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Abstract

Human-aware HAVC operations have been shown to be effective in improving energy efficiency, which is
constrained by the HVAC system configuration and operational logic. These constraints can result in a lack
of operational flexibility, which in turn reduces the adaptation capacity for energy efficiency. Therefore, in
this study, we investigated the energy efficiency implications of novel adaptive capacities for HVAC
including the use of proposed active diffusers, which add to the dynamics of the HAVC systems by
adjusting the behavior of diffusers using two modalities of (1) binary actuation of air flow (turning flow on
and off), and (2) adjusting the flow direction to target individual needs in an environment. Computational
fluid dynamics was used to model and predict the behavior of a “real-world” thermal zone to evaluate five
scenarios of adaptive operations using distributed feedback from the environment, as well as active diffusers.
Three scenarios used binary actuation at the thermal zone (collection of rooms) level, and two examined
the adaptive operations at diffusers level. Moreover, we examined the integration of distributed feedback
at occupant locations into the control loop using averaged temperatures (in the first three scenarios) and
individual feedback (in scenarios with diffuser level actuation). The coupling of distributed feedback and
independent directional flow at diffuser level considerably improved the thermal comfort requirements
while reducing energy demands by ~25% — reflecting a considerable impact on improved energy efficiency.
These findings demonstrate the potentials that artificial intelligence frameworks could bring about by
enabling autonomous adaptive operations.

Keywords: Adaptive operations; HVAC systems; Load Flexibility; Energy Efficiency; Smart Buildings;
Adaptive Diffuser; Robotic Diffuser

1. Introduction

In the United States, Heating, Ventilation and Air Conditioning (HVAC) systems account for 40% of the
total energy consumption and ~75% of electricity consumption in buildings [1, 2]. Therefore, research
efforts have sought to enhance their efficiency by introducing novel control techniques. Among the recent
efforts are the human-centered operations [3], in which building systems account for human dynamics such
as personalized thermal comfort [4-8] and occupancy patterns [9-12]. These methodologies promote
context-aware adaptive control strategies, in which HVAC systems operate according to the contextual
needs. Examples include smart operation of HVAC systems in a thermal zone — a group of sub-spaces that
are served by an air supply unit such as a variable air volume (VAV) box — according to the occupancy and
number of occupants or actual thermal comfort preferences of its occupants [6].

Human-centered control strategies have been shown to improve efficiency in energy management [3, 6] of
building systems in both simulation and field studies. However, these efforts have focused on adaptive
capabilities of building systems from operational settings’ standpoint and within the constraints of the
existing componential design of HVAC systems. In other words, studies have focused on enhancing the
detection and prediction of contextual thermal preferences and occupancy with limited research on the
impact of air temperature distribution, distributed measurements, and integration of adaptive air distribution
on the operational flexibility of building systems. Control at the thermal zone (which is the smallest unit of
operation) is at the mercy of system boundary conditions including the building characteristics and air
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distributing components such as diffusers, as well as the spatiotemporal granularity of feedback from the
environment. Accordingly, in this study, we have investigated the impact of creating new adaptive
capacities including distributed feedback from the environment, coupled with adaptive air distribution (air
supply) in thermal zones. Traditional air distribution in HVAC systems relies on air outlets (diffusers) that
direct the air in preset directions (most commonly diffusing the conditioned air in all directions) to all the
sub-spaces of a thermal zone to ensure that the entire space will be uniformly conditioned.

In the absence of information about occupants in an environment, the concept of uniform air diffusion is
the most reliable solution to ensure that the space is properly conditioned for all potential scenarios. This
strategy commonly results in conservative operation, which brings about higher energy consumption. The
context-aware operations have been motivated by such limitations. Although the Internet of Things (IoT)
technologies have led to a better understanding of the dynamics in an environment with demonstrated
energy efficiency benefits, there are obstacles that limit the potential of energy conservation efforts in [oT-
enabled buildings. The lack of information about the temperature distribution in control loops, limitations
from uniform air diffusion (regardless of occupants’ dynamics), and rigidity of HVAC actuation are among
these obstacles. Therefore, we are investigating the potentials of adaptive thermal conditioning strategies
that could be coupled with IoT-based techniques to achieve improved efficiency of HVAC operations in
terms of energy use and thermal satisfaction. To this end, we are investigating the potentials of active air
supply at diffuser level that is defined as the capability of adjusting the direction of the air flow to the
location of need (the spatial vicinity of occupants’ location) and binary operation (on/off setting) of
individual diffusers, as well as distributed measurement of ambient conditions as feedback to the control
loop.

Although in case of active directional flow, uniform air distribution may not happen, we still call this new
concept active “diffusion”. To evaluate the feasibility and energy efficiency implications of creating new
adaptive capacities, we sought to answer the following questions: (1) what is the impact of direct feedback
at the location of occupants on improving the performance of a given HVAC system; and (2) how does the
active diffusion concept affect energy efficiency of HVAC operations and the thermal comfort of individual
occupants in a thermal zone and its subspaces. In doing so, we adopted computational fluid dynamics (CFD)
for simulating the HVAC operation in (i) conventional operational mode, (ii) operation with distributed
feedback, and (iii) active diffusion. In the context of this study, CFD provides a flexible tool for our
investigation considering its high fidelity in simulating the air flow and temperature distribution in an
environment by accounting for flow direction, velocity and turbulence. To this end, we have investigated
the questions through a case study simulation of a real-world thermal zone.

The rest of this paper is structured as follows. Section 2 provides a background for research on human-
centered (human-in-the-loop) operation of thermal conditioning in buildings and point of departure in this
study. Section 3 describes the potential design alternatives, the CFD simulation methodology, and
elaborations on simulated operational scenarios. The results of simulation and answers to the questions are
presented in Section 4. We present discussions on the implications of the proposed concept in Section 6
and conclude in Section 7 including the future of the research efforts.

