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Abstract 

Human-aware HAVC operations have been shown to be effective in improving energy efficiency, which is 

constrained by the HVAC system configuration and operational logic. These constraints can result in a lack 

of operational flexibility, which in turn reduces the adaptation capacity for energy efficiency. Therefore, in 

this study, we investigated the energy efficiency implications of novel adaptive capacities for HVAC 

including the use of proposed active diffusers, which add to the dynamics of the HAVC systems by 

adjusting the behavior of diffusers using two modalities of (1) binary actuation of air flow (turning flow on 

and off), and (2) adjusting the flow direction to target individual needs in an environment. Computational 

fluid dynamics was used to model and predict the behavior of a “real-world” thermal zone to evaluate five 

scenarios of adaptive operations using distributed feedback from the environment, as well as active diffusers. 

Three scenarios used binary actuation at the thermal zone (collection of rooms) level, and two examined 

the adaptive operations at diffusers level. Moreover, we examined the integration of distributed feedback 

at occupant locations into the control loop using averaged temperatures (in the first three scenarios) and 

individual feedback (in scenarios with diffuser level actuation). The coupling of distributed feedback and 

independent directional flow at diffuser level considerably improved the thermal comfort requirements 

while reducing energy demands by ~25% – reflecting a considerable impact on improved energy efficiency. 

These findings demonstrate the potentials that artificial intelligence frameworks could bring about by 

enabling autonomous adaptive operations. 

Keywords: Adaptive operations; HVAC systems; Load Flexibility; Energy Efficiency; Smart Buildings; 

Adaptive Diffuser; Robotic Diffuser 

1. Introduction 

In the United States, Heating, Ventilation and Air Conditioning (HVAC) systems account for 40% of the 

total energy consumption and ~75% of electricity consumption in buildings [1, 2]. Therefore, research 

efforts have sought to enhance their efficiency by introducing novel control techniques. Among the recent 

efforts are the human-centered operations [3], in which building systems account for human dynamics such 

as personalized thermal comfort [4-8] and occupancy patterns [9-12]. These methodologies promote 

context-aware adaptive control strategies, in which HVAC systems operate according to the contextual 

needs. Examples include smart operation of HVAC systems in a thermal zone –  a group of sub-spaces that 

are served by an air supply unit such as a variable air volume (VAV) box – according to the occupancy and 

number of occupants or actual thermal comfort preferences of its occupants [6].  

Human-centered control strategies have been shown to improve efficiency in energy management [3, 6] of 

building systems in both simulation and field studies. However, these efforts have focused on adaptive 

capabilities of building systems from operational settings’ standpoint and within the constraints of the 

existing componential design of HVAC systems. In other words, studies have focused on enhancing the 

detection and prediction of contextual thermal preferences and occupancy with limited research on the 

impact of air temperature distribution, distributed measurements, and integration of adaptive air distribution 

on the operational flexibility of building systems. Control at the thermal zone (which is the smallest unit of 

operation) is at the mercy of system boundary conditions including the building characteristics and air 
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distributing components such as diffusers, as well as the spatiotemporal granularity of feedback from the 

environment. Accordingly, in this study, we have investigated the impact of creating new adaptive 

capacities including distributed feedback from the environment, coupled with adaptive air distribution (air 

supply) in thermal zones. Traditional air distribution in HVAC systems relies on air outlets (diffusers) that 

direct the air in preset directions (most commonly diffusing the conditioned air in all directions) to all the 

sub-spaces of a thermal zone to ensure that the entire space will be uniformly conditioned.  

In the absence of information about occupants in an environment, the concept of uniform air diffusion is 

the most reliable solution to ensure that the space is properly conditioned for all potential scenarios. This 

strategy commonly results in conservative operation, which brings about higher energy consumption. The 

context-aware operations have been motivated by such limitations. Although the Internet of Things (IoT) 

technologies have led to a better understanding of the dynamics in an environment with demonstrated 

energy efficiency benefits, there are obstacles that limit the potential of energy conservation efforts in IoT-

enabled buildings. The lack of information about the temperature distribution in control loops, limitations 

from uniform air diffusion (regardless of occupants’ dynamics), and rigidity of HVAC actuation are among 

these obstacles. Therefore, we are investigating the potentials of adaptive thermal conditioning strategies 

that could be coupled with IoT-based techniques to achieve improved efficiency of HVAC operations in 

terms of energy use and thermal satisfaction. To this end, we are investigating the potentials of active air 

supply at diffuser level that is defined as the capability of adjusting the direction of the air flow to the 

location of need (the spatial vicinity of occupants’ location) and binary operation (on/off setting) of 

individual diffusers, as well as distributed measurement of ambient conditions as feedback to the control 

loop.  

Although in case of active directional flow, uniform air distribution may not happen, we still call this new 

concept active “diffusion”. To evaluate the feasibility and energy efficiency implications of creating new 

adaptive capacities, we sought to answer the following questions: (1) what is the impact of direct feedback 

at the location of occupants on improving the performance of a given HVAC system; and (2) how does the 

active diffusion concept affect energy efficiency of HVAC operations and the thermal comfort of individual 

occupants in a thermal zone and its subspaces. In doing so, we adopted computational fluid dynamics (CFD) 

for simulating the HVAC operation in (i) conventional operational mode, (ii) operation with distributed 

feedback, and (iii) active diffusion. In the context of this study, CFD provides a flexible tool for our 

investigation considering its high fidelity in simulating the air flow and temperature distribution in an 

environment by accounting for flow direction, velocity and turbulence. To this end, we have investigated 

the questions through a case study simulation of a real-world thermal zone. 

The rest of this paper is structured as follows. Section 2 provides a background for research on human-

centered (human-in-the-loop) operation of thermal conditioning in buildings and point of departure in this 

study. Section 3 describes the potential design alternatives, the CFD simulation methodology, and 

elaborations on simulated operational scenarios. The results of simulation and answers to the questions are 

presented in Section 4. We present discussions on the implications of the proposed concept in Section 6 

and conclude in Section 7 including the future of the research efforts. 

