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Abstract
We give a 1.488-approximation for the classic scheduling
problem of minimizing total weighted completion time on
unrelated machines. This is a considerable improvement
on the recent breakthrough of (1.5 − 10−7)-approximation
(STOC 2016, Bansal-Srinivasan-Svensson) and the follow-
up result of (1.5−1/6000)-approximation (FOCS 2017, Li).
Bansal et al. introduced a novel rounding scheme yielding
strong negative correlations for the first time and applied
it to the scheduling problem to obtain their breakthrough,
which resolved the open problem if one can beat out the
long-standing 1.5-approximation barrier based on indepen-
dent rounding. Our key technical contribution is in achieving
significantly stronger negative correlations via iterative fair
contention resolution, which is of independent interest. Pre-
viously, Bansal et al. obtained strong negative correlations
via a variant of pipage type rounding and Li used it as a black
box.

1 Introduction
The unrelated machines setting is a classic scheduling model
that has been widely used to model fully heterogeneous
parallel machines. In this setting, there is a set M of m
machines and a set J of n jobs to be scheduled on the
machines. Machines are unrelated in the sense that each
job j ∈ J has an arbitrary size/processing time pij on each
machine i ∈ M. Further, each job j has weight wj .1 In
this paper we consider non-preemptive—and therefore non-
migratory—scheduling, which means that each job j must
be executed without interruption on one of the machines.
In this paper we seek to optimize one of the most popular
objectives, namely minimizing total weighted completion
time, i.e.,

∑
j∈J wjCj where Cj denotes job j’s completion
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1We can handle more general weights wij , which depend on machines,

but we assume each job’s weight is the same on all machines following the
convention.

time.
The problem we consider, denoted as R||

∑
j wjCj

using the common three-field notation, is known to be
strongly NP-hard and APX-hard [22]. For this problem,
more than fifteen years ago, Schulz and Skutella [33] gave
an 1.5 + ε-approximation based on a time indexed LP.
Later, Skutella [36] and Sethuraman and Squillante [35]
gave 1.5-approximations based on novel convex program-
ming. It had been a long-standing open problem whether
there exists a better than 1.5-approximation for the problem
[13, 33, 28, 40, 34] until it was recently answered by Bansal
et al. [8] in the affirmative.

The breakthrough by Bansal et al. had two important
technical ingredients. First they introduced a novel SDP
(semi-definite programming) to capture the pairwise inter-
action between jobs. Intuitively, this is important as the
weighted completion time objective is not linear in job sizes.
This is because a job j′ can delay another job j if j′ starts
its execution before j on the same machine. Another con-
tribution was developing a novel rounding scheme. All the
aforementioned previous works used an independent round-
ing that randomly assigns each job j to machine i with prob-
ability xij , which is obtained by solving linear or convex
programming. Since the 1.5-approximation factor is the best
one can hope for using independent rounding, they had to de-
velop a new rounding scheme. Their rounding not only en-
sures negative correlation between any pair of jobs assigned
to the same machine but also ensures that any pair of jobs
grouped together on the same machine subject to a capacity
constraint are strongly negatively correlated. Their round-
ing was based on a variant of pipage style rounding. Us-
ing a SDP relaxation and the new rounding with a delicate
grouping of jobs, they were able to obtain a 1.5 − 10−7-
approximation.

Later, Li observed that a time-indexed LP can be used
instead of a SDP [31]. A time-indexed LP (fractionally)
encodes when each job starts and ends on each machine.
Using the special structure of the time-indexed LP solution,
he was able to use Bansal et al.’s strong negative correlation
rounding with a different grouping and obtained a better
1.5− 1/6000-approximation.

Up to date, the only way to obtain a better than 1.5-
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approximation for R||
∑
j wjCj has been based on using the

novel dependent rounding scheme by Bansal et al., which
introduced the notion of strong negative correlations for the
first time.

1.1 Our Results

THEOREM 1.1. For minimizing total weighted completion
time on unrelated machines, R||

∑
j wjCj , there exists a

randomized 1.488-approximation.

As mentioned, this is a considerable improvement over
the previous approximation ratios, 1.5 − 10−7 and 1.5 −
1/6000 if we measure the improvement by the margin over
the 1.5-approximations [36, 35] that are based on indepen-
dent rounding. The improvement primarily comes from our
new randomized dependent rounding that achieves strong
negative correlations. We formally state what our random-
ized rounding guarantees as follows. We defer to Section 1.3
an overview of how we apply this theorem to R||

∑
j wjCj ,

which is similar at a high-level to how Li [31] applied Bansal
et al.’s strong negative correlation rounding to the same
scheduling problem.

THEOREM 1.2. Suppose we are given a setM of machines
and a set J of jobs together with a fractional assignment
{xij}i∈M,j∈J of jobs to machines (meaning that job j is
assigned to machine i by xij) such that xij ∈ [0, 1] for all
i ∈ M, j ∈ J and

∑
i∈M xij = 1 for all j ∈ J . For each

machine i ∈ M, select any family Gi of disjoint subsets of
jobs such that

∑
j∈G xij ≤ 1 for allG ∈ Gi. Then, there is a

randomized rounding algorithm that achieves the following
properties:

1. (Feasible Integer Assignment) Each job j ∈ J is
assigned to exactly one machine i ∈ M, which is
denoted as i← j.

2. (Preserving Marginal Probabilities) For every i ∈ M
and j ∈ J , Pr[i← j] = xij .

3. (Negative Correlation) For every i ∈ M and j 6= j′ ∈
J such that no G ∈ Gi has j and j′ simultaneously,
Pr[i← j ∧ i← j′] ≤ xijxij′

4. (Strong Negative Correlation2) For every i ∈ M and
j 6= j′ ∈ J such that j, j′ ∈ G for some G ∈ Gi,
Pr[i ← j ∧ i ← j′] ≤ 1

1+e (exij + exij′ )xijxij′ ≤
xijxij′ .

The algorithm terminates in O(mn log n) time in expecta-
tion and w.h.p.

2As noted in [8], it is impossible to impose strong negative correlation
on every pair of jobs; thus, it was suggested to obtain strong negative
correlations only between jobs in the same group.

The theorem states the properties our randomized
rounding guarantees when rounding a fractional assignment
of jobs to machines to an integer assignment. The first prop-
erty says the rounding always outputs a feasible integer as-
signment when it terminates. The second property ensures
that each job j is assigned to machine i with probability ex-
actly xij , thus preserving the marginal probabilities. The
third property says that two jobs j 6= j′ that are not grouped
together on machine i are assigned to the same machine i
with probability at most xijxij′ ; thus, the assignments are
negatively correlated. All these properties can be achieved
by simple independent rounding.

The last property, which is most interesting, says that for
any two jobs grouped together on machine i, the probability
they are simultaneously assigned to machine i is at most
exp(xij)+exp(xij′ )

e+1 xijxij′ ≤ xijxij′ as xij + xij′ ≤ 1. So, if
xij +xij′ is close to 1, the theorem doesn’t guarantee strong
negative correlation. However, it seems that we need strong
negative correlation only when xij and xij′ are sufficiently
small, as will be discussed shortly. In the best scenario, we
have limxij ,xij′→0

exp(xij)+exp(xij′ )

e+1 = 2
e+1 < 0.5379.

We note that Theorem 1.2 is identical to Theorem 1.2 in
[8] except that they have 107

108xijxij′ instead of 1
1+e (exij +

exij′ )xijxij′ as the upper bound of the fourth property. So,
they have strong negative correlations regardless of value of
xij + xij′ . However, as alluded above, Bansal et al. grouped
j and j′ together on machine i only when xij , xij′ ≤ 1/10
and Li [31] did only when xij , xij′ ≤ 1/100. Under their
grouping of jobs, the coefficient of xijxij′ in the fourth
property of Theorem 1.2 becomes 2 exp(0.1)

e+1 ' 0.5945 and
2 exp(0.01)

e+1 ' 0.5433, respectively, meaning much stronger
negative correlations when the theorem is actually needed.

Our method to achieve strong negative correlations is
completely different from the method of Bansal et al. They
used a very clever variant of pipage rounding. In contrast,
we use a novel iterative fair contention resolution. While our
method is inspired by the fair contention resolution scheme
by Feige and Vondrák [17], our method is considerably
different and perhaps easier to understand, which we believe
enables the iterative application of fair contention resolution.
We discuss this in more detail in the following subsection.

1.2 Our Techniques We first discuss two previous works
that are most closely related to our new rounding (Theo-
rem 1.2).

A Variant of Pipage Rounding [8]. As mentioned before,
Bansal et al. [8] achieved the first strong negative correla-
tions using a variant of pipage rounding. Note that the frac-
tional assignment {xij}i∈M,j∈J described in Theorem 1.2
can be thought of as a fractional matching of a bipartite graph
over (M,J ) saturating all jobs in J . While there are many
variations and extensions [2, 3, 14, 18, 25], a typical pipage
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rounding works as follows: In every iteration, the rounding
finds a path or cycle only consisting of edges (i, j) with frac-
tional values, i.e., xij ∈ (0, 1). Then, it either maximally
increases the weight of all odd (even, resp.) edges and si-
multaneously decreases the weight of all even (odd, resp.)
edges by the same maximum margin—this choice is made
at random in a way to preserve the marginal probabilities.
This update makes at least one more edge have value either
0 or 1; and the value of such edges remains fixed afterwards.
Intuitively, two edges (i, j) and (i, j′) incident to the same
machine i are chosen with negative correlation because the
rounding never increases xij and xij′ simultaneously. To
obtain strong negative correlations additionally, in each iter-
ation Bansal et al. carefully chose paths of length 4 based on
a random 2-coloring of the edges.
Fair Contention Resolution [17]. While our theorem state-
ment is very similar to Bansal et al.’s corresponding theo-
rem in [8], our rounding scheme is completely different and
is inspired by the fair contention resolution by Feige and
Vondrák [17]. To obtain a better than 1−1/e-approximation
for the Maximum Submodular Welfare problem3 and related
problems, they developed a novel fair contention resolution
scheme: Suppose each player a claims item b independently
with probability qa,b. Now we need to assign each item
that was claimed by one or more players to exactly one of
them. They gave an elegant contention resolution scheme
where each player a gets an item b with probability equal
to 1−

∏
a′ (1−qa′,b)∑
a′ qa′,b

, conditioned on a having claimed b. In
the Maximum Submodular Welfare problem, if each player
claims a subest of items according to her own distribution,
the approximation guarantee was shown to be determined by
the lowest probability that the player receives item b condi-
tioned on her having claimed it. The contention resolution
scheme attempts to maximize the lowest probability across
all players and items; thus, the name fair contention resolu-
tion comes.

