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Abstract We explore the potential of a combined analysis
of the decays 1~ — 7~ 7%, and 1= — K~ Kysv; in the
determination of the p(1450) and p(1700) resonance prop-
erties in the frame of resonance Chiral Theory supplemented
by dispersion relations. On the one hand, we take advantage
of the very precise data on the modulus squared of the pion
vector form factor |Fy; |> obtained by Belle to carry out a
very dedicated analysis of the region where these resonances
come up into play. Our study provides an improved treatment
of the systematic theoretical errors and, as a most important
result, we conclude that they dominate over the fit uncertain-
ties in the determination of the p(1450) and p(1700) pole
parameters and tend to be larger than in other determinations
quoted in the literature where these errors were ignored or
underestimated. The results of our analysis are summarized
in numerical tables for the form factor modulus and phase,
including both statistical and systematic errors, that can be
found as ancillary material of this paper. As a byproduct, we
also determine the low-energy observables of the pion vec-
tor form factor and the p-pole position. On the other hand,
we benefit from the recent experimental data for the transi-
tion 7~ — K~ Kgv; released by BaBar to perform a first
analysis of its decay spectrum and discuss the role of these
resonances in this decay. We point out that higher-quality
data on the K~ K g decay channel will allow to compete with
the | Fy |2 ones and improve the determination of the p (1450)
and p(1700) resonance parameters as a result of a combined
analysis. We hope our study to be of interest for present and
future experimental analysis of these decays.

Electronic supplementary material The online version of this
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1 Introduction

Tau lepton decays into a neutrino and hadrons provide a priv-
ileged scenario to investigate the non-perturbative regime of
QCD under rather clean conditions since half of the transition
is purely electroweak and can be computed straightforwardly.
Such advantageous framework is used to improve our under-
standing of the hadronization of QCD currents as well as
for determining the physical parameters, mass and width, of
the intermediate resonances produced in the decay [1]. The
strong dynamics is encoded within the hadronic matrix ele-
ment which, in turn, is given in terms of form factors. As
it is well-known, Chiral Perturbation Theory (ChPT) [2,3]
provides a successful description of these form factors valid
at very low energies £ << M,, where M, is the p(770)
resonance mass. However, as one approaches the resonance
region £ ~ M, ChPT ceases to provide a good description
of the physics and the resonance fields shall be explicitly
incorporated into the description as new degrees of freedom.
This is the aim of Resonance Chiral Theory (RChT) [4], an
effective field theory with resonance fields builtin. RChT has
been used by different groups as the initial setup approach
to describe two meson tau decays providing a good descrip-
tion of the experimental measurements after being supple-
mented by arguments of analyticity and unitarity through
dispersion relations. For example, the analyses of the 7 ~7°
[5-8] and K [9—-12] decay channels were found to be in a
nice agreement with the rich experimental data provided by
experiments.

One of the purposes of this work is to extend our series
of dedicated analyses of two meson tau decays based on
the framework of RChT supplemented by dispersion rela-
tions i.e. T~ — 7 w0, [7],T7 — Kg7 vy and T —
K nWv, [13,14], and = — 7~ Vv, [15], to the K~ K
final state meson system. The topic is of timely interest due to
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the recent measurement of the t~ — K~ Kgv; decay spec-
trum released by the BaBar collaboration [16]. This measure-
ment is based on a sample of 223741 events and significantly
improves the mass spectrum measured by CLEO in 1996 [17]
were only 100 events in the T~ — K~ Kgv; were selected.
The threshold for the decay t — K~ Kgv,; opens around
1000 MeV which is ~ 100 MeV larger than M, + I'p, a
characteristic energy scale for the p (770)-dominance region.
This implies that the K~ K g decay mode is not sensitive to the
p(770) peak, and consequently not useful to study its prop-
erties, but rather enhances its sensitivity to the properties of
the heavier copies p (1450) and p (1700).

Also, a precise theoretical determination of the two-pion
vector form factor within the SM (with a robust error band)
is needed to increase the accuracy of the search for non-
standard interactions in semileptonic weak charged cur-
rents [18—20]. This information is included as supplementary
material of this paper (see Appendix A).

These facts motivate the present work where we intend to
demonstrate that a reanalysis of the 7 ~7° and K~ K g decay
spectra at present B-factories such Belle-II [21] could help
improve notably the knowledge of the p(1450) and p(1700)
resonance properties.

First, we reexamine the pion vector form factor focus-
ing our effort on the improvement of the description of the
energy region where the p(1450) and p(1700) come up into
play. Our analysis is based on a three-times-subtracted dis-
persion relation. For the required input of the form factor
phase entering the dispersive integral, we rely on Watson’s
theorem [22]! and take advantage of the well-known para-
metrization of the mwm scattering phase shift existent in the
literature, to drive the form factor phase up to 1 GeV. Above
1 GeV, we get a model for the phase from the exponential
Omnes representation that we explain in detail in Sect. 2.
This parametrization establishes the framework of our form
factor description. However, we will also consider a number
of variants to this approach that will be used to assess the
(important) role of the systematic uncertainties in the extrac-
tion of the p(1450) and p(1700) resonance parameters that
have been usually ignored or underestimated in the literature
so far. Altogether results, to the best of our knowledge, in
the most dedicated analysis of the intermediate- and high-
energy region of the pion vector form factor experimental
data to date. Also, the impact on the low-energy observables
of the pion vector form factor is addressed and discussed as
a byproduct of our approach.

Second, we built a parametrization for the kaon vector
form factor in a similar fashion as for the pion one and per-
form a first analysis of the t= — K~ Kgv; BaBar exper-

1 Watson’s theorem applied to the pion vector form factor tells us that
the form factor phase equals that of the two-pion scattering within the
elastic region.
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imental measurement. The role of each participating res-
onance is discussed and the corresponding parameters are
extracted from fits to data.

Finally, in view of the findings obtained from our anal-
yses of the individual 7~ 7% and K~ K channels, we per-
form a combined analysis to both data sets to see what can
be learned. From our study, we can anticipate that although
the T~ — K~ Kgv, BaBar data supersede the old CLEO
data, still the precision is not sufficiently good enough to
compete with the pion vector form factor modulus squared
data from Belle. In all, we hope our study to be of inter-
est for present and future experimental analysis of these
decays.

This article is structured as follows. In Sect. 2 we provide
a bottom-up review of the pion vector form factor organized
according to the fulfillment of unitarity and analyticity con-
straints. For illustrative purposes, we start with the ChPT
calculation at order ¢(p*) and follow by the explicit inclu-
sion of vector resonance states. For our study, we will con-
sider three resonances i.e. p(770), p(1450) and the p(1700),
and then submit the form factor to a unitarization procedure
through the Omneés integral that leads to the Omnes expo-
nentiation of the form factor. This parametrization allows
us to get a model for the phase of the form factor valid
up to the mass of the t. This phase is then inserted into
a three-times-subtracted dispersion relation that completes
our representation of the form factor, and the corresponding
model parameters are fitted to the Belle measurement of the
modulus squared of the pion vector form factor |Fy; (s)]?.
Predictions and fits to the BaBar t= — K~ Kgv, decay
spectrum measurement are discussed in Sect. 3. In Sect. 4,
we perform joint fits to the decays t~ — 7~ 7%, and
T~ — K~ Kgv; and finally, our conclusions are presented
in Sect. 5.

2 The pion vector form factor

The pion vector form factor has been measured in ete™ —
7t7~ [23-29] and in T — 7~ 7%, [30,31] and widely
studied in the literature [5-8,32-39] since it enters the
description of many physical processes. As it is the main
object concerning our analysis, we will thus provide in
the following a brief, but detailed review of its calcula-
tion following a bottom-up approach according to the ful-
fillment of unitarity and analyticity constraints. We will
start with the Chiral Perturbation Theory calculation at
O(p*) to follow with the explicit inclusion of resonances
as degrees of freedom. The 7w and KK final-state inter-
actions will be then resummed to all orders through an
Omnes exponentiation. Finally, a three-times-subtracted
dispersion relation completes our form factor representa-
tion.
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2.1 Exponential Omnes representation

The pion vector form factor Fy; (s) is defined through the
hadronic matrix element of the vector current between the
vacuum and the pion pair

(7O~ |dy"u|0) = V2(pr- — pr)FE(s), (1)

where s = (p;- + pr0)?.