2. Context-Aware and Adaptive HVAC Operations 

As noted, human-in-the-loop HAVC operation has been the subject of several research efforts in the past 

few years [3], given the enhancements in the mobile sensing and communication technologies. An overview 

of these studies shows that the efforts could be divided into two main categories of occupancy-driven (e.g., 

[13-15]) and (thermal) comfort-driven (e.g., [16, 17]) research efforts. In the former category, studies focus 

on characterizing the occupancy of spaces for thermal conditioning. Among different efforts, the detection 

of occupancy state (occupied vs. unoccupied) (e.g., [18-20]) and the number of occupants in a thermal zone 

(occupancy counting) (e.g., [21, 22]) have received more attention. Control of HAVC systems according to 
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the occupancy state of thermal zones is implemented as reciprocation between setpoint and setback 

temperatures. In other words, when the space is inferred to be unoccupied, the temperature setpoint is 

configured to the setback that is closer to outside temperature to reduce energy consumption. In a class of 

techniques, this process is carried out through reaction to occupancy information (e.g., [23-25]). To address 

the potential discomfort from reactive techniques, due to either HVAC system reaction time, or the false 

positives in occupancy detection, occupancy prediction methods have been proposed. Using probabilistic 

techniques, the state of occupancy in an environment is predicted for proactive operations (e.g., [26-28]). 

Similarly, in case of occupancy counting, the estimate of the number of occupants is used to adjust the 

ventilation load and save energy in the building using either reactive or proactive control techniques (e.g., 

[29-31]). 

The control signal, in HVAC systems, is communicated at the thermal-zone level through a thermostat, 

which measures the temperature in the space at an arbitrary point and compares it against the temperature 

[32]. Once the temperature at the thermostat location is sufficiently different from the setpoint, the 

conditioned air supply is actuated. In this control paradigm, comfort-driven research efforts have come to 

play in improving the setpoints configuration. In the standard approach, the setpoints are configured 

according to generic models of thermal comfort that has been designed for collective occupants’ satisfaction 

according to different environmental and human-related variables. The most commonly used model is the 

predicted mean-vote (PMV) and predicted percentage of dissatisfied (PPD), i.e., PMV-PPD model [33, 34]. 

These models are used to design the HVAC system characteristics. During the operation, facility managers 

(following generic standard recommendations) or occupants adjust the setpoint on the thermostat. Therefore, 

the setpoint could be unrepresentative of real-world preferences of occupants and could result in inefficient 

operations of HVAC systems [35, 36]. Accordingly, research efforts have sought to enable human-centered 

comfort quantification, which focuses on context-aware inference of comfort by relying on feedback from 

actual occupants of the buildings. In doing so, different methods could be divided into two groups of 

utilizing user feedback systems through mobile devices (leveraging a voting mechanism) [4, 6, 8, 37-41] 

and physiological sensing [42-54] for reflecting thermoregulation processes. The outcome of these methods 

is the creation of personal comfort models [5, 55] that could be used to optimize the temperature setpoints 

in real-time operations. In multi-occupancy scenarios, the optimization pertains to the use of operational 

strategies to maximize collective comfort based on individual preferences [56-58]. Thus, occupants will 

experience a level of discomfort unless their preferences are similar, and the building system could keep a 

balance in indoor thermal condition distribution and experience.   

In both modalities of human-centered operations, the efficiency is at the mercy of building systems’ 

flexibility. The limitations of control feedback from an arbitrary point in thermal zones (i.e., thermostats) 

and the rigidity of air supply systems in an environment will drive the experience of the users and limit the 

potentials for efficiency. For example, in state-of-the-art human-centered control, as long as one sub-space 

is inferred to be occupied, the entire thermal zone is conditioned resulting in considerable inefficiency in 

energy consumption. On the other hand, if all subspaces are occupied, the thermal condition in rooms are 

affected by the balance in the HVAC system that in turn is affected by temperature measurement location, 

the distribution of the diffusers, and the physical characteristics of buildings. The lack of flexibility in 

building systems could hinder the realization of energy efficiency potentials even in the case of using 

context-aware operations. Therefore, our study contributes by (1) investigating the impact of different 

control configurations for HVAC systems in an example thermal zone (reflecting a real-world imbalanced 

system), as well as (2) proposing and evaluating a new control paradigm at the diffuser level to increase the 

flexibility of the control processes. To this end, there are limited research and development efforts that 

account for higher fidelity of information and control flexibility. In a category of studies, using 

computational simulations, research efforts have evaluated the impact of control based on occupant position, 

specifically in the open office spaces [59, 60]. In these efforts, the air supply was suggested to be controlled 

according to varied occupant positions by different variable air volume (VAV) boxes. In recent years, 

moving towards increasing flexibility of central air conditioning systems in residential buildings, smart vent 
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systems (e.g., Keen smart vents [61]) were developed for control of individual diffusers in a binary mode 

by using room level portable thermostat points (smart vents, coupled with ecobee portable sensing nodes 

[62]). These technologies have been designed to enable sub-zoning through plug-and-play smart vent 

replacement in residential buildings. Nonetheless, the energy efficiency impact of such strategies, as well 

as user-centered feedback, has not been systematically studied. 

3. Adaptive Operation Assessment Methodology 

3.1. Control Strategy 

The premise of this study centers on evaluating adaptive control frameworks in indoor environments, and 

thus, the methodology is based on simulated scenarios of operations in a surrogate model of a thermal zone 

and the associated energy efficiency implications. We have proposed a new paradigm of control strategy 

for added adaptation capacity through the concept of active diffusers – i.e., robotic diffusers with non-

intrusive sensing for locating occupants (e.g., by using infrared thermal array sensors [12]) and additional 

degrees of freedom for adaptive air flow adjustments (both throughput and direction of air flow) to target 

the location of need (occupants’ surrounding). The concept of active diffusers draws on the notion of 

personal air conditioning that has received attention in research and through initiatives such as ARPA-E's 

DELTA Program [63], which seeks to achieve energy efficiency by using Localized Thermal Management 

Systems (LTMSs). The LTMS concept has been defined as modifying the physical space around the human 

body rather than the entire building to service energy. Figure 1 illustrates the concept of using active 

diffusers and distributed feedback in the vicinity of the users. 