As an attempt to obtain a theorem like Theorem 1.2
using the fair contention resolution scheme, think of each
group G defined in Theorem 1.2 as a player. Then, we let
each group G ∈ Gi claim a job j ∈ G with probability xij
independently, hoping that this will help two different jobs
in G less likely be assigned to the same machine i with the
aid of the fair contention resolution. The resolution scheme
guarantees that j is assigned to machine i with probability
at least 1−

∏
i′ (1−xi′j)∑
i′ xi′j

xij ≥ (1 −
∏
i′ e
−xi′j )xij = (1 −

1/e)xij . This seems like a good sign as the contention
resolution preserves each group’s choice up to 1−1/e factor.

Unfortunately, there are several issues. First, their
rounding satisfies none of the desired properties claimed

3The goal of the Maximum Submodular Problem is to allocate items to
players so to maximize the total utility where each player has a monotone
submodular utility function.

in Theorem 1.2. It is not difficult to modify the scheme
to satisfy the first two properties. However, their rounding
scheme has no guarantees on the third and fourth properties.
At a high-level, their algorithm focuses on the best guarantee
on the first moment (recall that their goal was to give a better
than 1− 1/e-approximation for some assignment problems)
and their analysis is remarkably accurate. However, because
of the very reason their algorithm and analysis don’t seem
to readily extend to satisfy negative and strong negative
correlations.
Our Approach: Iterative Continuous Fair Contention
Resolution. We develop a new contention resolution scheme
of a continuous flavor which we believe is perhaps more
intuitive.4 Thus, while the analysis is non-trivial, we are
able to analyze its iterative application, thereby obtaining
Theorem 1.2.

Here, we sketch how we develop our fair contention res-
olution along with the intuitions behind. To gain some intu-
itions, let’s first focus on each job j. Instead of assigning j
to a machine i with probability xij as in independent round-
ing, we would like to have machine i claim job j, taking
other jobs into account, with probability xij in order to have
a better control on jobs assigned to each machine. Then, an
obvious issue is that job j may be claimed by multiple ma-
chines (or by no machine). Therefore, we need to resolve this
contention for job j among machines. Towards this end, we
generate Nij (lottery) tickets for job j on machine i, where
Nij ∼ Pois(xij), a Poisson distribution with mean value
xij . Note that this is equivalent to generating one ticket for
job j on machine i with probability ε independently, for each
ε unit of xij . Thus, this way of generating tickets allows us
to view the problem more continutously. If no tickets are
generated for j across machines, which happens with prob-
ability 1/e, job j is not assigned; otherwise, we choose one
ticket of job j uniformly at random and assign the job to the
machine from which the ticket originated. It is an easy ex-
ercise to see that j is assigned to machine i with probability
exactly (1− 1/e)xij .

Now, we want to impose strong negative correlations
between jobs grouped together on each machine. Towards
this end, we let each group G ∈ Gi recommend one job j
(or none) with probability xij (if j ∈ G); here we use the
fact that

∑
j∈G xij ≤ 1. The idea is to ensure that j has

tickets on machine i only when G recommends job j – by
doing so, if j, j′ ∈ G, j having tickets on i will be negatively
correlated with j′ having tickets on i. To continue to have
the above nice contention resolution based on tickets, our
goal is to ensure Nij ∼ Pois(xij) and Nij = 0 unless G

4However, our method doesn’t give as strong guarantee on the first
moment as [17]. That is, using our method, each job j is assigned to
machine i with probability exactly (1 − 1/e)xij (in the first iteration). In
contrast, the probability can be strictly greater in the method of [17] when
{xij}i are not all tiny.
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recommends j on machine i. To achive this, we use a simple
trick. Let Ñij denote the number of potential tickets sampled
from a distribution whose probability mass for each value
k > 0 is exactly 1/xij times that of Pois(xij). Then, we
set Nij := Bij · Ñij and have Nij ∼ Pois(xij). Here, Bij
is an indicator random variable that has value one iff j is
recommended by the group where it belongs. In words, j
has Nij = Ñij real tickets only when Bij = 1 occurs.

Using the above observation that each job is assigned
to some machine with probability exactly 1 − 1/e, we can
repeat the whole process, excluding jobs that have already
been assigned, until all jobs are assigned.

The actual proof of the third and fourth properties is
quite non-trivial, particularly the third property. This is
because the random process of where two jobs j and j′

are assigned depends on whether the two jobs are grouped
together on each machine and how much they are assigned
in the fractional solution. At a high-level, we show that the
worst case for us happens when the two jobs j and j′ are
not grouped together on any machines possibly except on
machine i—then the proof becomes relatively easy. To prove
this we take a sequence of careful steps conditioning and
deconditioning on some random variables. Perhaps proving
negative correlations of our method is significantly more
challenging than proving negative correlations of pipage
rounding because our method assigns (1 − 1/e)-fraction of
remaining jobs in each iteration unlike pipage rounding that
assigns one job wlog in each iteration. Thus, we need to take
a global view of the random process considering how each
pair of jobs are grouped on all machines.

1.3 Applying Theorem 1.2 to the Scheduling Problem
To obtain Theorem 1.1 by applying Theorem 1.2 to our
scheduling problem, we borrow some important ideas from
Li’s approach [31]. Here we give a sketch of our rounding
and briefly discuss the difference between our approach and
his. The time-indexed integer programming (IP) has an
indicator variable xijs which is 1 if and only if j starts its
execution on machine i at time s. Note that since we consider
non-preemptive scheduling, if xijs = 1, then j completes at
time s + pij . Let T be a sufficiently large upper bound on
the number of time steps we need to consider. We assume T
is polynomially bounded in the input size since it was shown
that this assumption is wlog with a loss of (1+ε) factor in the
approximation ratio [24]. The time-indexed IP considered in
[31] is presented below.

Here, the first constraint ensures that every job is sched-
uled on some machine. The second constraint ensures that
every machine processes at most one job at each time. The
third constraint enforces that all jobs must complete by time
T . By relaxing the last constraint into xijs ≥ 0, we obtain
a valid LP relaxation. Let x denote the optimal LP solution.
Then, for each xijs > 0, it will be convenient to think that we

have a rectangle of height xijs starting at time s and ending
at time s+ pij , denoted as Rijs.

min
∑
j∈J

wj
∑

i∈M,s∈[T ]

xijs(s+ pij)(1.1)

∑
i∈M,s∈[T ]

xijs = 1 ∀j ∈ J(1.2)

∑
j∈J ,s∈(t−pij ,t]

xijs ≤ 1 ∀i ∈M, t ∈ [T ](1.3)

xijs = 0 ∀i ∈M, j ∈ J , s > T − pij(1.4)
xijs ∈ {0, 1} ∀i ∈M, j ∈ J , s ∈ [T ](1.5)

We first review how the independent rounding gives a
1.5-approximation: for each job j, we choose a rectangle
Rijs independently with probability xijs – then, j is as-
signed to machine i. Next, we sample a random offset τj
for each job uniformly at random from [0, pij ]. Then, we set
θj = τj + s conditioned on Rijs being chosen for j. Now
schedule jobs assigned to the same machine in increasing or-
der of θj . To upper bound the expected completion time of
job j, we need to know the expected size of jobs that are
assigned to i and have smaller θ values than job j. Due to
the linearlity of expecation, we can focus on the expected
size of each job j′ that is scheduled prior to j on machine i,
which we call the expected delay j′ causes to job j on ma-
chine i. Thanks to the uniform choice of θ, τ values, one
can show that fixing θj , the expected delay j′ causes to job
j on machine i is exactly the area of rectangle Rij′s′ up to
time θj , if Rij′s′ is chosen for j′. This is becuase the prob-
ability that j′ has a smaller θ value than j on the condition
is exatly max(θj−s′,0)

pij′
, which is exacty the horizontal length

of Rij′s′ up to the time θj , divided by pij′ . Since the to-
tal area of rectangles till time θj is at most 1 · θj = θj
(recall at most one unit of job can be scheduled at each
time), we have E[Cj | θj , Rijs] ≤ θj + pij . Knowing that
E[θj | Rijs] = s+pij/2, we have E[Cj | Rijs] ≤ s+1.5pij .
Further, de-conditioning on the choice of j’s rectangle, we
have E[Cj ] ≤

∑
i,j,s xijs(s + 1.5pij), which immediately

gives a 1.5-approximation due to the linarity of expectation.
Now we sketch how we use strong negative correlations

to obtain a better than 1.5-approximation. For the purpose
of better intuitions, let’s assume that there is at most one
rectangle Rijs with xijs > 0 for every pair of job j and
machine i. In other words, assume that each job has at most
one rectangle on machine i. Further, assume all jobs have
weight 1. Note that in the upper bound of E[Cj | Rijs],
the coefficient of s is just 1. Therefore, if s is considerably
big compared to pij , then job j is an easy job on machine i
towards obtaining a better than 1.5-approximation. Another
case of job j being easy on machine i is when xijs is large.
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This is because in fact we actually have a better upper bound
of E[Cj | θj , Rijs] ≤ θj + pij − τjxijs. The reason why
we get the extra negative term is as follows: Recall that the
expected delay other jobs cause to job j on machine i is
upper bounded by θj , which is a clear upper bound on the
total area of rectangles of other jobs up to time θj . Here, we
can take off the area of Rijs of job j before time θj , which
is exactly (θj − s)xijs = τjxijs. Roughly speaking, the
rectangle Rijs of each bad job j starts near time 0 and has
small height xijs. This was one of the key observations made
by Li [31] although the definition of easy jobs is slightly
different from ours.

To obtain a better than 1.5-approximation, we need to
use Theorem 1.2 (or the corresponding theorem in [8]). To
handle bad jobs on machine i using Theorem 1.2, we need
to group them carefully. At a high level, we group jobs
of similar θ values. That is, we first sample θ value for
each rectangle of a bad job, and we group jobs if their θ
values fall into the same time interval, which is one of the
intervals of exponentially increasing length partitioning the
whole time horizon. Using the fact that xijs is small for bad
jobs and the rectangle of bad jobs starts near time 0, with
some care, we can bound the total x value of jobs in each
group, which is needed to apply Theorem 1.2. Then, thanks
to strong negative correlations, when two jobs j and j′ have
similar θ values, they are less likely to be assigned to the
same machine i with a good probability, which is enough to
give a better than 1.5-approximation.

While our rounding is different from Li’s in many
places, the two main differences are as follows. First, we
use a random partition of time horizon into the intervals of
exponentially increasing lengths whileas Li used a determin-
istic partition. This is because we found the random par-
tition seemed to give a better grouping of jobs. Further,
for analysis, we conceptually group non-overlapping rect-
angles, so that we have a linear combination of subsets of
non-overlapping rectangles, which looks like a solution to
the configuration LP [40]. Using this structure also helps to
improve the approximation ratio slightly. However, as men-
tioned before, the improvement of approximation ratio pri-
marily comes from our stronger negative correlations.

