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Abstract

We present a multi-frame narrow-baseline stereo matching algorithm based on
extracting and matching edges across multiple frames. Edge matching allows us
to focus on the important features at the very beginning, and deal with occlusion
boundaries as well as untextured regions. Given the initial sparse matches, we
fit overlapping local planes to form a coarse, over-complete representation of the
scene. After breaking up the reference image in our sequence into superpixels, we
perform a Markov random field optimization to assign each superpixel to one of
the plane hypotheses. Finally, we refine our continuous depth map estimate using
a piecewise-continuous variational optimization. Our approach successfully deals
with depth discontinuities, occlusions, and large textureless regions, while also
producing detailed and accurate depth maps. We show that our method outper-
forms competing methods on high-resolution multi-frame stereo benchmarks and
is well-suited for view-interpolation applications.
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1. Introduction

While binocular (pairwise) stereo matching remains a challenging open prob-
lem, the availability of ubiquitous video recording and computing devices such
as cell phones makes it timely to re-examine the benefits of multi-frame stereo
matching [1, 2, 3] and edge-based stereo approaches [4, 5]. In this paper, we fo-
cus on multi-frame narrow-baseline stereo matching. We show that an edge-based
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Figure 1: We match intensity edges in a multi-frame sequence (a) to obtain a sparse depth map
(b), from which we derive overlapping slanted plane hypotheses (c). Using an MRF defined over
superpixels (d), we obtain a piecewise-planar dense depth estimate, which we refine using contin-
uous optimization (e).

approach is particularly well-suited for multi-frame analysis, since it allows us to
focus the computation on the important features, to identify object boundaries,
and to defer region-based reasoning as well as handling untextured areas, result-
ing in dramatically improved performance in regions that are only visible in some
frames.

Our approach has four main stages (Fig. 1). The first stage matches edges,
which correspond to locations where reliable depth information can be inferred
and potential locations of depth discontinuities and occlusion boundaries. The
second stage estimates a coarse description of the scene by fitting overlapping
slanted planes to the matched edges. In the third stage, we use a Markov ran-
dom field to infer a dense piecewise-planar depth estimate of the scene over a
set of superpixels. Finally, we refine the depth map using piecewise-continuous
variational optimization. Decomposing the model into multiple stages makes it
easier to test each component individually and to perform experiments on differ-
ent variants. Each of the proposed stages is optimized to infer the most reliable
information available at that point, building up a hierarchy of successively more
detailed, dense, and accurate shape estimates.

This approach mainly solves two issues of previous stereo matching algo-
rithms: 1) the foreground objects are sometimes enlarged in estimated depth
maps due to occlusion, which is also known as foreground fattening, and 2) depth
in flat regions are sometimes inaccurate due to insufficiently matched features.
In this work, we solve these two problems by jointly using edge-based match-
ing [4, 5, 6, 7, 8, 9, 10] and plane representation [2, 11, 12, 13]. Both these two
ideas have been used separately in previous works, but we have demonstrated in
this work that by combining them in a single optimization framework, we can
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reduce foreground fattening and improve the accuracy of stereo matching in flat
regions and occlusion boundaries.

More specifically, multi-frame edge matching produces a semi-dense, reliable,
and rich representation of 3D shape. Since edges can be extracted to sub-pixel
precision, the resulting disparity estimates can attain very high precision. Fur-
thermore, the features of edges usually changes more slowly than the photometric
(texture) appearance. In particular, at depth discontinuities where the background
colors can change, the edge orientation and foreground colors usually remain un-
changed. Overlapping slanted planes (layered depth models) provide a compact
set of structure hypotheses that aggregate local low-level evidence in a way that
naturally supports discontinuities [14]. Layered models also support efficient per-
pixel depth inference, due to the small number of hypotheses being considered
at each pixel [15]. Finally, superpixels [16] are an efficient way to obtain dense
reconstructions that naturally align with discontinuities and textureless regions,
removing the need for spatially shiftable matching windows. They also reduce
the number of variables over which global inference is performed, leading to more
efficient and less error-prone algorithms.

2. Related Work

Our approach revisits some of the earliest approaches to stereo, including
edge-based and line-based matching [4, 5, 6, 7, 8, 9, 10], multi-baseline ap-
proaches [2, 11, 12, 13], and epipolar-plane analysis [1, 3]. Many of these early
ideas have gained new popularity over the years; e.g., gradients are used as a ro-
bust matching primitive for stereo [17, 18, 19], and optical flow [20]. Multi-frame
analysis has also been successful for occlusion reasoning [11, 12, 21, 22]. Most
work in stereo, however, has focused on binocular (two-frame) methods for pro-
ducing dense disparity maps [23].