 

Figure 1. The envisioned concept of active diffusers 

The adaptation, in this study, has been represented from different perspectives: (1) distributed feedback 

from individual user locations (measuring comfort-proxy in the vicinity of occupants), (2) binary control 

(shutting a diffuser on-off) of diffusers in sub-spaces, and (3) binary and directional control at the location 

of diffusers. These strategies could be realized given the prevalence of IoT-enabled technologies. For 

example, distributed measurement of temperature could be achieved through portable sensing technologies 

that are paired with mobile devices such as smartphones [64] or IoT-specialized portable temperature 

sensing systems (e.g., [65]), as shown in Figure 1. These measurements could be also communicated to 

smart thermostats (e.g., ecobee) in the new paradigm of smart building systems. Alternatively, sensors that 

enable the inference of thermal comfort, such as wearables that measure skin temperature, could be used. 

Other technologies, such as adaptive sub-zoning by using smart vents with on/off control (e.g., Keen smart 

vents) in residential buildings, are also receiving attention in recent years [61]. Accordingly, the control 

strategies, in this study, will be affected by two main parameters of sensor location and the adaptation 

capability of diffusers. The scenarios that we have explored were compared against the legacy control 

strategy as the baseline: 
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• Scenario 1 (Baseline) – Binary control at the air supply unit (i.e., VAV box) by feedback from a 

central thermostat. This control strategy switches the air supply to the entire thermal zone on and 

off depending on the temperature measurement at the thermostat location. Air is distributed 

uniformly from the diffusers. 

• Scenario 2 – Binary control at the air supply unit ((i.e., VAV box) by feedback from a thermostat 

that is connected to distributed sensors. The air supply to the entire thermal zone is switched on 

and off depending on the averaged distributed temperature measurements at the occupants’ 

locations. This strategy reflects the notion of control based on personal thermal comfort preferences 

[6]. Averaging temperature will reduce the bias of only accounting for the temperature variation at 

the location of the central thermostat. Air is distributed uniformly from the diffusers. 

• Scenario 3 – Scenario 2, augmented with directional control of the supplied air at the diffusers. 

Similarly, the feedback from the distributed sensors (average temperature) near the occupants is 

used to control the operation of the VAV box.  This scenario investigates energy efficiency impact 

of directional flow for user-centered conditioning [63] and distributed feedback. 

• Scenario 4 – Binary control at individual diffuser level by independent feedback from distributed 

sensors at occupants’ locations. Air is distributed uniformly from the diffusers, but the air to 

individual diffusers could be shut off once the condition in one sub-space reaches the satisfactory 

condition. 

• Scenario 5 – Binary and directional control of the air supply at individual diffuser levels by 

independent feedback from distributed sensors at occupants’ locations. This is the most flexible 

actuation approach that enables the HVAC system to target the location of demand. 

Given that the dynamics of air and the associated temperature distribution is critical in evaluating these 

scenarios, we have used CFD to simulate and predict the air dynamics with high-fidelity calculations as a 

case study. The simulations were based on a real thermal zone with an imbalanced behavior – i.e., the 

temperature distributions in sub-spaces of the zone could be different with discomfort for occupants in sub-

spaces. Figure 2 shows the layout and characteristics of this thermal zone, which includes three rooms, 

served by a VAV box, two of which have windows facing south to the outside environment. Each room has 

a diffuser and an exhaust and can be isolated from the other rooms by doors. The fixed thermostat is in 

Room A (near the door adjacent to Room C), as shown in Figure 2. Scenarios 3-5 simulate the actuation at 

the diffusers. In a real-world implementation of such a system, the control loop would also include actuation 

and flow adjustment at the VAV box. We assumed a constant flow rate through each diffuser with constant 

temperature for different durations according to the demand. Therefore, the complete control loop for the 

VAV box behavior is not included in the scope. All three rooms are considered occupied although Rooms 

B and C are accessed through Room A. Figure 3(a)-(b) show the schematics of the air distribution method 

used for uniform and directional air distributions, respectively. The diffuser behavior was modeled in CFD 

simulations through boundary conditions and user-defined functions. 
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Figure 2. The layout of the simulated thermal zone and its characteristics 

 

 

(a) Uniform air flow for conventional 

diffusers 

 

(b) Directional air flow for active diffusers 

Figure 3. Schematic of the air distribution through uniform and directional diffusers in room C. 

3.2. CFD Simulation Details 

The CFD simulations were performed using the commercial software ANSYS Fluent (18.0) [66] and its 

user-defined function capabilities. We have modeled the time-dependent behavior of air flow using the 

governing equations for mass, momentum, and energy. The Boussinesq approximation was used to model 

natural convection, which treats density as a constant value except for the force term in the momentum 

equation. The realizable k-ε  model [67] was employed for turbulence modeling and the discrete ordinate 

model with solar ray tracing was used to solve for the incident solar radiation.   

The segregated pressure-based Navier-Stokes (PBNS) solver was used to numerically solve the 

incompressible system of equations, and pressure-velocity coupling was solved using the semi-implicit 

method for pressure-linked equation (SIMPLE) algorithm. Furthermore, the least squares cell based (LSCB) 

and the pressure staggering option (PRESTO!) schemes were employed for spatially discretizing gradients 

and pressure, respectively. The momentum, energy, turbulent kinetic energy and dissipation rates, and 
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discrete ordinate were discretized using second-order upwind methods. A first-order implicit method was 

employed for time marching with a constant time step size of 0.05 s, for which the Courant Friedrichs-Levy 

(CFL) number was between 0.5 and 1.  

As illustrated in Figure 2, the computational domain was extended 1 m beyond the exterior (southern) wall 

to represent the outdoor environment and model the effect of solar radiation on the exterior wall. Windows 

in rooms B and C were 1.5 m and 2.2 m wide, respectively, and 1 m high. The occupants were modeled as 

parallelepipeds with a height of 1.5 m (considering a seated position) and a width of 0.35 m on each side. 

The human thermal load was 75 W heat release from each individual in Rooms B and C, and 150 W for 

Room A, representing two occupants [68]. Diffusers and exhausts have dimensions of 0.3 m by 0.3 m. 

In all scenarios, air at 13C (~55F) was supplied through the diffusers at a rate of 0.0567 m3/s (or 120 cfm). 

