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Abstract
In this paper, we give a new penalized semidefinite programming approach for non-convex
quadratically-constrained quadratic programs (QCQPs). We incorporate penalty terms into
the objective of convex relaxations in order to retrieve feasible and near-optimal solutions for
non-convex QCQPs.We introduce a generalized linear independence constraint qualification
(GLICQ) criterion and prove that any GLICQ regular point that is sufficiently close to the
feasible set can be used to construct an appropriate penalty term and recover a feasible
solution. Inspired by these results, we develop a heuristic sequential procedure that preserves
feasibility and aims to improve the objective value at each iteration.Numerical experiments on
large-scale system identification problems as well as benchmark instances from the library
of quadratic programming demonstrate the ability of the proposed penalized semidefinite
programs in finding near-optimal solutions for non-convex QCQP.
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1 Introduction

This paper studies a subclass of polynomial optimization, regarded as quadratically-
constrained quadratic programming (QCQP), which is concerned with minimizing a
multi-dimensional quadratic function within a feasible set that is also characterized by
quadratic functions. QCQP arises in various scientific and engineering applications, such
as electric power systems [52–54,56], imaging science [8,17,28,73], signal processing
[2,7,19,47,50,58], automatic control [1,27,56,77], quantum mechanics [14,24,35,46], and
cybersecurity [21–23,62]. The development of efficient optimization techniques and numer-
ical algorithms for QCQP has been an active area of research for decades. Due to the barriers
imposed by NP-hardness, the focus of some research efforts has shifted from designing
general-purpose algorithms to specialized methods that are robust and scalable for specific
application domains. Notable examples for which methods with guaranteed performance
have been offered in the literature include the problems of multisensor beamforming in com-
munication theory [31], phase retrieval in signal processing [16], and matrix completion in
machine learning [15,60].

This paper advances a popular framework for the global analysis of QCQP, which involves
convex hull characterization through semidefinite programming (SDP) relaxations [20,37,
44,45,59,65,66,71]. A relaxation is said to be exact if it has the same optimal objective value
as the original problem. SDP has been critically important for constructing strong convex
relaxations of non-convex optimization problems and its exactness has been verified for
numerous real-world problems [13,41,43,74,75]. Additionally, in many problems for which
the derivation of exact relaxations is impossible due to NP-hardness, SDP relaxations have
offered effective approximation algorithms [33,34,49,64,80–83]. Geomans and Williamson
[32] show that a SDP relaxation objective iswithin 14%of the optimal value for theMAXCUT
problem on graphs with non-negative weights. Additionally, SDP relaxations are used within
branch-and-bound algorithms [12,18] for finding globally optimal solutions to non-convex
optimization problems.

In particular, forming hierarchies of SDP relaxations [20,37,44,45,48,59,66,71] has been
proven to yield the convex hull of non-convex QCQP problems. Despite solid theoretical
guarantees, one of the primary challenges for the application of SDP hierarchies beyond
small-scale instances is the rapid growth of dimensionality. In response, some studies have
exploited sparsity and structural patterns to boost efficiency [9,41,42,61,63]. Another direc-
tion, pursued in [1,3,6,11,55,57,68], is to use lower-complexity relaxations as alternatives to
computationally demanding SDP relaxations. In this paper, we offer an alternative approach,
which focuses on the penalizing the objective function of SDP relaxations as opposed to
strengthening the quality of convex-hall characterization, which can be computationally pro-
hibitive. We show that under certain conditions, incorporation of a penalty terms in the
objective can remedy inexact relaxations and lead to feasible points for non-convex QCQPs.

1.1 Contributions

This paper is concerned with non-convex quadratically-constrained quadratic programs for
which SDP relaxations are inexact. In order to recover feasible points for QCQP, we incor-
porate a linear penalty term into the objective of SDP relaxations and show that feasible and
near-globally optimal points can be obtained for the original QCQP by solving the resulting
penalized SDPs. The penalty term is based on an arbitrary initial point. Our first result states
that if the initial point is feasible and satisfies the linear independence constraint qualifica-
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tion (LICQ) condition, then penalized SDP produces a unique solution that is feasible for the
original QCQP and its objective value is not worse than that of the initial point. Our second
result states that if the initial point is infeasible, but instead is sufficiently close to the feasible
set and satisfies a generalized LICQ condition, then the unique optimal solution to penalized
SDP is feasible for QCQP. Lastly, motivated by these results on constructing feasible points,
we propose a heuristic sequential procedure for non-convex QCQP and demonstrate its per-
formance on benchmark instances from the QPLIB library [29] as well as on large-scale
system identification problems.

The success of sequential frameworks and penalized SDP in solving bilinear matrix
inequalities (BMIs) is demonstrated in [36,38,40]. In [5], it is shown that penalized SDP
is able to find the roots of overdetermined systems of polynomial equations. Moreover, the
incorporation of penalty terms into the objective of SDP relaxations are proven to be effective
for solving non-convex optimization problems in power systems [53,54,84,85]. These papers
show that penalizing certain physical quantities in power network optimization problems such
as reactive power loss or thermal loss facilitates the recovery of feasible points from convex
relaxations. In [36], a sequential framework is introduced for solving BMIs without theoret-
ical guarantees. Papers [38,40] investigate this approach further and offer theoretical results
through the notion of generalized Mangasarian–Fromovitz regularity condition. However,
these conditions are not valid in the presence of equality constraints and for general QCQPs.
Motivated by the success of penalized SDP, this paper offers a theoretical framework for
general QCQP and, by extension, polynomial optimization problems.

1.2 Notations

Throughout the paper, scalars, vectors, and matrices are respectively shown by italic letters,
lower-case italic bold letters, and upper-case italic bold letters. The symbols R, Rn , and
R

n×m denote the sets of real scalars, real vectors of size n, and real matrices of size n × m,
respectively. The set of n × n real symmetric matrices is shown by Sn . For a given vector
a and a matrix A, the symbols ai and Ai j respectively indicate the i th element of a and the
(i, j)th element of A. The symbols 〈· , ·〉 and ‖ · ‖F denote the Frobenius inner product and
norm of matrices, respectively. The notation | · | represents either the absolute value operator
or cardinality of a set, depending on the context. The notation ‖ · ‖2 denotes the �2 norm of
vectors, matrices, and matrix pencils. The n × n identity matrix is denoted by In . The origin
of Rn is denoted by 0n . The superscript (·)� and the symbol tr{·} represent the transpose
and trace operators, respectively. Given a matrix A ∈ R