Depth discontinuities pose a challenge for dense per-pixel stereo methods that
utilize window-based matching. A number of solutions have been proposed to
reduce the resulting foreground-fattening effect, such as shiftable windows and
temporal selection [12, 23, 24], but these methods still suffer at depth boundaries,
especially when the background region lacks texture. We address this problem
by tracking and robustly combining intensity edges over multiple frames. This
approach is similar to methods that track keypoints [25] and also fine-to-coarse
models that detect lines in epipolar planes [3]. However, since we match edges
(rather than keypoints), our initial reconstruction is relatively dense, and it con-
tains many complete object boundaries (Fig. 1b).
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Figure 2: Edge extraction and matching: (a) input frame; (b) detail of extracted edges for the
marked region; (c) summed edge matching cost function for the scanline in (b), where blue indi-
cates lower costs, red indicates higher costs, and gray indicates no edges.

Our method for producing a dense depth map from edge reconstructions is
based on the assumption that a complicated scene can be approximated by a set
of planar surfaces. Similar assumptions are also used in previous work, in which
surfaces are detected either via matched keypoints [15], or based on the photo-
metric consistency of matched regions [26, 27, 28, 29]. In contrast, we detect
the planes in the scene by fitting planes to matched edges, which are denser than
matched keypoints, and more robust than photometric appearance on occlusion
boundaries.

To obtain final depth maps, we follow several recent methods and estimate a
piecewise planar reconstruction with an MRF defined over superpixels. This is
closely related to the work of Yamaguchi et al. [30, 31], since our MRF uses pair-
wise terms between superpixels to model occlusion relationships. In that work, the
piecewise-planar model is used to refine depth estimates originating from semi-
global matching. In contrast, our MRF takes edge matches directly as input, and
creates depth maps with crisp edges, using a novel edge-superpixel compatibility
function to model the relationship between edge depths and superpixel depths.

Besides, in this work, we focus on narrow baseline stereo. Wide baseline
multiview stereo algorithm used in the literature of image-based 3D reconstruction
and structure-from-motion [32, 33, 34, 35] is beyond the scope of this work.

3. Edge Matching

We first extract and match edges in all images individually. The goal of this
stage is to provide sparse but reliable disparity estimates for later stages, e.g.,
the creation of local plane hypotheses, and to signal potential locations for depth
discontinuities.
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While our approach could be extended to arbitrary motion, in this paper we
focus on equally-spaced multi-baseline sequences with purely horizontal camera
motion [1, 2, 3]. We typically use sequences with 7–9 equally-spaced frames and
choose the central frame as the reference frame. Given this setup, we restrict edge
detection to the horizontal direction. Instead of using regular rotationally-invariant
edge detectors [36, 37, 38], we identify local maxima of the squared horizontal
gradients and refine their location using a parabola fit. We control edge density
using a detection threshold (we use 0.25 pixel in the experiment) in the reference
frame. To ensure the detected edges are distributed more evenly, we only keep all
the edges whose magnitude is maximum in the 5×5 local patch around that point.
We also keep strong edges whose gradient is larger than a higher threshold (set to
2.64 intensity levels) even though they are not local maximums. Besides, we use
a smaller threshold (half of that in the reference frame) in the matching frames to
increase the chance of matching. We also estimate the edge orientation from the
local 2D gradient (Fig. 2b), which we use for edge matching.

After detecting all the edges in our source images, we match them to obtain a
sparse estimate of 3D scene geometry for each edge in the reference image. We
represent this geometry (and the final depth map) in terms of disparity, i.e., the
horizontal displacement (in pixels) between neighboring frames.

To find corresponding features, we define a cost function to score the fitness of
a particular match using a weighted sum of three distance terms: location distance,
orientation difference, and color difference.

The location distance Dl between the predicted location xp = xr − bd and
its actual location xe is Dl(d) = |xp − xe|, where xr is the edge location in the
reference frame, b ∈ [−4, 4] is the integer baseline between the reference and
matched frame, and d is the disparity.

We define the orientation differenceDo as the absolute value of the cross prod-
uct between the normal vectors of the reference edge and the putative matching
edge,

Do = |nr × ne|/|b|, (1)

where nr and ne are the edge normals in the reference and matching frames.
Since edges on slanted surfaces change their orientation as both a function of
slant and distance from the reference image, we divide the cross product by the
frame difference from the reference frame.

The color difference Dc is measured as the smaller of the two differences (in
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RGB space) between corresponding pixels adjacent to the edge location,

Dc = min(‖cr− − ce−‖, ‖cr+ − ce+‖), (2)

where c∗± are the colors of the pixel just to the right and left of a detected edge
location. Because the background color may change at depth discontinuities, we
take the smaller of the two color differences.

The three squared differences are weighted by their inverse expected variances
and summed to produce a composite weighted squared distance (variances are
chosen empirically: σl = 0.4, σo = 0.25, and σc = 10),

D2
m = σ−2l D2

l + σ−2o D2
o + σ−2c D2

c , (3)

which is then passed through a robust penalty function to obtain the cost of match-
ing a given reference edge at a disparity d to its nearest edge in a different image,

Em(d) = φ(D2
m). (4)

We use the robust penalty function suggested by Zach [39],

φ(d2) = w2d2 + τ 2(1− w2)2/2, (5)

where w2 = max(0, 1 − d2/τ 2) ∈ [0, 1] is an inlier weight and τ is an outlier
threshold, which we set to 3.