For uniform diffusion, the conditioned air was uniformly supplied in all directions with an angle of 30 

from the ceiling. For active diffusers, the flow was directed by a vector from the diffuser towards the 

occupant location (75 cm from the floor). Exhausts had a return duct gauge pressure of -24.88 Pa. The 

boundary conditions for the outdoor boundaries were set to an ambient pressure of 1 atm and temperature 

of 27C to consider a summer day conditions. The solar radiation was modeled on the walls and through 

the windows. The solar intensity was calculated using the direct solar irradiance data provided by NREL 

[69]. The solar irradiance, for the location of the simulated thermal zone, ranged between 4.5 – 5.5 kWh/m2. 

The longest summer day of 14 hours with a constant solar intensity of 350 W/m2 on the south-facing 

windows were used. The shades at the windows were assumed to transmit only 80% of the incident solar 

radiation into the rooms. Given the buildings materials, dolomite was considered for the exterior wall. All 

the interior walls were modeled adiabatic assuming negligible conduction through the interior walls with 

no-slip condition for fluid-wall interactions. Characteristics of the boundary conditions are summarized in 

Table 1. 

Table 1. Characteristics of model boundary conditions 

Boundaries (Materials) 
Radiation 

Parameters* 

Thermal conductivity 

(k) (W/m-K) 
Boundary condition values 

Outside environment n/a - Temp: 27C | Pressure: 1 atm 

Diffusers n/a - 
Flow: 0.0567 m3/s (or 120 cfm) 

Temp: 13C (~55F) 

Exhausts n/a - Pressure: -24.88 Pa 

Internal walls/ceiling (N/A) n/a - No-slip | Zero heat transfer (Adiabatic) 

Outside walls (Dolomite) 

𝛼 = 0.5 

𝑒 = 0.5 

𝜏 = 0 

1.5 No-slip | Coupled 

Windows (Glass) 

𝛼 = 0.1 

𝑒 = 0.9 

𝜏 = 0.1 

1.15 No-slip | Coupled 

Doors (N/A) n/a - No-slip | Zero heat transfer (Adiabatic) 

Floors 

𝛼 =0.15 

𝑒 = 0.6 

𝜏 = 0 

- No-slip | Zero heat transfer (Adiabatic) 

Occupants (per person) n/a - No-slip | Heat flux = 612.25 W/m2 

* 𝑒: Emissivity | τ: Transmissivity | α: Absorptivity 
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3.3. Control Strategy Modeling 

We implemented user-defined functions (UDFs) to simulate different control logics. Each scenario was 

evaluated over 60 minutes for energy efficiency that was measured based on the energy use for achieving 

comfort. All the doors were assumed closed, allowing no interaction between the rooms – a reflection of 

actual operation in the testbed. The thermal comfort was achieved by adjusting the ambient temperature 

until it reached a setpoint in the vicinity of the thermostat. In commercial settings, a temperature deadband 

(i.e., upper and lower setpoints) is set to keep the temperature within a comfortable range. Similarly, in our 

analysis, the temperature was controlled by using a temperature deadband (following the logic of 

thermostats) of 21.6–23.3oC (71–74 oF).  

3.4. Grid Sensitivity and CFD Validation 

A grid resolution sensitivity assessment was conducted using the grid convergence index (GCI) to 

determine the discretization error for grid-independent solutions [70]. Room A was simulated using four 

meshes with varying numbers of cells, i.e., 38 k (mesh 4), 98 k (mesh 3), 164 k (mesh 2) and 663 k (mesh 

1), and the average room temperature was used to compute the GCI. Figure 4 shows the temperature 

changes for each mesh when the diffuser turns off at approximately 275 s. Using the numerical methodology 

described in [70], the GCI was below 0.1 % for each pair of consecutive meshes, which indicates extremely 

small discretization error. Therefore, a moderate mesh size (mesh 3) was adopted to model each room, and 

further cell refinement was applied in the vicinity of the occupants, diffusers, and exhausts; the entire 

domain utilized 300 k cells.  

 

Figure 4. Comparing average temperature of Room A for different mesh resolutions  

The experiments by Loomans [71] for supply airflow in a climate chamber, representing an office room 

was modeled and simulated to further validate the efficacy of the proposed CFD modeling. Figure 5 shows 

the 3D model that replicates the experiments with an air-supply below a desk (0.047 m3/s at 19.8 C), two 

computers (61.5 W each), a personal light source (10.9 W), ceiling lights (18.1 W per light), and an exhaust. 

Walls, floor, and ceiling are maintained at constant temperatures (22.2-23.2 C). The occupant has a surface 

area of 1.6 m2 and releases 59.8 W of heat. The only subtle difference is our parallelepiped occupant 

modeling. Loomans [71] collected temperature and velocity data at various locations within the room, and 

select data are presented here. The temperatures measurements (using T thermocouples with an accuracy 

of ±0.1C) were compared with CFD in Figure 6(a) at z = 1.93 m at three x-locations. The velocity 

measurements (using a hot sphere anemometer, reliable for velocities greater than 0.1 m/s with an accuracy 

of ±0.025 m/s) were compared with CFD in Figure 6(b) at z = 2.3 m. There is a lack of experimental velocity 

data below 1 m where the air motion was very small. Overall, there is very good agreement between the 

experiments and CFD predictions, validating our approach to model the HVAC system of an office. It is 
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worth noting that Stamou and Katsiris [72] also verified their CFD models with the data of Loomans and 

demonstrated similar agreement.  

 
Figure 5. CFD model replicating the experiments of Loomans [71] 

(a)  

(b)  

Figure 6. Profiles comparing the experiments of Loomans [71] and CFD predictions for (a) temperature at 

z = 1.93 m and (b) velocity at z = 2.3 m 
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4. Results and Discussion 

The simulation scenarios, including the sensing and actuation conditions are in Table 2.  