2. Context-Aware and Adaptive HVAC Operations

As noted, human-in-the-loop HAVC operation has been the subject of several research efforts in the past
few years [3], given the enhancements in the mobile sensing and communication technologies. An overview
of these studies shows that the efforts could be divided into two main categories of occupancy-driven (e.g.,
[13-15]) and (thermal) comfort-driven (e.g., [16, 17]) research efforts. In the former category, studies focus
on characterizing the occupancy of spaces for thermal conditioning. Among different efforts, the detection
of occupancy state (occupied vs. unoccupied) (e.g., [18-20]) and the number of occupants in a thermal zone
(occupancy counting) (e.g., [21, 22]) have received more attention. Control of HAVC systems according to



the occupancy state of thermal zones is implemented as reciprocation between setpoint and setback
temperatures. In other words, when the space is inferred to be unoccupied, the temperature setpoint is
configured to the setback that is closer to outside temperature to reduce energy consumption. In a class of
techniques, this process is carried out through reaction to occupancy information (e.g., [23-25]). To address
the potential discomfort from reactive techniques, due to either HVAC system reaction time, or the false
positives in occupancy detection, occupancy prediction methods have been proposed. Using probabilistic
techniques, the state of occupancy in an environment is predicted for proactive operations (e.g., [26-28]).
Similarly, in case of occupancy counting, the estimate of the number of occupants is used to adjust the
ventilation load and save energy in the building using either reactive or proactive control techniques (e.g.,
[29-31]).

The control signal, in HVAC systems, is communicated at the thermal-zone level through a thermostat,
which measures the temperature in the space at an arbitrary point and compares it against the temperature
[32]. Once the temperature at the thermostat location is sufficiently different from the setpoint, the
conditioned air supply is actuated. In this control paradigm, comfort-driven research efforts have come to
play in improving the setpoints configuration. In the standard approach, the setpoints are configured
according to generic models of thermal comfort that has been designed for collective occupants’ satisfaction
according to different environmental and human-related variables. The most commonly used model is the
predicted mean-vote (PMV) and predicted percentage of dissatisfied (PPD), i.e., PMV-PPD model [33, 34].
These models are used to design the HVAC system characteristics. During the operation, facility managers
(following generic standard recommendations) or occupants adjust the setpoint on the thermostat. Therefore,
the setpoint could be unrepresentative of real-world preferences of occupants and could result in inefficient
operations of HVAC systems [35, 36]. Accordingly, research efforts have sought to enable human-centered
comfort quantification, which focuses on context-aware inference of comfort by relying on feedback from
actual occupants of the buildings. In doing so, different methods could be divided into two groups of
utilizing user feedback systems through mobile devices (leveraging a voting mechanism) [4, 6, 8, 37-41]
and physiological sensing [42-54] for reflecting thermoregulation processes. The outcome of these methods
is the creation of personal comfort models [5, 55] that could be used to optimize the temperature setpoints
in real-time operations. In multi-occupancy scenarios, the optimization pertains to the use of operational
strategies to maximize collective comfort based on individual preferences [56-58]. Thus, occupants will
experience a level of discomfort unless their preferences are similar, and the building system could keep a
balance in indoor thermal condition distribution and experience.

In both modalities of human-centered operations, the efficiency is at the mercy of building systems’
flexibility. The limitations of control feedback from an arbitrary point in thermal zones (i.e., thermostats)
and the rigidity of air supply systems in an environment will drive the experience of the users and limit the
potentials for efficiency. For example, in state-of-the-art human-centered control, as long as one sub-space
is inferred to be occupied, the entire thermal zone is conditioned resulting in considerable inefficiency in
energy consumption. On the other hand, if all subspaces are occupied, the thermal condition in rooms are
affected by the balance in the HVAC system that in turn is affected by temperature measurement location,
the distribution of the diffusers, and the physical characteristics of buildings. The lack of flexibility in
building systems could hinder the realization of energy efficiency potentials even in the case of using
context-aware operations. Therefore, our study contributes by (1) investigating the impact of different
control configurations for HVAC systems in an example thermal zone (reflecting a real-world imbalanced
system), as well as (2) proposing and evaluating a new control paradigm at the diffuser level to increase the
flexibility of the control processes. To this end, there are limited research and development efforts that
account for higher fidelity of information and control flexibility. In a category of studies, using
computational simulations, research efforts have evaluated the impact of control based on occupant position,
specifically in the open office spaces [59, 60]. In these efforts, the air supply was suggested to be controlled
according to varied occupant positions by different variable air volume (VAV) boxes. In recent years,
moving towards increasing flexibility of central air conditioning systems in residential buildings, smart vent



systems (e.g., Keen smart vents [61]) were developed for control of individual diffusers in a binary mode
by using room level portable thermostat points (smart vents, coupled with ecobee portable sensing nodes
[62]). These technologies have been designed to enable sub-zoning through plug-and-play smart vent
replacement in residential buildings. Nonetheless, the energy efficiency impact of such strategies, as well
as user-centered feedback, has not been systematically studied.