1.4 Other Related Work Minimizing total (weighted)
completion time is one of the most popular scheduling ob-
jectives considered in the literature. For the single ma-
chine case, the algorithm highest-density-first, which fa-
vors jobs of highest wj/pj , is known to be optimal [38].
The problem becomes NP-hard when there are multiple
machines [19]. However, when machines are identical
(P ||

∑
j wjCj) or uniformly related (Q||

∑
j wjCj), the

problem admits PTASes [1, 37, 12]. Interestingly, even when
machines are unrelated, if the objective is to minimize to-
tal unweighted completion time (R||

∑
j Cj), the problem is

polynomially solvable using a min-cost bipartite matching
[23, 10]. Kalaitzis et al. [26] considered an important special
case when each job’s processing time is proportional to its
weight, i.e., R|wij/pij = 1|

∑
i,j wijCj , and gave a 1.21-

approximation. Interestingly, their result also achieves a bi-
criteria 2-approximation for the makespan objective. A con-
figuration LP, which encodes all possible scheules on each
machine, was shown to be solvable optimally within (1 + ε)-
factor [40]; see [24] for a discussion on the strength of the
configuration LP. The configuration LP was shown to have
an integrality gap of at least 1.08 [26]. If jobs have differ-
ent arrival times, the problem, 1|rj |

∑
j wjCj , is NP-hard

[29] even in the single machine case. When machines are
identical (P |rj |

∑
j wjCj) or related (Q|rj |

∑
j wjCj), the

problem admits PTASes [1, 12]. When machines are unre-
lated (R|rj |

∑
j wjCj), 2-approximation [33, 36] had been

the best approximation known for long until it was recently
improved to 1.8687-approximation [24].

For the makespan objective on unrelated machines,
i.e., R||maxj Cj , a classic 2-approximation is known [30].
There have been considerable efforts to improve this ra-
tio for some special cases, e.g. [39, 15]. For the dual
objective of maximizing the minimum total load of all
machines, see [9, 5, 4, 11, 16]. For R||(

∑
j(Cj)

k)1/k,
see [6, 27]. For R|rj |

∑
j(Cj − rj), a poly-logarithmic ap-

proximation is known [7]. For the special case ofR|rj , pij ∈
{pj ,∞}|

∑
j(Cj − rj), see [20, 21]. For a survey of other

approximate scheduling results, see [13].

1.5 Organization We present our iterative fair contention
resolution scheme in Section 2. Next, in Section 3, we show
that the rounding scheme satisfies all the properties claimed
in Theorem 1.2. We present our randomized rounding
algorithm for the unrelated machines scheduling problem in
Section 4. We give the analysis of the algorithm in Section 5,
thereby proving Theorem 1.1.

2 Rounding Procedure Yielding Strong Negative
Correlations

2.1 Preliminaries To describe our randomized rounding
we need to introduce a probability distribution. Let Pois(λ)
denote the Poisson distribution with mean value λ. Recall
that Pois(λ) has pmf, e−λ λ

k

k! , over k ∈ Z+ := {0, 1, 2, . . .}.
The following is a well-known property of Poisson distribu-
tion.

FACT 2.1. For any set of independent random variables
{Zh ∼ Pois(λh)}h∈[H], it is the case that

∑
h∈[H] Zh ∼

Pois(
∑
h∈[H] λh).

For any λ > 0, let P̃ois(λ) denote the probability
distribution with the following pmf:
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{
e−λ λ

k−1

k! if k ∈ {1, 2, 3, . . .}
1− 1−e−λ

λ otherwise, i.e., k = 0

This pmf is well-defined since
∑
k≥1 e

−λ λk
λk! =

1−e−λ
λ ≤ 1.5 Note that P̃ois(λ)’s probability mass for each

value k > 0 is 1/λ times that of Pois(λ).

OBSERVATION 1. Let Ñ ∼ P̃ois(λ) and B be a Bernoulli
(0-1) random variable with mean value λ. Then, Ñ · B ∼
Pois(λ).

2.2 Rounding Algorithm We are now ready to describe
our randomized rounding. To simplify notation, for every
i ∈ M and j ∈ J , if j /∈ G for all G ∈ Gi, then we create
a singleton set of job j and add it to Gi. Note that this has
no effect on the properties we aim to prove as we do not
change the existing groups. So, we can assume wlog that
]G∈GiG = J for all i ∈M.

Our randomized rounding is iterative. In the first iter-
ation we perform as described in Figure 2.2. In principle,
we do not need to generate potential tickets for job j on ma-
chine i unless Bij = 1. However, the description where we
first generate potential tickets independently for every pair of
job j and machine i makes the analysis more intuitive. For
brevity, we will interchangeably use Bij and Bij = 1.

We now explain how the rounding works in the sub-
sequent iterations, 2, 3, . . . . Every job assignment is final.
If job j is assigned to machine i in the `-th iteration (de-
noted as i ←` j) the job is never considered in the sub-
sequent iterations, ` + 1, ` + 2, . . . . Let J≤` denote the
set of jobs that were assigned in iterations 1, 2, . . . , `, i.e.,
J≤` := {j ∈ J | i ←`′ j for some i ∈ M, `′ ≤ `}. At the
beginning of the `+ 1-th iteration, we update J to J \ J≤`
and every set G ∈ Gi to G \ J≤`. Then, we perform the
above four steps—all the RVs used in this iteration are dif-
ferent from those used in the previous iterations. The `-th
iteration begins only when there exists a job that hasn’t been
assigned yet, i.e., J<` 6= J . This completes the description
of our randomized rounding.

3 Proof of Theorem 1.2
This section is devoted to proving Theorem 1.2. We first
make an easy observation which will be useful in the anal-
ysis. Since we renew all RVs in each iteration, we add su-
perscript ` to RVs if they are of the `-th iteration—for exam-
ple,N `

ij denotes the RV in the `-th iteration corresponding to
Nij . For RVs of the first iteration, we omit the superpscript.

5Here, we used the well-known facts that ex =
∑

k≥0
xk

k!
and ex ≥

x+ 1.

OBSERVATION 2. Conditioned on no jobs in J ′ ⊆ J hav-
ing been assigned in the previous iterations, the stochastic
process of assigningJ ′ is identical to the same process start-
ing from the first iteration.

In particular, this observation means: For any event
E(J ′, `) concerning the assignment of some jobs J ′ ⊆ J
in the `-th iteration or in the subsequent iterations, we have
Pr[E(J ′, `) | J ′ ∩ J≤`−1 = ∅] = Pr[E(J ′, 1)]. For
example, consider the fourth property. Then, the observation
implies that Pr[i ←≥` j ∧ i ←≥` j′ | j, j′ /∈ J`−1] =
Pr[i← j ∧ i← j′]. Here i←≥` j denotes j being assigned
to i in the `-th iteration or later. We illustrate Observation 2
using this as an example. Note that the assignment of j and
j′ are completely determined by {Ñi′j}i′∈M, {Ñi′j′}i′∈M,
and BG for all groups G including j or j′. Further, for
BG, what only matters is whether BG = j or j′, or not.
These events, Ñi′j , Ñij are not affected by whether other
jobs have been assigned or not. Extending this argument to
Observation 2 is straightforward.

We now shift to proving the four properties and the
running time guarantee.

3.1 First and Second Properties and Running Time
The first property says that the randomized rounding assigns
each job to exactly one machine. In each iteration the
rounding algorithm attempts to assign jobs that have not
been assigned in the previous iterations. Therefore, the first
property immediately follows if we show that the algorithm
eventually terminates. We will show that the algorithm
terminates in O(log n) iterations with high probability and
also in expectation, after showing the second property.

For better readability we first give the analysis for
the first iteration and extend it to arbitrary iterations using
Observation 2. We first make two easy observations.

OBSERVATION 3. For any i ∈ M and j ∈ J , Nij ∼
Pois(xij).

Proof. The algorithm defines Nij = Bij · Ñij , where Ñij ∼
P̃ois(xij) and Bij is a Bernoulli RV with mean value xij .
Thus, this observation follows from Observation 1.

OBSERVATION 4. For any job j ∈ J , all RVs {Nij}i∈M
are independent.

Proof. This is because all RVs {Ñij}i∈M,j∈J are inde-
pendent; all RVs {Bij}i∈M are independent; and Nij =

Bij · Ñij .

Recall that J<` denotes the set of job that are assigned
to some machines before the `-th iteration.

LEMMA 3.1. For any job j ∈ J , machine i ∈ M and
iteration ` ≥ 1, we have Pr[i ←` j | B`ij , j /∈ J<`] =
1− 1/e.
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1. For each i ∈ M and j ∈ J , let Ñij ∼ P̃ois(xij) be an independent RV; if xij = 0, then Ñij = 0. In words, we
generate Ñij potential tickets for each job j on machine i, according to P̃ois(xij), independently.

2. For each i ∈M and G ∈ Gi, let BG ∈ G ∪ {nil} be an independent RV such that Pr[BG = j] = xij for all j ∈ G.
We use an indicator variable Bij to denote the event BG = j. In words, each group G ∈ Gi recommends one job j
in the group G with probability xij independently and the event is denoted as Bij ; or it may recommend no jobs.

3. For each i ∈M and j ∈ J , letNij = Bij ·Ñij . In words, all Ñij potential tickets of job j on machine i become real
tickets if and only if the event Bij = 1 occurs. Job j has real tickets on machine i iff Bij = 1 and it has non-zero
potential tickets on the machine.

4. Each job j ∈ J is assigned to machine i ∈ M, denoted as i ←1 j, independently with probability Nij∑
i′∈MNi′j

; if∑
i′∈MNi′j = 0, then j is not assigned, denoted as nil ←1 j. In words, among all real tickets of each job j across

machines, we choose one uniformly at random. If the ticket was generated on machine i, then we assign job j to
machine i.

Figure 1: The first iteration of our randomized rounding

Proof. Fix a job j and machine i. Say i = 1 wlog By
Observation 4 and Fact 2.1, we have

∑
i′∈M\{1}Ni′j ∼

Pois(
∑
i′∈M\{1} xi′j = 1 − x1j). For notational con-

venience, let λ = x1j , Ñ1 = Ñ1j , and N−1 =∑
i′∈M\{1}Ni′j . Note that Ñ1 ∼ P̃ois(λ) and N−1 ∼

Pois(1− λ).