At very low-energies, the pion vector form factor is well
described by ChPT. The resulting calculation at &'(p*) reads
[3] (in the limit of exact isospin symmetry)

2Lo(w)
Fy(s)lcnpr = 1+ ;2 s
T
*__|a 24 1y 2 2
—W n(S,M)-i-E k(s,u) |, (2)

where Lg (1) is one of the renormalized low-energy cou-
plings constants in the ¢(p*) chiral Lagrangian, and
Ap(s, u?) are two-pseudoscalars loop-functions (whose
renormalization-scale dependence cancels out with the one
in Lg) accounting for the unitary corrections given by

2 2

m 8m3 5 op(s)+1
A 2y —log 24P~ 5306)1 ),
pls i) =log - B+ =F o) log (55

3

where

2
dmp

op(s) =4/1—

“

N

The validity of ChPT is restricted to very low energies,
and as one approaches the region where the influence of new
degrees of freedom, the lightest meson resonances, becomes
important, ChPT ceases to provide a good description. Res-
onance Chiral Theory partly cures this limitation incorporat-
ing such resonances explicitly. For the case concerning us,
the p(770) resonance dominates the form factor. At leading
order in powers of 1/N¢, which it is @(p*) in the chiral
expansion, the result is given by [4]

FvGV N
Fy (s)|lrRchr = 1+ —5— ,
F2 M2 —s

&)

where Fy and Gy measure, respectively, the strength of the
pVH and prr couplings, with V# being the quark vector
current. Assuming that the form factor vanishes when s —
oo one gets the condition

FyGy = F2, (6)

that yields the usual Vector Meson Dominance (VMD) in the
zero-width approximation

2

(N

FY =L
v ($)lvmD MZ—s
Re-expanding Eq. (7) in s and comparing with the polynomial
part of its ChPT counterpart in Eq.(2) one gets an estimate

for the &'(p*) chiral coupling Ly

FyGy F2 3
4 14

which is in very good agreement with the value extracted
from phenomenology. This result shows explicitly that the
p(770) contribution is indeed the dominant physical effect
in the pion vector form factor.

An improved realization of the pion vector form factors
stems from combining Eqgs. (2) and (7), which yields:

M?
p
Fy (8)|VMD-+loops = m
— Ao+ Ak ], ©
9672 F2 2

where the first term (VMD) is the dominant one in the 1 /N¢
expansion and resums an infinite number of local contribu-
tions in ChPT to all orders, while the second term includes
the loop contributions that are next order in 1/N¢.

In the spirit of Refs.[5,9,10], one can do better and per-
form a resummation of the w7 and K K final-state interac-
tions to all orders relying on unitarity and analyticity con-
straints. This leads to the Omnes exponentiation of the full
loop function

2
F\j/r(s)lexpo = Mz—is
P
s 2 1 2
xexp | - 5672 | A5 1)+ ARG ) I

(10)

However, the previous expression still has an obvious defect,
it cannot describe the energy region of the peak of the p-
meson. For that, it is necessary to incorporate its width. The
energy dependent width of the p is related to the imaginary
part of the loop function and is given by [40]

M,s 1
() =————=5Im An(s)—i-zAK(s)

9672 F2
. Mps
967 F2

[63 (s)@(s—4m%)+%ol3( (s)@(s—4m%()} .
(11)

In order to account for the p-resonance width, we insert I", (s)
in the propagator of the p in Eq. (10) arriving at:

@ Springer
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M2
Fﬂ(s)lll‘es — p
VTR0 T M2 — s — iMpTp(s)

K 1
X exp {_9671—2FZRe |:An(S, n?) + EAK(S’ Mz):“ ,
T
(12)

where, in order to avoid double counting of the imaginary part
of the loop functions, only the real part of the loops is kept
in the exponential. We would like to point out here that strict
analyticity and unitarity is only maintained if the real part
of the loop integral function is resummed in the propagator
together with the imaginary part [11]. Up to € (p*) in the
chiral expansion, resumming the real part in the propagator or
in the exponential is fully equivalent and differences between
the two approaches start to appear at @'(p®). This effect,
however, is seen to be numerically negligible in the w7 and
K systems.

In all, Eq. (12) provides a suitable description of the p-
dominance region. However, the precise measurement of the
1~ — 7~ 7%, decay spectrum by the Belle collaboration
[31] indicates that heavier resonance excitations i.e. p/ =
0(1450), p” = p(1700), contribute and cannot be simply
neglected. To incorporate them, we replace the vector form
factor in Eq. (5) by

FyGy s F,G' s
FT[(S)|3I‘CS — 1+ |4 V
VAR IRCHT F2 M2—s  F} M2 —s
F//G// s
v (13)
F; Mp,/ -

where the primed couplings are defined in analogy with the
unprimed ones. Requiring the form factor to vanish when
s — 00, we obtain the short-distance constraint

F G F/ G/ F//G//
V2V vzv V2V:l, (14)
F7T F7T F7T
that we denote for simplicity as
FyGy
= =1+y+38, (15)
T
where
F/ G/ F//G//
y=——rr d=-—r (16)
T T

Repeating the same exponentiation procedure as we have
done for the p, the resulting expression finally reads:

2 i i
Fr(ies = Mo £50re™ 9T
P =TT M, T, (5)

1
X exp =Re|:—967:2F7% <A,, (S)+§AK(S)) “

5 el?

-V :
M2 — s —iMyT i (s)
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e

—$ 5 :

Mp,/ -5 — szul"pu(s)

{ O Reaut lan

X expy — ——=—————Re S)¢-

P nMg,,o%(Mg,,) i

In Eq.(17), the mixing between resonances is taken with
respect to the p with relative strengths 1, y, §, that are in
general complex thus carrying a phase that we denote by ¢
and ¢,, respectively. Taking y and § real would demand a
perfect knowledge of the amplitudes of the p’ and p” con-
tributions, and as this is not the case we consider a more
flexible scenario and add a phase that can absorb part of the
associated shortcomings.

For the energy-dependent width of the p’ and p” we take

o3(s)

0(s — 4m2) (18)
2 3 2 T
Mp/,p” 071 (Mp’,p”)

Fp/’p// (S) = Fp’,p”

where we have assumed that these resonances only decay
into wr since in our resonance chiral framework there is
no warranty that other intermediate states contribute in the
proportion given in Eq. (11) for the p-meson width. However,
one can still explore a model including other intermediate
states in a similar fashion and see what can be learned. We
shall come back to this in Sect. 2.2.

At this point, we would like to anticipate that the expo-
nential Omnes representation of the pion vector form factor
given by Eq.(17) will be used as input for the parametriza-
tion of the form factor phase entering the dispersive approach
described in Sect. 2.2 which, in turn, will be used to get the
central results of this work. In particular, the extracted phase
will be employed to describe the energy region from 1 GeV to
m<, and matched smoothly to the m scattering phase-shift
solution of the Roy equations of [41] at 1 GeV. By doing
this matching, sensitivity is lost to whether or not the real
part of the loop function is resummed into the propagator
denominator or kept into the exponential as discussed few
lines above since the differing numerical results are tiny.

In the following, however, we would like first to prove
this parametrization against experimental data as a warm-
up. In total, we have nine unknown parameters, {M,, y, ¢1,
My, Ty, 8, ¢2, My, Iy}, that can be inferred from fits to
the measured modulus squared of the pion vector form factor
extracted from the Belle t= — 7 _nov, measurement [31].
The resulting fit parameters are?

2 In all our fits throughout the paper, whenever the pion form factor
is involved, we employ F; = 92.316 MeV, which is the central value
using the restriction V2| Vi Fre = (127.13 £0.02 £ 0.13) MeV from
the 2018 PDG edition [42] with the 2006 PDG reported value |V,4| =
0.97377 £ 0.00027 used by Belle.
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Fig. 1 Belle measurement of the modulus squared of the pion vector
form factor (black solid circles) [31] as compared to our fit results (solid
green line) as presented in Eq. (19). The ChPT calculation at &'( p4) is
also shown for illustration (dashed gray line)

M, = 77524 MeV, y=0.154), ¢1= —0.36(24),
M, = 1438(39)MeV, T, = 535(63)MeV,

§ =—0.12(4), ¢», = —0.02(45),
M, = 1754091)MeV, T, = 412(102)MeV,  (19)

with a x2/d.o.f = 48.9/53 ~ 0.92, and where the associ-
ated uncertainty is the statistical error resulting from the fit.
Notice, however, that M, , ,» and I, ,» are model input
parameters and do not correspond to the physical resonance
mass and width. In order to extract the physical resonance
pole parameters one should compute the pole position in the
complex s plane according to /sg = Mg — %FR. By doing
so, the pole parameters associated to the p, p’ and p” reso-
nances are then found to be

P = 143.0(2) MeV,
rfj"e — 488(48) MeV,

M2 = 762.0(3) MeV,
M — 1366(38) MeV,

MP® = 1718(82) MeV, rﬁ‘,’,‘e — 397(88)MeV,  (20)

where the uncertainties are calculated by assuming a Gaus-
sian error propagation while simultaneously varying the cor-
responding unphysical masses and widths in Eq. (19).

The resulting form factor corresponding to our fit is dis-
played in Fig.1 (solid green line) confronted to Belle data
[31]. As can be seen from the plot and the x2/d.o.f, the agree-
ment with data is very satisfactory. In the figure, the ChPT
calculation at &' (p*) (cf. Eqg.(2)) is also shown (dashed gray
line) for illustrative purposes.’

3 For simplicity, in the figure we do not represent the ChPT calcula-
tion at &(p®) [32,33] since including higher-order chiral corrections
increases very little the energy region where the data is described well.