m×n , the notation σmin(A) represents
the minimum singular value of A. The notation A � 0 means that A is symmetric positive-
semidefinite. For a pair of n × n symmetric matrices (A, B) and proper cone C ⊆ Sn , the
notation A �C B means that A − B ∈ C, whereas A 	C B means that A − B belongs
to the interior of C. Given an integer r > 1, define Cr as the cone of n × n symmetric
matrices whose r × r principal submatrices are all positive semidefinite. Similarly, define
C∗

r as the dual cone of Cr , i.e., the cone of n × n symmetric matrices whose every r × r
principal submatrix is positive semidefinite (i.e., factor-width bounded by r ). Given a matrix
A ∈ R

m×n and two sets of positive integers S1 and S2, define A{S1,S2} as the submatrix of
A obtained by removing all rows of Awhose indices do not belong to S1, and all columns of
Awhose indices do not belong to S2. Moreover, define A{S1} as the submatrix of A obtained
by removing all rows of A that do not belong to S1. Given a vector a ∈ R

n and a setF ⊆ R
n ,

define dF (a) as the minimum distance between a and members ofF . Given a pair of integers
(n, r), the binomial coefficient “n choose r” is denoted by

(n
r

)
. The notations ∇x f (a) and
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∇2
x f (a), respectively, represent the gradient and Hessian of the function f , with respect to

the vector x, at a point a.

1.3 Outline

The remainder of the paper is organized as follows. In Sect. 2, we review the basic lifted and
reformulation linearization technique (RLT) aswell as the standardSDP relaxations. Section3
presents themain results of the paper: the penalized SDP, its theoretical analysis on producing
a feasible solution along with a generalized linear independence constraint qualification, and
finally the sequential penalization procedure. In Sect. 4 we present numerical experiments
to test the effectiveness of the sequential penalization approach for non-convex QCQPs
from the library of quadratic programming instances (QPLIB) as well as large-scale system
identification problems. Finally, we conclude in Sect. 5 with a few final remarks.

2 Preliminaries

In this section, we review the lifting and reformulation-linearization technique (RLT) as
well as the standard convex relaxations of QCQP that are necessary for the development of
the main results on penalized SDP in Sect. 3. Consider a general quadratically-constrained
quadratic program (QCQP):

minimize
x∈Rn

q0(x) (1a)

s.t. qk(x) ≤ 0, k ∈ I (1b)

qk(x) = 0, k ∈ E, (1c)

where I and E index the sets of inequality and equality constraints, respectively. For every
k ∈ {0}∪I∪E , qk :Rn → R is a quadratic function of the form qk(x) � x�Akx+2b�

k x+ck ,
where Ak ∈ Sn , bk ∈ R

n , and ck ∈ R. Denote F as the feasible set of the QCQP (1a)–(1c).
To derive the optimality conditions for a given point, it is useful to define the Jacobian matrix
of the constraint functions.

Definition 1 (Jacobian Matrix) For every x̂ ∈ R
n , the JacobianmatrixJ (x̂) for the constraint

functions {qk}k∈I∪E is

J (x̂) � [∇xq1(x̂), . . . , ∇xq|I∪E|(x̂)]�. (2)

For every Q ⊆ I ∪ E , define JQ(x̂) as the submatrix of J (x̂) resulting from the rows that
belong to Q.

Given a feasible point for the QCQP (1a)–(1c), the well-known linear independence con-
straint qualification (LICQ) condition can be used as a regularity criterion.

Definition 2 (LICQ Condition) A feasible point x̂ ∈ F is LICQ regular if the rows of JB̂(x̂)

are linearly independent, where B̂ � {k ∈ I ∪ E | qk(x̂) = 0} denotes the set of binding
constraints at x̂.

Finding a feasible point for the QCQP (1a)–(1c), however, is NP-hard as the Boolean
Satisfiability Problem (SAT) is a special case. Therefore, in Sect. 3, we introduce the notion
of generalized LICQ as a regularity condition for both feasible and infeasible points.

123



Journal of Global Optimization

2.1 Convex relaxation

A common approach for tackling the non-convex QCQP (1a)–(1c) introduces an auxiliary
variable X ∈ Sn accounting for xx�. Then, the objective function (1a) and constraints
(1b)–(1c) can be written as linear functions of x and X . For every k ∈ {0} ∪ I ∪ E , define
q̄k : Rn × Sn → R as

q̄k(x, X) � 〈Ak, X〉 + 2b�
k x + ck . (3)

Consider the following relaxation of QCQP (1a)–(1c):

minimize
x∈Rn ,X∈Sn

q̄0(x, X) (4a)

s.t. q̄k(x, X) ≤ 0, k ∈ I (4b)

q̄k(x, X) = 0, k ∈ E (4c)

X − xx� �Cr 0 (4d)

where the additional conic constraint (4d) is a convex relaxation of the equation X = xx�.
We refer to the convex problem (4a)–(4d) as the r × r SDP relaxation of the QCQP (1a)–
(1c). The choice r = n yields the well-known semidefinite programming (SDP) relaxation.
Additionally, in the homogeneous case (i.e., if b0 = b1 = · · · = b|I∪E| = 0), the case r = 2
leads to the second-order conic programming (SOCP) relaxation.

In the presence of affine constraints, the RLT method of Sherali and Adams [72] can
be used to produce additional inequalities with respect to x and X to strengthen convex
relaxations. This is covered in “Appendix B”.

If the relaxed problem (4a)–(4d) has an optimal solution
∗
x (

∗
x,

∗
X) that satisfies

∗
X = ∗

x
∗
x�,

then the relaxation is said to be exact and
∗
x is a globally optimal solution for the QCQP (1a)–

(1c). The next section offers a penalization method for addressing the case where relaxations
are not exact.

3 Penalized SDP

If the relaxed problem (4a)–(4d) is not exact, the resulting solution is not necessarily feasible
for the original QCQP (1a)–(1c). In this case, we use an initial point x̂ ∈ R

n (either feasible
or infeasible) to revise the objective function, resulting in a penalized SDP of the form:

minimize
x∈Rn ,X∈Sn

q̄0(x, X) + η × (tr{X} − 2x̂�x + x̂� x̂) (5a)

s.t. q̄k(x, X) ≤ 0, k ∈ I (5b)

q̄k(x, X) = 0, k ∈ E (5c)

X − xx� �Cr 0 (5d)

where η > 0 is a fixed penalty parameter. Note that the penalty term tr{X} − 2x̂�x + x̂� x̂
equals zero for X = x̂ x̂�. The penalization is said to be tight if problem (5a)–(5d) has a
unique optimal solution (

∗
x,

∗
X) that satisfies

∗
X = ∗

x
∗
x�. In the next section, we give sufficient

conditions under which penalized SDP is tight.
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3.1 Theoretical analysis

The following theorem guarantees that if x̂ is feasible and satisfies the LICQ regularity
condition (in Sect. 2), then the solution of (5a)–(5d) is guaranteed to be feasible for the
QCQP (1a)–(1c) for an appropriate choice of η.

