles to represent 

a wide range of human agents. The rationale behind selecting two sets of profiles was to assure that we 

account for a wide range of preferred temperatures across a spectrum of possible occupancy scenarios. In 

doing so, a data-driven approach was adopted to ensure the maximum difference between the thermal 

comfort profile sets in terms of preferred temperatures. To this end, we created 1000 sets of 31 thermal 
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comfort profiles and the histogram of the mean preferred temperatures setoff the sets is as presented in 

Figure 10. As this graph shows, the range for mean preferred temperatures varied and we selected two sets 

that has the maximum difference in their mean preferred temperatures (the first set had 22.06°C and the 

second set had 23.01°C). The contextual meaning of having these two sets is that there are two groups of 

occupants with different temperature preferences (and thus preferred setpoints) overall. Using these two 

data sets will help us quantify the bounds of energy saving potentials in for using comfort-driven control.  

 

Figure 10. Histogram of mean preferred temperatures across 1000 sets of 31 thermal comfort profiles 

 

Figure 11. Thermal preferences’ distributions for two selected sets of 31 human agents 

Figure 11 shows the temperature preferences for each set of profiles. We tested the normality of each human 

agent’s set of thermal votes by using the Kolmogorov-Smirnov test, one of the widely used normality tests 

[40]. To ensure the normality of each data set, sampling thermal votes was conducted until a p-value less 

than 0.05 was obtained. The first set had a lower variance, indicative of more similarity between the 

preferred setpoints of human agents, compared to the second set. 

In the following subsections, we have divided the presentation of findings according to the impact of 

individual parameters in our study in the following order: (1) number of occupants in a single zone, (2) 

increase in the number of thermal zones, and (3) varied climate conditions. Except for climate, parameters 

have been evaluated for three control strategies as described in the methodology section. 

4.1. The impact of number of occupants (individual comfort profiles) 

Figure 12 presents how energy consumption has varied depending on (1) the number of human agents in 

one single thermal zone and (2) the control strategy. To focus on the impact caused by these two factors, 

Albuquerque was solely used as the location on the account of its mixed climate nature. Different columns 

of this figure represent the results of the analyses for different number of occupants in thermal zones and 

different rows show the control strategy for integration of personal thermal comfort profiles. The bars in 

Figure 12 represent the histograms of energy consumption across different combinatorial realizations. The 

darker shades differentiate the results for the second set with higher average preferred temperatures from 

the results for the first set (lighter shades). It is worth noting that the benchmark energy consumptions across 
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the columns in Figure 12 are different due to the differences in the number of occupants, which in turn, 

affect the required thermal conditioning load. 

The realizations for these two sets help us differentiate the impact of personal thermal comfort profiles on 

energy consumption and efficiency expectations from comfort-driven control. Figure 13 summarizes the 

observations in Figure 12. Figure 13.A presents the percentage of energy use difference on average for 

different number of human agents and different control strategies and Figure 13.B presents variations in 

percentage of energy saving cases (an estimate for the cumulative probability of achieving energy saving 

by using comfort-driven control) under different circumstances. The realizations for the second set showed 

more energy savings on average, compared to the benchmark regardless of the control strategy (Figure 

13.A). Having the mean value of thermal preferences (23.01°C) above the benchmark setpoint (22.5°C) 

resulted in such outcome. On the other hand, the use of the first set with a relatively low average thermal 

preference (22.06°C), compared to the benchmark setpoint, resulted in an increased overall energy 

consumption (Figure 13.A). Furthermore, Figure 13.B presents the energy saving potential bounds under a 

wide range of realizations and quantifies the energy saving potentials under the uncertainty of diverse 

occupancy scenarios. As this figure shows, under different operational configurations, an upper-bound of 

energy saving probability between 70-93% is observed. On the other hand, for the best performance, a 

lower-bound of energy saving probability between 19-36% is observed. Given that we have selected two 

sets of human-agents with maximum distance between average preferred temperatures, this observation 

shows that on average, there is a possibility that in almost 50-65% of occupancy scenarios, the use of 

comfort-driven control could lead to energy savings. 

Throughout the evaluations for all the scenarios (i.e., combinations of thermal comfort profiles), regardless 

of the control strategy, it was observed that a denser population in a thermal zone limits the selection of 

setpoints because many conflicts (i.e., desiring the opposite side of setpoints) exist between human agents. 