Pr[i←1 j | Bij ]

=
∑

k≥1,k′≥0

Pr[Ñ1 = k ∧N−1 = k′] · k

k + k′

=
∑

k≥1,k′≥0

Pr[Ñ1 = k] · Pr[N−1 = k′] · k

k + k′

=
∑

k≥1,k′≥0

e−λ
λk

λk!
· e−(1−λ) (1− λ)k

′

k′!
· k

k + k′

=
∑

k≥0,k′≥0

e−λ
λk

k!
· e−(1−λ) (1− λ)k

′

k′!
· 1

k + k′ + 1

= e−1
∑
k′′≥0

∑
k,k′≥0:k+k′=k′′

λk

k!
· (1− λ)k

′

k′!
· k′′! · 1

(k′′ + 1)!

= e−1
∑
k′′≥0

1

(k′′ + 1)!
(λ+ (1− λ))k

′′

= e−1
∑
k′′≥1

1

(k′′)!
= e−1(e− 1) = 1− 1/e,

which, combined with Observation 2, yields the lemma.

COROLLARY 3.1. For any job j ∈ J , machine i ∈ M
and iteration ` ≥ 1, we have Pr[i ←` j | j /∈ J<`] =
(1− 1/e)xij .

Proof. Pr[i←1 j] = Pr[i←1 j∧Bij ] = Pr[i←1 j | Bij ] ·
Pr[Bij ] = (1−1/e)xij . Then, we use Observation 2.

This also implies that job j is assigned in the 1-st
iteration with probability exactly 1− 1/e.

COROLLARY 3.2. For any job j ∈ J and iteration ` ≥ 1,
we have Pr[nil←` j | j /∈ J<`] = 1/e.

Proof. By the above corollary and the fact that a job can
be assigned to at most one machine in each iteration, the
probability is 1 -

∑
i∈M(1− 1/e)xij = 1/e.

We are now ready to complete the proof of the second
property.

Pr[i← j] =
∑
`≥1

Pr[i←` j]

=
∑
`≥1

Pr[i←` j | j /∈ J<`] ·
∏
`′<`

Pr[nil←`′ j | j /∈ J<`′ ]

=
∑
`≥1

(1− 1/e)xij(1/e
`−1)

=xij

To complete the proof of the first property, we observe
that Pr[j /∈ J≤`] =

∏
`′≤` Pr[nil ←`′ j | j /∈ J<`′ ] =

(1/e)` by Corollary 3.2. Thus, using the linearity of expec-
tation, we know that the expected number of jobs remaining
unassigned after 2 logn iterations, i.e., E |J \ J≤2 logn| =
n(1/e)2 logn = 1/n. Thus, by Markov inequality, the
probability that the randomized rounding does not terminate
within 2 log n iterations, meaning that there is at least one
job unassigned, is at most 1/n. Also using a simple union
bound we know Pr[J 6= J≤`] ≤ min{1, n(1/e)`}. Thus,
the expected number of iterations before the termination is
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∑
`≥1 min{1, n(1/e)`} = O(log n). It is an easy exercise

to see each iteration takesO(mn) time assuming that we can
determine the value of each RV in O(1) time. As discussed
already, it is clear that each job j is assigned to exactly one
machine if the algorithm terminates. Thus, we have shown
the first property and running time.

3.2 Third Property We restate the third property we aim
to prove: Fix a machine i ∈ M and two distinct jobs
j, j′ ∈ J from different groups of machine i, i.e., j ∈ A
and j′ ∈ B for some A 6= B ∈ Gi. Then, we have
Pr[i ← j ∧ i ← j′] ≤ xijxij′ . For notational convenience,
let a = xij and b = xij′ , and M̃∗ = Ñij , Ñ∗ = Ñij′ .
Assume wlog that a, b ∈ (0, 1) since otherwise the third
property immediately follows from the second.

Here is a very high-level overview of the proof. For the
sake of contradiction assume that Pr[i← j ∧ i← j′] > ab.
Then, we will show that the probability remains greater than
ab after de-grouping the two jobs j and j′ on all machines.
This is a contradiction because two events i ← j and
i ← j′ are independent after de-grouping, which would
immediately imply Pr[i ← j ∧ i ← j′] = ab due to the
second property.

However, the actual analysis is quite involved. To help
the reader keep the flow of the analysis, we outline the proof
in detail.

3.2.1 Proof Outline For the sake of analysis, we need
to define additional notation—then, we can give a more
detailed proof overview and explain the technical challenges.
Let M− :=

∑
i′∈M\{i}Ni′j denote the total number of

real tickets generated for job j on machines other than i.
Similarly, let N− :=

∑
i′∈M\{i}Ni′j′ for job j′. Define

PG(m,n) := PrG [M− = m,N− = n]; here G in
the subscript is to emphasize that this probability is under
grouping G. Note that in this section we override m and
n, which were used to denote the number of machines and
jobs respectively in other sections. For comparison, create
another grouping G′ by separating the two jobs j and j′ in
the same group on every machine. That is, for any machine
i′ where j, j′ ∈ G for some G ∈ Gi′ , partition the group G
arbitrarily into two groups Gij and Gij′ , so that j ∈ Gij and
j′ ∈ Gij′ . Let PG′(m,n) denote PrG′ [M− = m,N− = n]
under this grouping.

Our goal is to show that
(3.6)

PrG′ [i← j ∧ i← j′] > ab if PrG [i← j ∧ i← j′] > ab

Unfortunately, proving this directly seems very challenging.
Let’s see why. First, our analysis has very little room for
loss since we need to show negative correlation for ever
pair of jobs not grouped together on the fixed machine.
For careful analysis, we will have to take a close look at

probabilities fixing some random variables. Then, when we
expand PrG [i ← j ∧ i ← j′] depending on the iterations
in which the jobs are assigned, we run across the recursive
structure for the case j, j′ /∈ J≤1. It seems very challenging
to compare the above two probabilities in Eqn. (3.6) with this
recursive structure combined with certain subtle conditions.

We get around this difficulty by first showing that Eqn.
(3.6) pretending that after the first iteration, each unas-
signed job is assigned independently in the second iteration.
This thought process will ensure that the rounding termi-
nates in two iterations, thus having no recursive structure
– let’s call this rounding as shadow rounding. To relate
the shadow rounding to the actual rounding, we will de-
fine Φ(P, κ, m̃∗, ñ∗). For notational convenience, let ζ :=
PrG [i ← j ∧ i ← j′]/(ab) and ζ ′ := PrG′ [i ← j ∧ i ←
j′]/(ab). Then, Φ will have the following nice properties.

(a) Φ(PG , ζ, m̃
∗, ñ∗) = PrG [i ← j ∧ i ← j′ | M̃∗ =

m̃∗, Ñ∗ = ñ∗] for our actual rounding.

(b) Φ(PG′ , ζ
′, m̃∗, ñ∗) = PrG [i ← j ∧ i ← j′ | M̃∗ =

m̃∗, Ñ∗ = ñ∗] for our actual rounding.

(c) Φ(PG , 1, m̃
∗, ñ∗) = PrG [i ← j ∧ i ← j′ | M̃∗ =

m̃∗, Ñ∗ = ñ∗] for the shadow rounding.

(d) Φ(PG′ , 1, m̃
∗, ñ∗) = PrG [i ← j ∧ i ← j′ | M̃∗ =

m̃∗, Ñ∗ = ñ∗] for the shadow rounding.

Depending on whether m̃∗ > 0 or not and whether
ñ∗ > 0 or not, Φ is slightly different—so we will consider
four cases, which are each presented in Sections 3.2.2, 3.2.3,
3.2.4 and 3.2.5. We will show the above (a) and (b) for our
actual rounding in Lemmas 3.2, 3.5, 3.7 and 3.9. We do not
show (c) and (d) for the shadow rounding because our proof
only uses the algebraic difference between Φ(PG , ζ, m̃

∗, ñ∗)
and Φ(PG , 1, m̃

∗, ñ∗) and that between Φ(PG′ , ζ
′, m̃∗, ñ∗)

and Φ(PG′ , 1, m̃
∗, ñ∗). Still, we mention (c) and (d) above

as we believe they could give more intuitions.
Then, we will show that

Φ(PG′ , 1, m̃
∗, ñ∗) ≥ Φ(PG , 1, m̃

∗, ñ∗)

for all m∗, n∗ ≥ 0 in Lemmas 3.4, 3.6, 3.8 and 3.10. By de-
conditioning on M̃∗ and Ñ∗ and using the aforementioned
algebraic difference, we will be able to show Eqn. (3.6). We
will present the details on how to put all the pieces together
in Section 3.2.6. This will complete the proof of the third
property.

Due to the space constraints, we defer to the full version
of this paper the proof of each lemma.

3.2.2 Case M̃∗, Ñ∗ > 0 Recall M− :=
∑
i′∈M\{i}Ni′j

denotes the total number of real tickets generated for job j
on machines other than i and N− is similarly defined for job
j′. Also recall P (m,n) := Pr[M− = m,N− = n].
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LEMMA 3.2. For every m̃∗, ñ∗ ≥ 1, define:

Φ(P, κ, m̃∗, ñ∗) :=ab
∑

m≥0,n≥0

m̃∗

m+ m̃∗
· ñ∗

n+ ñ∗
· P (m,n)

(3.7)

+ ab
∑
m≥0

m̃∗

m+ m̃∗
· (1− b) · P (m, 0)(3.8)

+ ab
∑
n≥0

ñ∗

n+ ñ∗
· (1− a) · P (0, n)(3.9)

+ ab (1− a)(1− b)κ · P (0, 0)(3.10)

Then, we have

• Φ(PG , ζ, m̃
∗, ñ∗) = PrG [i ← j ∧ i ← j′ | M̃∗ =

m̃∗, Ñ∗ = ñ∗]; and

• Φ(PG′ , ζ
′, m̃∗, ñ∗) = PrG′ [i ← j ∧ i ← j′ | M̃∗ =

m̃∗, Ñ∗ = ñ∗].

In the following we re-write Φ, so that we have the co-
efficient of each P (m,n) explicitly.

LEMMA 3.3. For any m̃∗, ñ∗ ≥ 1, we have
Φ(P, κ, m̃∗, ñ∗) =

∑
m,n≥0 d(m,n)P (m,n), where

d(m,n) :=
ab m̃∗

m+m̃∗ ·
ñ∗

n+ñ∗ if m,n > 0

ab m̃∗

m+m̃∗ (2− b) if m > 0, n = 0

ab ñ∗

n+ñ∗ (2− a) if m = 0, n > 0

ab(2− a)(2− b) + (κ− 1)(1− a)(1− b) if m = n = 0;

LEMMA 3.4. For any m̃∗, ñ∗ ≥ 1, Φ(PG , 1, m̃
∗, ñ∗) ≤

Φ(PG′ , 1, m̃
∗, ñ∗).

3.2.3 Case M̃∗ > 0, Ñ∗ = 0 Previously, we considered
the case M̃∗, Ñ∗ > 0. Here, we consider the case M̃ =
m∗, Ñ∗ = 0 for any fixed m∗ ≥ 1.