Since we operate in a multi-frame setting, we need to consolidate all pairwise
matches between a reference frame and all other frames. One approach is to
simply sum the cost functionsEm across all frames evenly and hope that the robust
outlier function takes care of missing edges (e.g., due to occlusions). Another
alternative is to just take the best fraction (e.g., the top half) of matches, i.e., sum
up the N/2 lowest scores [13],

Em(e, d) =
∑

i=1...N/2

E(i)
m (d), (6)

where the E(i)
m are sorted in increasing value and e denotes the edge under consid-

eration. Experimentally, we have found that the second approach produces more
reliable estimates.

Fig. 2c shows the cost function Em(e, d) for a set of edges e on a given scan-
line as a function of their disparities d. This is a sparse version of the disparity
space image (DSI) [24, 23] that is used by many stereo algorithms to form a cost
volume. One can see a clear trend where the dominant surfaces appear as contin-
uous slowly-varying minima (blue regions) in this cost function.
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4. Plane hypothesis generation

While multi-frame matching often produces correct matches by independently
matching each edge, i.e., selecting the value of d for each edge e that minimizes
Em(e, d), the reliability can be greatly improved by aggregating the matching
information spatially. One can imagine several ways to do this, including ap-
proaches that use the cost volume to directly integrate local support [23, 40]. In
our work, we use fixed-size overlapping square image patches as the main mech-
anism to simultaneously perform spatial aggregation and to estimate local plane
hypotheses. We then extend the local hypotheses to cover larger regions.
Patch-based aggregation and plane fitting. To obtain an initial set of plane hy-
potheses, we divide the image into 32 × 32 patches with 16 pixels overlap and
perform an independent plane sweep [8, 23]. We then refine each patch to obtain
a slanted plane hypothesis. Once all of the hypotheses have been generated, we
assign each edge to the overlapping plane whose fit has the highest confidence.

We start by first matching each reference edge to all the other edges (within the
disparity range) and forming a single sampled cost function per edge, as shown in
Fig. 2c. Once we have computed Em(e, d) for the permissible range of disparity
values d, we find all local minima with inlier weights w2 greater than 0.5 and
keep their sub-pixel locations (obtained using a parabolic fit) and cost value. In
practice, we only keep the top 5 (or fewer) minima and throw away the rest.

Next, we aggregate matches over the whole patch to compute the best-fitting
plane. We do this in two steps. First, we compute a weighted histogram of the top
three disparities for all edges, where the weight is a bilinear tent function centered
over the patch. We then find the maximum histogram value and use a three-point
parabolic fit to find a refined estimate for the best (fronto-parallel) patch disparity
value dfp. Next, we fit a robust weighted 3-parameter plane model to the inlier
matches, i.e., those matches that are either within 0.5 disparities of the winning
disparity dfp or whose disparity gradient is below 0.5, again using a bilinear spatial
weighting funtion.

The last stage of our edge-matching algorithm assigns each edge to its best
overlapping plane hypothesis by choosing the plane (within ±1 disparities) with
the lowest matching cost. This filters out spurious bad matches that are not asso-
ciated with any nearby planes.

Plane merging and extension. In the previous stage, small planar patches are lo-
cally fit to matched edges. We now merge patches that are roughly coplanar to
reduce the number of plane hypotheses and improve the accuracy of estimated
plane equation using an efficient greedy algorithm.
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(a) (b) (c)

Figure 3: Illustration of plane merging. (a) Two plane patches fitted to depth of edges. The sparse
points show the depth of matched edges, and the colors inside the two black boxes encode the
depth of the plane patches. (b,c) The results of plane merging, using the two patches in (a) as
seeds.

We first select the patch with the most edges as the initial seed plane and grow
it by merging other roughly coplanar patches until there are no patches left that
can be merged. We remove all inlier edges that belong to this plane (within 0.2
disparities of the plane equation). We then pick the next patch that contains the
most edges as the initial seed plane. We repeat this process until we cannot pick a
patch that contains more than 3 edges to be a seed plane.

To grow a seed plane, we repeatedly select among the neighboring patches the
one that best fits the plane. We evaluate how good the patch fits to the plane by
counting the number of edges in the patch that lie on the extension of the plane
(also within 0.2 disparity of the plane). We refit the plane equation to all inlier
edges after merging, and repeat this process until none of neighboring patches
contain more than 2 inlier edges. We set the extent of the final merged plane as
the bounding box of all constituent patches, as shown in Fig. 3. For robustness,
we also extend the plane extent by bW

20
c pixels, where W is the width of the input

image.