2.2 Dispersive representation

A Cauchy dispersion relation representation of the pion vec-
tor form factor is fully determined by the discontinuity across
the cut along the positive real axis. Contributions to the dis-
continuity arise every time an intermediate state production
threshold opens starting at sy, = 4m%, the lightest possi-
ble contribution. The elastic approximation is confined to
the two-pion contribution to the discontinuity and neglects
heavier intermediate state contributions. In this limit, Wat-
son’s theorem [22] states that the phase of the form factor
equals that of the elastic w scattering phase and the form
factor admits an analytic solution given in terms of the phase
shift. Such a solution is the well-known Omnes equation [43]
that, in terms of the / = 1 P-wave w7 scattering phase shift
) } (s) concerning us, reads

o0 1/o7
FZ(s) = Q(s) = exp (i/ ds/M). Q1)

T Jam2 s'(s" — )

The phase & 11 (s) entering the dispersive integral encodes the
physics of the p-meson and it is known with an excellent
precision in the elastic region s < 1 GeV? from the solu-
tions of Roy equations [41,44] that are valid roughly up to
so = 1.3 GeV. However, uncertainties associated to the input
of Sf(s) can be estimated between the region of 1.3 GeV
and the mass of the t lepton ~ 1.8 GeV. The precise Belle
measurement of the 7 — 7~ 7%, decay distribution [31]
indicates relevant contributions from the excited resonances
o' and p” that cannot be simply neglected. To include them,
we adopt the form factor representation given in Eq.(17) to
get a model for the form factor phase including the three par-
ticipating resonances. This phase can be extracted from the
relation

ImFy ()l

ReFJ (s)|3res’

expo

tan ¥ (s) = (22)

that is only valid in the t decay region (s < m%) since the
model parameters are fitted to v data and therefore one cannot
obtain reliable information beyond m% For the high-energy
region, we guide smoothly the phase to r ats = m% through
[45]

a

b+ (s/m2)*

T

Yoo(s) = Tim y(s) =7 - 23)

where a and b are parameters taken such the phase 1 (s) and

its first derivative v/'(s) are continuous at s = m%

3 (- ymd)’
— 2m2y(m?)

3 3 (7 — ¢ (m?))
, b——l+W. (24)

@ Springer
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This ensures the correct asymptotic 1/s fall-off of the form
factor [46,47].

We denote the phase that we will use for our analysis by
¢ (s), and consists in matching smoothly at 1 GeV the phase
¥ (s) as extracted in Eq. (22) to the phase-shift 8% (s) solution
of the Roy equations of Ref. [41].# This procedure is inspired
by, but slightly different than, the ones followed in Ref. [48]
where a fit to data is first performed with the exponential
Omnes representation of the pion vector form factor without
kaon loops (cf. Eq. (17)) and then matched to the phase-shift
solution of the Roy equations.

In summary, our phase reads:

4m721 <5 < 1GeV?,
1GeV? <5 < m? (25)

T°

81 (s)
Y (s)

Vools) m2 <s,

P(s) =

and contains the following advantages and remarkable fea-
tures: (i) it fully exploits Watson’s theorem and provides
a model-independent description until 1 GeV? through the
phase solution of the Roy equations 811(s). This phase is
totally general, uses elastic unitarity, analyticity and cou-
pled channels symmetry (not chiral symmetry), and obtains
a phase which perfectly agrees with the P-wave w7 exper-
imental data within the elastic region; (ii) for the region
m% < s, as there is no experimental tau data to fix the param-
eters of heavier resonances i.e. p”’ etc, we guide smoothly
the phase to r at high-energies ensuring the correct 1 /s high-
energy behavior of the form factor; (iii) finally, for the inter-
mediate region 1GeV? < s < m%, we use a physically
motivated parametrization that contains the physics of the
inelastic regime until m% by means of v (s).

For our fits, we follow the representation of the pion vec-
tor form factor outlined in Refs.[7,8] and write a thrice-
subtracted dispersion relation

3 Scut /
a 5 8 / (")
Fo(s) = —= — ds' ———— |,
v (s) =exp |:a1s+ 2 s +n /;m% s )3 —s—i0)

(26)

where o1 and o are two subtraction constants that can be
related to chiral low-energy observables, namely the squared
charged pion radius (rz)f‘ﬂ and the coefficients of ¢'(s%) and
0(s3) terms in the chiral expansion, cy, and d7;, respectively,
appearing in the low-energy expansion of the form factor:

1
FI(s)=1+ 8(r2)7",s +cfs? 4 disd - (27)

4 Another successful parametrization of the phase shift is given in
Ref.[44]. We only consider one of these parametrizations [41] since
both agree rather well.

@ Springer

Explicitly, the relations for the linear and quadratic slope
parameters (rz)"’, and ¢y, read

1
)T =6ay, f = S(@ +ad). (28)

These subtraction constants can be calculated theoretically
through the sum rule

k! Scut
o = — / ds
T Jam2

For our analysis, however, we treat them as free parameters
to be determined from fits to data. This has the advantage
that they turn out to be less model dependent. Higher slope
parameters can be computed from the previous sum rule.
For example, the cubic slope parameters dj, can be obtained
through

/¢(S,)

I

(29)

d”—l(a + 300 + @) (30)
V—6 3 1002 — ).

The use of a three-times dispersion relation in Eq.(26)
makes the fit less sensitive to the higher-energy region of
the dispersive integral where the phase is less well-known.
In total, we have ten free parameters® entering F. v (s) to be
determined by a fit to the Belle data. Regarding the integral
cutoff s¢y¢, one should take a value as large as possible so as
not to spoil the a priori infinite interval of integration and to
avoid the effects of the spurious singularities generated due
to the upper limit being finite, but low enough that the phase
is well known within the interval. The parameters resulting
from the fits are given in Table 1 as Fit 1 for four representa-
tive values of s¢¢, namely m% (third column), 4 GeV? (fourth
column), 10 GeV? (fifth column) and finally the s¢yy — 00
limit (last column). The choice of s¢y = m% is motivated
by the fact that the model used to get the phase, Eq.(22),
is only valid within the T decay region s < scyt ~ m% and
beyond that point the dispersive integral has no physical con-
tent. The resulting form factor corresponding to this cutoff
generates, as mentioned above, a singularity at s = m% after
bending the form factor shape in the preceding neighborhood
region. As a consequence, the high-energy data points are
not described well and, in turn, the values for the resonance
parameters should be taken with great care. In fact, this fit
is seen very sensitive to such singularities and the resulting

5 The parametrization for the phase shift § f (s) of Ref.[41] contains a
parameter for the p-meson mass, that we name m,, that denotes the
energy at which the phase shift passes through /2 (and therefore it
shall not be confused with real part of the pole of the p) and its quoted
value is m, = 773.6(9) MeV. For our study, in a first approximation
we fix the model input parameter for the p-meson mass, M, in Eq. (17),
to this value. However, the sensitivity of our fits to this parameter will
also be tested by allowing it to float.
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Table 1 Results for the fits

obtained with a Fits Parameter Seut (GeV?)

three-times-subtracted m% 4 (reference fit) 10 00

dispersion relation including

three vector resonances in Fit1 ap (GeV™?) 1.87(1) 1.88(1) 1.89(1) 1.89(1)

Fy (s) according to Eq. (26) for as (GeV™) 4.40(1) 4.34(1) 4.32(1) 4.32(1)

fgf{léeg;s;‘;fiz‘ﬁtzzlr‘:f of Scut m, (MeV) = 773.6(9) = 773.6(9) — 773.6(9) = 773.6(9)
M, (MeV) =m, =m, =m, =m,
My (MeV) 1365(15) 1376(6) 1313(15) 1311(5)
Iy (MeV) 562(55) 603(22) 700(6) 701(28)
My (MeV) 1727(12) 1718(4) 1660(9) 1658(1)
Iy (MeV) 278(1) 465(9) 601(39) 602(3)
y 0.12(2) 0.15(1) 0.16(1) 0.16(1)
o1 —0.69(1) —0.66(1) —1.36(10) —1.39(1)
8 —0.09(1) —0.13(1) —0.16(1) —0.17(1)
10y —0.17(5) —0.44(3) —1.01(5) —1.03(2)
x2/d.of 1.47 0.70 0.64 0.64

Fit 1-p oy (GeV2) 1.88(1) 1.88(1) 1.89(1) 1.88(1)

an (GeV™) 4.37(3) 4.34(1) 4.31(3) 4.34(1)
m, (MeV) 773.9(3) 773.8(3) 773.9(3) 773.9(3)
M, (MeV) =m, =m, =m, =m,
M,y (MeV) 1382(71) 1375(11) 1316(9) 1312(8)
Iy (MeV) 516(165) 608(35) 728(92) 726(26)
My (MeV) 1723(1) 1715(22) 1655(1) 1656(8)
I, (MeV) 315(271) 455(16) 569(160) 571(13)
y 0.12(13) 0.16(1) 0.18(2) 0.17(1)
o1 —0.56(35) —0.69(1) —1.40(19) —1.41(8)
8 —0.09(3) —0.13(1) —0.17(4) —0.17(3)
10y —0.19(69) —0.45(12) —1.06(10) —1.05(11)
x%/d.o.f 1.09 0.70 0.63 0.66

parameters are found to be strongly correlated with unstable
associated uncertainties. Therefore, we consider the results
with sy = m% only for illustrative purposes throughout the
paper. Our reference fit corresponds to sy = 4 GeV? (fourth
column in Table 1) since this value of the cutoff deals well
with the imbalance mentioned above. This does not mean
that we know the phase shift up to that point of the integra-
tion interval but rather that the chosen cutoff is large enough
that avoids, to large extent, the effects caused by the spuri-
ous singularity that arises at s = sy;. The results obtained by
varying sqy in Table 1 will be used to assess the systematic
uncertainties of our fit results obtained with sqy = 4 GeV2.0
We would like to point out a still slightly large dependence
of some parameters on s¢,;. We shall return to a discussion
on the integral cutoff below.