3. Adaptive Operation Assessment Methodology
3.1. Control Strategy

The premise of this study centers on evaluating adaptive control frameworks in indoor environments, and
thus, the methodology is based on simulated scenarios of operations in a surrogate model of a thermal zone
and the associated energy efficiency implications. We have proposed a new paradigm of control strategy
for added adaptation capacity through the concept of active diffusers — i.e., robotic diffusers with non-
intrusive sensing for locating occupants (e.g., by using infrared thermal array sensors [12]) and additional
degrees of freedom for adaptive air flow adjustments (both throughput and direction of air flow) to target
the location of need (occupants’ surrounding). The concept of active diffusers draws on the notion of
personal air conditioning that has received attention in research and through initiatives such as ARPA-E's
DELTA Program [63], which seeks to achieve energy efficiency by using Localized Thermal Management
Systems (LTMSs). The LTMS concept has been defined as modifying the physical space around the human
body rather than the entire building to service energy. Figure 1 illustrates the concept of using active
diffusers and distributed feedback in the vicinity of the users.
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Figure 1. The envisioned concept of active diffusers

The adaptation, in this study, has been represented from different perspectives: (1) distributed feedback
from individual user locations (measuring comfort-proxy in the vicinity of occupants), (2) binary control
(shutting a diffuser on-off) of diffusers in sub-spaces, and (3) binary and directional control at the location
of diffusers. These strategies could be realized given the prevalence of IoT-enabled technologies. For
example, distributed measurement of temperature could be achieved through portable sensing technologies
that are paired with mobile devices such as smartphones [64] or loT-specialized portable temperature
sensing systems (e.g., [65]), as shown in Figure 1. These measurements could be also communicated to
smart thermostats (e.g., ecobee) in the new paradigm of smart building systems. Alternatively, sensors that
enable the inference of thermal comfort, such as wearables that measure skin temperature, could be used.
Other technologies, such as adaptive sub-zoning by using smart vents with on/off control (e.g., Keen smart
vents) in residential buildings, are also receiving attention in recent years [61]. Accordingly, the control
strategies, in this study, will be affected by two main parameters of sensor location and the adaptation
capability of diffusers. The scenarios that we have explored were compared against the legacy control
strategy as the baseline:



e Scenario 1 (Baseline) — Binary control at the air supply unit (i.e., VAV box) by feedback from a
central thermostat. This control strategy switches the air supply to the entire thermal zone on and
off depending on the temperature measurement at the thermostat location. Air is distributed
uniformly from the diffusers.

e Scenario 2 — Binary control at the air supply unit ((i.e., VAV box) by feedback from a thermostat
that is connected to distributed sensors. The air supply to the entire thermal zone is switched on
and off depending on the averaged distributed temperature measurements at the occupants’
locations. This strategy reflects the notion of control based on personal thermal comfort preferences
[6]. Averaging temperature will reduce the bias of only accounting for the temperature variation at
the location of the central thermostat. Air is distributed uniformly from the diffusers.

e Scenario 3 — Scenario 2, augmented with directional control of the supplied air at the diffusers.
Similarly, the feedback from the distributed sensors (average temperature) near the occupants is
used to control the operation of the VAV box. This scenario investigates energy efficiency impact
of directional flow for user-centered conditioning [63] and distributed feedback.

e Scenario 4 — Binary control at individual diffuser level by independent feedback from distributed
sensors at occupants’ locations. Air is distributed uniformly from the diffusers, but the air to
individual diffusers could be shut off once the condition in one sub-space reaches the satisfactory
condition.

o Scenario 5 — Binary and directional control of the air supply at individual diffuser levels by
independent feedback from distributed sensors at occupants’ locations. This is the most flexible
actuation approach that enables the HVAC system to target the location of demand.

Given that the dynamics of air and the associated temperature distribution is critical in evaluating these
scenarios, we have used CFD to simulate and predict the air dynamics with high-fidelity calculations as a
case study. The simulations were based on a real thermal zone with an imbalanced behavior — i.e., the
temperature distributions in sub-spaces of the zone could be different with discomfort for occupants in sub-
spaces. Figure 2 shows the layout and characteristics of this thermal zone, which includes three rooms,
served by a VAV box, two of which have windows facing south to the outside environment. Each room has
a diffuser and an exhaust and can be isolated from the other rooms by doors. The fixed thermostat is in
Room A (near the door adjacent to Room C), as shown in Figure 2. Scenarios 3-5 simulate the actuation at
the diffusers. In a real-world implementation of such a system, the control loop would also include actuation
and flow adjustment at the VAV box. We assumed a constant flow rate through each diffuser with constant
temperature for different durations according to the demand. Therefore, the complete control loop for the
VAV box behavior is not included in the scope. All three rooms are considered occupied although Rooms
B and C are accessed through Room A. Figure 3(a)-(b) show the schematics of the air distribution method
used for uniform and directional air distributions, respectively. The diffuser behavior was modeled in CFD
simulations through boundary conditions and user-defined functions.
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Figure 2. The layout of the simulated thermal zone and its characteristics

(a) Uniform air flow for conventional (b) Directional air flow for active diffusers
diffusers

Figure 3. Schematic of the air distribution through uniform and directional diffusers in room C.

3.2. CFD Simulation Details

The CFD simulations were performed using the commercial software ANSYS Fluent (18.0) [66] and its
user-defined function capabilities. We have modeled the time-dependent behavior of air flow using the
governing equations for mass, momentum, and energy. The Boussinesq approximation was used to model
natural convection, which treats density as a constant value except for the force term in the momentum
equation. The realizable k-¢ model [67] was employed for turbulence modeling and the discrete ordinate
model with solar ray tracing was used to solve for the incident solar radiation.

The segregated pressure-based Navier-Stokes (PBNS) solver was used to numerically solve the
incompressible system of equations, and pressure-velocity coupling was solved using the semi-implicit
method for pressure-linked equation (SIMPLE) algorithm. Furthermore, the least squares cell based (LSCB)
and the pressure staggering option (PRESTO!) schemes were employed for spatially discretizing gradients
and pressure, respectively. The momentum, energy, turbulent kinetic energy and dissipation rates, and



discrete ordinate were discretized using second-order upwind methods. A first-order implicit method was
employed for time marching with a constant time step size of 0.05 s, for which the Courant Friedrichs-Levy
(CFL) number was between 0.5 and 1.