5. Superpixel MRF

After the previous stage, each pixel is covered by one or more planes. In
the next step, we decide which plane a pixel actually belongs to. To reduce the
search space and accelerate the algorithm, we segment the reference frame into
superpixels using SLIC [16] and assign all pixels within a superpixel to the same
plane.

Our superpixel assignment is based on two sources of information, namely
photo consistency, as used in most stereo matching algorithms [23, 15], and edge
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Figure 4: Edge consistency. (a–c) When an edge (black line) is inside a superpixel (red square),
their depths must agree. (d–f) An edge on the boundary between superpixels cannot be behind
either of them.
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depth

(b) Matched edges
+ superpixels
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Figure 5: Edge consistency reduces foreground fattening. See text below for more details.

consistency, which requires that the depth of edges should be consistent with the
depth of the corresponding plane.

The assignment problem is modeled as an MRF with a data term consisting
of the photo-consistency term Ephoto and an edge-consistency term Eedge as de-
scribed below.
Photo consistency. Let Pj be the j-th plane after plane merging and Li the index
of the plane that superpixel Si is assigned to. Let t∗ be the index of the reference
frame and t be another frame in the sequence, and let I t and Ixt be the color image
and its x-gradient of the t-th frame respectively. Also, let x be the location of a
pixel in the i-th superpixel Si and W t(x, PLi

) be the corresponding pixel in frame
t assuming x is on plane PLi

. The photo-consistency term penalizes both color
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and gradient difference [18] between the reference frame and frame t:

Et
photo(Li) =λc

∑
x∈Si

φTc

(
I t

∗
(x)− I t(W t(x, PLi

))
)

+λg
∑
x∈Si

φTg

(
Ix

t∗(x)− Ixt(W t(x, PLi
))
)
, (7)

where φT (v) =
∑

j min(|vj|, T ) is the truncated l1-norm. In all experiments
we use the following weights and thresholds for color and gradient terms: λc =
0.1, λg = 0.9, Tc = 0.03, Tg = 0.004.
Edge consistency. The second data term Eedge measures the consistency between
the depth of superpixels and the depth of edges. If an edge is inside a superpixel
or on its boundary, the depth of that superpixel should agree with the depth of
the edge. There are two cases to be considered. First, when an edge is inside a
superpixel (the top row of Figure 4), their depths should be the same. Second,
when an edge is on the boundary of a superpixel (the bottom row of Figure 4), the
edge can either lie at the depth of the superpixel or in front of it, since it might
belong to another, closer superpixel.

For the first case (an edge inside a superpixel), we penalize the difference in
depth between edges and superpixels:

Ein(Li) =
∑
e∈ISi

ψ (de −D(xe, PLi
)) , (8)

where de is the depth of edge e predicted in edge matching, xe is the 2D spatial
coordinate of that edge, ISi

is the set of edges inside the superpixel Si, ψ(x) =
min(x2, Td) is the squared truncation function, and function D(xe, PLi

) returns
the predicted depth by the plane equation PLi

at the location xe. For the second
case (an edge on the boundary of a superpixel), we penalize the difference in depth
only if an edge is behind a superpixel:

Ebound(Li) =
∑
e∈BSi

ψ
(
max(D(xe, PLi

)− de), 0)
)
. (9)

The edge-consistency term is then the sum of these two terms

Eedge(Li) = Ein(Li) + Ebound(Li). (10)

Figure 5 demonstrates how the edge-consistency term reduces foreground fatten-
ing. Without edge consistency, the light region behind the dark vertical bar (Fig-
ure 5a) is grouped with the foreground in the recovered depth map (Figure 5c).
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The depth of the background region should be dark blue, but it is light blue (in-
dicating the foreground depth) in Figure 5c. If the edge-consistency term is in-
cluded, the light region is correctly grouped with the background (Figure 5d).
This is because the matched edges on the left (dark blue dots in Figure 5b) push
their neighboring superpixels to the background, as the edge consistency term
does not allow a superpixel in front of its neighboring edges. Some superpixels in
that light region are not directly neighbors of matched edges on the right, but they
are still assigned to the background because of the smoothness term discussed
below.
Smoothness term. The smoothness term Eb(Li, Lj) checks whether the labels of
two neighboring superpixels are consistent. It is a product of two terms:

Eb(Li, Lj) = λsmooth · w(Si, Sj)ψ(PLi
, PLj

, Bi,j). (11)

The first term w(Si, Sj) is an affinity term that measures the similarity of the
appearance (mean color) of superpixels:

w(Si, Sj) = exp(−(Ci − Cj)
2/σ2

c ). (12)

The second term ψ(PLi
, PLj

, Bi,j) measures the average disparity difference of
two superpixels along their shared boundary, and it is truncated in the similar way
as in Eqs. 8 and 9.