6 We would like to note the slightly low x2/d.o.f. that in general, and
in line with Ref.[8], we find along the fits of this section. This may
indicate that there are too many free parameters to fit eventually, but as
each of them has a physical meaning, it is reasonable to keep them all.

In Fig.2, we show the resulting phase shifts for the chosen
Scut- The phase shift solution of the Roy equations is given
by the solid black curve while the variations due to scy are
given by the dot-dashed blue (s¢y; = m%), solid red (scut =
4 GeV?), dashed green (scut = 10 GeV?) and dotted black
(scut = ©0) curves, respectively. In the figure, the statistical
uncertainty associated to our reference fit (scy = 4 GeVz)
is also shown by the light red error band. Also, there are two
brown dashed vertical lines shown in the figure. They are
placed at 1 GeV and /s = m and denote, respectively, the
range where the phase shift from wm scattering is used and
the validity of the form factor phase shift parametrization as
extracted through Eq. (22). In Fig. 3, we provide a graphical
account of the resulting form factor for s¢y; = 4 GeV?2 (solid
red curve and light red error band) and syt — oo (dotted
black curve) compared to Belle data [31] . As can be seen
from the figure and the corresponding x2/d.o.f, excellent
agreement with experimental data is seen with all data points.

In order to optimize the phase shift in the fit to the pion
form factor measurement from =~ — 7~ 7%y, data, we
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200f
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Fig. 2 Form factor phase as extracted from fits to the pion vector
form factor Belle data [31] according to the representation presented in
Eq. (26) for four representative values of s¢y; in the dispersive integral.
The P-wave mr phase shift solution of the Roy equations [41] 8} (s)is
used up to 1 GeV (solid black curve) and the variations due to s, are
given by the dot-dashed blue (scyy = m%), solid red (seu = 4 GeV?),
dashed green (s¢ue = 10 GeVz) and dotted black (scye — 00) curves,
respectively. The two vertical dashed brown lines are placed at 1 GeV
and /s = m, and denote, respectively, the range where the phase shift
from 7 scattering is used and the validity of the parametrization of
the form factor phase shift. All phases are smoothly guided to = for
s > m. See main text for details

« Belle data (2008)
10t — This work (se,=4 GeV?)
. ««« This work (Sgyt—>o0)
~ 1 oo, E
0
'E__> 0.100¢
0.010¢
0.001% . . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

s [GeV?]

Fig. 3 Belle measurement of the absolute value squared of the pion
vector form factor (black filled circles) [31] as compared to our fit
results as presented in Table 1 for s¢y = 4 GeV? (red solid line) and for
Scut —> 00 (black dotted curve)

have also run fits allowing to float the parameter for the p-
meson mass entering 8} (s). The corresponding fit results are
contained in Table 1 as Fit 1-p and the resulting parameters
are found to be in general accordance with those of Fit 1.
For our reference fit, we have also probed the theoret-
ical uncertainty associated to the choice of the matching
point with the phase-shift solution of the Roy equations. The
dependence of the fitted parameters on the matching point is
explored through the fits that we collect in Table 2 as Fit I fora
fixed p mass parameter. The matching point values 0.85 GeV
(third column), 0.90 GeV (fourth column), 0.95 GeV (fifth
column) and 1 GeV (last column) are used (the matching

@ Springer

point 1 GeV corresponds to our reference fit in the fourth
column of Table 1 and is repeated here for ease of compari-
son). A look at the results of this table reveals that, in general,
all the parameters are rather stable against variations of the
matching point, although the p” width is sensitive to these
variations with a tendency of becoming larger as it decreases.

We shall now return to the discussion mentioned in Sect.
2.1 about the inclusion of intermediate states other than w
into the p’ and p” decay widths. We next allow such reso-
nances to decay not only in 7 but also into K K. In this
case, the energy-dependent widths read

3
s a2 (s) 2
Fp/,p”(s) = F,O/,,O// 3 |: 3 T 5 9(5 _4m7-[)
Mplyp// O']-[(Mp/’p//)
1 oi(s
- K(z) 9(5—4m%()i|, (31)
2O-K(M,D,,p”)

and these are incorporated into the corresponding resonance
propagators of Eq.(17), while the real part of the kaon loop
is resumed in the exponential in a similar fashion as the pion
ones. The corresponding fit results are gathered in Table 3
as Fit A (second column) and are compared to our refer-
ence fit (last column) again repeated here for ease of com-
parison. In this case, the X2 increases by 12 and, as seen,
there are two or three parameters that are affected by the fact
of including kaons into the decay widths, the rest are seen
rather stable upon comparison. The p’ width decreases by
~ 140 MeV while the p” mass increases up to 1775 MeV.
The p” width is slightly shifted downwards but the associated
error is enlarged.

We have also explored a variant of Eq. (31) that includes,
moreover, the contribution p’ — w7 into the p” decay width.
In spirit of [49], we write the energy-dependent width as

Fy(s) =T, Msz [93,%(,0/ — (77 + KK))
o
3 3
o5 (5) 2y, 1 og®) 2 )
x| 222 (s —dm2) + = K7 _g(s — 4m2)
(a; (M2) T 203 M2) K
+BR(p — wm) Yon (5) 0(s — (mgy + mn)z)]s
Owr Mp,

(32)
with
Owr (§) = %\/(5 — (my — m?‘[)z)(s — (my + mn)z)a (33)

and where B%(p' — (rmw + KK)) and BZ(p' — wm)
are relative branching ratios normalized with their sum equal
to one. We use the PDG estimate BZ(p' — wm) =
L'(p — wr)/ Fga‘a‘ ~ 0.21 [42], which implies ZZ(p' —
(mm 4+ KK)) ~ 0.79, and the resulting fit results are pre-
sented in Table 3 as Fit B (third column). In this case, the p’
mass(width) is shifted upwards(downwards) by 65(27) MeV




Eur. Phys. J. C (2019) 79:436

Page 9 of 18 436

Table 2 Results for the fits

. . Fits Parameter Matching point (GeV)
obtained with a
three-times-subtracted 0.85 0.9 0.95 1 (reference fit)
dispersion relation including ] )
three vector resonances in F7 (s) Fit I ay (GeV™2) 1.88(1) 1.88(1) 1.88(1) 1.88(1)
according to lgq- (26) with o (GeV™) 4.35(1) 4.35(1) 4.34(1) 4.34(1)
Seut = 4 GeV* in the dispersive m, (MeV) = 773.6(9) = 773.6(9) = 773.6(9) = 773.6(9)
integral for four representative
values of the matching point M, (MeV) =mp =Mmp =mp =mp
My (MeV) 1394(6) 1374(8) 1351(5) 1376(6)
Iy (MeV) 592(19) 583(27) 592(2) 603(22)
M, (MeV) 1733(9) 1715(1) 1697(3) 1718(4)
I, (MeV) 562(3) 541(45) 486(7) 465(9)
y 0.12(1) 0.12(1) 0.13(1) 0.15(1)
b1 —0.44(3) —0.60(1) —0.80(1) —0.66(1)
3 —0.13(1) —0.13(1) —0.13(1) —0.13(1)
¢ —0.38(3) —0.51(2) —0.62(1) —0.44(3)
x%/d.of 0.75 0.74 0.68 0.70

Table 3 Results for the fits obtained with a three-times-subtracted dis-
persion relation including three vector resonances in Fy; (s) according
to Eq. (26) with s¢yy = 4 GeV?Z in the dispersive integral with (second
column) and without (last column) the K K channel in the p’ and p”
energy-dependent resonance widths, and with the additional inclusion
of the p’ — w7 contribution into the p’ width (third column). See main
text for details

Parameter Seut = 4 GeV?