In other words, the setpoint selection converges to the mean value of the preferred temperatures from 

different profiles. Hence, the distributions for different realizations in energy consumption analyses have 

narrowed. This trend demonstrates that, for multioccupancy spaces with relatively dense occupancy, the 

conventional operational models such as the PMV model characterizing the satisfaction of a large group of 

people is a reasonable approach. This is an important finding that integration of personal comfort models 

is more effective in thermal zones with low occupancy density. However, occupancy in buildings is 

dynamic and the density of occupants could vary across time. Therefore, in a responsive and adaptive 

building system, the diversity of personal models in thermal zones in reality provides opportunities for 

dynamic setpoint adjustment and lead to saving energy. Thus, the employment of personal thermal comfort 

profiles is crucial given the variety of mean preferred temperatures. These observations further accentuate 

the necessity of facilitating and enhancing HBI, rather than applying the most-likely desired setpoint. 

When it comes to the impact of the control strategies, the approach that seeks to minimize the deviation 

(error) between thermal preference and the temperature in the zone (the second approach) showed the most 

energy consumption followed by the approach that uses the thermal comfort sensitivity as shown in Figure 

13. For the first (majority rule) and third (thermal comfort sensitivity) strategies, the HVAC agent finds the 

optimal setpoint by starting from the setback (i.e., a low conditioning load) and moves the setpoint until 

reaching a point of no conflict. With an odd number of human agents in a thermal zone, the majority vote 

approach could give higher weight to the majority. However, with even number of occupants and evenly 

distributed thermal votes, this approach stops the setpoint selection process closer to the setback once the 

sum of the thermal votes is zero, which could be interpreted as the outcome of a drifting strategy [41]. In 

drifting, with the objective of reducing energy consumption, the HVAC agent seeks to shift the setpoint 

closer to a setback or outdoor temperature until a thermal dissatisfaction vote is reported. However, the 

approach based on thermal comfort sensitivity can move further away from the setback given its evaluation 

process of accounting for thermal comfort sensitivities in addition to preferences. Lastly, the error 

minimization approach selects a setpoint somewhere in between all the preferred temperatures, which often 

results in more conditioning loads than the other approaches. 
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Figure 12. Energy consumption distributions in a single thermal zone for different number of occupants 

(i.e., human agents) and different comfort-driven control strategies in a mixed and dry climate. 

 

Figure 13. Variation of energy use difference and percentage of energy-saving cases depending on the 

number of human agents and control strategies 

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
il
it
y

12 human agents (Benchmark: 11.07 MWh) 18 human agents (Benchmark: 11.21 MWh) 24 human agents (Benchmark: 11.34 MWh)6 human agents (Benchmark: 10.12 MWh)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0
P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

M
a

jo
ri

ty
 r

u
le

E
rr

o
r 

m
in

im
iz

a
ti
o

n
Th

e
rm

a
l-

c
o

m
fo

rt
-s

e
n

si
ti
v

it
y

C
o

m
fo

rt
-d

ri
v

e
n

 o
p

e
ra

ti
o

n
a

l 
st

ra
te

g
y

Number of human agents in each thermal zone (three thermal zones in total)

Multiple human agents in a single thermal zone (Location: Albuquerque – mixed and dry)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

8 9 10 119.58.5 10.5 11.5

Energy consumption (MWh)

8 9 10 119.58.5 10.5 11.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

8 9 10 119.58.5 10.5 11.5

Energy consumption (MWh)