LEMMA 3.5. For any m̃∗ > 0, ñ∗ = 0, define,

Φ(P, κ, m̃∗, ñ∗ = 0) :=
∑
m≥0

d(m, 0)P (m, 0) where

d(m,n)=


ab m̃∗

m+m̃∗ if m > 0, n = 0

ab(2− a) + ab(κ− 1)(1− a) if m = 0, n = 0

0 if n > 0

Then, we have

• Φ(P, ζ, m̃∗, 0) = PrG [i ← j ∧ i ← j′ | M̃∗ =
m̃∗, Ñ∗ = 0]; and

• Φ(P, ζ ′, m̃∗, 0) = PrG′ [i ← j ∧ i ← j′ | M̃∗ =
m̃∗, Ñ∗ = 0].

LEMMA 3.6. For all m̃∗ ≥ 1, we have Φ(PG , 1, m̃
∗, ñ∗) ≤

Φ(PG′ , 1, m̃
∗, ñ∗).

3.2.4 Case M̃∗ = 0, Ñ∗ > 0

LEMMA 3.7. For any ñ∗ > 0, define,

Φ(P, κ, m̃∗ = 0, ñ∗) :=
∑
n≥0

d(0, n)P (0, n) where

d(m,n) =


ab ñ∗

n+ñ∗ if m = 0, n > 0

ab(2− b) + ab(κ− 1)(1− b) if m = 0, n = 0

0 if m > 0

Then, we have

• Φ(P, ζ, 0, ñ∗) = PrG [i← j ∧ i← j′ | M̃∗ = 0, Ñ∗ =
ñ∗]; and

• Φ(P, ζ ′, 0, ñ∗) = PrG′ [i ← j ∧ i ← j′ | M̃∗ =
0, Ñ∗ = ñ∗].

LEMMA 3.8. For all ñ∗ ≥ 1, Φ(PG , 1, 0, ñ
∗) ≤

Φ(PG′ , 1, 0, ñ
∗).

3.2.5 Case M̃∗ = Ñ∗ = 0 This is the last case we
consider.

LEMMA 3.9. Define Φ(P, κ, 0, 0) := abκP (0, 0).

• Φ(P, ζ, 0, 0) = PrG [i ← j ∧ i ← j′ | M̃∗ = 0, Ñ∗ =
0]; and

• Φ(P, ζ ′, 0, 0) = PrG′ [i← j ∧ i← j′ | M̃∗ = 0, Ñ∗ =
0].

LEMMA 3.10. Φ(PG , 1, 0, 0) ≤ Φ(PG′ , 1, 0, 0).

3.2.6 Putting All Pieces Together From the definitions
stated in Lemmas 3.2, 3.5, 3.7 and 3.9, we have :

Φ(PG , 1, m̃
∗, ñ∗)− Φ(PG , ζ, m̃

∗, ñ∗) =

(3.11)


−(1− a)(1− b)(ζ − 1)abPG(0, 0) if m̃∗ > 0, ñ∗ > 0

−(1− a)(ζ − 1)abPG(0, 0) if m̃∗ > 0, ñ∗ = 0

−(1− b)(ζ − 1)abPG(0, 0) if m̃∗ = 0, ñ∗ > 0

−(ζ − 1)abPG(0, 0) if m̃∗ = 0, ñ∗ = 0

Similarly, we have

Φ(PG′ , 1, m̃
∗, ñ∗)− Φ(PG′ , ζ

′, m̃∗, ñ∗) =

(3.12)


−(1− a)(1− b)(ζ ′ − 1)abPG′(0, 0) if m̃∗ > 0, ñ∗ > 0

−(1− a)(ζ ′ − 1)abPG′(0, 0) if m̃∗ > 0, ñ∗ = 0

−(1− b)(ζ ′ − 1)abPG′(0, 0) if m̃∗ = 0, ñ∗ > 0

−(ζ ′ − 1)abPG′(0, 0) if m̃∗ = 0, ñ∗ = 0
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In Lemmas 3.4, 3.6, 3.8 and 3.10 we have shown that
Φ(PG , 1, m̃

∗, ñ∗) ≤ Φ(PG′ , 1, m̃
∗, ñ∗) for all m̃∗, n∗ ≥ 0.

Therefore, we have,∑
m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG , 1, m̃
∗, ñ∗)

≤
∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG′ , 1, m̃
∗, ñ∗)

where q(m̃∗, ñ∗) := Pr[M̃∗ = m̃∗, Ñ∗ = ñ∗].
Using Eqn. (3.11), we have,∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG , 1, m̃
∗, ñ∗)

=
∑

m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG , ζ, m̃
∗, ñ∗)

−
∑

m̃∗,ñ∗>0

q(m̃∗, ñ∗)(1− a)(1− b)(ζ − 1)abPG(0, 0)

−
∑
m̃∗>0

q(m̃∗, 0)(1− a)(ζ − 1)abPG(0, 0)

−
∑
ñ∗>0

q(0̃, ñ∗)(1− b)(ζ − 1)abPG(0, 0)

− q(0, 0)(ζ − 1)abPG(0, 0)

= Pr
G

[i← j, i← j′]− abPG(0, 0)(ζ − 1)·(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
=ζab− abPG(0, 0)(ζ − 1)·(

(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
,

where q++ := Pr[M̃∗ > 0, Ñ∗ > 0], q+0 := Pr[M̃∗ >
0, Ñ∗ = 0], q0+ := Pr[M̃∗ = 0, Ñ∗ > 0], q00 := Pr[M̃∗ =
0, Ñ∗ = 0].

Similarly, we obtain∑
m̃∗,ñ∗≥0

q(m̃∗, ñ∗)Φ(PG′ , 1, m̃
∗, ñ∗)

=ζ ′ab− abPG′(0, 0)(ζ ′ − 1)·(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
Thus, we have,

ζab− abPG(0, 0)(ζ − 1)·
(3.13)

(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)
≤ ζ ′ab− abPG′(0, 0)(ζ ′ − 1)·

(3.14)

(
(1− a)(1− b)q++ + (1− a)q+0 + (1− b)q0+ + q00

)

Note that Eqn. (3.13) and (3.14) are linear ζ and ζ ′,
respectively. Further, q++ + q+0 + q0+ + q00 = 1 and
q++ > 0 since a, b ∈ (0, 1). Therefore, both ζ and ζ ′

have strictly positive coefficients in Eqn. (3.13) and (3.14),
respectively. Further, Eqn. (3.13) has value ab when ζ = 1
and Eqn. (3.14) has value ab when ζ ′ = 1. Thus, if ζ > 1,
then it must be the case that ζ ′ > 1.

To summarize, we have shown that if PrG [i← j ∧ i←
j′] > xijxij′ , then it must be the case that PrG′ [i← j ∧ i←
j′] > xijxij′ . Since G′ was obtained from G by de-grouping
the two jobs j and j′ on one machine, by repeatedly refining
G′ further, we know that what we have shown still holds true
when G′ doesn’t group j and j′ together on any machines.
As mentioned before, this implies that i← j and i← j′ are
independent under G′. Thus, we have PrG′ [i← j∧i← j′] =
xijxij′ . Thus, if we assume PrG [i← j ∧ i← j′] > xijxij′ ,
then we obtain a contradiction. This completes the proof of
the third property.

3.3 Fourth Property For ease of reference, we re-state
the fourth property we aim to prove: For every i ∈ M and
j 6= j′ ∈ J such that j, j′ ∈ G for some G ∈ Gi, we have
Pr[i← j ∧ i← j′] ≤ 1

1+e (exij + exij′ )xijxij′ .
We first upper bound the probability that neither j nor j′

are assigned in the first iteration. Towards this end, we need
the following proposition.

PROPOSITION 3.1. For any job j ∈ J and machine i ∈M,
we have,

• Pr[Nij = 0 | ¬Bij ] = 1.

• Pr[Nij = 0 | Bij ] = 1− 1−exp(−xij)
xij

.

Proof. The first claim is immediate from the algorithm def-
inition, that is, Nij = ÑijBij . The second claim follows
since Pr[Nij > 0 | Bij ] = Pr[Ñij > 0] =

∑
k>0 e

−λ λk
λk! =

(1− exp(−λ))/λ where λ = xij .

LEMMA 3.11. For any two jobs j 6= j′ ∈ J , Pr[nil ←1

j ∧ nil←1 j
′] ≤ 1/e2.

Proof. The event occurs if and only if no tickets are gener-
ated for j and j′, i.e.,

∑
i∈M(Nij+Nij′) = 0. We will show

that for any machine i,

(3.15) Pr[Nij +Nij′ = 0] ≤ e−xij−xij′ .

Since the events {Nij + Nij′ = 0}i∈M are independent,
Eqn. (3.15) would imply Pr[

∑
i∈M(Nij + Nij′) = 0] =∏

i∈M Pr[Nij + Nij′ = 0] ≤
∏
i∈M exp(−xij − xij′) =

exp(−
∑
i∈M xij −

∑
i∈M xij′) = 1/e2, as desired.

It now remains to show Eq. (3.15). Towards this end, fix
a machine i ∈ M. For notational convenience, let a := xij
and b := xij′ . There are two cases we need to consider.
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If j and j′ are not grouped together on machine i, the two
RVs Nij and Nij′ are independent. By Observation 3, we
know that Nij ∼ Pois(xij = a) and Nij′ ∼ Pois(xij′ = b).
Therefore, Pr[Nij = 0∧Nij = 0] = Pr[Nij = 0]·Pr[Nij =
0] = e−a · e−b.

We now consider the other case where j, j′ ∈ G for
some G ∈ Gi. Depending on which job (or none) is
recommended by the group G, we consider three disjoint
events: ¬Bij ∧ ¬Bij′ , Bij , Bij′ .

Pr[Nij +Nij′ = 0]

= Pr[Nij +Nij′ = 0 ∧ ¬Bij ∧ ¬ ∧Bij′ ]
+ Pr[Nij +Nij′ = 0 ∧Bij ] + Pr[Nij +Nij′ = 0 ∧Bij′ ]

= Pr[¬Bij ∧ ¬ ∧Bij′ ] + Pr[Nij = 0 ∧Bij ]
+ Pr[Nij′ = 0 ∧Bij′ ]

=(1− a− b) + Pr[Nij = 0 | Bij ] · Pr[Bij ]

+ Pr[Nij′ = 0 | Bij′ ] · Pr[Bij′ ]

=(1− a− b) + a · (1− 1− e−a

a
) + b · (1− 1− e−b

b
)

(3.16)

[Proposition 3.1]

=e−a + e−b − 1

=e−a−b − (e−a − 1)(e−b − 1)

≤e−a−b = e−xij−xij′ ,

where the second equality follows since ¬Bij and ¬Bij′
imply Nij = BijÑij = 0 and Nij′ = Bij′Ñij′ = 0,
respectively.