Fit A Fit B Reference fit
o) (GeV~2) 1.87(1) 1.88(1) 1.88(1)
o (GeV™) 4.37(1) 4.35(1) 4.34(1)
m, (MeV) =1773.6(9) =773.6(9) = 773.6(9)
M, (MeV) =mp, =m, =m,
M, (MeV) 1373(5) 1441(3) 1376(6)
Iy (MeV) 462(14) 576(33) 603(22)
M, (MeV) 1775(1) 1733(9) 1718(4)
Iy (MeV) 412(27) 349(52) 465(9)
y 0.13(1) 0.15(3) 0.15(1)
b1 —0.80(1) —0.53(5) —0.66(1)
8 —0.14(1) —0.14(1) —0.13(1)
033 —0.44(2) —0.46(3) —0.44(3)
x%/d.o.f 0.93 0.70 0.70

with respect to our reference fit, while the p” width is seen
decreased by 116 MeV. The other parameters remain rather
stable. This last exercise serves to have an idea of the poten-
tial impact of the channel p” — 47 in "/ (s).

Finally, we also come back to the discussion on the integral
cutoff scy and the corresponding generated singularities. We
found that sey = 4 GeV? is a suitable value for the integral
cutoff in the dispersive integral. However, we would also
like to consider a parametrization that allows both to cut the

integral and avoid such singularities. In the case at hand, we
have a parametrization for the form factor phase 8% (s) which
is valid up to s = m?2 and the idea is to extend it to the full
region in an appropriate way. We follow Refs.[50,51] and
write

Fy(s) = f(s)X(s),

where the function f(s) is given by a once subtracted dis-
persion relation, that ensures f(0) = 1, defined by
Scut }

f(s)=exp [%A , ds’&_i_i/oods/
(35)

s'(s'"—s) w
The value of the phase § 11 (s) in Eq. (35) should be such that
it avoids the generation of spurious singularities and ensures
the 1/s behavior of the form factor for s — oo. In order to
fulfill these properties, we choose a smooth interpolation in
s for ¢ (s) above s¢y; as simply as

(34)

S{ (s")

s'(s'—s)

Scut
_’

51(5) = 7 + (6 (sew) — 7] (36)

so that & 11 (Scut) = @ (scur) and ¢ (s) — m for large s recover-
ing the 1/s fall-off of F{ (s). In this case, the integral going
from sy to oo in Eq.(35) can be calculated explicitly and

we arrive at [50,51]
Fy (s) = exp |: ] exp [1 — j|
-1
X ( ( ) 2(s).

(37)
Regarding the function X (s), it contains the (inelastic) con-
tributions beyond s¢,; and may be understood as giving the

s Scut

/ ds’
T 4m2

|:] 7¢(~Ycut)j|
) ™

P (s)

s'(s" — )

¢(Scut)

g

seut
s s
11— —

Scut

LS

Scut
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correction to the linear continuation of the phase ¢ (s) above
Scut @s we did in Eq.(36). It is described by an analytical
function on the s-plane with a cut from s to oo and should
be obtained from a model or fitted to experiment since it is
largely unknown. Often, it is parametrized by a conformal
transformation that maps the right-hand cut in the complex
s-plane into the unit circle through

o]

Y(s) = Zaiwi (s), (38)

i=0

with the variable w(s) given by

A/Scut — /Scut — S

w(s) = . (39)
/Scut + A/Scut — §

For our analysis, we take the condition ay = 1 to ensure

F70) =1

This parametrization, Eq. (37), provides an alternative way
of approaching the high energy region and the results can be
directly compared with those of Table 1 with s¢y; — 00. We
next probe its application against data for sey; = 4 GeV?
with one and two parameters in the expansion of Eq.(38).
The resulting fit parameters are found to be

ap = 2.99(12),
M, = 1261(7)MeV, T, = 855(15)MeV,
M, = 1600(1)MeV, T, = 486(26) MeV,
y = 0252), ¢ = —1.90(6),

§ = —0.15(1), ¢» = —1.60(4), (40)

with a x2/d.o.f = 32.3/53 ~ 0.61 for the one-parameter fit,
and

a; = 3.0320), a» = 1.04(2.10),
M, = 1303(19)MeV, T, = 839(102) MeV,

M, = 1624(1)MeV, T, = 570(99) MeV

y = 0.22(10), ¢ = —1.65(4),

§ = —0.18(1), ¢ = —1.34(14), (41)

with a x2/d.o.f = 35.6/52 ~ 0.63 for the two-parameter fit.
The large uncertainty associated to a; suggests not contin-
uing the expansion to higher orders. The results of Eq. (41)
are found to be in general agreement with those given in the
last column of Table 1.

‘We are now in the position to combine all the results from
the different fits that we have obtained from our dedicated
analysis discussed above and that we graphically compare
in Figs.4 and 5 for the form factor phase shift and modulus
squared, respectively. In particular, we show Fit 1 (reference
fit) and Fit 1-p with s¢y¢ = 4 GeV? from Table 1, Fit I at
the matching point of 0.85 GeV from Table 2, Fit A of Table
3 and the fit results of Eq.(41) named as Fit singularities.
In the figures, the statistical uncertainty associated to Fit 1
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Fig. 4 Results for the form factor phase shift as extracted from our
reference fit in Table 1, Fit 1 (solid red curve), and from Fit 1-p at
the matching point of 0.85 GeV (dot-dashed blue curve), Fit I (short
dashed purple curve), Fit A (long dashed green curve) and with the fit
that avoids singularities (dotted black curve). The vertical dashed brown
line is placed at m, and denotes the validity of the parametrization of
the form factor phase shift. All phases are smoothly guided to = for
s > m¢. See main text for details

10 E
...
o~ 1
EU";O 100 e Belle data (2008)
w F — Fit 1 (reference fit)
—.— Fit1-p
0.010p—— Fitl
— — FitA
0.001 + Fit singularities
00 05 10 15 20 25 30
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Fig. 5 Belle measurement of the absolute value squared of the pion
vector form factor (black filled circles) [31] as compared to our reference
fit in Table 1, Fit 1 (solid red curve), and to our Fit 1-p at the matching
point of 0.85 GeV (dot-dashed blue curve), Fit I (short dashed purple
curve), Fit A (long dashed green curve) and with the fit that avoids
singularities (dotted black curve). See main text for details

(reference fit) is also displayed by the light red error band.
Tables with the corresponding numerical values including
both statistical and systematic errors are given as ancillary
material (see Appendix A). As seen from these figures, both
the phase and the form factor absolute value squared are
rather stable and only small differences are seen in the dip
region ~ 2.5 GeV? caused by the destructive interference
between the p’ and p” resonances. To present our central
results, we quote the values of our reference fit in Table 1 with
Seut = 4 GeV? (Fit 1) and ascribe a conservative systematic
uncertainty coming from the largest variations of central val-
ues with respect to the differing results shown in Tables 1
and 2 while changing s¢,; and the matching point with the
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Table 4 Comparison between different results for the model parameters and corresponding pole positions for the p’ (upper table) and p” (lower
table) resonances. The first and second errors refer, respectively, to the statistical and systematic uncertainties

References Model parameters My, 'y (MeV) Pole parameters Mﬁf’le, Fﬁ(/’]e (MeV) Data
ALEPH[53] 1328 + 15,468 + 41 1268 + 19,429 + 31 T
ALEPH[53] 1409 £ 12,501 £ 37 1345 + 15,459 + 28 t&ete
Belle (fixed | FZ (0)[?)[31] 1446 + 7 £ 28,434 + 16 & 60 1398 £ 8 + 31,408 + 13 =+ 50 T

Belle (all free) [31] 1428 + 15 £+ 26,413 £ 12 + 57 1384 + 16 429,390 4 10 + 48 T
Dumm etal. [7] - 1440 £ 80,320 £+ 80 T

Celis etal. [8] 1497 £ 7785 £ 51 1278 + 18,525 + 16 T

Bartos etal. [54] - 1342 4 47,492 + 138 ete™
Bartos etal. [54] - 1374 4 11,341 £ 24 T

This work 1376 & 6713 603 £ 22723 1289 +8137,,540 + 167]3] T
References Model parameters (M, T ) (MeV) Pole parameters (M';file, rﬂ‘,’,l"') (MeV) Data
ALEPH[53] = 1713, = 235 1,700,232 T
ALEPH[53] 1740 £ 20, = 235 1728 £ 20,232 t&ete
Belle (fixed | F (0)[?)[31] 1728 & 17 £ 89,164 + 21157 1722 4+ 18,163 + 21758 T

Belle (all free) [31] 1694 £ 41,135 £ 3657 1690 + 94,134 + 36757 T

Dumm etal. [7] - 1720 £ 90,180 £ 90 T

Celis etal. [8] 1685 = 30,800 = 31 1494 + 37,600 = 17 T

Bartos etal. [54] - 1719 + 65,490 + 17 ete™
Bartos etal. [54] - 1767 & 52,415 & 120 T

This work 1718 £4737,465 £ 9717 1673 £ 4795, 445 £ 87, T

Roy equations, respectively, in Table 3 due to the inclusion
of the K K decay channel into the p’ and p” widths and in
Eq. (41) due to the parametrization presented in Eq. (37) that
avoids the aforementioned singularities. We then obtain

a; = 1.8840.01 £0.01 GeV~2,

434 +£0.01 £0.03 GeV ™4,

a
M, = 773.6£0.9+0.3 MeV,

My = 1376 £ 6738 MeV, T, = 603 +22733% MeV,
My = 1718 4751 MeV, T,y = 465+£975 MeV,
y = 0.15£0.01700;, ¢1 = —0.66 +0.017053,

+0.00 +0.06
§ = —0.134£0.0110%0 ¢ = —0.44 400399

(42)

where the first uncertainty is the statistical fit error while the
second is our estimated systematic uncertainty.