Theorem 1 Let x̂ be a feasible point for the QCQP (1a)–(1b) that satisfies the LICQ condition.
For sufficiently large η > 0, the SDP (5a)–(5d) has a unique optimal solution (

∗
x,

∗
X) such

that
∗
X = ∗

x
∗
x�. Moreover,

∗
x is feasible for (1a)–(1c) and satisfies q0(

∗
x) ≤ q0(x̂).

Proof The proof is given in Sect. 3.2. ��

If x̂ is not feasible, but satisfies a generalized LICQ regularity condition, introduced below,
and is close enough to the feasible set F , then the penalization is still tight for large enough
η > 0. This result is described formally in Theorem 2. First, we define a distance measure
from an arbitrary point in R

n to the feasible set of the problem.

Definition 3 (Distance Function) The distance function dF : Rn → R is defined as

dF (x̂) � min{‖x − x̂‖2 | x ∈ F}. (6)

Definition 4 (Generalized LICQ Condition) For every x̂ ∈ R
n , the set of quasi-binding

constraints is defined as

B̂ � E ∪
{

k ∈ I
∣∣∣∣ qk(x̂) + ‖∇qk(x̂)‖2dF (x̂) + ‖∇2qk(x̂)‖2

2
dF (x̂)2 ≥ 0

}
· (7)

The point x̂ is said to satisfy the GLICQ condition if the rows of JB̂(x̂) are linearly inde-
pendent. Moreover, the sensitivity function s : Rn → R is defined as

s(x̂) �
{

σmin(JB̂(x̂)) if x̂ satisfies GLICQ
0 otherwise,

(8)

where σmin(JB̂(x̂)) denotes the smallest singular value of JB̂(x̂).

Observe that if x̂ is feasible, then dF (x̂) = 0, and GLICQ condition reduces to the LICQ
condition. Moreover, GLICQ is satisfied if and only if s(x̂) > 0.

The next definition introduces the notion of matrix pencil corresponding to the QCQP
(1a)–(1c), which will be used as a sensitivity measure.

Definition 5 (Pencil Norm) For the QCQP (1a)–(1c), define the corresponding matrix pencil
P : R|I| × R

|E| → Sn as follows:

P(γ ,μ) �
∑

k∈I
γk Ak +

∑

k∈E
μk Ak . (9)

Moreover, define the pencil norm ‖P‖2 as
‖P‖2 � max

{‖P(γ ,μ)‖2
∣∣ ‖γ ‖22 + ‖μ‖22 = 1

}
, (10)

which is upperbounded by
√∑

k∈I∪E ‖Ak‖22 .
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Theorem 2 Let x̂ ∈ R
n satisfy the GLICQ condition for the QCQP (1a)–(1b), and assume

that

dF (x̂) <

[
1 +

(
n − 1

r − 1

)]−1 s(x̂)

2‖P‖2 , (11)

where
(n−1

r−1

)
denotes the binomial coefficient “n − 1 choose r − 1” and the distance function

dF (·), sensitivity function s(·) and pencil norm ‖P‖2 are given by Definitions 3, 4 and 5,
respectively.

If η is sufficiently large, then the convex problem (5a)–(5d) has a unique optimal solution
(

∗
x,

∗
X) such that

∗
X = ∗

x
∗
x� and

∗
x is feasible for (1a)–(1c).

Proof The proof is given in Sect. 3.2. ��
The motivation behind Theorem 2 is to show that even an infeasible initial point can be

used to produce feasible points. It should be noted that, in general, it is computationally hard
to calculate the exact distance from F and to verify GLICQ as a consequence. However,
local search methods can be used in practice to find a local solution for (6), resulting in upper
bounds on feasibility distance. In Sect. 4, we use this simple technique to verify condition
(11) for several benchmark cases. It should be noted that despite the theoretical insights
offered by Theorems 1 and 2, they do not provide any practical bounds for η. Additionally,
this section is primarily focused on offering a non-constructive proof for the existence of η

and we leave the derivation of analytical bounds for future work. In Sect. 4, we demonstrate
that for real-world problems, appropriate choices of η can be found via a simple bisection
technique.

3.2 Proof of the theorems

The rest of this section is devoted to proving Theorems 1 and 2. To this end, it is convenient
to consider the following optimization problem:

minimize
x∈Rn

q0(x) + η‖x − x̂‖22 (12a)

s.t. qk(x) ≤ 0, k ∈ I (12b)

qk(x) = 0, k ∈ E . (12c)

Observe that the problem (5a)–(5d) is a convex relaxation of (12a)–(12c) and this is the
motivation behind its introduction.

Consider an α > 0 for which the inequality

|q0(x)| ≤ α‖x − x̂‖22 + α, (13)

is satisfied for every x ∈ R
n . If η > α, then the objective function (12a) is lower bounded by

−α. Hence, if F is non-empty, then the optimal solution of (12a)–(12c) is attainable, i.e.,
there exists

∗
x ∈ F which satisfies

q0(
∗
x) ≤ q0(x)

for every x ∈ F . To prove the existence of α, assume that

α ≥ σmax

([
A0 b0
b�
0 −x̂�A0 x̂ − 2b�

0 x̂

])
σ−1
min

([
In −x̂

−x̂� 1
2 + x̂� x̂

])
(14a)
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α ≥ 2|x̂�A0 x̂ + 2b�
0 x̂ + c0| (14b)

then we have

|q0(x)| =
∣
∣
∣
[
x� 1

]
[
A0 b0
b�
0 −x̂�A0 x̂ − 2b�

0 x̂

] [
x
1

]
+ x̂�A0 x̂ + 2b�

0 x̂ + c0
∣
∣
∣ (15a)

≤ α
[
x� 1

]
[

In −x̂
−x̂� 1

2 + x̂� x̂

] [
x
1

]
+ α

2
(15b)

= α‖x − x̂‖22 + α (15c)

which concludes (13).
The next lemma shows that by increasing the penalty term η, the optimal solution

∗
x can

get as close to the initial point x̂ as dF (x̂). This lemma will later be used to show that
∗
x can

inherit the LICQ property from x̂.