Second set

Mean: 9.59 MWh, Variance: 319.9 MWh

First set
Mean: 10.19 MWh, Variance: 215.1 MWh

Second set

Mean: 10.57 MWh, Variance: 159.0 MWh

First set

Mean: 11.06 MWh, Variance: 113.0 MWh

Second set

Mean: 10.75 MWh, Variance: 133.3 MWh

First set

Mean: 11.22 MWh, Variance: 104.5 MWh

Second set

Mean: 10.87 MWh, Variance: 102.5 MWh

First set

Mean: 11.40 MWh, Variance: 89.00 MWh

Second set

Mean: 9.74 MWh, Variance: 219.6 MWh

First set

Mean: 10.49 MWh, Variance: 238.3 MWh

Second set

Mean: 10.67 MWh, Variance: 91.72 MWh

First set

Mean: 11.40 MWh, Variance: 96.52 MWh

Second set

Mean: 10.82 MWh, Variance: 51.61 MWh

First set

Mean: 11.58 MWh, Variance: 48.97 MWh

Second set

Mean: 10.94 MWh, Variance: 18.90 MWh

First set

Mean: 11.75 MWh, Variance: 16.37 MWh

Second set

Mean: 9.77 MWh, Variance: 319.4 MWh

First set

Mean: 10.25 MWh, Variance: 156.9 MWh

Second set

Mean: 10.73 MWh, Variance: 137.4 MWh

First set

Mean: 11.15 MWh, Variance: 62.16 MWh

Second set

Mean: 10.87 MWh, Variance: 79.80 MWh

First set

Mean: 11.32 MWh, Variance: 41.79 MWh

Second set

Mean: 11.00 MWh, Variance: 42.51 MWh

First set

Mean: 11.42 MWh, Variance: 29.80 MWh

First set: mean value of thermal preferences – 22.06ºC
Second set: mean value of thermal preferences - 23.01ºC

- Below benchmark (Energy saving potentials)

2418126

0.66
-0.15

0.18
0.55

3.66

2.96
3.33

3.65

1.21
0.74

0.99 0.75

-5.3
-4.5

-4.09 -4.13
-3.73 -3.61 -3.48

-3.52
-3.44

-3.06 -2.99 -3.01

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6 12 18 24

Majority rule Error minimization Thermal-sensitivity-based

Number of human agents (EA)

E
n

e
rg

y
 u

se
 d

if
fe

re
n

c
e

 (
%

)

Color of the lines: Operational strategy -

Type of the lines: Thermal comfort profile set - Solid line: 1st Set (mean preferred setpoints: 22.06ºC)

Dashed line: 2nd Set (mean preferred setpoints: 23.01ºC)

32.27 36.02

29.17

19.19

11.49

2.15
0.05 0

20.66

9.85

2.13
0

69.95
70.1 68.9

74.68
67.09

75.73

82.52

93.32

58.54
63.96

68.58

77.63

0

10

20

30

40

50

60

70

80

90

100

Number of human agents (EA)

P
e

rc
e

n
ta

g
e

 o
f 

e
n

e
rg

y
-s

a
v

in
g

 c
a

se
s 

(%
)

A) Variations of energy use difference by the number of 

human agents

B) Variations of percentage of energy-saving cases  by 

the number of human agents



 18 

4.2. The impact of increased number of thermal zones 

Figure 14 presents how energy consumption has varied according to (1) the number of human agents 

distributed across multiple zones and (2) different control strategies. Similarly, Albuquerque was selected 

as the location for the representative climate. In these analyses, the number of the occupants per zone will 

reduce but more complex combinations of profiles were tested across multiple zones. As Figure 14 shows 

in the reported values on the graphs, with the increase in the number of thermal zones, similar general trends 

in terms of average energy consumption could be observed across different control strategies and as the 

number of occupants increases. The higher the number of human agents in each thermal zone, the narrower 

the energy use distributions. Moreover, the first set of comfort profiles showed higher energy consumption, 

compared to the second set. Lastly, as discussed, the error minimization strategy consumed the most energy 

and the thermal-comfort-sensitivity-based approach followed. 

 

Figure 14. Energy consumption distributions for different number of occupants (i.e., human agents) and 

different comfort-driven control strategies in a mixed and dry climate across multiple thermal zones. 

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
il
it
y

M
a

jo
ri

ty
 r

u
le

E
rr

o
r 

m
in

im
iz

a
ti
o

n
Th

e
rm

a
l-

c
o

m
fo

rt
-s

e
n

si
ti
v

it
y

C
o

m
fo

rt
-d

ri
v

e
n

 o
p

e
ra

ti
o

n
a

l 
st

ra
te

g
y

Number of human agents in each thermal zone (three thermal zones in total)

Multiple human agents in multiple thermal zones (Location: Albuquerque – mixed and dry)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

8 9 10 119.58.5 10.5 11.5

Energy consumption (MWh)

8 9 10 119.58.5 10.5 11.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)
9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

9 10 11 1210.59.5 11.5 12.5

Energy consumption (MWh)

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ty

8 9 10 119.58.5 10.5 11.5

Energy consumption (MWh)

MATLAB Figure: Width – 3.29’’, Height – 2.50’’