As illustrated in Figure 2, the computational domain was extended 1 m beyond the exterior (southern) wall
to represent the outdoor environment and model the effect of solar radiation on the exterior wall. Windows
in rooms B and C were 1.5 m and 2.2 m wide, respectively, and 1 m high. The occupants were modeled as
parallelepipeds with a height of 1.5 m (considering a seated position) and a width of 0.35 m on each side.
The human thermal load was 75 W heat release from each individual in Rooms B and C, and 150 W for
Room A, representing two occupants [68]. Diffusers and exhausts have dimensions of 0.3 m by 0.3 m.

In all scenarios, air at 13°C (~55°F) was supplied through the diffusers at a rate of 0.0567 m?/s (or 120 cfm).
For uniform diffusion, the conditioned air was uniformly supplied in all directions with an angle of 30°
from the ceiling. For active diffusers, the flow was directed by a vector from the diffuser towards the
occupant location (75 cm from the floor). Exhausts had a return duct gauge pressure of -24.88 Pa. The
boundary conditions for the outdoor boundaries were set to an ambient pressure of 1 atm and temperature
of 27°C to consider a summer day conditions. The solar radiation was modeled on the walls and through
the windows. The solar intensity was calculated using the direct solar irradiance data provided by NREL
[69]. The solar irradiance, for the location of the simulated thermal zone, ranged between 4.5 — 5.5 kWh/m?.
The longest summer day of 14 hours with a constant solar intensity of 350 W/m? on the south-facing
windows were used. The shades at the windows were assumed to transmit only 80% of the incident solar
radiation into the rooms. Given the buildings materials, dolomite was considered for the exterior wall. All
the interior walls were modeled adiabatic assuming negligible conduction through the interior walls with
no-slip condition for fluid-wall interactions. Characteristics of the boundary conditions are summarized in
Table 1.

Table 1. Characteristics of model boundary conditions

. . Radiation Thermal conductivity .
Boundaries (Materials) Parameters™ (k) (W/m-K) Boundary condition values
Outside environment n/a - Temp: 27°C | Pressure: 1 atm
. Flow: 0.0567 m3/s (or 120 cfm)
Diffusers n/a - Temp: 13°C (~55°F)
Exhausts n/a - Pressure: -24.88 Pa
Internal walls/ceiling (N/A) n/a - No-slip | Zero heat transfer (Adiabatic)
a=0.5
Outside walls (Dolomite) e=05 1.5 No-slip | Coupled
T =
a=0.1
Windows (Glass) e=09 1.15 No-slip | Coupled
=01
Doors (N/A) n/a - No-slip | Zero heat transfer (Adiabatic)
a =0.15
Floors e=20.6 - No-slip | Zero heat transfer (Adiabatic)
=0
Occupants (per person) n/a - No-slip | Heat flux = 612.25 W/m2

* e: Emissivity | t: Transmissivity | a: Absorptivity



3.3. Control Strategy Modeling

We implemented user-defined functions (UDFs) to simulate different control logics. Each scenario was
evaluated over 60 minutes for energy efficiency that was measured based on the energy use for achieving
comfort. All the doors were assumed closed, allowing no interaction between the rooms — a reflection of
actual operation in the testbed. The thermal comfort was achieved by adjusting the ambient temperature
until it reached a setpoint in the vicinity of the thermostat. In commercial settings, a temperature deadband
(i.e., upper and lower setpoints) is set to keep the temperature within a comfortable range. Similarly, in our
analysis, the temperature was controlled by using a temperature deadband (following the logic of
thermostats) of 21.6-23.3°C (71-74 °F).

3.4. Grid Sensitivity and CFD Validation

A grid resolution sensitivity assessment was conducted using the grid convergence index (GCI) to
determine the discretization error for grid-independent solutions [70]. Room A was simulated using four
meshes with varying numbers of cells, i.e., 38 k (mesh 4), 98 k (mesh 3), 164 k (mesh 2) and 663 k (mesh
1), and the average room temperature was used to compute the GCI. Figure 4 shows the temperature
changes for each mesh when the diffuser turns off at approximately 275 s. Using the numerical methodology
described in [70], the GCI was below 0.1 % for each pair of consecutive meshes, which indicates extremely
small discretization error. Therefore, a moderate mesh size (mesh 3) was adopted to model each room, and
further cell refinement was applied in the vicinity of the occupants, diffusers, and exhausts; the entire
domain utilized 300 k cells.
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The experiments by Loomans [71] for supply airflow in a climate chamber, representing an office room
was modeled and simulated to further validate the efficacy of the proposed CFD modeling. Figure 5 shows
the 3D model that replicates the experiments with an air-supply below a desk (0.047 m*/s at 19.8 °C), two
computers (61.5 W each), a personal light source (10.9 W), ceiling lights (18.1 W per light), and an exhaust.
Walls, floor, and ceiling are maintained at constant temperatures (22.2-23.2 °C). The occupant has a surface
area of 1.6 m? and releases 59.8 W of heat. The only subtle difference is our parallelepiped occupant
modeling. Loomans [71] collected temperature and velocity data at various locations within the room, and
select data are presented here. The temperatures measurements (using T thermocouples with an accuracy
of £0.1°C) were compared with CFD in Figure 6(a) at z = 1.93 m at three x-locations. The velocity
measurements (using a hot sphere anemometer, reliable for velocities greater than 0.1 m/s with an accuracy
of £0.025 m/s) were compared with CFD in Figure 6(b) at z=2.3 m. There is a lack of experimental velocity
data below 1 m where the air motion was very small. Overall, there is very good agreement between the
experiments and CFD predictions, validating our approach to model the HVAC system of an office. It is



worth noting that Stamou and Katsiris [72] also verified their CFD models with the data of Loomans and
demonstrated similar agreement.