Lemma 1 Given an arbitrary x̂ ∈ R
n and ε > 0, for sufficiently large η > 0, every optimal

solution
∗
x of the problem (12a)–(12c) satisfies

0 ≤ ‖ ∗
x − x̂‖2 − dF (x̂) ≤ ε. (16)

Proof Consider an optimal solution
∗
x. Due to Definition 3, the distance between x̂ and every

member of F is not less than dF (x̂), which concludes the left side of (16). Let xd be an
arbitrary member of the set {x ∈ F | ‖x − x̂‖2 = dF (x̂)}. Due to the optimality of

∗
x, we

have

q0(
∗
x) + η‖ ∗

x − x̂‖22 ≤ q0(xd) + η‖xd − x̂‖22. (17)

According to the inequalities (17) and (13), one can write

(η − α)‖ ∗
x − x̂‖22 − α ≤ (η + α)‖xd − x̂‖22 + α (18a)

⇒ ‖ ∗
x − x̂‖22 ≤ ‖xd − x̂‖22 + 2α

η − α
(1 + ‖xd − x̂‖22) (18b)

⇒ ‖ ∗
x − x̂‖22 ≤ dF (x̂)2 + 2α

η − α
(1 + dF (x̂)2), (18c)

which concludes the right side of (16), provided that η ≥ α + 2α(1 + dF (x̂)2)[ε2 +
2εdF (x̂)]−1. ��
Lemma 2 Assume that x̂ ∈ R

n satisfies the GLICQ condition for the problem (12a)–(12c).
Given an arbitrary ε > 0, for sufficiently large η > 0, every optimal solution

∗
x of the problem

satisfies

s(x̂) − s(
∗
x) ≤ 2dF (x̂)‖P‖2 + ε. (19)

Proof Let B̂ and
∗B denote the sets of quasi-binding constraints for x̂ and binding constraints

for
∗
x, respectively (based on Definition 4). Due to Lemma 1, for every k ∈ I \ B̂ and every

arbitrary ε1 > 0, we have

qk(
∗
x) − qk(x̂) = 2(Ak x̂ + bk)

�(
∗
x − x̂) + (

∗
x − x̂)�Ak(

∗
x − x̂)

≤ ‖∇qk(x̂)‖2‖ ∗
x − x̂‖2 + ‖Ak‖2‖ ∗

x − x̂‖22
≤ ‖∇qk(x̂)‖2dF (x̂) + ‖Ak‖2dF (x̂)2 + ε1 < −qk(x̂), (20)
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if η is sufficiently large, which yields
∗B ⊆ B̂. Let ν ∈ R

|B̂| be the left singular vector of
JB̂(

∗
x), corresponding to the smallest singular value. Hence

s(
∗
x) = σmin{J ∗B(

∗
x)} ≥ σmin{JB̂(

∗
x)} = ‖JB̂(

∗
x)�ν‖2 (21a)

≥ ‖JB̂(x̂)�ν‖2 − ‖[JB̂(x̂) − JB̂(
∗
x)]�ν‖2 (21b)

≥ σmin{JB̂(x̂)}‖ν‖2 − 2‖P‖2‖x̂ − ∗
x‖2‖ν‖2 (21c)

≥ s(x̂) − 2‖P‖2‖x̂ − ∗
x‖2 (21d)

≥ s(x̂) − 2dF (x̂)‖P‖2 − ε, (21e)

if η is large, which concludes the inequality (19). ��
In light of Lemma 2, if x̂ is GLICQ regular and relatively close to F , then

∗
x is LICQ

regular as well. This will be used next to prove the existence of Lagrange multipliers.

Lemma 3 Let
∗
x be an optimal solution of the problem (12a)–(12c), and assume that

∗
x is

LICQ regular. There exists a pair of dual vectors (
∗
γ ,

∗
μ) ∈ R

|I|
+ × R

|E| that satisfies the
following Karush–Kuhn–Tucker (KKT) conditions:

2(ηI + A0)(
∗
x − x̂) + 2(A0 x̂ + b0) + J (

∗
x)�[ ∗

γ �,
∗
μ�]� = 0, (22a)

∗
γkqk(

∗
x) = 0, ∀k ∈ I. (22b)

Proof Due to the LICQ condition, there exists a pair of dual vectors (
∗
γ ,

∗
μ) ∈ R

|I|
+ × R

|E|,
which satisfies the KKT stationarity and complementary slackness conditions. Due to sta-
tionarity, we have

0 = ∇x L(
∗
x,

∗
γ ,

∗
μ)/2

= η(
∗
x − x̂) + (A0

∗
x + b0) + P(

∗
γ ,

∗
μ)

∗
x +

∑

k∈I

∗
γkbk +

∑

k∈E

∗
μkbk

= (ηI + A0)(
∗
x − x̂) + (A0 x̂ + b0) + J (

∗
x)�[ ∗

γ �,
∗
μ�]�/2. (23)

Moreover, (22b) is concluded from the complementary slackness. ��
The next lemma bounds the Lagrange multipliers whose existence is proven previously.

This bound is helpful to prove that
∗
X = ∗

x
∗
x�.

Lemma 4 Consider an arbitrary ε > 0 and suppose x̂ ∈ R
n satisfies the inequality

s(x̂) > 2dF (x̂)‖P‖2. (24)

If η is sufficiently large, for every optimal solution
∗
x of the problem (12a)–(12c), there exists

a pair of dual vectors (
∗
γ ,

∗
μ) ∈ R

|I|
+ × R

|E| that satisfies the inequality

1

η

√
‖ ∗
γ ‖22 + ‖ ∗

μ‖22 ≤ 2dF (x̂)

s(x̂) − 2dF (x̂)‖P‖2 + ε (25)

as well as the Eqs. (22a) and (22b).

Proof Due to Lemma 3, there exists (
∗
γ ,

∗
μ) ∈ R

|I|
+ × R

|E| that satisfies the Eqs. (22a) and
(22b). Let τ � [ ∗

γ �,
∗
μ�]� and let

∗B be the set of binding constraints for
∗
x. Due to Eqs. (22a)

and (22b), one can write

2(ηI + A0)(
∗
x − x̂) + 2(A0 x̂ + b0) + J ∗B(

∗
x)�τ { ∗B} = 0. (26)
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Let φ � s(x̂) − 2dF (x̂)‖P‖2 and define

ε1 � φ × ε − 2η−1φ−1(‖A0 x̂ + b0‖2 + dF (x̂)‖A0‖2)
ε + 2 + 2η−1‖A0‖2 + 2φ−1dF (x̂)

· (27)

If η is sufficiently large, ε1 is positive and based on Lemmas 1 and 2, we have

‖τ‖2
η

= ‖τ { ∗B}‖2
η

≤ 2‖(ηI + A0)(
∗
x − x̂) + (A0 x̂ + b0)‖2

ησmin{J ∗B(
∗
x)}

≤ 2η‖ ∗
x − x̂‖2 + 2‖A0‖2‖ ∗

x − x̂‖2 + 2‖A0 x̂ + b0‖2
ηs(

∗
x)

≤ 2(dF (x̂) + ε1) + 2η−1[‖A0‖2(dF (x̂) + ε1) + ‖A0 x̂ + b0‖2]
s(x̂) − 2dF (x̂)‖P‖2 − ε1

= 2dF (x̂)

s(x̂) − 2dF (x̂)‖P‖2 + ε, (28)

where the last equality is a result of the Eq. (27). ��

The next two lemmas provide sufficient conditions for
∗
X = ∗

x
∗
x� with respect to Lagrange

multipliers that will be used later to prove Theorems 1 and 2.