Second set

Mean: 9.20 MWh, Variance: 263.5 MWh

First set

Mean: 9.95 MWh, Variance: 214.5 MWh
Second set

Mean: 10.38 MWh, Variance: 153.1 MWh

First set

Mean: 11.03 MWh, Variance: 92.50 MWh
Second set

Mean: 10.59 MWh, Variance: 114.8 MWh

First set

Mean: 11.24 MWh, Variance: 69.76 MWh
Second set

Mean: 10.87 MWh, Variance: 83.04 MWh

First set

Mean: 11.32 MWh, Variance: 55.47 MWh

Second set

Mean: 9.73 MWh, Variance: 243.5 MWh

First set

Mean: 10.44 MWh, Variance: 249.0 MWh
Second set

Mean: 10.64 MWh, Variance: 115.4 MWh

First set

Mean: 11.35 MWh, Variance: 122.7 MWh
Second set

Mean: 10.77 MWh, Variance: 80.56 MWh

First set

Mean: 11.56 MWh, Variance: 80.95 MWh
Second set

Mean: 10.98 MWh, Variance: 59.09 MWh

First set

Mean: 11.69 MWh, Variance: 62.56 MWh

Second set

Mean: 9.69 MWh, Variance: 236.4 MWh

First set

Mean: 10.20 MWh, Variance: 169.8 MWh
Second set

Mean: 10.68 MWh, Variance: 156.4 MWh

First set

Mean: 11.10 MWh, Variance: 81.93 MWh
Second set

Mean: 10.80 MWh, Variance: 120.4 MWh

First set

Mean: 11.29 MWh, Variance: 54.23 MWh
Second set

Mean: 11.08 MWh, Variance: 83.60 MWh

First set

Mean: 11.39 MWh, Variance: 40.56 MWh

First set: mean value of thermal preferences – 22.06ºC
Second set: mean value of thermal preferences - 23.01ºC

- Below benchmark (Energy saving potentials)

4 human agents (Benchmark: 11.07 MWh) 6 human agents (Benchmark: 11.21 MWh) 8 human agents (Benchmark: 11.34 MWh)2 human agents (Benchmark: 10.12 MWh)



 19 

 

Figure 15. Variation of the mean values in Figure 12 and Figure 14. 

 

Figure 16. Variation of the variance values in Figure 12 and Figure 14. 
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Figure 17, it could be seen that increase in the number of thermal zones (and reducing the occupancy 

density) highly increased the probability of having energy-saving cases. With similar level of uncertainty 

in the diversity of human agents, we could observe improvements in both lower and upper bounds of energy 

saving probability. That is, there is a possibility that in almost 70-80% of occupancy scenarios, the use of 

comfort-driven control could lead to energy savings. 

 

Figure 17. Variation of energy use difference and percentage of energy-saving cases depending on the 

number of thermal zones (human agents) and control strategy 

4.3. The impact of climate 

In Figure 18, we have presented the energy use patterns, caused by different number of human agents and 

varied thermal comfort profiles in three different climates. These analyses were conducted by using the 

third control strategy to limit the independent variables. Figure 19 summarizes the observations in Figure 

18 to show the percentage of energy use differences and an estimate of the cumulative probability of energy 

saving cases for each configuration. Figure 19.A summarizes the observations in the single thermal zone 

on the left two columns of Figure 18 and Figure 19.B summarizes the observations across multiple thermal 

zones on the right two columns of Figure 18. The results of using diverse comfort profiles in different 

climate zones have shown similar trends as observed in Figure 12 and Figure 14. Similar effects from 

number of occupants and number of thermal zones when using personal comfort profile integration into 

control loop (i.e., comfort-aware control) could be observed across different climates. By increasing the 

number of zones, the variance of the energy use distributions increases that in turn results in increased 

cumulative probability of energy saving cases. This observation demonstrates the dominant role of thermal 

comfort profiles in comfort-aware control. 

Furthermore, the impact of different climate conditions is manifested in the change of average energy 

consumption – i.e., the cooler climates call for reduced energy consumption for cooling. Compared to the 

average energy consumption in the representative mixed climate (Albuquerque – the first row in Figure 

18), we observed an almost 1.0 MWh increase in the representative hot climate (Tucson - the second row 

in Figure 18) and an almost 4.0 MWh decrease in the representative cold climate (Great Falls – the third 

row in Figure 18). These results provide an estimate of the energy saving magnitudes and are compatible 

with the fact that the difference between indoor and outdoor temperatures is a key factor in driving the 

energy consumption differences. 
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Figure 18. Energy consumption distributions for different combinations of occupancy density and varied 

thermal comfort profiles for three different climates  

 

Figure 19. Energy use difference and percentage of energy-saving cases for different climates and thermal 

comfort characteristics in the single thermal zone (A) and multi thermal zones (B) configurations 
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• The mean of energy use distributions is dominantly determined by thermal comfort characteristics 

of occupants as a group (i.e., mean value of the preferred temperatures) followed by the control 

strategy. 