At last, we solve the MRF using alpha expansion [41].
Refinement. At this point, our pipeline yields a piecewise planar reconstruction.
In order to faithfully reconstruct smoothly varying surfaces, we add a refinement
step that uses the depth information at edges located close to the piecewise planar
reconstruction and performs a variational piecewise-smooth 2D interpolation [42]
(Fig. 6).

The piecewise planar reconstruction provides the location of discontinuities
and serves as a weak data term. We combine this with a second, stronger data term
consisting of robust weighted edges (using again the smoothly truncated quadratic
(5) by Zach [39]), where such edges are available close to the surface. In practice,
we use a cut-off of 1.0 disparity levels and perform only a single iteration, since a
reweighted least-squares approach yielded worse results. This yields a smoothly-
interpolated discontinuity-preserving reconstruction that is closer to the (locally
more reliable) original edges than the planes.
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Before refinement After refinementInput

Figure 6: Effect of depth refinement. The model introduces in Section 4 can only model piece-wise
planar surfaces. Through the depth refinement, our model can also model the curved surfaces, like
human faces, and most depth “staircasing” is removed after the refinement.

6. Experimental Results

The focus of our work is high-resolution multi-baseline matching. Our method
utilizes multiple frames taken from a narrow baseline and produces a depth map
for the reference (center) frame. Unfortunately, there are no established bench-
marks for this scenario. The Middlebury and KITTI stereo benchmarks [43, 44]
are restricted to two input views, while existing multiview benchmarks [45, 46]
use a wide-baseline scenario and evaluate 3D surface meshes. Thus, providing
a fair comparison with published results is difficult. Here, we compare with ex-
isting two-view results. In addition, we implemented a multi-frame extension of
SGM [47] to provide a baseline comparison for our method when utilizing all
frames. Finally, we show a qualitative comparison with Kim et al.’s approach [3],
which uses a multi-baseline setup with a large number of views. All results are
also available at http://people.csail.mit.edu/tfxue/edgestereo/.

6.1. Datasets and Baselines
We evaluate our algorithm on two sets of high-resolution multi-baseline se-

quences. The first one, Midd-F, consists of 7 full-resolution sequences from the
Middlebury 2003–2006 datasets [43], with 7–9 frames each at a resolution of 1.4–
2.7 megapixels (MP). While our main focus is high-resolution matching, we also
report results on quarter-resolution sequences Midd-Q, which include the Teddy
and Cones images used in the Middlebury stereo benchmark version 2. The sec-
ond group, Disney, is from the high-resolution multi-baseline dataset used in Kim
et al. [3]. Each sequence contains 101 frames, from which we pick 9 frames in
5-frame increments.

The disparity range in both datasets varies from 200 to 330 pixels. All se-
quences contain either 7 or 9 frames, and we always select the middle frame as
the reference frame. For the Middlebury datasets, we create ground-truth dis-
parities for the center frame by warping the the provided left and right disparity
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Sequence
Libelas

(2 frames)
LPS

(2 frames)
SGM

(3 frames)
SGM

(all frames)
MCCNN

(all frames)
Ours

(3 frames)
Ours

(all frames)
nonocc all nonocc all nonocc all nonocc all nonocc all nonocc all nonocc all

Aloe 2.83 5.47 1.73 7.81 1.87 3.70 2.27 3.85 2.12 4.21 2.30 3.50 1.06 2.38
Art 7.28 17.61 4.43 20.02 5.57 9.64 4.77 8.41 8.56 11.79 2.06 3.54 1.93 3.32

Cloth3 1.67 7.24 0.56 6.39 0.45 1.38 0.44 1.26 1.07 1.34 0.71 1.45 0.42 1.01
Cones 4.13 11.04 1.59 9.21 2.25 5.11 1.73 4.25 2.69 4.15 3.40 5.82 1.06 2.59
Dolls 4.81 12.52 4.02 13.10 4.46 7.76 6.25 9.21 3.42 4.71 2.68 6.15 2.25 4.84

Rocks2 1.51 5.47 0.82 6.55 0.85 1.70 0.82 1.63 1.07 1.26 0.71 1.34 0.59 1.06
Teddy 12.00 18.46 7.55 16.40 10.30 13.31 7.47 9.68 7.27 7.84 6.61 8.69 3.84 5.46
Avg. 4.89 11.12 2.96 11.35 3.68 6.09 3.39 5.47 3.74 5.04 2.64 4.36 1.59 2.95

Table 1: Errors (%) for three methods on Midd-F (we use threshold t=2.0 for all full-resolutions
experiments).

Aloe Art Cloth3 Cones Dolls Rocks2 Teddy
Nonocc 1.57 2.56 0.75 1.02 2.69 1.08 2.16

All 3.51 4.45 1.48 2.56 4.41 1.78 3.43

Table 2: Errors (%) for our method on Midd-Q (t=1.0). Errors of the top-performing two-view
algorithms on Teddy and Cones are around 2–3% (in all regions).

maps. For Disney, ground-truth disparities are not available, so we only provide a
qualitative comparison.