Lemma 5 Consider an optimal solution
∗
x of the problem (12a)–(12c), and a pair of dual

vectors (
∗
γ ,

∗
μ) ∈ R

|I|
+ × R

|E| that satisfies the conditions (22a) and (22b). If the matrix
inequality

ηI + A0 + P(
∗
γ ,

∗
μ) 	Dr 0, (29)

holds true, then the pair (
∗
x,

∗
x

∗
x�) is the unique primal solution to the penalized SDP (5a)–

(5d).

Proof Let � ∈ S
+
n denotes the dual variable associated with the conic constraint (5d). Then,

the KKT conditions for the problem (5a)–(5d) can be written as follows:

∇x L̄(x, X, γ ,μ,�) = 2

(

�x − ηx̂ + b0 +
∑

k∈I

∗
γkbk +

∑

k∈E

∗
μkbk

)

= 0, (30a)

∇X L̄(x, X, γ ,μ,�) = ηI + A0 + P(γ ,μ) − � = 0, (30b)

γkqk(x) = 0, ∀k ∈ I (30c)

〈�, xx� − X〉 = 0, (30d)

where L̄ : Rn × Sn × R
|I| × R

|E| × Sn → R is the Lagrangian function, Eqs. (30a) and
(30b) account for stationarity with respect to x and X , respectively, and Eqs. (30c) and (30d)
are the complementary slackness conditions for the constraints (5b) and (5d), respectively.
Define

∗
� � ηI + A0 + P(

∗
γ ,

∗
μ). (31)

Due to Lemma 3, if η is sufficiently large,
∗
x and (

∗
γ ,

∗
μ) satisfy the Eqs. (22a) and (22b), which

yield the optimality conditions (30a)–(30d), if x = ∗
x, X = ∗

x
∗
x�, γ = ∗

γ ,μ = ∗
μ, and� = ∗

�.
Therefore, the pair (

∗
x,

∗
x

∗
x�) is a primal optimal points for the penalized SDP (5a)–(5d). Note

that due to positive semidefiniteness of
∗
�, the condition (30d) implies xx� − X = 0.
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Since the KKT conditions hold for every pair of primal and dual solutions, we have

∗
x = ∗

�−1

(

ηx̂ − b0 −
∑

k∈I

∗
γkbk −

∑

k∈E

∗
μkbk

)

(32)

and
∗
X = ∗

x
∗
x�, according to the Eqs. (30a) and (30d), respectively, which implies the unique-

ness of the solution. ��
Lemma 6 Consider an optimal solution

∗
x of the problem (12a)–(12c), and a pair of dual

vectors (
∗
γ ,

∗
μ) ∈ R

|I|
+ × R

|E| that satisfies the conditions (22a) and (22b). If the inequality,

1

η

√
‖ ∗
γ ‖22 + ‖ ∗

μ‖22 <

(
n − 1

r − 1

)−1 1

‖P‖2 − ‖A0‖2
η‖P‖2 (33)

holds true, then the pair (
∗
x,

∗
x

∗
x�) is the unique primal solution to the penalized SDP (5a)–

(5d).

Proof Based on Lemma 5, it suffices to prove the conic inequality (29). Define

K � A0 + P(
∗
γ ,

∗
μ). (34)

It follows that

‖K‖2 ≤ ‖A0‖2 +
∑

k∈I

∗
γk‖Ak‖2 +

∑

k∈E

∗
μk‖Ak‖2, (35a)

≤ ‖A0‖2 + ‖P‖2
√

‖ ∗
γ ‖22 + ‖ ∗

μ‖22 . (35b)

Let R be the set of all r -member subsets of {1, 2, . . . , n}. Hence,
ηI + K =

∑

K∈R
I{K}� RK I{K}, (36)

where

RK =
(

n − 1

r − 1

)−1

[ηI{K,K} + K {K,K}]. (37)

Due to the inequalities (33) and (35), we have RK 	 0 for every K ∈ R, which proves that
ηI + K 	Dr 0. ��
Proof of Theorem 2 Let

∗
x be an optimal solution of the problem (12a)–(12c). According to

the assumption (11), the inequality (24) holds true, and due to Lemma 4, if η is sufficiently
large, there exists a corresponding pair of dual vectors (

∗
γ ,

∗
μ) that satisfies the inequality

(25). Now, according to the inequality (11), we have

2dF (x̂)

s(x̂) − 2dF (x̂)‖P‖2 ≤ 1
(n−1

r−1

)‖P‖2
(38)

and therefore (25) concludes (33). Hence, according to Lemma 6, the pair (
∗
x,

∗
x

∗
x�) is the

unique primal solution to the penalized SDP (5a)–(5d). ��
Proof of Theorem 1 If x̂ is feasible, then dF (x̂) = 0. Therefore, the tightness of the penal-
ization for Theorem 1 is a direct consequence of Theorem 2. Denote the unique optimal
solution of the penalized SDP as (

∗
x,

∗
x

∗
x�). Then it is straightforward to verify the inequality

q0(
∗
x) ≤ q0(x̂) by evaluating the objective function (5a) at the point (x̂, x̂ x̂�). ��
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3.3 Sequential penalization procedure

In practice, the penalized SDP (5a)–(5d) can be initialized by a point that may not satisfy
the conditions of Theorem 1 or Theorem 2 as these conditions are only sufficient, but not
necessary. If the chosen initial point x̂ does not result in a tight penalization, the penalized
SDP (5a)–(5d) can be solved sequentially by updating the initial point until a feasible and
near-optimal point is obtained. This heuristic procedure is described in Algorithm 1.

Algorithm 1 Sequential Penalized Conic Relaxation.
initiate {qk }k∈{0}∪I∪E , r ≥ 2, x̂ ∈ R

n , and the fixed parameter η > 0
while stopping criterion is not met do

solve the problem (5a)–(5d) with the initial point x̂ to obtain (
∗
x,

∗
X)

set x̂ ← ∗
x

end while
return ∗

x

According to Theorem 2, once x̂ is close enough to the feasible set F , the penalization
becomes tight, i.e., a feasible solution

∗
x is recovered as the unique optimal solution to (5a)–

(5d).Afterwards, in the subsequent iterations, according toTheorem1, feasibility is preserved
and the objective value does not increase. Note that Theorems 1 and 2 do not guarantee the
existence of a global η that works for every member of the sequence generated by Algorithm
1. For this reason, we regard this procedure as a heuristic.