• The variance of energy use distributions is also highly influenced by thermal comfort characteristics 

of occupants, followed by the number of occupants in a thermal zone and the number of thermal 

zones (the number of thermal zones plays a part in reducing occupancy density in a thermal zone). 

• An increase in the variance of energy use distributions results in an increase in the cumulative 

probability of energy saving circumstances under the uncertainty of multioccupancy scenarios. 

• The control strategies have shown to affect the performance. The approach based on thermal 

comfort sensitivity has shown to be the second most effective approach after the approach based 

on majority thermal vote. 

 

Figure 20. Graphical summary of the impact of parameters on the energy use distributions by comfort-

driven control 

4.4. Energy efficiency evaluation 

As noted, energy efficiency in the context of this study looks at the intersection of energy use and thermal 

comfort satisfaction. When it comes to the improvement in thermal comfort (as calculated by Equation 4), 

the thermal-comfort-sensitivity-based approach had the best and the majority rule approach was the next as 

shown in Figure 21. In general, the increase in the number of human agents reduces the benefits of comfort-

driven control – that is, it is desirable to have low occupancy density in a thermal zone for increased gain 

from adaptive HBI. 
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Figure 21 Improvement of thermal comfort (𝑇𝐶𝑖𝑚𝑝) for each control strategy depending on the number of 

human agents in a thermal zone 

To account for energy efficiency (i.e., energy use for thermal satisfaction), the overall performance 

improvement by each control strategy were calculated by using Equation 5 as presented in Figure 22. For 

the occupants in the first set, the thermal-comfort-sensitivity-based approach revealed the best overall 

performance despite its relatively higher energy use. Compared to the majority rule approach, the thermal 

comfort improvement from thermal-sensitivity-based approach has contributed the most in this observation. 

The error minimization approach showed an underwhelming performance primarily due to its higher energy 

demand. On the other hand, with the second set, the majority rule approach was the best except for the case 

with two occupants. These observations demonstrate that having thermal zones with a small number of 

occupants brings about higher energy efficiency when using a comfort-driven control strategy. As before, 

the overall benefits of comfort-driven control were curtailed with larger number of human agents. 

 

Figure 22. Overall performance improvement by comfort-driven control strategies 
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5. Limitation and Discussion 

In this section, we elaborated the limitations of this study to open the discussion to the research community. 

We intentionally have chosen two sets of thermal comfort profiles at tail ends of the distribution (as depicted 

in Figure 10) on the account of their potential for demonstrating a wide-range of difference in occupants’ 

diversity and difference in energy use. Given that these profiles were developed using realistic datasets, 

both datasets represent real-world scenarios. Moreover, complaints of over-conditioning from occupants in 

buildings shows that the application of comfort-driven HVAC control could potentially result in energy 

saving and improved thermal comfort. For the future research, as the public datasets on thermal comfort 

become available in the community and get expanded (through efforts like [42]), more insight into the 

diversity of personal thermal comfort profiles could be provided. 

One of the core assumptions in our developed ABM framework is that each human agent seeks to maximize 

thermal comfort. However, in reality, other human behavior attributes can come to play in determining the 

energy use of HVAC control. For instance, the energy saving objectives might affect the desire of 

maximizing thermal comfort. Given the differences in occupant behavior (as they might perceive comfort 

differently and react to variations of temperature differently), the personal differences in decision-making 

process with regard to the tradeoff between energy use and comfort (i.e., adaptive behavior) could also be 

influential in energy efficiency of HVAC systems. In other words, the use of personal thermal comfort 

models is one of the drivers in HITL HVAC control.  

Another limitation is the static nature of thermal comfort profiles across different simulations. Although 

this was part of the design for this study, long-term acclimation to the climate has been demonstrated in the  

literature [43] that could affect the change in thermal comfort profiles. A potential solution to this limitation 

could be the use of long-term field studies to ensure diversity in observations as is the objective of data-

sharing. Moreover, despite the capability of implementing dynamic occupancy profiles and updating 

thermal comfort profiles in our proposed ABM framework, we restricted the occupancy level and the 

possibility of changing thermal comfort profiles of human agents for the ease of interpretation in answering 

the research questions. Another factor that could be further studied is the probability of user engagement in 

comfort-driven control. An interesting question is whether the advances in technologies such as wearables 

help with a higher rate of engagement. Also, further analyses on scenarios of partial engagement could be 

explored. 