By Observation 2, we obtain the following corollary.

COROLLARY 3.3. For any two jobs, j 6= j′ ∈ J and
machine i ∈ M, we have Pr[i ←≥2 j ∧ i ←≥2 j′] ≤
(1/e2) Pr[i← j ∧ i← j′].

We now consider the other case when i←1 j∧i←≥2 j′
or i ←≥2 j ∧ i ←1 j

′. This means that one of the two jobs
is assigned to machine i and the other is not assigned to any
machines in the first iteration.

LEMMA 3.12. For any machine i ∈M and for any two jobs
j 6= j′ ∈ G for some G ∈ Gi, we have Pr[i ←1 j ∧ nil ←1

j′] ≤ (1− 1/e)(1/e)exij′xij .

Proof. Fix any i, j, j′, G satisfying the lemma precondition.
Say i = 1 wlog. We will show that Pr[1←1 j ∧ nil ←1 j

′]
is maximized when j and j′ are not grouped together on any
machines except machine 1. Towards this end, if there is
a machine i′ 6= i, say i′ = 2, where j, j′ ∈ G′ for some
G′ ∈ G2, we create another grouping by splitting G′ into A
and B arbitrarily such that j ∈ A and j′ ∈ B. Then we

will show that the probability is no smaller under grouping
G′ than it is under G. Repeating this argument will prove the
the claim.

Let PG denote Pr[i ←1 j ∧ nil ←1 j′] under group-
ing G. Define PG′ analogously. Our goal is to show
PG ≤ PG′ . We will compare PG and PG′ fixing N1j , N1j′ ,
Ñ2j , Ñ2j′ , N−2j :=

∑
i′′∈M,i′′ 6=2Ni′′j , and N−2j′ :=∑

i′′∈M,i′′ 6=2Ni′′j′ . Note that nil ←1 j′ only if N1j′ =
N−2j′ = 0. Also, 1 ←1 j only if N1j > 0. So, assume
N1j > 0; then we also have N−2j ≥ N1j > 0.

Given that the aforementioned RVs are fixed, the only
factor that potentially makes PG and PG′ different is how
B2j and B2j′ are related—the two are disjoint under G but
are independent under G′. We first observe that PG = PG′ if
Ñ2j′ = 0. This is because if Ñ2j′ = 0, then N2j′ = 0 no
matter what, meaning that B2j′ has no effect on PG or PG′ ;
further, Pr[B2j ] is the same under both G and G′. So, we
assume that the fixed Ñ2j′ > 0.

To calculate PG and PG′ , we consider three disjoint
events depending on the recommendation made by G′ on
machine 2, namely B2j , B2j′ , and ¬B2j ∧ ¬B2j′ . If B2j =

1, then N2j = Ñ2j . Note that per the above discussion,
we can safely assume that N1j′ = N−2j′ = 0, N1j > 0,
Ñ2j′ > 0. So, we have Pr[1←1 j∧nil←1 j

′∧B2j ] = x2j ·
N1j

Ñ2j+N−2j
. If B2j′ = 1, then N2j′ = Ñ2j′ > 0, therefore

j′ ∈ J≤1. Finally, if ¬B2j ∧ ¬B2j′ , then N2j = N2j′ = 0
—so we have Pr[1 ←1 j ∧ nil ← j′ ∧ ¬B2j ∧ ¬B2j′ ] =

(1− x2j − x2j′) N1j

N−2j
. Therefore, we have,

PG =
N1j

N−2j + Ñ2j

a+
N1j

N−2j
(1− a− b),

where we let a := x2j , b := x2j′ for notational convenience.
We now focus on calculating PG′ . Note that under

grouping G′, B2j and B2j′ are independent. For j′ /∈ J≤1
to happen, it must be the case that B2j′ = 0 since the fixed
Ñ2j′ > 0. Then, by considering whether Bij or not, we
have,

PG′ = (1− b)
( N1j

N−2j + Ñ2j

a+
N1j

N−2j
(1− a)

)
Then, we have,

PG′ − PG = ab
(
− N1j

N−2j + Ñ2j

+
N1j

N−2j

)
≥ 0,

since N−2j ≥ N1j , as desired.

Therefore, to upper bound Pr[i ←1 j ∧ nil ←1 j
′], we

can safely assume that no group, exceptG on machine 1, has
both jobs j and j′ simultaneously. This implies thatN−1j :=∑
i′′∈M,i′′ 6=1Ni′′j and N−1j′ :=

∑
i′′∈M,i′′ 6=1Ni′′j′ are

independent. Note that N−1j ∼ Pois(1−x1j) and N−1j′ ∼
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Pois(1− x1j′) by Observations 3 and 4. We now derive,

Pr[1←1 j ∧ nil←1 j
′]

= Pr[1←1 j ∧B1j ∧N1j′ = N−1j′ = 0]

[1←1 j only if B1j]
= Pr[1←1 j ∧B1j ∧N−1j′ = 0]

[N1j′ = 0 if B1j , since j, j′ ∈ G on machine 1)]
= Pr[1←1 j ∧B1j ] · Pr[N−1j′ = 0]

= Pr[1←1 j | B1j ] · Pr[B1j ] · e−(1−x1j′ )

[N−1j′ ∼ Pois(1− x1j′)]
=(1− 1/e)e−(1−x1j′ )x1j [Lemma 3.1]

The third equation follows since N−1j′ is determined by
the recommendation of groups on machines other than 1,
which don’t include j, and {Ñi′′j′}i′′∈M,i′′ 6=1 – all these
are independent of B1j and 1 ←1 j since j and j′ are not
grouped together on any machines except machine 1.

COROLLARY 3.4. For any machine i ∈M and for any two
jobs j 6= j′ ∈ G for some G ∈ Gi, we have

Pr[i←1 j ∧ i←≥2 j′] ≤ (1− 1/e)(1/e)exij′xijxij′ ; and
Pr[i←≥2 j ∧ i←1 j

′] ≤ (1− 1/e)(1/e)exijxijxij′ .

Proof. We show the first inequality as follows.

Pr[i←1 j ∧ i←≥2 j′]
= Pr[i←1 j ∧ i←≥2 j′ ∧ nil←1 j

′]

= Pr[i←≥2 j′ | i←1 j ∧ nil←1 j
′] · Pr[i←1 j ∧ nil←1 j

′]

= Pr[i←≥1 j′] · Pr[i←1 j ∧ nil←1 j
′]

≤xij′(1− 1/e)e−(1−x1j′ )xij ,

where the penultimate equality is due to Observation 2;
and the last equality is due to the second property and
Lemma 3.12. The second inequality can be analogously
shown using its symmetricity to the first.

We are now ready to complete the proof of the fourth
property. For any two jobs j 6= j′ ∈ G for some G ∈ Gi,
we know i←1 j and i←1 j

′ cannot happen simultaneously
sinceBij andBij′ are disjoint. Therefore, by Corollaries 3.3
and 3.4, we have

Pr[i← j ∧ i← j′]

≤Pr[i←1 j ∧ i←≥2 j′]
+ Pr[i←2 j ∧ i←≥1 j′] + Pr[i←≥2 j ∧ i←≥2 j′]
≤(1− 1/e)(1/e)(exij + exij′ )xijxij′

+ (1/e2) Pr[i← j ∧ i← j′]

By rearranging terms, we have

Pr[i← j ∧ i← j′]

≤ (1− 1/e)(1/e)

1− 1/e2
(exij + exij′ )xijxij′

=
1

e+ 1
(exij + exij′ )xijxij′

This completes the proof of the fourth property.

4 Unrelated Machines Scheduling: Rounding
Algorithm

In this section we describe how we round the optimal solu-
tion to the LP described in Section 1.3. As mentioned, we
will view the LP solution {xijs}i∈M,j∈J ,s as a collection of
rectangles.

DEFINITION 4.1. For every xijs > 0, where i ∈ M, j ∈
J , s ≥ 0, there is a rectangle Rijs that starts at time s and
ends at time s+ pij of height xijs.

DEFINITION 4.2. The height of job j ∈ J on machine
i ∈M is defined as xij :=

∑
s xijs.

To apply Theorem 1.2, we need to group jobs on each
machine, which will be done stochastically. For every j ∈ J
and i ∈ M such that xij > 0, we choose τij uniformly
at random from (0, pij ]; and select one rectangle Rijs with
probability xijs

xij
as the representative rectangle of job j on

machine i, which is denoted as Rij .
We now define good jobs and bad jobs on each machine.

Intuitively, a job is good on a machine if it is scheduled a lot
on the machine in the LP solution or it starts considerably
late compared its size (the starting point of the job’s repre-
sentative rectangle Rij is large compared to its size pij)—
we say a job is good because if all jobs are good, then we
can obtain a better than 1.5-approximation by independent
rounding.

DEFINITION 4.3. Given Rij = Rijs, job j ∈ J is good on
machine i ∈ M if s ≥ 1

10pij or xij ≥ 9
100 ; otherwise, job j

is bad on machine i.

DEFINITION 4.4. A rectangle Rijs is good if s ≥ 1
10pij or

xij ≥ 9
100 , otherwise bad.

Note that a job j is good on machine i if its represen-
tative rectangle Rij on machine i is good. So, job j being
good or bad is stochastic.

Before grouping jobs, we shift every rectangle to the
right—how much a rectangle Rij = Rijs is shifted depends
on its start time and how much j is scheduled on the
machine: Rectangle Rij = Rijs is shifted to the right by

• 0.34(s+ xijpij) if xij ≥ 9
100
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• 0.34s otherwise.

We denote the starting point of Rijs after shifting as ŝ.
For each job j on machine i with Rij = Rijs and random
offset τij , we set θij = ŝ + τij . We will schedule the jobs
assigned to each machine i in increasing order of their θ
values on machine i.

Now to decide where to assign each job j, we use
Theorem 1.2. To apply the theorem we need to group jobs on
each machine. To define the grouping Gi on each machine i,
fix a machine i ∈M. We only group bad jobs on machine i –
or equivalently, we create a singleton group for each job that
is not grouped together with any other jobs on the machine.
To group bad jobs on machine i, we use a set of random grid
points that are exponentially increasing. Choose a number ρ
from (1/10, 1) uniformly at random. A point in time is called
a grid time if it is of the form ρ10l for some integer l. Define
the k-th grid interval, Ik := (ρ10k, ρ10k+1). Note that grid
times partition the time horizon (0,∞) into {Ik}k∈Z.