As has been already stated in Sect. 2.1, the resonance mass
and width parameters of Eq.(42) are unphysical fit parame-
ters. To obtain the physical resonance mass and width, we cal-
culate the pole positions in the complex s-plane. This yields:

M2 = 760.6 £ 0.8 MeV, TP =142.0+0.4 MeV,

MY = 1289 8733 Mev, TP =540+ 167 ;] MeV,

M = 1673 £47%5 Mev, TP =445 18717 MeV,
(43)

where the systematic uncertainties are calculated by assum-
ing a Gaussian error propagation while simultaneously vary-
ing the corresponding unphysical mass and width given in
Eq. (42). The results given in Eq.(43) constitute one of the
fundamental results of the article, we show that the extrac-
tion of the pole mass and width of the p’ and p” resonances
is limited by theoretical errors that, as we will see in the fol-
lowing, have been usually ignored or underestimated in the
literature.

In Table 4, we show our results for the p(1450) and
0 (1700) resonance parameters compared to other determina-
tions quoted in the literature. We consider the pole mass and
width as the relevant resonance properties since one expects
the pole parameters to be essentially model independent. To
shed further light on the comparison, we have calculated the
pole mass and width of the p(1450) and p(1700) parame-
ters appearing in phenomenological amplitudes where res-
onances are introduced through Breit—-Wigner (BW) type
functions, thus being strongly model dependent. This is the
case of the Gounaris and Sakurai parametrization [52] used
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in the fits by ALEPH [53] and Belle [31], and also in [8]
where a BW function supplemented by a dispersion rela-
tion was used to fit Belle data. For the p(1450), we obtain
a pole mass(width) on the lower(upper) side, but in gen-
eral agreement with respect to previous determinations. Our
results are found to be in a remarkable agreement with [8],
especially after the pole position is computed, while they
are seen in a mild tension with respect to the PDG edu-
cated guess reported values ME,DG = 1450 £ 25 MeV and

FEPG = 400 + 60 MeV [42]. For the p(1700) we obtain, on
the one hand, a pole mass slightly lower than, but in agree-
ment with, previous determinations and the PDG reported
value ME}?G = 1720 & 20 MeV, and ~ 300 MeV higher
than [8]. On the other hand, as seen from the results quoted
in the table, the values for the p(1700) width show some
scatter. Our value is found to be 250-300 MeV higher than
the Belle value and than the findings of [7], ~ 200 MeV
higher than the PDG value '} = 250 + 100 MeV, in line
with [54] and ~ 150 MeV lower than [8]. Due to the large
uncertainties associated to the p(1450) and p(1700) reso-
nances parameters, however, we cannot draw any more def-
inite conclusion. For that, more precise data in the p(1450)
and p(1700) region would be highly desirable.

Regarding the chiral observables associated to the low-
energy expansion of the form factor (cf. Eqs. (27) and (28)),
taking into account the results quoted in Eq. (42), we obtain
the values shown in the last row of Table 5 where we have
added the systematic error in quadrature to the statistical
uncertainty. In this table, we also display previous determi-
nations of these quantities for comparison.

As can be seen, our results are found to be in good agree-
ment with, but in general more precise than, all previous
determinations.

It is opportune to mention again that we have treated the
subtraction constants « and «; as free parameters that cap-
ture our ignorance of the higher energy part of the integral.
However, in order to check the consistency of our approach,
we have also calculated these constants through the sum rule
given in Eq.(29), as for the central values of our analysis
presented in Eq.(42), for three different values of s¢y i.e.
4 GeVz, 10 GeV? and co. The values we get are collected in
Table 6 and are seen in a reasonable good agreement with the
results of our fits that we show in the last column for ease of
comparison. In other words, this tell us that the content of the
phase is such that saturates rather well the dispersive integral,
otherwise the differing results between the sum rules and the
fitted subtraction constants would be larger.

The next shape parameter in the expansion, the cubic slope
dy;, is much less known. To the best of our knowledge, there
are neither theoretical results from ChPT nor calculations on
the Lattice. We obtain

7 =10.54£0.05 GeV°, (44)
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Table 5 Low-energy observables of the pion vector form factor up to
the quadratic term. Statistical and systematic uncertainties have been
added in quadrature. Some of the values of the charged pion radius
(rz)"i given in the table are not quoted in the original literature in units
of GeV~2 but rather in fm? and the conversion has been evaluated by
us

References (r)% (GeV™2) % (GeV™)
Colangelo etal. [55] 11.07 £ 0.66 3.24+1.03
Bijnens etal. [32] 11.22 £0.41 3.85+0.60
Pich etal. [6] 11.04 £0.30 3.79 £ 0.04
Bijnens etal. [33] 11.61 £0.33 4.49 +0.28
de Troconiz etal.[56] 11.10 £ 0.03 3.84 £0.02
Masjuan etal. [57] 11.43£0.19 3.304+0.33
Guo etal.[58] - 4.00 + 0.50
Lattice [59] 10.50 £ 1.12 3.22+0.40
Ananthanarayan etal. [60] 11.17 £ 0.53 [3.75, 3.98]
Ananthanarayan etal. [61] [10.79, 11.3] [3.79, 4.00]
Schneider etal. [48] 10.6 3.84 £0.03
Dumm etal. [7] 10.86 £0.14 3.84 +0.03
Celis etal. [8] 11.30 £0.07 4.11 £0.09
Ananthanarayan etal. [62] 11.10 £ 0.11 -

Hanhart etal. [63] 11.34 £0.01 £ 0.01 -
Colangelo etal. [39] 11.02 £ 0.10 -

PDG[42] 11.61 £0.28 -

This work 11.28 £0.08 3.94 +0.04

Table 6 Values for the subtraction constants calculated from the sum
rule Eq.(29), as for the results of our fits given in Eq.(42), for three
different values of sqy in the dispersive integral

Sum rule seut (GeV?) Fit Eq. (42)

4 10 o0
o 1.52 1.66 1.75 1.88 +0.01 & 0.01
o 426 430 431 4.34+0.01 +0.03

a value which is seen slightly larger than previous estimates
d? = 9.70 £ 0.40 GeV = [64], d] = 9.84 £ 0.05 GeV~°
[7] and d = [10.14, 10.56] GeV~° [61].

3 Predictions and fits to 7~ — K~ Kgv, BaBar data

The theoretical expression for the differential decay distribu-
tion for the transition 7~ — K~ K%, in terms of the K~ K°
invariant mass can be written as [35,65,66]

dU(x= - K K%;)  G%|Vial?

M3
NG 38473 T
2
Ky 2s
5 <1 ~ W) (1 N W) oL (IVEIFE P, @5)
T T
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and it is related to the normalized invariant mass spectrum
through

I dNevens  1dI'(t~ — K~ Kgvy)
Nevents dm g -k ¢ 2 dmg-gg
1 .
X ——= Abn (46
I B(t— —> K- Kgv,) K Ks (46)

where Neyents 18 the total number of measured events, I'; is
the inverse 7 lifetime and Al;{i‘l Ks is the bin width. B(t~ —
K~ Ksv;) = B is anormalization constant that, for a perfect
description of the spectrum, would equal the branching ratio.
For our analysis, we fix this normalization to the BaBar mea-
sured branching fraction B =0.739 (ID)star (20)syst ¥ 1073
[16].7 The factor 1/2 is due to the K~ K g decay channel is
analyzed. The corresponding number of events measured by
BaBar is 223741 + 3461 [16] and the bin width is 0.04 GeV.
F 5 (s) in Eq.(45) denotes the participant kaon vector
form factor that we will describe in the following. Similar
to Eq.(1), it can be defined via the matrix element of the
vector current between the vacuum and the K~ K© pair as

(K°K~|dy"ul0) = (pgo — px-)"Fy (), 47

where, as in the case of the pion vector form factor, the two-
kaon final state corresponds toa I = J = 1 configuration. In
order to obtain the expression for F; 5 (s)ato( p4) in ChPT we
need the expressions of the K+ K~ and KK form factors.
These can be found in the literature and read [3]

2Lg s
Fig+g-(S)lcoet = 1+ —

— T [A,(s, 1
F2 1oz A a0

+24x (s, 1), (48)
Frogo®lener = =15~ [Ax (s, 1?) = Ak (s, )]
(49)

The I = 1 component corresponding to the K ~ K state can
be extracted from Egs. (48) and (49) and yields

2Lq
F2

b/

F(9)lcnp = F+ k- (5)lchpt— Fiogo (s)lohpr=1+

N

1
—— A 4-A 1.
967T2F7% [ n(S,M )+2 K(Svlu )}

(50)

We would like to note that the ChPT calculation at &'(p*)
of the pion (cf.Eq.(2)) and kaon (cf. Eq.(50)) vector form
factors are the same. For our study, we assume that, in a first

7 Another possibility would be to let this constant float and infer its
value from fits to the data [11-13]. However, in order to reduce the
number of free parameters to fit, we prefer to fix this constant to the
branching ratio measured by BaBar.