The following example illustrates the application of Algorithm 1 for a polynomial opti-
mization.

Example 1 Consider the following three-dimensional polynomial optimization:

minimize
a,b,c∈R a (39a)

s.t. a5 − b4 − c4 + 2a3 + 2a2b − 2ab2 + 6abc − 2 = 0 (39b)

To derive a QCQP reformulation of the problem (39a), (39b), we consider a variable x ∈ R
8,

whose elements account for the monomials a, b, c, a2, b2, c2, ab, and a3, respectively. This
leads to the following QCQP:

minimize
x∈R8,

x1 (40a)

s.t. x4x8 − x25 − x26 + 2x1x4 + 2x2x4 − 2x1x5 + 6x3x7 − 2 = 0 (40b)

x4 − x21 = 0 (40c)

x5 − x22 = 0 (40d)

x6 − x33 = 0 (40e)

x7 − x1x2 = 0 (40f)

x8 − x1x4 = 0 (40g)

The transformation of the polynomial optimization to QCQP is standard and it is described
in “Appendix A” for completeness. The global optimal objective value of the above QCQP
equals −2.0198 and the lower-bound, offered by the standard SDP relaxation equals
−89.8901. In order to solve the above QCQP, we run Algorithm 1, equipped with the SDP
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relaxation (no additional valid inequalities) and penalty term η = 0.025. The trajectory with
three different initializations x̂1 = [0, 0, 0, 0, 0, 0, 0]�, x̂2 = [−3, 0, 2, 9, 0, 4, 0, 27]�, and
x̂3 = [0, 4, 0, 0, 16, 0, 0, 0]� are given in Table 1 and shown in Fig. 1. In all three cases,
the algorithm achieves feasibility in 1–8 rounds. Moreover, a feasible solution with less than
0.2% gap from global optimality is attained within 10 rounds in all three cases. The example
illustrates a case for which the heuristic Algorithm 1 is not sensitive to the choice of initial
point.

4 Numerical experiments

In this section we describe numerical experiments to test the effectiveness of the sequential
penalization method for non-convex QCQPs from the library of quadratic programming
instances (QPLIB) [29] as well as large-scale system identification problems [25].

4.1 QPLIB problems

The experiments are performed on a desktop computer with a 12-core 3.0GHz CPU and
256GB RAM. MOSEK v8.1 [4] is used through MATLAB 2017a to solve the resulting
SDPs. The size and number of constraints for each QPLIB instance are reported in Table 2.

4.1.1 Sequential penalization

Tables 3, 4, 5, and 6 report the results of Algorithm 1 for 2× 2 SDP, 2× 2 SDP+RLT, SDP,
and SDP+RLT relaxations, respectively. The following valid inequalities are imposed on
all of the convex relaxations:

Xkk − (x lbk + xubk )xk + x lbk xubk ≤ 0, ∀k ∈ {1, . . . , n} (41a)

Xkk − (xubk + xubk )xk + xubk xubk ≥ 0, ∀k ∈ {1, . . . , n} (41b)

Xkk − (x lbk + x lbk )xk + x lbk x lbk ≥ 0, ∀k ∈ {1, . . . , n} (41c)

where xlb, xub ∈ R
n are given lower and upper bounds on x. Problem (4a)–(4d) is solved

with the following four settings:

– 2 × 2 SDP relaxation r = 2 and valid inequalities (41a)–(41c).
– 2 × 2 SDP+RLT relaxation V = H × H and r = 2.
– SDP relaxation r = n and valid inequalities (41a)–(41c).
– SDP+RLT relaxation V = H × H and r = n,

where V and H is defined in “Appendix B”. The assumption V = H × H means that every
pairs of linear constraints are used to generate RLT inequalities. Let (

∗
x,

∗
X) denote the optimal

solution of the convex relaxation (4a)–(4d). We use the point x̂ = ∗
x as the initial point of the

algorithm.
The penalty parameter η is chosen via bisection as the smallest number of the formα×10β ,

which results in a tight penalization during the first six rounds, where α ∈ {1, 2, 5} and β is
an integer. In all of the experiments, the value of η has remained static throughout Algorithm
1. Denote the sequence of penalized SDP solutions obtained by Algorithm 1 as

(x(1), X(1)), (x(2), X (2)), (x(3), X (3)), . . .
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Fig. 1 Trajectory of Algorithm 1 for three different initializations. The yellow surface represents the feasible
set and the blue, red and green points correspond to x̂1, x̂2 and x̂3, respectively. (Color figure online)

The smallest i such that

tr{X (i) − x(i)(x(i))�} < 10−7 (42)

is denoted by i feas, i.e., it is the number of rounds that Algorithm 1 needs to attain a tight
penalization.

Moreover, the smallest i such that

q0(x(i−1)) − q0(x(i))

|q0(x(i))| ≤ 5 × 10−4 (43)

is denoted by i stop, and UB � q0(x(i stop)). The following formula is used to calculate the
final percentage gaps from the optimal costs reported by the QPLIB library:

GAP(%) = 100 × qstop
0 − q0(xQPLIB)

|q0(xQPLIB)| . (44)

Moreover, t(s) denotes the cumulative solver time in seconds for the i stop rounds. Our results
are compared with BARON [76] and COUENNE [10] by fixing the maximum solver times
equal to the accumulative solver times spent byAlgorithm1.We ranBARONandCOUENNE
through GAMS v25.1.2 [30]. The resulting lower bounds, upper bounds and GAPs (from the
Eq. (44)) are reported in Tables 3, 4, 5, and 6.

As demonstrated in the tables, penalized 2 × 2 SDP+RLT, SDP, and SDP+RLT have
successfully obtained feasible points within 4% gaps from QPLIB solutions. Sequential
SDP requires a smaller number of rounds compared to sequential 2 × 2 SDP to meet the
stopping criterion (43). Using any of the relaxations, the infeasible initial points can be
rounded to a feasible point with only two round of Algorithm 1 and all relaxations arrive
at satisfactory gaps percentages. As demonstrated by the tables, the proposed sequential
approach exhibits reasonable performance in comparison with the non-convex optimizers
BARON and COUENNE.
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Fig. 2 Convergence of sequential
2 × 2 SDP, 2 × 2 SDP+RLT,
SDP, and SDP+ ,RLT for inst.
1507

Figure 2, shows the convergence of Algorithm 1 for cases 1507. The choice of η for all
curves are taken from the corresponding rows of the Tables 3, 4, 5, and 6.