We associate job j with interval Ik on machine i if
θij ∈ Ik and an independent coin gives a head—the coin
gives a head with probability u = 1/2—and we denote this
event as j ;i Ik. Now consider all jobs associated with
an interval Ik on machine i. If their total height is less than
1, i.e.,

∑
j:j;iIk

xij ≤ 1, we group them together and add
this group to Gi. If two jobs j and j′ are grouped together
on machine i, we will denote the event as j i∼ j′; otherwise
j
i� j′. We now use Theorem 1.2 to decide where to assign

each job.
As mentioned above, given that every job is assigned to

a machine, we order the jobs assigned to the same machine
i, in increasing order of their θij value. This completes the
description of our randomized rounding.

5 Unrelated Machines Scheduling: Analysis
This section is devoted to the analysis of the randomized
algorithm in Section 4 with the goal of proving Theorem 1.1.

We first remind the reader of the following fact.

OBSERVATION 5. All properties of our randomized round-
ing method (stated in Theorem 1.2) hold true for any fixed
value of the random variables {θij}i,j and ρ. In particular,
Pr[i ← j] = xij for any θ values of jobs and ρ value and is
independent of how jobs are grouped together on each ma-
chine and which rectangles are chosen as jobs’ representa-
tive rectangles.

Let C̃j∗ be the completion time of a fixed job j∗ in
the schedule returned by the rounding algorithm. Using
conditional expectation and the law of total expectation, we

have

E[C̃j∗ ]

=
∑
i∈M

∑
s∗

Pr[i← j∗] Pr[Rij∗ = Rij∗s∗ | i← j∗]

· E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

=
∑
i∈M

∑
s∗

xij∗ Pr[Rij∗ = Rij∗s∗ | i← j∗]

· E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

As stated in Observation 5, the event i ← j∗ is inde-
pendent of Rij∗ = Rij∗s∗ , which happens with probability
xij∗s∗

xij∗
. Thus, we can simplify the above as follows.

(5.17)
E[C̃j∗ ] =

∑
i∈M

∑
s∗

xij∗s∗ E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

From now on, we fix machine i. Our key lemma in the
analysis is the following.

LEMMA 5.1. For each job j∗, we have∑
s∗

xij∗s∗ E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

≤ 1.488
∑
s∗

xij∗s∗(s
∗ + pij∗)

Plugging this inequality into Eqn.(5.17) would immediately
imply Theorem 1.1:

E[C̃j∗ ] ≤ 1.488
∑
i

∑
s∗

xij∗s∗(s
∗ + pij∗),

as summing E[C̃j∗ ] over all jobs multiplied by their weight
gives an upper bound of our algorithm’s expected objective
by 1.488 times the LP optimum objective.

The rest of this section is devoted to proving Lemma 5.1.
Following observations will be useful for our analysis.

OBSERVATION 6. For any job j∗ and any rectangle Rij∗s∗
we have

E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

(5.18)

=

∫ pij∗

0

1

pij∗
E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ , τij∗ = τ ] dτ

Proof. Recall that τij∗ is chosen from (0, pij∗ ] uniformly at
random. Using conditional expectation and the law of total
expectation, we have,

E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ ]

=

∫ pij∗

0

Pr[τij∗ = τ | i← j∗, Rij∗ = Rij∗s∗ ]

E[C̃j∗ | i← j∗, Rij∗ = Rij∗s∗ , τij∗ = τ ] dτ
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Note that τij∗ is independent of Rij∗ = Rij∗s∗ , and i ← j∗

is independent of these two events as observed in Observa-
tion 5. Thus, we have Pr[τij∗ ∈ [τ, τ+dτ) | i← j∗, Rij∗ =
Rij∗s∗ ] = Pr[τij∗ ∈ [τ, τ +dτ)] = dτ

pij∗
. This completes the

proof.

For the sake of analysis we define notation L̂ijs(θ) for
any rectangle Rijs and ant time point θ to be the length of
part of the rectangle Rijs that appears before time θ after
shifting. Note that L̂ijs(θ) = min{θ, ŝ + pij} − ŝ if ŝ < θ,
otherwise L̂ijs(θ) = 0. The next observation measures the
probability that a job j will have a smaller θ value than the
fixed job j∗ on machine i. If this event occurs, and further,
both jobs are assigned to the machine i, job j will delay job
j∗.

OBSERVATION 7. For any two jobs j∗ and j on machine
i, any fixed value θij∗ and any Rijs, we have Pr[θij ≤
θij∗ | Rij = Rijs] =

L̂ijs(θij∗ )

pij
.

Proof. Since the representative rectangle of job j on ma-
chine i is fixed, the event θij = ŝ + τij ≤ θij∗ happens iff
τij ∈ (0,max{0,min{θij∗ , ŝ+pij}− ŝ}] = (0, L̂ijs(θij∗)].
Since τij is chosen from (0, pij ] uniformly at random, the

event τij ∈ (0, L̂ijs(θij∗)] occurs with probability L̂ijs(θij∗ )

pij
.

5.1 Proof of the Lemma 5.1 We now get back to proving
our main lemma, Lemma 5.1. Towards that end, we first
express j∗’s expected completion times in terms of the
quantities we defined. The following lemma breaks down
j∗’s expected completion time conditioned on the fixed job
j∗ being assigned to machine i, the rectangle Rij∗s∗ being
selected as j∗’s representative on machine i and the value of
θi,j∗ being fixed. Note that xijs · L̂ijs(θij∗) is exactly the
volume of rectangle Rijs appearing before time θij∗ after
shifting and

∑
j,s xijs · L̂ijs(θij∗) −

∑
s xij∗s · L̂ij∗s(θij∗)

is total volume of all rectangles excluding those of job j∗

appearing before time θij∗ after shifting—this is exactly how
much other jobs would delay job j∗ if we used the standard
independent rounding. The gain comes from representative
rectangles that are grouped together with the fixed Rij∗s∗ , in
which jobs of such rectangles are less likely to be assigned
to the same machine i due to the strong negative correlation
property.

For brevity, we may shorten Rij = Rijs simply as
Rijs particularly when it is stated in the condition of a
probability or expectation. Throughout this paper, we set
η := 2 exp(0.09)

e+1 < 0.589, which comes from the following:
Recall the fourth property of Theorem 1.2. For any two
distinct bad jobs j and j′, as xij , xij′ < 9/100, we have

Pr[i ← j ∧ i ← j′ | j i∼ j′] ≤ 2 exp(0.09)
e+1 xijxij′ <

0.589xijxij′ .

LEMMA 5.2. For any job j∗, representative rectangle
Rij∗s∗ and any fixed τij∗ ∈ (0, pij∗ ], we have,

E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
− pij∗

=
∑
j,s

xijs · L̂ijs(θij∗)−
∑
s

xij∗s · L̂ij∗s(θij∗)

− (1− η)
∑
j 6=j∗,s

xijs · pij

· Pr[eij , j
i∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

where eij denotes the event that θij ≤ θij∗ .

Proof. For brevity, we omit the fixed τij∗ and representative
rectangle Rij∗s∗ from the condition. Then, we have,

E
[
C̃j∗

∣∣∣ i← j∗
]
− pij∗

=
∑

j 6=j∗,eij

Pr
[
i← j

∣∣∣ i← j∗
]
· pij

=
∑

j 6=j∗,eij ,j
i�j∗

Pr
[
i← j

∣∣∣ i← j∗
]
· pij

+
∑

j 6=j∗,eij ,j
i∼j∗

Pr
[
i← j

∣∣∣ i← j∗
]
· pij

≤
∑

j 6=j∗,eij ,j
i�j∗

xij · pij + η
∑

j 6=j∗,eij ,j
i∼j∗

xij · pij

=
∑

j 6=j∗,eij

xij · pij − (1− η)
∑

j 6=j∗,eij ,j
i∼j∗

xij · pij

where the inequality follows from negative and strong nega-
tive correlation properties of our randomized rounding algo-
rithm stated in Theorem 1.2.

Note that fixing the representative rectangle Rij∗s∗ and
the value of τij∗ fixes the value of θij∗ . Then, thanks to
Observation 7, the first term becomes∑

j 6=j∗,s

xij · pij · Pr[Rij = Rijs, eij ]

=
∑
j 6=j∗,s

xij · pij · Pr[eij | Rijs] · Pr[Rij = Rijs]

=
∑
j 6=j∗,s

xij ·
xijs
xij
· pij ·

L̂ijs(θij∗)

pij
[Observation 7]

=
∑
j 6=j∗,s

xijs · L̂ijs(θij∗)

=
∑
j,s

xijs · L̂ijs(θij∗)−
∑
s

xij∗s · L̂ij∗s(θij∗)
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The second term becomes

(1− η)
∑
j 6=j∗,s

xij · pij · Pr[Rijs, eij , j
i∼ j∗]

= (1− η)
∑
j 6=j∗,s

xij · pij · Pr[eij , j
i∼ j∗ | Rijs] · Pr[Rijs]

= (1− η)
∑
j 6=j∗,s

xijs · pij · Pr[eij , j
i∼ j∗ | Rijs]

Thus, bringing back the omitted conditions τij∗ and Rij∗s∗
to the equation, we have the lemma.

LEMMA 5.3. For each job j∗, and any representative rect-
angle Rij∗s∗ , we have

E[C̃j∗ | i← j∗, Rij∗s∗ ]

(5.19)

≤ŝ∗ + 1.5pij∗ −
∫ pij∗

0

1

pij∗
·
∑
s

xij∗s · L̂ij∗s(ŝ∗ + τ) dτ

Proof. The trivial lower bound for the second negative term
of the lemma 5.2 is zero. Thus

E[C̃j∗ | i← j∗, Rij∗s∗ , τij∗ ]

≤pij∗ +
∑
j,s

xijs · L̂ijs(θij∗)−
∑
s

xij∗s · L̂ij∗s(θij∗)

Note that the total volume of all rectangles appearing
before time θ is at most θ. Further,

∑
j,s xijs · L̂ijs(θ) is

total volume of all rectangles appearing before time θ after
shifting. Since we shift rectangles to the right side, we have∑
j,s xijs · L̂ijs(θ) ≤ θ. Thus we have

E[C̃j∗ | i← j∗, Rij∗s∗ , τij∗ ]

=pij∗ + θij∗ −
∑
s

xij∗s · L̂ij∗s(θij∗)

=pij∗ + ŝ∗ + τij∗ −
∑
s

xij∗s · L̂ij∗s(θij∗)

Thus, taking the integral on the value of τij∗ , we have,

E[C̃j∗ | i← j∗, Rij∗s∗ ]

≤pij∗ + ŝ∗

+

∫ pij∗

0

τ · 1

pij∗
dτ

−
∫ pij∗

0

(∑
s

xij∗s · L̂ij∗s(ŝ∗ + τ)
)
· 1

pij∗
dτ

≤1.5 · pij∗ + ŝ∗

−
∫ pij∗

0

(∑
s

xij∗s · L̂ij∗s(ŝ∗ + τ)
)
· 1

pij∗
dτ

as desired.