Table 2. Summary of the conditions for simulation scenarios 

Simulation 

Scenario 
Sensing Actuation 

Scenario 1 Zone Thermostat 
• Binary at VAV box (all diffusers at once)  

• Uniform diffusor flow 

Scenario 2 
Distributed Personal Thermostats  

(average reading) 

• Binary at VAV box 

• Uniform diffusor flow 

Scenario 3 
Distributed Personal Thermostats  

(average reading) 

• Binary at VAV box  

• Directional diffuser flow 

Scenario 4 
Distributed Personal Thermostats  

(independent reading) 

• Binary at individual diffusers  

• Uniform diffuser flow 

Scenario 5 
Distributed Personal Thermostats  

(independent reading) 

• Binary at individual diffusers  

• Directional diffuser flow 

4.1. Scenario 1: Uniform air distribution controlled by thermostat in Room A (baseline) 

Figure 7(a) shows the temporal variation of average room temperatures controlled by the thermostat in 

Room A and Figure 7(c) presents the temperature contours at neck height (1.25 m) and at t=60 mins. The 

temperature across all the rooms was initially 25C when conditioning started from an HVAC off state. 

Therefore, the initial drop in temperature and its rate of change were higher compared to the next cycles. 

The temperature decreased steadily with a lower rate in Rooms B and C due to heat gain through exterior 

windows and walls. The air conditioning initially turned off at 7 min-21 s when the thermostat in Room A 

reached the cutoff temperature of 21.6○C even though temperatures in Rooms B and C were far above the 

thermal comfort range. Note that the temperatures in Rooms B and C rise above the initial conditions after 

the initial drop. The temperatures in Rooms B and C continue to rise to uncomfortable states with additional 

conditioning cycles demonstrating that the HVAC cannot meet the required cooling load due to the control 

logic of receiving feedback in Room A resulting in a bias in the control loop. The off-cycle duration is 

relatively long compared to the on-cycle duration because of the small heat gain in Room A. This 

observation reflects the actual daily operations in the zone, in which acceptable temperatures in Rooms B 

and C require a setpoint of 20C. The average temperature of Room A is fairly close to the thermostat 

temperature because the room is completely isolated from the exterior environment and the doors to Room 

A are closed. The average temperatures in Rooms B and C are almost the same, however, a difference in 

the temperature near the occupants (averaged around neck and ankle) can be seen in Figure 7(b), where the 

surrounding temperature of occupant B, who is located farther from the window, is cooler. Cooler regions 

can be noticed in each room under the diffusers. The average time of the air supply (i.e., on time) per cycle 

for all diffusers was approximately 5 minutes and 30 seconds.  
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(a) Temporal variation of average room temperature 

 
(b) Temporal variation of occupant temperature  

 
(c) Temperature contour at neck height at t=60 mins 

Figure 7. Temperature plots for binary control at VAV box using wall thermostat in Room A with 

uniform flow from diffusers (Scenario 1 – baseline legacy control) 
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(a) Temporal variation of average room temperature 

 
(b) Temporal variation of occupant temperature 

 
(c) Temperature contour at neck height at t=60 mins 

Figure 8. Temperature plots for binary control at VAV box using average temperature at the vicinity of 

occupants in all rooms with uniform flow from diffusers (Scenario 2 – baseline control by using 

distributed feedback)  
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4.2. Scenario 2: Uniform air distribution controlled by average temperature in the vicinity of 

occupants 

To eliminate the bias of measuring temperature in only one sub-space, the combined average temperatures 

of the occupant surroundings in each room was used for context-aware control. As noted, this distributed 

feedback could be obtained through portable thermostat (similar to ecobee) or mobile wearable devices. 

Figure 8(a) shows the temporal variation of average room temperatures. The solid lines indicate the average 

temperature close to the occupants, which was used as the control feedback. This approach improved the 

thermal condition in Rooms B and C, but resulted in a drop of temperature in Room A considering that 

higher cooling load are needed in Rooms B and C. This is the pattern that is observed in reality where 

occupants keep adjusting the temperature setpoint on the thermostat for comfort. Since thermal comfort 

ranges, in Rooms B and C, were effective in driving the control signal, the initial cooling duration (from 

HVAC off state and initial temperature of 25C) is longer for Scenario 2 (~10 minutes) compared to 

Scenario 1. The temperatures, in Rooms B and C, ranged from 22.5C to 25C within the cycles, which are 

closer to thermal comfort ranges compared to Scenario 1, where temperatures reach 25C after two cycles. 

However, the temperatures increase slightly in Rooms B and C as the cycles continue, but drop below 20C 

in Room A, which may cause discomfort especially for a room without sunlight. Figure 8(b) shows the 

difference in temperatures at occupants’ neck height after 1 hour when the cooling cycle ends. The 

temperatures in Rooms B and C are close to 23○C, which shows that these rooms could not be cooled below 

this limit. The average time of air supply (HVAC on) per cycle was 7 min 22 s, higher than Scenario 1, 

reflecting higher need for cooling load and thus higher energy consumption. Nonetheless, this increase in 

energy consumption does not assure simultaneous conditioning of all rooms to thermal comfort. This is an 

indicator of lack of flexibility in control of the HVAC system. In other words, accounting for personal 

comfort in a centrally controlled HVAC system, resulted in an increased energy use with no guarantee of 

satisfactory indoor conditions for all occupants. 

4.3. Scenario 3: Directional air distribution controlled by average temperature in the vicinity of 

occupants 

This scenario examines how directional air flow could contribute to achieving energy efficiency. In the 

envisioned system, active diffusers communicate with the distributed sensors for information on occupants’ 

locations and surrounding temperatures. The locations of the distributed sensors are used to determine the 

direction for the air supply. Figure 9 shows the temperature variations. We observed increased number of 

cycles and decreased duration of cycles (six cycles compared to four for Scenario 2). Through directional 

flow, HVAC only provides conditioning for the occupants’ surroundings instead of the entire space, and 

thus, the durations of cycles decrease. Moreover, temperatures close to occupants are lower compared to 

the previous scenarios (Figure 9(b)), demonstrating the potential of directional flow in providing personal 

thermal comfort even in a warm environment. It is also seen that demand targeting can still provide 

conditioning for the entire space that is important for temporary occupants. The initial cooling time of 6 

minutes-24 seconds is nearly 34% lower compared to 9 minutes-43 seconds in Scenario 2 with a shorter 

average cooling time per cycle of 3 minutes-11 seconds (a total of 23 minutes-43 seconds) – showing energy 

saving potentials of directional flow through active diffusers. Considering energy use correlation with the 

volume of supplied air, the reduced durations (71.1 mins compared to 96.3 mins in Scenario 2) leads to 

reduced energy use. However, occupants’ thermal needs were not sufficiently satisfied. While occupants in 