100t e BaBar data (2018) 1
-+ Our prediction

S 80r - — Our fit (exponential)
‘; — Ouir fit (dispersive)
$ 60t
1S
°
% 40+
<

20+

0 12 14 e
Mgk [GeV]

Fig. 6 BaBar data [16] for the decay 1~ — K~ Kgv; (black solid
circles) confronted to our prediction (dotted red curve), as for our central
results of the pion vector form factor analysis presented in Eq. (42), and
fits with the exponential representation (dashed blue curve) and the
dispersive approach with scy = 4 GeV? (solid green curve)

approximation, both form factors are also the same at ener-
gies higher than the chiral region. This allows us to predict
the t= — K~ Kgv, decay spectrum from the description of
the pion vector form factor carried out in the previous section.

In Fig.6, we show such a prediction (dotted red curve)
based on our central results of the pion vector form fac-
tor analysis presented in Eq. (42), confronted to the T~ —
K~ Kgv; spectrum measured by BaBar (black circles). A
look at the figure shows a clear disagreement between our
prediction and the BaBar data. The shape of the decay
spectrum is not followed by this approach, as also indi-
cated by the low value of the corresponding branching ratio,
BR(z~ — K~ Kgv;) = 0.545(32) x 1073, which is seen
~ 50 away the BaBar measurementBR (=™ — K~ Kgv;) =
0.739(11)sar (20)syst ¥ 1073, From these results, we con-
clude that using the pion vector form factor to describe the
T~ — K~ Kgv; decay channel is a too rough approach. This
is due to the K~ K production threshold is around 1 GeV,
and thus one should expect the p” and p” vector resonances to
play a significantly different role than in t~ — 7~ 7%, as
also noted in [67,68]. Thus, the weight of each resonance
contribution, represented by the coefficients y and § and
the phases ¢ and ¢, in Eq.(17), can vary with respect to
those entering the form factor of the pion. We will check
this in the following by performing individual fits to the
T~ — K~ Kgv; spectrum. To this end, we adapt the Omnes
representation of the pion vector form factor (cf. Eq.(17)) to
the kaon vector form factor ones and write:

M% + s(feiél + 5eit2)
M2 —s5 —iM,Tp(s)

1
X EXp {Re|: - —9671S2F2 (An () + 5AK(S)> ]}

Ff(s) =

@ Springer
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~ 5 el
- M2 — s —iMyT(s)
X exp{ st/(Mg,) ReA (s)}
I N T
nM3o3 (M)
- Ky ei(iz
-5
M2, —s —iMyTp(s)
X eX { — MRGA (s)} (&30
P M oim2) )

where the coefficients 7 and § and the phases ¢31 and ¢~)2
account, respectively, for the relative importance between
the contributions of the different resonances and the corre-
sponding interference in the K~ K system.

From the kaon vector form factor in Eq.(51), we extract
its phase through

_ ImF§(s)

tan 85K (5) = RFE()
\%4

(52)

and this is inserted® into a three-times-subtracted dispersive
representation of the form factor

o 3 s SKK (¢
F‘[/((S):exp 5‘13"‘0252-1—3— ds/31—()' ,
2 T Jam2 (D3 — 5 —i0)

(53)

where &1 and & are two subtraction constants corresponding
to the slope and curvature of the form factor of the kaon.
We have considered different fits to the measured m -
invariant mass distribution? and found on the one hand that,
in full generality, the data is not sensitive either to the low-
energy region or to the p(770) peak region. This is expected
due to the K~ K¢ production threshold opens around 1000
MeV which is some 100 MeV larger than M, + I',,, the
energy region more influenced by the presence of the p (770).
This implies first that the slopes of the kaon vector form
factor, which encode the physics immediately above thresh-
old, cannot be fitted with t~ — K~ Kgv, data and second
that the fits lead unrealistic parameters under floating the p-
meson parameters. On the other hand, the data is scarce in the
p(1700) resonance region and thus not suitable for extracting
the corresponding resonance parameters. We have therefore
fixed the slopes associated to the kaon vector form factor
and the p-meson mass (773.6(9) MeV), and considered fits
varying only the p (1450)-resonance mass and width, and y

8 The 81’( K phase as extracted from Eq. (52) is also matched to the 7
scattering at 1 GeV as explained along the lines of Sect. 2.

 We would like to notice here that the last two data points of the BaBar
paper’s Table II [16] have been rescaled to match the paper’s figure 12.

@ Springer

Table 7 Results for the fit to the BaBar T~ — K~ Kgv, data [16]
with a three-times-subtracted dispersion relation including two vector
resonances in F‘f (s) according to Eq. (53) with s¢y¢ = 4 GeV? in the
dispersive integral

Parameter Seut = 4 (GeV2)

Fit i) Fitii) Fitiii) Fitiv)
& =1.88(1) =1.84 =1.88(1) -
a =4.34(1) =4.34 =4.34(1) -
My (MeV)  1467(24) 1538(32) 1489(25) 1411(12)
[y (MeV)  415(48) 604(83) 297(36) 394(35)
7 0.10(2) 0.36(11) 0.10(2) 0.09(1)
(131 —1.19(16) —1.48(13) — 1.10(15) —1.88(9)
x2/d.of. 2.9 1.9 2.9 3.3

and ¢, while neglecting the contribution of the p (1700) reso-
nance to the decay i.e. S 1 = 0.In Table 7, we show the results
of our fits using different settings. Fit i) corresponds to fixing
the slopes &1 and @2, to the slopes «; and &, given in Eq. (42)
obtained from the analysis of the pion vector form factor,
while Fits ii) and iii) are variants of it. In particular, Fit i7)
is the result of fixing the slope to &; = 1.84(30) obtained
from the kaon radius of Ref.[33] while Fit iii) includes the
intermediate K K state into the o’ decay width (cf.Eq. (31)).
Finally, Fit iv) is the result of the direct application of the
exponential vector form factor in Eq. (51) to fit experimental
data.

The fit with best x 2/d.o.fis seen for Fit i) but the resulting
fit parameters carry the larger error, and the (large) uncer-
tainty associated to &; has not been taken into account.
Because of that, the results from Fit /i) should be taken with
a word of caution and we only consider them as illustration
of the potential effects due to the low-energy parameters of
the kaon form factor. The values appearing in Table 7 can
be translated to pole values along the lines discussed in the
previous section. This yields ME?IC = 1422 + 22 MeV and

rgi’le — 393 4+ 41 MeV (Fit i)), M;jf’le — 1453 £ 29 MeV
and ri?‘e — 546 + 70 MeV (Fit ii)), and sz’le —
1466 + 23 MeV and r;j?‘e = 289 + 33 MeV (Fit iii)) for

the dispersive approaches, and M/I)’f)le = 1370 £ 15 MeV
and Fp?le = 373 £ 30 MeV for the exponential represen-
tation (Fit iv)). From these results we conclude that while
the pole mass of the p(1450) resonance as extracted from
the 7= — K~ Kgv; decay tends to be larger than the val-
ues obtained in the previous section from the analysis of the
pion vector form factor, the width tends to be smaller and
the associated fit uncertainties are in both cases larger. Also,
we would like to note that the relative weight y as extracted
from the K~ K¢ channel is found to be in accordance with
the values determined in the previous section.
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As a matter of example, in Fig.6 we provide a graph-
ical account of the dispersive Fit i) (solid green curve)
and of the exponential Fit iv) (dashed blue curve). Notice
that, as occurs in [69], the second and third data points
are difficult to accommodate in any case. We would like
to point out, however, that the points near threshold are
often difficult to be measured with accurate precision. To
get further insights on the impact of these two points on
the quality of the fits, we have repeated fit iv) of Table 7
by eliminating them. This exercise represents a reduction
of the x2/d.of. by ~ 40% (MY = 1418 & 15 MeV

and th’le — 325+ 26 MeV with 7 = 0.07(1) and

¢~1 = —1.52(11)). By looking at the trend of the measured
spectrum, we have the impression that low-¢> region, and
more in particular the second and third points, demands to
be taken with caution. These results show that, although the
fits to the T~ — K~ Kgv, decay spectrum have consider-
ably improved with respect to predictions discussed above
(dotted red curve) and seem to agree rather well with BaBar
data, yielding BR(t~ — K~ Kgv;) = 0.749(93) x 1073
(Fiti)) and BR(t~ — K~ Kgv;) = 0.744(89) x 1073 (Fit
iv)), the quality of the fit as indicated by the x2/d.o.f is not
satisfactory enough. This fact motivates the combined anal-
ysis, detailed in the next section, of the Belle data of the pion
vector form factor modulus squared |Fy; |> and the BaBar
data of the decay =~ — K~ Kgv;. Such analysis shall allow
us to determine the p(1450) and p(1700) resonance param-
eters with improved precision and obtain a good description
of the measured K~ K g decay spectrum.