Figure 5. CFD model replicating the experiments of Loomans [71]
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4. Results and Discussion
The simulation scenarios, including the sensing and actuation conditions are in Table 2.

Table 2. Summary of the conditions for simulation scenarios

Slmulatl'on Sensing Actuation
Scenario
Scenario 1 Zone Thermostat . Bin.ary at YAV box (all diffusers at once)
e  Uniform diffusor flow
Scenario 2 Distributed Personal Thermostats e Binary at VAV box
(average reading) e  Uniform diffusor flow
Scenario 3 Distributed Personal Thermostats e Binary at VAV box
(average reading) e Directional diffuser flow
Scenario 4 Distrib.uted Personal Thfermostats e Binary at individual diffusers
(independent reading) e Uniform diffuser flow
Scenario 5 Distrib.uted Personal Th.ermostats e Binary at individual diffusers
(independent reading) e Directional diffuser flow

4.1. Scenario 1: Uniform air distribution controlled by thermostat in Room A (baseline)

Figure 7(a) shows the temporal variation of average room temperatures controlled by the thermostat in
Room A and Figure 7(c) presents the temperature contours at neck height (1.25 m) and at t=60 mins. The
temperature across all the rooms was initially 25°C when conditioning started from an HVAC off state.
Therefore, the initial drop in temperature and its rate of change were higher compared to the next cycles.
The temperature decreased steadily with a lower rate in Rooms B and C due to heat gain through exterior
windows and walls. The air conditioning initially turned off at 7 min-21 s when the thermostat in Room A
reached the cutoff temperature of 21.6°C even though temperatures in Rooms B and C were far above the
thermal comfort range. Note that the temperatures in Rooms B and C rise above the initial conditions after
the initial drop. The temperatures in Rooms B and C continue to rise to uncomfortable states with additional
conditioning cycles demonstrating that the HVAC cannot meet the required cooling load due to the control
logic of receiving feedback in Room A resulting in a bias in the control loop. The off-cycle duration is
relatively long compared to the on-cycle duration because of the small heat gain in Room A. This
observation reflects the actual daily operations in the zone, in which acceptable temperatures in Rooms B
and C require a setpoint of 20°C. The average temperature of Room A is fairly close to the thermostat
temperature because the room is completely isolated from the exterior environment and the doors to Room
A are closed. The average temperatures in Rooms B and C are almost the same, however, a difference in
the temperature near the occupants (averaged around neck and ankle) can be seen in Figure 7(b), where the
surrounding temperature of occupant B, who is located farther from the window, is cooler. Cooler regions
can be noticed in each room under the diffusers. The average time of the air supply (i.e., on time) per cycle
for all diffusers was approximately 5 minutes and 30 seconds.
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4.2. Scenario 2: Uniform air distribution controlled by average temperature in the vicinity of
occupants

To eliminate the bias of measuring temperature in only one sub-space, the combined average temperatures
of the occupant surroundings in each room was used for context-aware control. As noted, this distributed
feedback could be obtained through portable thermostat (similar to ecobee) or mobile wearable devices.
Figure 8(a) shows the temporal variation of average room temperatures. The solid lines indicate the average
temperature close to the occupants, which was used as the control feedback. This approach improved the
thermal condition in Rooms B and C, but resulted in a drop of temperature in Room A considering that
higher cooling load are needed in Rooms B and C. This is the pattern that is observed in reality where
occupants keep adjusting the temperature setpoint on the thermostat for comfort. Since thermal comfort
ranges, in Rooms B and C, were effective in driving the control signal, the initial cooling duration (from
HVAC off state and initial temperature of 25°C) is longer for Scenario 2 (~10 minutes) compared to
Scenario 1. The temperatures, in Rooms B and C, ranged from 22.5°C to 25°C within the cycles, which are
closer to thermal comfort ranges compared to Scenario 1, where temperatures reach 25°C after two cycles.
However, the temperatures increase slightly in Rooms B and C as the cycles continue, but drop below 20°C
in Room A, which may cause discomfort especially for a room without sunlight. Figure 8(b) shows the
difference in temperatures at occupants’ neck height after 1 hour when the cooling cycle ends. The
temperatures in Rooms B and C are close to 23°C, which shows that these rooms could not be cooled below
this limit. The average time of air supply (HVAC on) per cycle was 7 min 22 s, higher than Scenario 1,
reflecting higher need for cooling load and thus higher energy consumption. Nonetheless, this increase in
energy consumption does not assure simultaneous conditioning of all rooms to thermal comfort. This is an
indicator of lack of flexibility in control of the HVAC system. In other words, accounting for personal
comfort in a centrally controlled HVAC system, resulted in an increased energy use with no guarantee of
satisfactory indoor conditions for all occupants.