Rooms A and C are experiencing cool regions, occupant in Room B is not completely affected by 

conditioned air. This may be due to farther distance between diffuser and occupant in Room B and the 

impact of the air circulation. In addition to temperature, an important factor for thermal comfort is the air 

speed close to occupants and it is discussed in Section 4.6. 
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(a) Temporal variation of average room temperature 

 
(b) Temporal variation of occupant temperature 

 
(c) Temperature contour at neck height at t=60 mins 

Figure 9. Temperature plots for binary control at VAV box using average temperature at the vicinity of 

occupants in all rooms with directional flow from diffusers (Scenario 3)  
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(a) Temporal variation of average room temperature 

 
(b) Temporal variation of occupant temperature 

 
(c) Temperature contour at neck height at t=60 mins 

Figure 10. Temperature plots for binary control at VAV box using average temperature at the vicinity of 

occupants in all rooms with directional flow from diffusers (Scenario 4)  
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4.4. Scenario 4: Uniform air distribution controlled at individual diffuser level by independent 

temperature feedback from distributed sensors 

The previous cases showed the lack of flexibility (i.e., adaptation capacity) in providing comfortable 

temperature ranges for occupants. This rigidity stems from binary control of air supply on a centralized unit. 

All diffusers simultaneously cycle on and off regardless of the need in sub-spaces. However, these rooms 

are subjected to different thermal loads, hence, require different thermal conditioning. To achieve 

independent sub-space control of air supply, Scenario 4 simulates binary air flow control at diffuser level 

using legacy diffusers for uniform air supply – i.e., turning diffusers off in each room based on feedback 

from distributed sensors. Figure 10(b) shows the capability of this approach in satisfying expected thermal 

comfort ranges (21.6C – 23.3C) in each room. However, to achieve this objective, diffusers in Rooms B 

and C remain on for the entire time. Rooms B and C were maintained at 22.3C and 22.1C with occupant 

temperatures reaching 21.75oC and 21.95oC, respectively. Given the cut-off bound of 21.6oC, the diffusers 

in these rooms did not cycle off. The constant temperatures in Rooms B and C indicate an equilibrium 

between the heat gained from radiation and heat extracted by air conditioning - showing the need for 

additional conditioned air. In a full control loop, which engages the VAV box, cutting off air to one diffuser 

could direct the air discharge to other diffusers for increased cooling load to rooms B and C. The 

temperature contours show similarity across the zone with occupant temperatures within the thermal 

comfort range (21.6oC – 23.3oC). The conditioned air directed towards the wall (Figure 10(c)), could be 

directed towards the occupant to extract the excess heat received from solar radiation in Rooms B and C 

and provide comfort without excessive energy use as described in Scenario 5. 

4.5. Scenario 5: Directional air distribution controlled at individual diffuser level by independent 

temperature feedback from distributed sensors 

Compared to Scenario 4, achieving higher levels of flexibility is feasible by augmenting the diffusers with 

directional flow. Scenario 3 demonstrated that directional air flow improves thermal satisfaction while 

consuming less energy. Combing these two approaches, in this scenario, we evaluated directional air flow 

with independent control in each sub-space. The direction of flow remains fixed for the entire simulation 

as occupants are stationary. As Figure 11(a) presents, Room A requires longer off cycles and shorter cooling 

time compared to Rooms B and C. Room C requires longest initial cooling time as the distributed sensor is 

subjected to solar heat flux. The average cooling time per cycle for Room C with a larger window (~9 

minutes) was more than Room B (~ 8 minutes). Figure 11(a) and (b) show that the average room 

temperature in Room A is higher than the occupant temperature at any given time, which implies the 

personalized conditioning of the air surrounding the occupant in Room A. In Room B, the cooling time per 

cycle decreases as time progresses indicating a highly transient behavior. Figure 11(c) presents the 

temperature contour at neck height (y=1.25 m) after 1 hour. The average temperature of room A is higher 

than Rooms B and C because the diffuser is at the end of the off cycle (approximately off for 30 minutes). 

Blue regions in rooms B and C represent cooler air, directed towards occupants, showing the increased 

efficiency of cooling. The initial cooling time in Room A decreased from 7 minutes to 4.5 minutes 

comparted to Scenario 4, where conditioned air is lost near the walls due to the uniform supply of air. 
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(a) Temporal variation of average room temperature 

 
(b) Temporal variation of occupant temperature 

 
(c) Temperature contour at neck height at t=60 mins 

Figure 11. Temperature plots for binary control at individual diffusers using temperature at the vicinity of 

occupants in each room with directional flow from diffusers (Scenario 5) 
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(a) Uniform diffusion 

 

(b) Directional diffusion 

Figure 12. 3D streamlines and temperature contours for uniform (Scenario 4) and directional flows from 

diffusers (Scenario 5). 

The three-dimensional view for uniform (Scenario 4) and directional (Scenario 5) flows are shown in Figure 

12 at t = 60 min. In each view, streamlines are superimposed with temperature contours to investigate the 

velocity-temperature coupling. There is a vertical plane shown in each room located at the center of each 

diffuser to provide an additional visualization of the airflow patterns and corresponding temperatures. Note 

that the diffuser in Room A is off for both cases at this instance. Therefore, the observed streamlines in 

Room A are due to natural convection. The temperature contours present the detailed thermal profile in 

each case: 

• Low temperature regions in Figure 12(a) – i.e., darker areas on the planes near the walls of Rooms 

B and C –  confirm that part of the conditioned air is consumed to adjust the wall temperature due 

to uniform diffusion. The streamlines in Room C show that air moves downward along the wall 

due to buoyancy. Streamlines in Room B show a portion of air moving towards the window and 

door. Although distribution of air in all directions provides overall better circulation, it does not 

guarantee thermal comfort.  