6.2. Quantitative Results
We compare our method against four stereo algorithms. Libelas [25] and Lo-

cal Plane Sweeps (LPS) [15] are two competitive high-resolution 2-view algo-
rithms. As mentioned, these methods do not utilize the additional input frames,
so they face a greater challenge especially in occluded regions. For a multi-frame
baseline comparison, we extend the OpenCV implementation of the semi-global
matching (SGM) algorithm [47] from two frames to multiple frames by replac-
ing the original matching cost with a summation of k lowest matching costs be-
tween the reference frame and other frames. We also extend one of the pioneer
neural-network-based stereo algorithm, MCCNN [48], to multiple frames using
the similar strategy.

Following established practice, we report the error rate for non-occluded pix-
els visible in both input frames as well as for all pixels. To obtain the occlusion
mask for our method, we warp the left and right occlusion masks to the center
frame.

Table 1 compares numerical results for the four methods on the full-resolution
dataset Midd-F. The table shows that in non-occluded regions, our method beats
Libelas and LPS both in non-occluded and all regions. It also beats the base-
line SGM method by a comfortable margin in terms of average errors, as well
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Figure 7: Reconstruction results on Midd-F. Corresponding close-up views are shown below each
sequence (please see supplementary material for the full results).

as on most individual sequences, and our algorithm with 3 frames as input even
beats SGM and MCCNN with 9 frames as input. The largest improvements of
our method over the baseline SGM method and MCCNN are on sequences such
as Teddy and Art containing textureless regions, where our edge-based approach
successfully prevents foreground fattening. This demonstrates the power of our
edge-based multi-frame approach in the presence of occlusions.

Table 2 shows our numerical results on the quarter-resolution sequences Midd-
Q, which are comparable to the best two-view results listed in the Middlebury
stereo benchmark version 2, for both nonocc and all regions.

6.3. Qualitative Results
A side-by-side comparison on a subset of the Midd-F and disney is shown in

Figures 7 and 8. (See the supplementary materials for the full results and error
maps.) Note that LPS and Libelas use the left frame (the third frame in 9-frame
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Figure 8: Reconstruction results on Disney for Kim at al. [3], SGM, and our algorithm. Kim et
al. [3] use 101 frames as input, while SGM and our method use only 9 frames. Corresponding
close-up views are shown below each sequence.

sequences) as the reference frame, while our algorithm and SGM use the middle
frame.

On Midd-F, our algorithm produces much cleaner depth maps compared to
the other methods. The boundaries of objects are cleaner with fewer fuzzy edges
(e.g., the leaves in Aloe). In the depth maps created by either SGM or MCCNN,
foreground objects with untextured background are often enlarged (e.g., Cones
and the right edge of the Teddy). These are typical examples of foreground fat-
tening that our algorithm can avoid using edge reasoning. Moreover, in the flat
regions, like the white background besides the teddy bear, SGM or MCCNN gen-
erate incorrect depth, while our approach correctly predict depth in those regions
using our planar representation.
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Result by [3] (11 frames) Our result (11 frames)

Figure 9: Comparison to Kim et al. [3] on Disney’s Mansion sequence. Both algorithms use 11
frames as input. Corresponding close-up views are shown on the right.

On Disney, both our algorithm and SGM use only 9 frames as input and
achieve a similar performance as the method by Kim et al. [3], which uses 101
frames. Many thin structures are recovered in the depth maps, like the power lines
in Church and the leaves in Mansion. Compared with SGM, our algorithm again
reduces the foreground fattening for objects with untextured background, e.g., the
leaves in Mansion and Statue, and the car antenna in Statue.

Fig. 9 compares our method with the method by Kim et al. [3] when both
methods are run on only 11 frames (thus handicapping the latter), and our depth
map has much cleaner boundaries and again avoids foreground fattening.

6.4. Analysis
To understand how each step in our algorithm contributes to its performance,

we conduct several evaluations on the middF dataset. All the error rate, if not
specified, are calculated using T = 2.0.
Edge detection. First, to evaluate the edge matching, we compare our results with
an oracle that predicts the actual depth of an edge using the ground truth depth
map. We evaluate the performance of edge detection using two criteria: edge
accuracy, which is the percentage of edges whose estimated depth is within 0.5
disparities of the ground truth, and percentage of missing edges, which is the
percentage of edges that cannot find matches (recall that we reject matches that
do not agree with locally fitted planes).

Table 3 shows the quantitative evaluation of edge matching. We compare our
edge matching algorithm with two variants: only using the orientation term (set
the weight for the color difference term defined Equation (2) in to 0) and only
using the color term (set the weight for the orientation difference term defined
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Equation (1) in to 0). The results shows that both color term and the orientation
term improves accuracy of edge matching: using both terms out-perform the algo-
rithm only using the color term by 7% and out-performs the algorithm only using
the orientation term by 4%.