4.3. Scenario 3: Directional air distribution controlled by average temperature in the vicinity of
occupants

This scenario examines how directional air flow could contribute to achieving energy efficiency. In the
envisioned system, active diffusers communicate with the distributed sensors for information on occupants’
locations and surrounding temperatures. The locations of the distributed sensors are used to determine the
direction for the air supply. Figure 9 shows the temperature variations. We observed increased number of
cycles and decreased duration of cycles (six cycles compared to four for Scenario 2). Through directional
flow, HVAC only provides conditioning for the occupants’ surroundings instead of the entire space, and
thus, the durations of cycles decrease. Moreover, temperatures close to occupants are lower compared to
the previous scenarios (Figure 9(b)), demonstrating the potential of directional flow in providing personal
thermal comfort even in a warm environment. It is also seen that demand targeting can still provide
conditioning for the entire space that is important for temporary occupants. The initial cooling time of 6
minutes-24 seconds is nearly 34% lower compared to 9 minutes-43 seconds in Scenario 2 with a shorter
average cooling time per cycle of 3 minutes-11 seconds (a total of 23 minutes-43 seconds) — showing energy
saving potentials of directional flow through active diffusers. Considering energy use correlation with the
volume of supplied air, the reduced durations (71.1 mins compared to 96.3 mins in Scenario 2) leads to
reduced energy use. However, occupants’ thermal needs were not sufficiently satisfied. While occupants in
Rooms A and C are experiencing cool regions, occupant in Room B is not completely affected by
conditioned air. This may be due to farther distance between diffuser and occupant in Room B and the
impact of the air circulation. In addition to temperature, an important factor for thermal comfort is the air
speed close to occupants and it is discussed in Section 4.6.
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Figure 9. Temperature plots for binary control at VAV box using average temperature at the vicinity of
occupants in all rooms with directional flow from diffusers (Scenario 3)
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4.4. Scenario 4: Uniform air distribution controlled at individual diffuser level by independent
temperature feedback from distributed sensors

The previous cases showed the lack of flexibility (i.e., adaptation capacity) in providing comfortable
temperature ranges for occupants. This rigidity stems from binary control of air supply on a centralized unit.
All diffusers simultaneously cycle on and off regardless of the need in sub-spaces. However, these rooms
are subjected to different thermal loads, hence, require different thermal conditioning. To achieve
independent sub-space control of air supply, Scenario 4 simulates binary air flow control at diffuser level
using legacy diffusers for uniform air supply — i.e., turning diffusers off in each room based on feedback
from distributed sensors. Figure 10(b) shows the capability of this approach in satisfying expected thermal
comfort ranges (21.6°C — 23.3°C) in each room. However, to achieve this objective, diffusers in Rooms B
and C remain on for the entire time. Rooms B and C were maintained at 22.3°C and 22.1°C with occupant
temperatures reaching 21.75°C and 21.95°C, respectively. Given the cut-off bound of 21.6°C, the diffusers
in these rooms did not cycle off. The constant temperatures in Rooms B and C indicate an equilibrium
between the heat gained from radiation and heat extracted by air conditioning - showing the need for
additional conditioned air. In a full control loop, which engages the VAV box, cutting off air to one diffuser
could direct the air discharge to other diffusers for increased cooling load to rooms B and C. The
temperature contours show similarity across the zone with occupant temperatures within the thermal
comfort range (21.6°C — 23.3°C). The conditioned air directed towards the wall (Figure 10(c)), could be
directed towards the occupant to extract the excess heat received from solar radiation in Rooms B and C
and provide comfort without excessive energy use as described in Scenario 5.

4.5. Scenario 5: Directional air distribution controlled at individual diffuser level by independent
temperature feedback from distributed sensors

Compared to Scenario 4, achieving higher levels of flexibility is feasible by augmenting the diffusers with
directional flow. Scenario 3 demonstrated that directional air flow improves thermal satisfaction while
consuming less energy. Combing these two approaches, in this scenario, we evaluated directional air flow
with independent control in each sub-space. The direction of flow remains fixed for the entire simulation
as occupants are stationary. As Figure 11(a) presents, Room A requires longer off cycles and shorter cooling
time compared to Rooms B and C. Room C requires longest initial cooling time as the distributed sensor is
subjected to solar heat flux. The average cooling time per cycle for Room C with a larger window (~9
minutes) was more than Room B (~ 8 minutes). Figure 11(a) and (b) show that the average room
temperature in Room A is higher than the occupant temperature at any given time, which implies the
personalized conditioning of the air surrounding the occupant in Room A. In Room B, the cooling time per
cycle decreases as time progresses indicating a highly transient behavior. Figure 11(c) presents the
temperature contour at neck height (y=1.25 m) after 1 hour. The average temperature of room A is higher
than Rooms B and C because the diffuser is at the end of the off cycle (approximately off for 30 minutes).
Blue regions in rooms B and C represent cooler air, directed towards occupants, showing the increased
efficiency of cooling. The initial cooling time in Room A decreased from 7 minutes to 4.5 minutes
comparted to Scenario 4, where conditioned air is lost near the walls due to the uniform supply of air.
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Figure 11. Temperature plots for binary control at individual diffusers using temperature at the vicinity of
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(a) Uniform diffusion (b) Directional diffusion

Figure 12. 3D streamlines and temperature contours for uniform (Scenario 4) and directional flows from
diffusers (Scenario 5).

The three-dimensional view for uniform (Scenario 4) and directional (Scenario 5) flows are shown in Figure
12 at t = 60 min. In each view, streamlines are superimposed with temperature contours to investigate the
velocity-temperature coupling. There is a vertical plane shown in each room located at the center of each
diffuser to provide an additional visualization of the airflow patterns and corresponding temperatures. Note
that the diffuser in Room A is off for both cases at this instance. Therefore, the observed streamlines in
Room A are due to natural convection. The temperature contours present the detailed thermal profile in
each case:

e Low temperature regions in Figure 12(a) —i.e., darker areas on the planes near the walls of Rooms
B and C — confirm that part of the conditioned air is consumed to adjust the wall temperature due
to uniform diffusion. The streamlines in Room C show that air moves downward along the wall
due to buoyancy. Streamlines in Room B show a portion of air moving towards the window and
door. Although distribution of air in all directions provides overall better circulation, it does not
guarantee thermal comfort.

o Figure 12(b) clearly shows air directed towards the occupants in Rooms B and C. The diffuser in
Room A is off as the setpoint was satisfied; hence, no directional flow is observed. The streamlines
of the air jet leaving the diffusers elucidate the low temperature zones (blue region) on the middle
planes of Rooms B and C. The cooler air leaving the diffuser does not follow a linear path, moves
in the downward direction, most likely due to buoyancy. Additionally, as it is not subjected to solar
radiation, the floor in Room A (in both cases) is at a lower temperature than the other rooms. As
expected, a vertical temperature gradient is seen in the plane of Room A as the layer of warm air
becomes more prominent as time progresses.