4.1.2 Choice of the penalty parameter �

In this experiment the sensitivity of different penalizationmethods to the choice of the penalty
parameter η is tested. To this end, one round of the penalized SDP (5a)–(5d) is solved for a
wide range of η values. The benchmark case 1143 is used for this experiment. If η is small,
none of the proposed penalized SDPs are tight for the case 1143. As the value of η increases,
the feasibility violation tr{ ∗

X − ∗
x

∗
x�} abruptly vanishes once crossing η = 1.9, η = 7.7,

and η = 19.6, for the penalized 2× 2 SDP, SDP and SDP+RLT, respectively. Remarkably,
if

∗
xSDP+RLT is used as the initial point and η � 2, then the penalized SDP+RLT (5a)–(5d)

produces a feasible point for the benchmark case 1143 whose objective value is within 0.2%
of the reported optimal cost q0(xQPLIB).

Additionally, Fig. 3 shows the result of one round penalized SDP for a wide range of η

values, on cases QPLIB 1423, 1675, and 1967. As demonstrated by the figures, the resulting
objective values of penalized SDP grow slowly beyond certain limits of η. This indicates that
the proposed approach is not very sensitive to the choice of η and a wide range of η values
can be used for penalization.

4.2 Large-scale system identification problems

Following [25], this case study is concerned with the problem of identifying the parameters
of linear dynamical systems given limited observations and non-uniform snapshots of state
vectors. Optimization is an important tool for problems involving dynamical systems such
as the identification of transfer functions and control synthesis [26,39,69,78,79]. One of
these computationally-hard problems is system identification based solely on data (without
intrusive means) which has been widely studied in the literature of control [67,70]. In this
case study, we cast system identification as a non-convex QCQP and evaluate the ability of
the proposed penalized SDP in solving very large scale instances of this problem.

Consider a discrete-time linear system described by the system of equations:

z[τ + 1] = Az[τ ] + Bu[τ ] + w[τ ] τ = 1, 2, . . . , T − 1 (45a)

where

– {z[τ ] ∈ R
n}T

τ=1 are the state vectors that are known at times τ ∈ {τ1, . . . , τo},
– {u[τ ] ∈ R

m}T
τ=1 are the known control command vectors.
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2x2 SDP
2x2 SDP+RLT
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2x2 SDP+RLT
2x2 SDP
SDP
SDP+RLT
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Fig. 3 The effect of η on the performance of penalized 2 × 2 SDP, 2 × 2 SDP+RLT, SDP, and SDP+RLT
for cases QPLIB 1423, 1675, and 1967

– A ∈ R
n×n and B ∈ R

n×m are fixed unknown matrices, and
– {w[τ ] ∈ R

n}T
τ=1 account for the unknown disturbance vectors.

Our goal is to estimate the pair of ground truth matrices ( Ā, B̄), given a sample trajec-
tory of the control commands {ū[τ ] ∈ R

n}T
τ=1 and the incomplete state vectors { z̄[τ ] ∈

R
n}τ∈{τ1,...,τo}. To this end, we employ the minimum least absolute value estimator which

amounts to the following QCQP:

minimize
{ y[τ ]∈Rn}T −1

τ=1
{z[τ ]∈Rn}T

τ=1
A∈Rn×n

B∈Rn×m

T −1∑

τ=1

1�
n y[τ ] (46a)

subject to y[τ ] ≥ +z[τ + 1] − Az[τ ] − Bū[τ ] τ ∈ {1, 2, . . . , T − 1}, (46b)

y[τ ] ≥ −z[τ + 1] + Az[τ ] + Bū[τ ] τ ∈ {1, 2, . . . , T − 1}, (46c)

z[τ ] = z̄[τ ] τ ∈ {τ1, . . . , τo}. (46d)

For every τ ∈ {1, 2, . . . , T −1}, the auxiliary variable y[τ ] ∈ R
n accounts for |z[τ +1]−

Az[τ ] − Bū[τ ]|. This relation is imposed through the pair of constraints (46b) and (46c).
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Fig. 4 Convergence of the
sequential penalized 2 × 2 SDP
for large-scale system
identification with different
disturbance levels
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The problem (46a)–(46d), can be cast in the form of (1a)–(1c), with respect to the vector

x � [z[1]�, . . . , z[T ]�, vec{A}�, α y[1]�, . . . , α y[T − 1]�, α vec{B}�], (47)

where α is a preconditioning constant. To solve the resulting problem, we use the sequential
Algorithm 1 equipped with the 2 × 2 SDP relaxation and the initial point x̂ = 0.

We consider system identification problems with n = 25, m = 20, T = 500 and o = 400.
In every experiment, {τ1, . . . , τo} is a uniformly selected subset of {1, 2, . . . , T }. The resulting
QCQP variable x is 23605-dimensional and the problem is 16100-dimensional if we exclude
the known state vectors { z̄[τ ] ∈ R

n}τ∈{τ1,...,τo}. Due to sparsity of theQCQP (46a)–(46d) each
round of the penalized 2×2 SDP is solvedwithin 30min, by omitting the elements of the lifted
variable X that do not appear in the objective and constraints. All of the convex programs are
solved using MOSEK v8.1 [4] through MATLAB 2017a and on a desktop computer with a
12-core 3.0GHz CPU and 256GB RAM. Due to the sheer size of this problem, we were only
able to solve instances with T ≤ 70 using BARON and COUENNE non of which resulted
in successful recovery of the unknown matrices due to limited data points.

The ground truth values are chosen as follows:

– The elements of Ā ∈ R
25×25 have zero-mean Gaussian distribution and the matrix is

scaled in such a way that the largest singular value is equal to 0.5.
– Every element of B̄ ∈ R

25×20, {ū[τ ] ∈ R
20}T

τ=1 and z̄[1] ∈ R
25 have standard normal

distribution.
– The elements of {w̄[τ ] ∈ R

25}T −1
τ=1 have independent zero-mean Gaussian distribution

with the standard deviation σ ∈ {0.01, 0.02, 0.05, 0.10}.
For each experiment, we ran Algorithm 1 for 10 rounds. The preconditioning and penalty
terms are set to α = 10−3 and η = 40, respectively.

For each σ ∈ {0.01, 0.02, 0.05, 0.10}, we have run 10 random experiments resulting in the
average recovery errors 0.0005, 0.0010, 0.0026, and 0.0062, respectively, for 1

n ‖ Ā−A(10)‖F ,

and the average errors 0.0014, 0.0028, 0.0070, and 0.0141, respectively, for (mn)− 1
2 ‖B̄ −

B(10)‖F . In all of the trials, a feasible point is obtained in the first round of Algorithm 1.
Figure 4 illustrates the convergence behavior of the objective functions for one of the trials
for each disturbance level.