• Figure 12(b) clearly shows air directed towards the occupants in Rooms B and C. The diffuser in 

Room A is off as the setpoint was satisfied; hence, no directional flow is observed. The streamlines 

of the air jet leaving the diffusers elucidate the low temperature zones (blue region) on the middle 

planes of Rooms B and C. The cooler air leaving the diffuser does not follow a linear path, moves 

in the downward direction, most likely due to buoyancy. Additionally, as it is not subjected to solar 

radiation, the floor in Room A (in both cases) is at a lower temperature than the other rooms. As 

expected, a vertical temperature gradient is seen in the plane of Room A as the layer of warm air 

becomes more prominent as time progresses.   

4.6. Thermal comfort implications 

Thermal comfort is affected by factors such as ambient temperature, relative humidity, radiant temperature, 

and air speed. We assessed the performance of different scenarios according to thermal comfort 

requirements by ASHRAE [73]. This is important given that directional flow could increase air speed in 

the vicinity of occupants. The ASHARE acceptable air speed is determined according to a number of factors 

including access to control, thermal conditions, and human related variable such as clothing insulation and 
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metabolic rate. For occupants with control of air flow, there is no recommendation upper air speed limit. 

We assumed no occupant control, and therefore, the maximum acceptable air speed for typical office 

activities and clothing level in summer is: 

 

{

𝑡𝑜 > 25.5℃    →     𝑉𝑎 = 0.8 𝑚/𝑠

23℃ < 𝑡𝑜 < 25.5℃     →       𝑉𝑎 = 50.49 − 4.4047𝑡𝑜 + 0.096425 𝑡𝑜
2 𝑚/𝑠

𝑡𝑜 < 23℃    →     𝑉𝑎 = 0.2 𝑚/𝑠
 (1) 

 

in which, 𝑡𝑜 is the operative temperature and 𝑉𝑎 is the average air speed around an occupant. Operative 

temperature could be calculated from average ambient temperature (𝑡𝑎) and radiant temperature around an 

occupant [74]. For cases that occupants are not under direct solar radiation (as is the case in this study), the 

difference between average ambient temperature and radiant temperature is negligible [75], rendering the 

𝑡𝑜 to be considered equal to 𝑡𝑎.  

Table 3. Temperature and air speed near occupants for the last cooling cycle, and the acceptable max air 

speed recommended by ASHRAE 

Occupant(s) 

in Room 
Parameter 

Scenarios 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

on off on off on off on off on off 

Room A 

Temperature (C) 21.6 22.8 19.7 20.6 19.3 19.8 21.7 23.3 21.7 23.2 

Speed (m/s) 0.12 0.02 0.11 0.03 0.13 0.01 0.1 0.01 0.15 0.01 

Max Recommended 

Air Speed (m/s) 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.21 0.2 0.2 

Room B 

Temperature (C) 24 26.3 22.8 24.9 23.3 25.2 22 - 21.7 23.3 

Speed (m/s) 0.11 0.05 0.12 0.06 0.19 0.07 0.12 - 0.22 0.07 

Max Recommended 

Air Speed (m/s) 
0.31 0.8 0.2 0.58 0.21 0.73 0.2 - 0.2 0.21 

Room C 

Temperature (C) 23.9 26.3 22.6 24.9 22.2 25 21.9 - 20.7 23.4 

Speed (m/s) 0.12 0.06 0.11 0.05 0.26 0.07 0.13 - 0.27 0.07 

Max Recommended 

Air Speed (m/s) 
0.30 0.8 0.2 0.58 0.2 0.62 0.2 - 0.2 0.22 

 

Table 3 shows temporal average temperature and speed around occupants for the last cycle before and after 

thermal conditioning, as well as the acceptable maximum air speed. Four points around the neck and four 

points around the ankle were averaged to determine the average temperature and speed for an occupant. 

Based on the temperatures and velocities, the following can be gleaned: 

• In Scenario 1, occupants in Room A experienced thermal comfort during the on-off cycles unlike 

occupants in Rooms B and C with temperatures higher than the initial indoor condition of 25C.  

• In Scenarios 2 and 3, occupants in Rooms B and C experienced lower temperatures compared to 

Scenario 1. However, in room A, temperature reaches near 20C below the acceptable range.  

• All occupants are within comfort range for Scenarios 4 and 5 with better performance for Scenario 

5. As expected, the speed at occupant location is higher for directional flow. In Scenarios 3 and 5, 

the air speeds around the occupants surpass the acceptable maximum, specifically for Room C. 

Equation 1 shows that thermal comfort is driven by operative temperature and the air speed around 

the occupants. Therefore, as a potential adaptive capacity, active diffusers could adjust the 

directional flow to opt for higher temperatures with higher air speed near occupants for thermal 
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comfort with lower energy use. Alternatively, the angle of directional flow with respect to the 

ceiling could be constrained to avoid direct air flow towards occupants. These are some of the 

potential modifications that will be part of the future research directions. 

4.7. Energy consumption 

The primary goal of using directional flow is energy conservation while maintaining comfort. Table 4 

presents the total duration of supplying conditioned air during the 60-minute simulated operations. 

Table 4. Total cooling time (in minutes) per diffuser in each room over a 60-min duration  

Rooms Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

A 17.5 32.1 23.7 10.8 8.8 

B 17.5 32.1 23.7 60 39 

C 17.5 32.1 23.7 60 49.7 

Thermal Zone 52.5 96.3 71.1 130.8 97.5 

To compare energy consumption of different operational scenarios, we have used total volume of 

conditioned air, supplied to the thermal zone, during the one-hour simulation as the indicator of the energy 

consumption in Table 5. It has been shown that the air flow to thermal zones is linearly correlated with 

energy consumption of HVAC systems [56]. The supply air temperature is also an important factor in 

driving the energy consumption; however, since this temperature was constant across all scenarios, we only 

used air flow for comparisons. The total volume of air was calculated by multiplying the air supply durations 

in Table 4 by the air flow rate at each diffuser. Although the total cooling time for Scenarios 4 and 5 is 

more than Scenarios 1-3, thermal comfort was only achieved for Scenarios 4 and 5. We used the following 

formula to measure how effective each scenario was in keeping the temperature close to preferred 

temperature (i.e., setpoint): 

∆𝑐 = ∑ |𝑇𝑖 − 𝑇𝑟| 

∆𝑐 is the discrepancy between occupants’ temperature and the setpoint of 22.3°C (𝑇𝑟), and 𝑇𝑖 is the average 

occupant’s temperature through an on-off cycle (we used the average of lowest and highest temperatures 

around occupants during one cycle). The room-level and zone-level values for ∆𝑐 have been presented in 

Table 5.  