Lastly, as pointed out by [26], applying a single setpoint derived from a comfort-driven control strategy 

throughout the entire operation might violate the  fairness. As an example, when two occupants have 

conflicting thermal preferences and an control strategy is biased towards one, the other occupant might be 

dissatisfied all the time. Therefore, alternating between different occupants’ preferred temperatures could 

increase the fairness. However, the energy implication of such strategy needs further assessment given that 

a quick transitioning between different setpoints could result in excessive energy consumption [44]. 

The findings of this study could be characterized as (i) an in-depth understanding of the impact of different 

contextual factors that affect the energy performance of context-aware control strategies in buildings, and 

(ii) providing probabilistic bounds of energy use variation under different contextual conditions, which 

could be used in probabilistic simulation of energy performance. Therefore, these findings could contribute 

to studies with the goal of energy performance improvement at building level (e.g.,[45, 46]), as well as 

studies that look at demand-response (e.g., [47, 48]) and integration of Distributed Energy Resources 

(DERs) (e.g.,[46]) at both building and community levels. Contextual conditions and the sensitivity of the 

control algorithms to these conditions are critical in understanding the potentials for adaptive operation of 

thermal conditioning systems in buildings that bring about improved energy performance. Adaptive 

operations, could also contribute to quantification (specifically probabilistic quantification) of load 

flexibility that determines the capacity of the loads for demand-response and peak load shaving, as well as 

compatibility with different DERs such as renewable energy resources and storage systems. 
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6. Conclusion 

In this study, we have investigated the energy efficiency implications of comfort-driven HVAC control 

strategies in multi-occupancy cases – i.e., integrating personal thermal comfort profiles of occupants into 

the control loop of HVAC systems – to better understand their potentials under a diverse set of contextual 

conditions. Prior research studies have evaluated the performance of comfort-driven control for specific 

contextual conditions and reported both positive and negative energy saving outcomes. These observations 

have called for a comprehensive understanding of the efficacy of comfort-driven HVAC control in terms 

of energy efficiency. By reviewing the literature and the reported energy efficiency trends, we identified 

the potential parameters that could affect the energy efficiency of these strategies: (1) the diversity in 

occupants’ thermal comfort characteristics and uncertainty in multioccupancy scenarios, (2) the thermal 

zone configuration, (3) climate, and (4) the control strategy. To this end, by developing diverse sets of 

thermal comfort profiles from real-world field data, we employed a coupled agent-based modeling scheme 

and EnergyPlus simulation to evaluate the impact of the aforementioned parameters for different 

combinations. Then, we have provided quantified bounds of energy saving potentials given the uncertainty 

in multioccupancy scenarios. The thermal comfort profiles were selected to be distributed across a range of 

preferred indoor temperatures to show the impact of diversity in individual differences. In these evaluations, 

we looked at the histogram of energy use across different combinatorial realizations. 

The results showed that the occupants’ thermal comfort characteristics and the number of occupants per 

thermal zone are the most impactful parameters in shaping the energy use distributions and determining the 

energy saving potentials of comfort-driven control. In other words, if the average of preferred temperatures 

by occupants in a building lies above the standard setpoints, the probability of energy saving increases and 

vice versa. However, the impact of comfort-driven control comes into play regardless of the average 

preferred temperature by groups of occupants in a building. Our analyses over a wide spectrum of 

occupants’ characteristics show an average estimate for cumulative probability of energy saving cases of 

50-65% in a single thermal zone and 70-80% in multiple thermal zones.  

Analyses on energy efficiency in this study (i.e., the use of energy for improving thermal comfort) showed 

that as the number of occupants per multioccupancy zones increases, the opportunities for energy efficiency 

improvement by using personal comfort profiles decreases. The use of comfort-driven control showed to 

have a maximum of 21% to 11% improvement in energy efficiency when a thermal zone is shared by 2 to 

6 occupants, respectively. By having more than six occupants per zone, the benefits of using personal 

comfort diminishes although there are still potential for improved energy performance. In those cases, the 

integration of personal comfort models converges to more conventional models such as the PMV model. 

In addition, control strategies were proven to be effective in driving energy efficiency of control. 

Specifically, the thermal-comfort-sensitivity-based approach showed to result in the best performance in 

generating collectively comfortable conditions and thermal-vote-based approach was shown to be more 

energy efficient than the other strategies. Among the future directions of this study are the investigation of 

energy efficiency potentials at the intersection of occupancy and comfort modalities, as well as investigating 

the impact of temperature distributions through more advanced simulations or field studies, where the 

temperature distributions across a thermal zone could be affected by different contextual variables and 

result in varied occupant experiences. 
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