Measurement Matching cost Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

Accuracy
Only orientation term 66.44 46.83 79.99 34.30 53.29 73.07 29.97 54.84

Only color term 73.11 55.32 84.59 51.53 61.07 75.99 45.36 63.85
Both 76.33 60.33 87.23 55.13 65.49 81.22 47.64 67.62

Percentage of
missing edges

Only orientation term 23.61 40.37 15.35 51.46 33.26 21.42 52.60 34.01
Only color term 9.27 19.71 6.54 16.45 13.49 12.60 22.33 14.34

Both 8.31 18.73 5.21 16.98 12.83 9.44 23.64 13.59

Table 3: Evaluation of matching algorithms under two evaluation metrics, accuracy and percentage
of missing edges. Two variants of the original matching algorithm (both) are tested: only using
the orientation term and only using the color term.

Furthermore, to demonstrate that the edge matching finds better sparse matches
than keypoint matching, we also replace the edge matching step in our algorithm
by the keypoint matching used in Libelas algorithm [25], and feed the matched to
keypoint to the rest of the pipeline (including plane detection, superpixel assign-
ment, and depth map refinement). The original keypoint matching algorithm in
Libelas only takes two frames as input, and we extend it to also allow multiple
frames as input. Table 4 shows the accuracy of estimated depth maps using two
different sparse matches as input (our edge matching and keypoint matching used
in Libelas), and our edge matching our-performs the keypoint matches by Libelas
in all sequences.
Plane estimation. To demonstrate the importance of the plane merging in the
plane estimation, we compare estimated depth from the original planes fitted to
32×32 patches and larger planes after the plane merging. Table 5 shows that plane
merging significantly improves the quality of reconstructed depth, especially on
the sequences with large untextured regions, such as Teddy and Art. This is be-
cause the initially estimated plane equations from local untextured regions are
inaccurate. The plane merging step increases the number of edges in each plane,
resulting in more accurate plane estimation.
Superpixel assignement. Figure 5 already qualitatively shows that the edge con-
sistency reduces the foreground fattening. To quantitatively evaluate that, we run
the superpixel assignment with three different energy functions: only using the
edge consistency, only using the photo consistency, and using both consistencies.
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Matching algorithms Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.
Libelas: keypoint matching 3.53 4.61 1.41 4.47 6.42 1.37 13.40 5.03

Ours: edge matching 2.38 3.32 1.01 2.59 4.84 1.06 5.46 2.95

Table 4: Errors (%) of estimated depth using two different algorithms to find sparse matches: our
edge matching algorithm the keypoint matching algorithm used in Libelas [25]

Source of planes Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.
Without plane merging 3.33 7.52 1.18 4.76 5.23 1.32 12.87 5.17

With plane merging 2.38 3.32 1.01 2.59 4.84 1.06 5.46 2.95

Table 5: Errors (%) of estimated depth with/without plane merging

Table 6 shows that even by fitting a smooth surface to matched edge, the algo-
rithm already can recover decent depth maps (that is the result by only using the
edge consistency, whose the average error rate is 5.88%) and using the appearance
information from input sequences further improves it to 2.91%.

Energy functions Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.
Only edge consistency 4.81 7.17 2.36 6.20 9.43 2.25 8.93 5.88
Only photo consistency 2.20 2.76 1.04 2.84 5.90 1.03 5.12 2.98

Both 2.14 2.75 1.02 2.74 5.30 1.10 5.32 2.91

Table 6: Errors (%) of estimated depth using different energy functions in the superpixel assing-
ment (Note that in this experiment, we do not run the refinement, so the number of both is slightly
different than the last column of Table 1)

Refinement. At last, Table 7 shows how the refinement affects the performance
of the algorithm. The refinement algorithm is mostly designed to correct small
error on curved surfaces (before refinement, the algorithm only estimates a piece-
wise planar depth map). Therefore, there is a large improvement on sequences
with many curved structures, like Cones and Dolls, especially when using a lower
threshold in calculating the accuracy. Even though, the accuracy under the thresh-
old 2.0 slightly decrease when using refinement, it still makes the estimated depth
map much smoother, as shown in Figure 6.
Number of frames. Figure 10 shows the effect of reducing the number of input
frames on our algorithm. As already discussed in the quantitative analysis, our
algorithm still works reasonably well when fewer frames are provided. Even from
3 frames, clean depth maps can still be derived, and errors decrease when more

18



Threshold Algorithms Aloe Art Cloth3 Cones Dolls Rocks2 Teddy Avg.

T = 1.0
w.o. refinement 4.13 4.36 1.87 5.44 11.34 2.29 9.64 5.58
with refinement 4.20 5.01 1.56 3.81 9.26 1.66 8.88 4.91

T = 2.0
w.o. refinement 2.14 2.75 1.02 2.74 5.30 1.10 5.32 2.91
with refinement 2.38 3.32 1.01 2.59 4.84 1.06 5.46 2.95

Table 7: Errors (%) of estimated depth with/without refinement

3 frames 
(err 8.32%)

5 frames 
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Figure 10: Recovered depth maps using the proposed method with different number of input
frames. Errors are shown below each sequence.

frames are used (we do not show the result of using two-frames as input, as it
cannot check the consistency in occluded regions).