5 Conclusions

This paper introduces a penalization approach for constructing feasible and near-optimal
solutions to non-convex quadratically-constrained quadratic programming (QCQP) prob-
lems. Given an arbitrary initial point (feasible or infeasible) for the original QCQP, penalized
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semidefinite programs are formulated by adding a linear term to the objective. A generalized
linear independence constraint qualification (LICQ) condition is introduced as a regularity
criterion for initial points, and it is shown that the solution of penalized SDP is feasible
for QCQP if the initial point is regular and close to the feasible set. We show that the pro-
posed penalized SDPs can be solved sequentially in order to improve the objective of the
feasible solution. Numerical experiments on QPLIB benchmark cases demonstrate that the
proposed sequential approach compares favorably with non-convex optimizers BARON and
COUENNE.Moreover, the scalability of the proposedmethod is demonstrated on large-scale
system identification problems.

Acknowledgements The authors are grateful to GAMS Development Corporation for providing them with
unrestricted access to a full set of solvers throughout the project.

A Application to polynomial optimization

In this section,we show that the proposed penalized SDP approach can be used for polynomial
optimization as well. A polynomial optimization problem is formulated as

minimize
x∈Rn

u0(x) (48a)

s.t. uk(x) ≤ 0, k ∈ I (48b)

uk(x) = 0, k ∈ E, (48c)

for every k ∈ {0} ∪ I ∪ E , where each function uk : Rn → R is a polynomial of arbitrary
degree. Problem (48a)–(48c) can be reformulated as a QCQP of the form:

minimize
x∈Rn , y∈Ro

w0(x, y) (49a)

s.t. wk(x, y) ≤ 0, k ∈ I (49b)

wk(x, y) = 0, k ∈ E (49c)

vi (x, y) = 0, i ∈ O, (49d)

where y ∈ R
|O| is an auxiliary variable, and v1, . . . , v|O| and w0, w1, . . . , w|{0}∪I∪E| are

quadratic functions with the following properties:

– For every x ∈ R
n , the function v(x, ·) : R|O| → R

|O| is invertible,
– If v(x, y) = 0n , then wk(x, y) = uk(x) for every k ∈ {0} ∪ I ∪ E .

Based on the above properties, there is a one-to-one correspondence between the feasible sets
of (48a)–(48c) and (49a)–(49d). Moreover, a feasible point (

∗
x,

∗
y) is an optimal solution to

the QCQP (49a)–(49d) if and only if
∗
x is an optimal solution to the polynomial optimization

problem (48a)–(48c).

Theorem 3 [51] Suppose that {uk}k∈{0}∪I∪E are polynomials of degree at most d, consisting
of m monomials in total. There exists a QCQP reformulation of the polynomial optimization
(48a)–(48c) in the form of (49a)–(49d), where |O| ≤ mn

(�log2(d)� + 1
)
.

The next proposition shows that the LICQ regularity of a point x̂ ∈ R
n is inherited by the

corresponding point (x̂, ŷ) ∈ R
n × R

o of the QCQP reformulation (49a)–(49d).

Proposition 1 Consider a pair of vectors x̂ ∈ R
n and ŷ ∈ R

|O| satisfying v(x̂, ŷ) = 0n. The
following two statements are equivalent:
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1. x̂ is feasible and satisfies the LICQ condition for the polynomial optimization problem
(48a)–(48b).

2. (x̂, ŷ) is feasible and satisfies the LICQ condition for the QCQP (49a)–(49d).

Proof From u(x̂) = w(x̂, ŷ) and the invertiblity assumption for v(x̂, ·), we have
∂u(x̂)

∂x
=

[
∂w(x̂, ŷ)

∂x
∂w(x̂, ŷ)

∂ y

] [

I −
(

∂v(x̂, ŷ)
∂ y

)−1
∂v(x̂, ŷ)

∂x

]�

= ∂w(x̂, ŷ)
∂x

− ∂w(x̂, ŷ)
∂ y

(
∂v(x̂, ŷ)

∂ y

)−1
∂v(x̂, ŷ)

∂x
. (50)

Therefore, JPO(x̂) = ∂u(x̂)
∂x is equal to the Schur complement of

JQCQP(x̂, ŷ) =
[

∂w(x̂, ŷ)
∂x

∂w(x̂, ŷ)
∂ y

∂v(x̂, ŷ)
∂x

∂v(x̂, ŷ)
∂ y

]

, (51)

which is the Jacobian matrix of the QCQP (49a)–(49d) at the point (x̂, ŷ). As a result, the
matrix JPO(x̂) is singular if and only if JQCQP(x̂, ŷ) is singular. ��

B Reformulation-linearization technique

This appendix covers the reformulation-linearization technique (RLT) of Sherali and Adams
[72] as an approach to strengthen convex relaxations of the form (4a)–(4d) in the presence
of affine constraints. Define L as the set of affine constrains in the QCQP (1a)–(1c), i.e.,
L � {k ∈ I ∪ E | Ak = 0n×n}. Define also

H � [B{L ∩ I}�, B{L ∩ E}�,−B{L ∩ E}�]�, (52a)

h � [c{L ∩ I}� , c{L ∩ E}� ,−c{L ∩ E}� ]�, (52b)

where B � [b1, . . . , b|I∩E|]� and c � [c1, . . . , c|I∩E|]�. Every x ∈ F satisfies

Hx + h ≤ 0, (53)

and, as a result, all elements of the matrix

Hxx�H� + hx�H� + Hxh� + hh� (54)

are non-negative if x is feasible. Hence, the inequality

e�
i V (x, xx�)e j ≥ 0 (55)

holds true for every x ∈ F and (i, j) ∈ H × H, where V : Rn × Sn → S|H| is defined as

V (x, X) � HXH� + hx�H� + Hxh� + hh�, (56)

H � {1, . . . , |L ∩ I| + 2|L ∩ E|}, and e1, . . . , e|H| denote the standard bases in R
|H|.

This leads to a strengthened relaxation of QCQP (1a)–(1c):

minimize
x∈Rn ,X∈Sn

q̄0(x, X) (57a)

s.t. q̄k(x, X) ≤ 0, k ∈ I (57b)

q̄k(x, X) = 0, k ∈ E (57c)
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X − xx� �Cr 0 (57d)

e�
i V (x, X)e j ≥ 0, (i, j) ∈ V (57e)

where V ⊆ H × H is a selection of RLT inequalities.
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