4 Joint fits to | F|* Belle and T~ — K~ Kgsv, BaBar
data

The x2 minimised in our simultaneous fit is

2
s & IFFGoIE — IF 63
=2

; O1FF (s0) 3y
16 Jl/.th —JVFXP 2
w3 () (54)
j T

where the first and second terms correspond, respectively, to
the Belle pion vector form factor data [31] and to the BaBar
7~ — K~ Kgv; measurement [16]. For the later, 4 and
O e are the experimental normalized number of events for

T~ — K~ Kgv; and the associated uncertainties in the i-th
bin, respectively.

The parameters entering the dispersive representation of
the form factors of Eqgs.(26) and (53) are therefore deter-
mined by a simultaneous fit to both data sets and include:

Table 8 Simultaneous fit results for different choices regarding res-
onance mixing and linear slopes parameters obtained with a three-
times-subtracted dispersion relation including three vector resonances
in F7 (s) and F¥ (s) according to Eqgs. (26) and (53) with seye = 4 GeV?
in the dispersive integral

Parameter Seut = 4 (GeV?)

Fita Fit b Fit ¢
o 1.88(1) 1.89(1) 1.87(1)
o 4.34(2) 4.31(2) 4.38(3)
a) = = 1.88(24)
an = = 4.38(29)
m, [MeV] = 773.6(9) = 773.6(9) = 773.6(9)
M, [MeV] =m, =m, =m,
M, [MeV] 1396(19) 1453(19) 1406(61)
T, [MeV] 507(31) 499(51) 524(149)
M, [MeV] 1724(41) 1712(32) 1746(1)
[, [MeV] 399(126) 284(72) 413(362)
y 0.12(3) 0.15(3) 0.11(11)
7 0.11(2) =y 0.11(5)
o —0.23(26) 0.29(21) —0.27(42)
& —1.83(14) —1.48(13) —1.90(67)
B —0.092) —0.07(2) —0.10(5)
5 =0 =0 —0.01(4)
o —0.20(31) 0.27(29) —1.15(71)
o =0 =0 0.40(3)
x%/d.of 1.52 1.19 1.25

— The two subtraction constants, «j 2 and &1 2, correspond-
ing to the slope and curvature parameters associated to
the low-energy expansion of the pion and kaon form fac-
tors.

— The masses and decay widths of the participating p’
and p” resonances, M, ,» and ' ., used to model
the phase entering the dispersive integral. The param-
eter for the p-meson mass, M,, is taken equal to that
entering the phase shift, m,, and its quoted value is fixed
to 773.6(9) MeV as discussed in Sect. 2.

— Theresonance mixing parameters, y, § and y, 5 ,and their
phases, ¢1 2 and q~51,2.

In Table 8, we show the results of our simultaneous fits
using slightly different settings, though in all of them a three-
times-subtracted dispersion relation according to Egs. (26)
and (53) with s¢y = 4 GeV? in the dispersive integral is
employed. Fit a (second column) corresponds to fixing o] =
a1 and oo = a» and taking § = 0 because, as we have
discussed in Sect. 3, the BaBar measurement of the decay
T~ — K~ Kgvy is still not sensitive to p(1700) resonance
properties. The corresponding fit results supports the relative
weights y and 7 to be the same for the 7 ~7° and K~ Ky

@ Springer
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o Belle data (2008)
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Fig. 7 Belle measurement of |F§ |2 (black filled circles) [31] as com-

pared to our fits obtained from a simultaneous analysis of |Fy; |2 and
T~ — K~ Kgv; (see Table 8)

100} e BaBar (2018) -
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Fig. 8 BaBar data [16] for 7= — K~ Kgv; (black solid circles) as
compared to our fits obtained from a simultaneous analysis of |Fy; 12
and T~ — K~ Kgv; (see Table 8)

channels. This feature is proven in Fit b (third column) by
enforcing y = 7. By doing this, the x2/d.o.fis reduced from
1.52 to 1.19 and the values of the fitted parameters remain
basically the same but for the p”’-width, whose central value is
shifted downwards by ~ 100 MeV, and to less extent for the
o’-mass, which suffers a variation of ~ 50 MeV upwards, but
still compatible within errors. Finally, Fit ¢ (last column) is
the result of letting all parameters to float independently and
the corresponding fit parameters are found to be compatible
with Fits a and b, though with larger uncertainties. This fit
also yields results that supports the assumption o] = o and
o> = oo made in Fits a and b. As a side result, we extract the
charge kaon radius through (rz)l‘f = 6a; (cf.Eq.(28)). Our
value, (r?)K = (11.28 £ 1.44) GeV~2, lies in the ballpark
of results for this quantity (rZ)I‘f = (9.09 + 1.82) GeV 2
and (r2)K = (11.07 £ 1.82) GeV 2 [33], (r?)K = (9.76 +
0.85) GeV~2 [70] and (r2)K =1[10.02, 10.79] GeV~2 [71].

The results of our fits are confronted to the Belle | Fy; |2
form factor measurement and to the BaBar 1~ — K~ Kgv;
distribution in Figs. 7 and 8, respectively. Satisfactory agree-
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ment with the experimental data is seen in accord with the
observed x2/d.o.f. However, the potential of a combined
analysis of the |F}] |> and T~ — K~ Kgv, data is presently
limited by the fact that the errors associated to the latter
are still relatively large and the BaBar measurement of the
T~ — K~ Kgv; spectrum is yet not sensitive to the p (1700)
resonance properties. This presents a limitation in determin-
ing the p(1450) and p(1700) resonance parameters with
improved precision with respect to the individual analysis
of |Fy |2. Because of that, we postpone a dedicated study
of the systematic uncertainties as we did in Sect. 2 for the
future, when new and more precise measurements become
available.

5 Conclusions

An ideal roadmap for describing meson form factors would
require a model-independent approach demanding a full
knowledge of QCD in both its perturbative and non-
perturbative regimes, knowledge not yet unraveled. An alter-
native to such enterprise would pursuit a synergy between
the formal theoretical calculations and experimental data.
In this respect, dispersion relations are a powerful tool to
direct oneself towards a model-independent description of
form factors. In this paper, we have revisited the pion vec-
tor form factor as extracted from ¢ — 7~ 7%, and pro-
vided a parametrization for the kaon vector form factor that
describes the decay t~ — K~ Kgv, by exploiting the syn-
ergy between dispersion relations and Chiral Perturbation
Theory.

The pion vector form factor is a classic object in low-
energy QCD that provides a privileged benchmark to study
the effects of w7 interaction under rather clean conditions.
These pion-pion interactions are universal and enter the
description of many physical observables, hence the impor-
tance of having good control of them. For our analysis,
we have used a three-times-subtractred dispersion relation
and exploited Watson’s theorem, and the fact that the elas-
tic P-wave w7 interactions capturing the physics of the p-
resonance are encoded in the phase shift, to drive the form
factor phase entering the dispersive integral up to 1 GeV from
the well-known parametrization of the 7 scattering phase
shift existent in the literature. Above 1 GeV, the p(1450)
and p(1700) resonance effects show up and to obtain an
improved description of the energy region where these res-
onances come up into play is one of the purposes of this
work. For that, we have used a model for the phase extracted
from the exponential Omnes representation of the form factor
(cf.Eq. (17)), whose direct application to the pion vector form
factor experimental data is seen very satisfactory (see Fig. 1),
that we match smoothly at 1 GeV to the 7w scattering phase.
Armed with this parametrization, we have carried out a very
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dedicated analysis of the high-statistics Belle experimental
data and assessed the role of the theoretical systematic uncer-
tainties in the determination of the p(1450) and p(1700)
physical resonance parameters by considering a number of
variants of it. Tables with the corresponding numerical val-
ues including both statistical and systematic errors are given
as ancillary material of this paper (see Appendix A). From
our study, we conclude that the determination of the pole
mass and width of these resonances (cf. Eq.(43)) is limited
by theoretical errors that have been usually ignored or under-
estimated in the literature so far.

On a second stage, we have performed a first analysis of
the recent BaBar measurement experimental data on =~ —
K~ Ksv; based on a parametrization of the participant kaon
vector form factor that is built in a similar fashion to that of
the pion. We have shown that while the production threshold
of this decay channel sits around 1000 MeV and therefore it is
out of the p(770)-dominance region, the role of the p (1450)-
resonance is different than in the 7~ 7" mode and indeed
dominates. As a result of our fits (see Table 7 and Fig.6),
we have extracted its associated pole parameters. Regarding
the p(1700), the data is scarce in this region and thus it is
not-yet suitable for extracting the corresponding resonance
parameters. See Ref.[72] for an analysis of this channel in
the frame of Vector Meson Dominance, that appeared soon
after the completion of this work.

Finally, we have pointed out that high-quality data on
the decay 7= — K~ Kgv; will allow one to determine
the p(1450) and p(1700) resonance pole parameters with
improved precision from a combined analysis with the pion
vector form factor. In summary, we hope our analysis to be of
interest for present and future Z, tau-charm and B-factories
where new measurements should be possible.
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