6.5. View interpolation
One of major usage of depth map is image-based rendering. To demonstrate

the quality of our depth, we generate view interpolation result as follows. We
pick two frames in the sequence as the left and right reference frames. For each
of these two reference frames, we pick 5 to 9 frames around them and use them
to recover the depth map in the reference frame. We then render any view points
between the left and right frames by warping both color images with the recovered
depth maps of those two frames and blending the two warped images using a z-
buffer and proportional weighting. The synthesized sequences are available in the
supplementary material.

One big advantage of our algorithm is that the recovered depth map has sharp
boundaries and is also smooth within objects. It therefore creates fewer artifacts
when synthesizing a viewpoint, as shown in Figure 11. Due to foreground fatten-
ing, the interpolated image by SGM has missing pieces in the background. For
example, both the digit 2 in the top patch and the digit 4 in the bottom patch
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Interpolation by SGM (PSNR=28.89dB) Interpolation by ours (PSNR=30.03dB) Ground truthTwo input frames

Figure 11: Interpolation results using depth map estimated by ours algorithm and SGM on middF
dataset. The ground truth image is the actual image captured by the camera located at interpolated
viewpoint.

Resolution of Middlebury Dataset
Runtime (seconds)

SGM MCCNN Ours
Quad resolution (100–200 kP) 8.2 16.4 10.1
Half resolution (200–500 kP) 68.1 139.2 35.8
Original resolution (1–2 MP) 458.7 1905.4 170.1

Table 8: Runtime of three different algorithms: SGM [47] (using all frames), MCCNN [48], and
ours. We evaluated on three different resolutions: original, half (the width and height are 1/2 of
the original), and quad.

are missing. Such error does not exists in our results, as ours depth has a clear
foreground-background boundary. The interpolated image by our depth is almost
identical as the ground truth, and has higher PSNR than the interpolated image by
SGM depth.

6.6. Runtime
At last, we evaluate the runtime of our algorithm and compare it with two

multi-frame stereo algorithms: SGM [47] and MCCNN [48]. All three algorithms
are evaluated on a Intel i7 CPU with a GeForce GTX 1080 Ti GPU. Both SGM
and ours are running on a single-thread CPU. For MCCNN, the matching costs
are calculcated on a single-thread CPU and depth estimation from matching cost
are calculated on GPU (there is no CPU implementation for this part). Table 8
shows the runtime of our algorithm on Middlebury dataset with three different
resolutions. Our algorithm is much faster than SGM and MCCNN on the original
resolution. Morever, our runtime increases linearly with the number of pixels,
while others increase superlinearly. This also demonstrates the scalability of our
algorithm.
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7. Conclusion

In this paper, we have developed a multi-frame stereo algorithm based on
matching edges, inferring local slanted plane hypotheses, and computing dense
per-pixel disparities using a superpixel-based MRF followed by piecewise con-
tinuous relaxation. Our multi-stage pipeline computes the most reliable estimates
(edge correspondences and local planar hypotheses) first, and then produces a
dense estimate that better preserves depth discontinuities and deals with semi-
occluded and textureless regions.

Our experiments demonstrate the importance of edge matching. Edge match-
ing reduces foreground fattening, is more robust to color variation, and provides
better initial sparse matches compared with keypoint matching. With matched
edges, our approach outperforms alternative approaches when recovering depth
from high-resolution multi-frame sequences, particularly when we evaluate errors
on all the pixels, including semi-occluded regions. This increased accuracy is par-
ticularly important in applications such as view interpolation and video editing.

In future work, we plan to extend our approach in several directions. The
first is to associate color distribution models with planar depth hypotheses, as is
done by Bleyer et al. [27]. The second is to implement a coarse-to-fine approach,
which can significantly reduce the computational complexity of the initial edge
correspondence stage by re-using local planar hypotheses from coarser levels.

In our current approach, we do not yet fully exploit all of the local occlusion
cues that are available in multi-frame sequences. For example, we could use the
larger of the two color differences adjacent to edges (Eqn. 2) as a local cue for
occlusions and depth discontinuity events. We could also replace the edge-on-
boundary edge consistency constraint in Eqn. 9 with one that requires at least one
neighboring superpixel to be at the depth of the edge. However, this leads to an
MRF formulation with non-submodular terms, requiring a more powerful solver,
such as Thuerck et al. [49].

In the longer term, we would like to extend our approach to arbitrary camera
motions, investigate alternative (non-patch-based) aggregation strategies such as
bilateral filtering [40], and use our edge-based approach to deal with transparent
motions and reflections. We believe that our approach can have significant advan-
tages in all of these extended scenarios.
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