4.6. Thermal comfort implications

Thermal comfort is affected by factors such as ambient temperature, relative humidity, radiant temperature,
and air speed. We assessed the performance of different scenarios according to thermal comfort
requirements by ASHRAE [73]. This is important given that directional flow could increase air speed in
the vicinity of occupants. The ASHARE acceptable air speed is determined according to a number of factors
including access to control, thermal conditions, and human related variable such as clothing insulation and
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metabolic rate. For occupants with control of air flow, there is no recommendation upper air speed limit.
We assumed no occupant control, and therefore, the maximum acceptable air speed for typical office
activities and clothing level in summer is:

t, >255°C - V,=08m/s
23°C<t, <255°C - V,=50.49 — 4.4047t, + 0.096425 t2 m/s 0]
tp,<23°C - V,=02m/s

in which, t, is the operative temperature and I/, is the average air speed around an occupant. Operative
temperature could be calculated from average ambient temperature (t,) and radiant temperature around an
occupant [74]. For cases that occupants are not under direct solar radiation (as is the case in this study), the
difference between average ambient temperature and radiant temperature is negligible [75], rendering the
t, to be considered equal to ¢,.

Table 3. Temperature and air speed near occupants for the last cooling cycle, and the acceptable max air
speed recommended by ASHRAE

Scenarios

ij‘g;;;gs) Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

on off on off on off on off on off

Temperature (°C) 21.6 | 228 | 19.7 | 206 | 193 | 19.8 | 21.7 | 23.3 | 21.7 | 232

R Speed (m/s) 0.12 | 0.02 | 0.11 | 0.03 | 0.13 | 0.01 0.1 0.01 | 0.15 | 0.01
Max Recommended

A Sl () 0.2 0.2 0.2 0.2 0.2 0.2 0.2 | 0.21 0.2 0.2

Temperature (°C) 24 263 | 22.8 | 249 | 233 | 252 22 - 21.7 | 23.3

Room B Speed (m/s) 0.11 | 0.05 | 0.12 | 0.06 | 0.19 | 0.07 | 0.12 - 0.22 | 0.07
Max Recommended

A Sl () 0.31 0.8 02 | 058 | 021 | 0.73 | 0.2 - 0.2 | 0.21

Temperature (°C) 239 | 263 | 22.6 | 249 | 22.2 25 21.9 - 20.7 | 234

Room C Speed (m/s) 0.12 | 0.06 | 0.11 | 0.05 | 0.26 | 0.07 | 0.13 - 0.27 | 0.07

Max Recommended | 3 | ¢ | g2 | 058 (02 062 | 02 | - [No2n 0.2

Air Speed (m/s)

Table 3 shows temporal average temperature and speed around occupants for the last cycle before and after
thermal conditioning, as well as the acceptable maximum air speed. Four points around the neck and four
points around the ankle were averaged to determine the average temperature and speed for an occupant.
Based on the temperatures and velocities, the following can be gleaned:

e In Scenario 1, occupants in Room A experienced thermal comfort during the on-off cycles unlike
occupants in Rooms B and C with temperatures higher than the initial indoor condition of 25°C.

e In Scenarios 2 and 3, occupants in Rooms B and C experienced lower temperatures compared to
Scenario 1. However, in room A, temperature reaches near 20°C below the acceptable range.

o All occupants are within comfort range for Scenarios 4 and 5 with better performance for Scenario
5. As expected, the speed at occupant location is higher for directional flow. In Scenarios 3 and 5,
the air speeds around the occupants surpass the acceptable maximum, specifically for Room C.
Equation 1 shows that thermal comfort is driven by operative temperature and the air speed around
the occupants. Therefore, as a potential adaptive capacity, active diffusers could adjust the
directional flow to opt for higher temperatures with higher air speed near occupants for thermal
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comfort with lower energy use. Alternatively, the angle of directional flow with respect to the
ceiling could be constrained to avoid direct air flow towards occupants. These are some of the
potential modifications that will be part of the future research directions.

4.7. Energy consumption

The primary goal of using directional flow is energy conservation while maintaining comfort. Table 4
presents the total duration of supplying conditioned air during the 60-minute simulated operations.

Table 4. Total cooling time (in minutes) per diffuser in each room over a 60-min duration

Rooms Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
A 17.5 32.1 23.7 10.8 8.8
B 17.5 32.1 23.7 60 39
C 17.5 32.1 23.7 60 49.7
Thermal Zone 52.5 96.3 71.1 130.8 97.5

To compare energy consumption of different operational scenarios, we have used total volume of
conditioned air, supplied to the thermal zone, during the one-hour simulation as the indicator of the energy
consumption in Table 5. It has been shown that the air flow to thermal zones is linearly correlated with
energy consumption of HVAC systems [56]. The supply air temperature is also an important factor in
driving the energy consumption; however, since this temperature was constant across all scenarios, we only
used air flow for comparisons. The total volume of air was calculated by multiplying the air supply durations
in Table 4 by the air flow rate at each diffuser. Although the total cooling time for Scenarios 4 and 5 is
more than Scenarios 1-3, thermal comfort was only achieved for Scenarios 4 and 5. We used the following
formula to measure how effective each scenario was in keeping the temperature close to preferred

temperature (i.e., setpoint):
fe=) [T, =T,

Ac is the discrepancy between occupants’ temperature and the setpoint of 22.3°C (T;.), and T is the average
occupant’s temperature through an on-off cycle (we used the average of lowest and highest temperatures

around occupants during one cycle). The room-level and zone-level values for Ac have been presented in
Table 5.