• In Scenario 1, the legacy control logic does not provide comfort in Rooms B and C, thus, the lower 

energy demand is not representative of the real-world operation. The outcome was similar to having 

a thermal conditioning system only in Room A as the ∆𝑐 values in Rooms B and C indicate. 

Therefore, in the following assessments, we have considered the second scenario as the baseline. 

• By integration of distributed feedback, Scenarios 2 and 3 yielded better ∆𝑐  across all rooms 

although the overall ∆𝑐 is similar to Scenario 1. In other words, these scenarios help improve the 

fairness across the thermal zone. However, Scenario 3 (which uses the envisioned directional flow) 

has resulted in reduced energy demand.  

• Through binary control augmentation at the diffuser level, we could see considerable improvements 

in thermal comfort experience. Considerable higher energy demand in Scenario 4 is associated with 

the insufficiency of the cooling load for the high thermal demand in Rooms B and C that resulted 

in an hour-long on cycle (see Figure 10). On the other hand, Scenario 5 shows similar cooling 

demand compared to the baseline (Scenario 2) with much improved thermal comfort experience. 

This is a demonstration of the benefits from integration of the proposed active diffusers. Integration 

of VAV box control could further reduce the energy demand due to distribution of air discharge.  
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• The last row of Table 5 shows the cooling demand corrected/normalized for comfort discrepancy. 

In these calculations, we have scaled the cooling demands by ∆𝑐𝑘/∆𝑐2, where ∆𝑐𝑘  is ∆𝑐 from 

scenario k – e.g., ∆𝑐4/∆𝑐2 is 0.9/515. This is interpreted as energy efficiency – the effective use of 

energy for thermal satisfaction. As the values show, Scenarios 4 and 5 have resulted in considerable 

improvement in effective use of energy for comfort. The addition of directional flow shows further 

improvement over binary control in active diffusers. 

Table 5. Energy efficiency comparison analysis 

Energy consumption and comfort proxies 
Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

∆𝑐 – Room A 0.1 2.15 2.75 0.2 0.15 

∆𝑐 – Room B 2.85 1.55 1.95 0.3 0.2 

∆𝑐 – Room C 2.8 1.45 1.3 0.4 0.25 

∆𝑐 5.75 5.15 6.0 0.9 0.6 

Total Supplied Conditioned Air (m3) - TSCA 178 327 242 444 331 

TSCA Normalized for Comfort Discrepancy N/A 327 282 78 39 

4.8. Discussion 

The proposed concept of active diffusers with adaptation capabilities was shown to result in flexible 

performances in thermal zones for increased energy efficiency (effective energy use for thermal comfort). 

However, reaching a significant conclusion on the overall efficacy and energy saving potentials (i.e., 

formalization of adaptation capacities) calls for a comprehensive study that accounts for different thermal 

zone configurations, occupancy patterns, thermal comfort ranges of occupants, climate conditions, and 

control parameters such as ramping the conditioning loads. For example, occupancy patterns of individual 

rooms play a significant role in energy efficiency. The scenarios that use binary control at the VAV box 

level, are far less flexible when the thermal zone is partially occupied. In those scenarios, the continued 

supply of air in unoccupied zones could result in a considerable increase in energy consumption compared 

to cases with independent diffusers. Considering the computational cost of combinatorial analyses, the 

formalization studies require computational tools with higher efficiency such as Fast Fluid Dynamics and 

leveraging GPU computing. Another limitation of our study was the disconnection between control at the 

diffuser level and the VAV box level. Binary control at one diffuser (i.e., turning off the flow) will change 

the flow for other diffusers, which should be managed at the VAV box level control. Further studies into 

the flow distribution between different diffusers could provide a better insight into the efficiency of highly 

adaptative diffusers. 

Further investigation on the impact of the space and building system configurations (e.g., multi-occupancy 

and open-space offices) is also necessary. In open space scenarios, zoning and multi-VAV configuration 

could support targeting sub areas, covered by individual diffusers. Equipping the diffusers for detecting 

activities and number of occupants [3, 12], the control algorithms could account for multi-occupancy 

scenarios using alternative strategies, such as targeting a group of occupants, alternating between different 

occupant locations, or switching between directional and uniform diffusion. The energy efficiency 

implications of such scenarios under the uncertainty of occupancy patterns could lead to quantifying the 

whole building adaptation capacity and load flexibility [76].   

5. Conclusion 

To investigate flexibility potentials of HVAC systems for introducing new adaptive capacities, we 

investigated the impact of alternative control strategies by accounting for (1) distributed feedback from the 

indoor environment, and (2) adaptation in control loop by introducing a new perspective for active diffusers. 

Active diffusers could change their actions (i.e., turning air supply on or off and adjusting the direction of 

the air flow) according to the dynamics of occupants and environments. To this end, we adopted a case 

study approach by creating a CFD simulation of a real-world thermal zone with imbalanced behavior and 
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evaluated five scenarios of operational strategies. At a high level, these scenarios included legacy control, 

control by measuring feedback at the locations of individual occupants, and control by flexibility 

augmentation at the diffuser level. The results of simulations were interpreted in terms of effective energy 

use for thermal comfort provision. The integration of distributed feedback showed to improve the fairness 

in thermal comfort across the thermal zone although individual occupants’ comfort requirements might not 

be satisfied. However, the integration of diffuser-level adaptive (binary and directional) actuation showed 

improvements in thermal comfort satisfaction while reducing energy demand – by ~ 25% compared to sole 

use of binary actuation. This study showed the potentials of new dimensions in adaptive operation of HVAC 

systems. Given these potentials, the future of this research will focus on developing control frameworks 

that use artificial intelligence for inference of occupancy and thermal preferences, as well as intelligent 

control for the indoor condition and energy optimization. Therefore, formalizing the adaptative capacities 

of these new dimensions for diverse contextual conditions, experimental evaluation of the proposed new 

adaptive capacities, and investigating intelligent and context-aware algorithmic frameworks for 

autonomous operation of diffusers are among the future directions of this research.  
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