e In Scenario 1, the legacy control logic does not provide comfort in Rooms B and C, thus, the lower
energy demand is not representative of the real-world operation. The outcome was similar to having
a thermal conditioning system only in Room A as the Ac values in Rooms B and C indicate.
Therefore, in the following assessments, we have considered the second scenario as the baseline.

e By integration of distributed feedback, Scenarios 2 and 3 yielded better Ac across all rooms
although the overall Ac is similar to Scenario 1. In other words, these scenarios help improve the
fairness across the thermal zone. However, Scenario 3 (which uses the envisioned directional flow)
has resulted in reduced energy demand.

e Through binary control augmentation at the diffuser level, we could see considerable improvements
in thermal comfort experience. Considerable higher energy demand in Scenario 4 is associated with
the insufficiency of the cooling load for the high thermal demand in Rooms B and C that resulted
in an hour-long on cycle (see Figure 10). On the other hand, Scenario 5 shows similar cooling
demand compared to the baseline (Scenario 2) with much improved thermal comfort experience.
This is a demonstration of the benefits from integration of the proposed active diffusers. Integration
of VAV box control could further reduce the energy demand due to distribution of air discharge.
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o The last row of Table 5 shows the cooling demand corrected/normalized for comfort discrepancy.
In these calculations, we have scaled the cooling demands by Acy/Ac,, where Acy, is Ac from
scenario k —e.g., Ac, /Ac, is 0.9/515. This is interpreted as energy efficiency — the effective use of
energy for thermal satisfaction. As the values show, Scenarios 4 and 5 have resulted in considerable
improvement in effective use of energy for comfort. The addition of directional flow shows further
improvement over binary control in active diffusers.

Table 5. Energy efficiency comparison analysis

) : Scenario Scenario Scenario Scenario Scenario
Energy consumption and comfort proxies

1 2 3 4 5

Ac —Room A 0.1 2.15 2.75 0.2 0.15

Ac —Room B 2.85 1.55 1.95 0.3 0.2

Ac —Room C 2.8 1.45 1.3 0.4 0.25

Ac 5.75 5.15 6.0 0.9 0.6

Total Supplied Conditioned Air (m?) - TSCA 178 327 242 444 331
TSCA Normalized for Comfort Discrepancy N/A 327 282 78 39

4.8. Discussion

The proposed concept of active diffusers with adaptation capabilities was shown to result in flexible
performances in thermal zones for increased energy efficiency (effective energy use for thermal comfort).
However, reaching a significant conclusion on the overall efficacy and energy saving potentials (i.e.,
formalization of adaptation capacities) calls for a comprehensive study that accounts for different thermal
zone configurations, occupancy patterns, thermal comfort ranges of occupants, climate conditions, and
control parameters such as ramping the conditioning loads. For example, occupancy patterns of individual
rooms play a significant role in energy efficiency. The scenarios that use binary control at the VAV box
level, are far less flexible when the thermal zone is partially occupied. In those scenarios, the continued
supply of air in unoccupied zones could result in a considerable increase in energy consumption compared
to cases with independent diffusers. Considering the computational cost of combinatorial analyses, the
formalization studies require computational tools with higher efficiency such as Fast Fluid Dynamics and
leveraging GPU computing. Another limitation of our study was the disconnection between control at the
diffuser level and the VAV box level. Binary control at one diffuser (i.e., turning off the flow) will change
the flow for other diffusers, which should be managed at the VAV box level control. Further studies into
the flow distribution between different diffusers could provide a better insight into the efficiency of highly
adaptative diffusers.

Further investigation on the impact of the space and building system configurations (e.g., multi-occupancy
and open-space offices) is also necessary. In open space scenarios, zoning and multi-VAV configuration
could support targeting sub areas, covered by individual diffusers. Equipping the diffusers for detecting
activities and number of occupants [3, 12], the control algorithms could account for multi-occupancy
scenarios using alternative strategies, such as targeting a group of occupants, alternating between different
occupant locations, or switching between directional and uniform diffusion. The energy efficiency
implications of such scenarios under the uncertainty of occupancy patterns could lead to quantifying the
whole building adaptation capacity and load flexibility [76].

5. Conclusion

To investigate flexibility potentials of HVAC systems for introducing new adaptive capacities, we
investigated the impact of alternative control strategies by accounting for (1) distributed feedback from the
indoor environment, and (2) adaptation in control loop by introducing a new perspective for active diffusers.
Active diffusers could change their actions (i.e., turning air supply on or off and adjusting the direction of
the air flow) according to the dynamics of occupants and environments. To this end, we adopted a case
study approach by creating a CFD simulation of a real-world thermal zone with imbalanced behavior and

21



evaluated five scenarios of operational strategies. At a high level, these scenarios included legacy control,
control by measuring feedback at the locations of individual occupants, and control by flexibility
augmentation at the diffuser level. The results of simulations were interpreted in terms of effective energy
use for thermal comfort provision. The integration of distributed feedback showed to improve the fairness
in thermal comfort across the thermal zone although individual occupants’ comfort requirements might not
be satisfied. However, the integration of diffuser-level adaptive (binary and directional) actuation showed
improvements in thermal comfort satisfaction while reducing energy demand — by ~ 25% compared to sole
use of binary actuation. This study showed the potentials of new dimensions in adaptive operation of HVAC
systems. Given these potentials, the future of this research will focus on developing control frameworks
that use artificial intelligence for inference of occupancy and thermal preferences, as well as intelligent
control for the indoor condition and energy optimization. Therefore, formalizing the adaptative capacities
of these new dimensions for diverse contextual conditions, experimental evaluation of the proposed new
adaptive capacities, and investigating intelligent and context-aware algorithmic frameworks for
autonomous operation of diffusers are among the future directions of this research.
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