LEMMA 5.4. For each job j we have

∑
s∗

xij∗s∗ E[C̃j∗ | i← j∗, Rij∗s∗ ]

≤(1.5− xij∗

2
)xij∗pij∗ +

∑
s∗

xij∗s∗ ŝ
∗

Proof. Applying Lemma 5.3 to all rectangles {Rij∗s∗}s∗ of
job j∗ on machine i, we can say

∑
s∗

xij∗s∗ E[C̃j∗ | i← j∗, Rij∗s∗ ]

(5.20)

≤
∑
s∗

xij∗s∗
(
ŝ∗ + 1.5pij∗

−
∫ pij∗

0

(∑
s

xij∗s · L̂ij∗s(ŝ∗ + τ)
)
· 1

pij∗
dτ
)

Consider negative term here.

∑
s∗

xij∗s∗

∫ pij∗

0

(∑
s

xij∗s · L̂ij∗s(ŝ∗ + τ)
)
· 1

pij∗
dτ

=
∑

{s∗,s}:s6=s∗
xij∗s∗ · xij∗s ·

∫ pij∗

0

(
L̂ij∗s(ŝ

∗ + τ)

+ L̂ij∗s∗(ŝ+ τ)
)
· 1

pij∗
dτ

+
∑
s∗

x2ij∗s∗

∫ pij∗

0

L̂ij∗s∗(ŝ
∗ + τ) · 1

pij∗
dτ

(5.21)

We can show that for any two different s∗ and s we have
(5.22)∫ pij∗

0

(
L̂ij∗s(ŝ

∗ + τ) + L̂ij∗s∗(ŝ+ τ)
)
· 1

pij∗
dτ = pij∗

W.l.o.g we can assume ŝ∗ < ŝ. Consider the case that two
rectangles Rij∗s∗ and Rij∗s do not overlap after shifting. In
this case, for any τ , L̂ij∗s∗(ŝ+ τ) = pij∗ . Thus the equality
(5.22) holds in this case. Now consider the case that two
rectangles Rij∗s∗ and Rij∗s overlap after shifting. In this
case when τ ∈ (0, ŝ − ŝ∗], L̂ij∗s(ŝ∗ + τ) = 0. When
τ ∈ (ŝ − ŝ∗, pij∗ ], L̂ij∗s(ŝ∗ + τ) = ŝ∗ + τ − ŝ. For any
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τ , L̂ij∗s∗(ŝ+ τ) = min{ŝ+ τ − ŝ∗, pij∗}. Thus we have∫ pij∗

0

(
L̂ij∗s(ŝ

∗ + τ) + L̂ij∗s∗(ŝ+ τ)
)
· 1

pij∗
dτ

=

∫ pij∗

ŝ−ŝ∗
(ŝ∗ + τ − ŝ) · 1

pij∗
dτ

+

∫ s∗+pij∗−s

0

(s+ τ − s∗) · 1

pij∗
dτ

+

∫ pij∗

s∗+pij∗−s
(pij∗) ·

1

pij∗
dτ

= pij∗

Since L̂ij∗s∗(ŝ∗ + τ) = τ we have

(5.23)
∫ pij∗

0

L̂ij∗s∗(ŝ
∗ + τ)

)
· 1

pij∗
dτ = pij∗/2

Applying Eqn.(5.22) and Eqn.(5.23) in Eqn.(5.21),the nega-
tive term of Eqn.(5.20) becomes:∑

{s∗,s}:s6=s∗
xij∗s∗ · xij∗s · pij∗ +

∑
s∗

x2ij∗s∗ ·
pij∗

2

=
pij∗

2

(∑
s∗

xij∗s∗
)2

=
pij∗·x

2
ij∗

2

Plugging this equality in Eqn.(5.20) gives the lemma.

We now consider three cases in the following to prove
Lemma 5.1.

5.1.1 When job j∗ is good on machine i because xij∗ >
9

100 The following corollary follows from Lemma 5.4; the
proof is deferred to the full version of this paper.

COROLLARY 5.1. When job j∗ is good on i because xij∗ >
9

100 we have∑
s∗

xij∗s∗ E[C̃j∗ | i← j∗, Rij∗s∗ ] ≤ 1.486
∑
s∗

xij∗s∗(s
∗+pij∗)

This gives Lemma 5.1 for each good job j∗ with xij∗ ≥ 9
100 .

Now we focus on proving Lemma 5.1 for each job j∗ with
xij∗ <

9
100 in the following.

5.1.2 When job j∗ with xij∗ < 9
100 is good on machine

i because its representative rectangle Rij∗s∗ is good on i
The goal of this subsection is to show Lemma 5.1 for each
job j∗ with xij∗ < 9

100 and any good representative rectangle

Rij∗s∗ . Towards this end, it suffices to show the following.

E[C̃j∗ | i← j∗, Rij∗s∗ ] ≤ ŝ∗ + 1.5pij∗ = 1.34s∗ + 1.5pij∗

= 1.486s∗ − 0.146s∗ + 1.5pij∗

≤ 1.486s∗ − 0.0146pij∗ + 1.5pij∗

≤ 1.486(s∗ + pij∗)

The first inequality is due to Lemma 5.3. The first equality
comes from this fact as xij∗ < 9

100 , we shift rectangleRij∗s∗
to the right side by 0.34s∗, and the inequality follows from
10s∗ ≥ pij∗ for any good rectangle Rij∗s∗ .

Thus, we have shown Lemma 5.1 for this case.

5.1.3 When job j∗ is bad on machine i In this subsection
we consider the case that xij∗ < 9

100 and the representative
rectangle of job j∗ is bad on i. To show Lemma 5.1 for this
case, we will show,
(5.24)
E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
≤ pij∗ + ŝ∗ + 0.976τij∗

Then, by taking the integral on the value of τij∗ , we have,

E[C̃j∗ | i← j∗, Rij∗s∗ ]

≤pij∗ + ŝ∗ +

∫ pij∗

0

0.976τ · 1

pij∗
dτ = ŝ∗ + 1.488pij∗

Since ŝ∗ = 1.34s∗, this means we have E[C̃j∗ | i ←
j∗, Rij∗s∗ ] ≤ 1.488(s∗ + pij∗), as desired.

To prove Eqn.(5.24), we will reformat the time-indexed
LP solution {xijs}ijs, so that we have a linear combination
of non-overlapping rectangles on each machine. This view
will make our analysis easier. Formally, we will define a
collection Fi of subsets of rectangles on each machine i that
satisfies the following properties.

1.
∑
f∈Fi zif ≤ 1

2. A configuration f ∈ Fi is a set of disjoint rectangles;
that is, for any two distinct rectangles Rijs, Rij′s′ ∈ f ,
(s, s+ pij ] and (s′, s′ + pij′ ] are disjoint.

3. For each rectangle Rijs, we have
∑
f3Rijs zif = xijs.

An easy way to obtain this linear combination decompo-
sition to replace each rectangle with sufficiently many copies
of the same height preserving its total height. Then, it is not
difficult to see that we can group rectangles as desired. We
note that we can directly obtain this type of solution by solv-
ing a configuration LP [40].6

6The configuration LP solution is more structured than the above de-
composition in that each configuration has at most one rectangle of each
job. However, we do not need such a strong property for our rounding.
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Now, we restate Lemma 5.2 using the above configura-
tion view. As we will focus on a fixed machine i, we may
omit Fi. Due to the space constraints, we defer the proof of
the following corollary to the full version of this paper.

COROLLARY 5.2. For any job j∗, representative rectangle
Rij∗s∗ and any fixed τij∗ ∈ (0, pij∗ ], we have,

E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]
− pij∗

=
∑
f

zif

(
L̂f (θij∗)−

∑
Rij∗s∈f

L̂ij∗s(θij∗)
)

− (1− η)
∑
f

∑
Rijs∈f :j 6=j∗

zif · pij

· Pr[eij , j
i∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

where L̂f (θij∗) is the total length of all rectangles in f
appearing up to time θij∗ after shifting.

We define Df as the contribution of each configuration

f to E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]

as following.

Df =zif L̂f (θij∗)− zif
∑

Rij∗s∈f

L̂ij∗s(θij∗)

− zif (1− η)

·
∑

Rijs∈f :j 6=j∗
pij Pr[eij , j

i∼ j∗ | Rijs, Rij∗s∗ , τij∗ ]

With this definition, we can say,

(5.25) E
[
C̃j∗

∣∣∣ i← j∗, Rij∗s∗ , τij∗
]

= pij∗ +
∑
f

Df

Since
∑
f zif = 1 and 0.976θij∗ ≤ ŝ∗ + 0.976τij∗ , if we

show that

(5.26) Df ≤ zif (0.976θij∗) for all configurations f,

then we can prove Eqn. (5.24), and consequently we can get
Lemma 5.1 for a bad job j∗.

Henceforth, the goal of our analysis is to show
Eqn. (5.26). As mentioned there is a random variable ρ
in our algorithm that affects grid points, and therefore, af-
fects the grouping of bad jobs on each machine. Thus, for
each f , Rijs, Rij∗s ∈ f , where j 6= j∗, the probability

Pr[eij , j
i∼ j∗ | Rijs, Rij∗s∗ , τij∗ ] in Df depends on the

value of ρ. As ρ is sampled from ( 1
10 , 1] uniformly at ran-

dom, applying marginal probability and then Bayes’ rule, we

have

Df =zif

(
L̂f (θij∗)−

∑
Rij∗s∈f

L̂ij∗s(θij∗)

(5.27)

− (1− η)
∑

Rijs∈f :j 6=j∗
pij ·

10

9

·
∫ 1

1
10

Pr[eij , j
i∼ j∗ | Rijs, Rij∗s∗ , τij∗ , ρ] dρ

)
Let I ∈ {Ik} be the interval containing θij∗ and g be the

starting point of this interval. Note that the rectangle Rij∗s∗
is associated with I with probability u = 1/2. It is worth
mentioning that, when θij∗ is fixed, fixing ρ determines I ,
and therefore, g as well. We first show that g is considerably
smaller than θij∗ in expectation. Note that for any ρ value,
g > 0.1θij∗ .

LEMMA 5.5. For any value of θij∗ , E[g] ≤ 11
20θij∗ .

Proof. Let k be an integer such that 10k ≤ θij∗ < 10k+1.
Let α be such that θij∗ = α10k+1. Note that by definition
of θij∗ and α, we have 1

10 ≤ α < 1. Since ρ is
sampled from ( 1

10 , 1) uniformly at random, the interval
including θij∗ must be either Ik = (ρ10k, ρ10k+1) or
Ik+1 = (ρ10k+1, ρ10k+2). Precisely, we have g = ρ10k+1

when ρ ≤ α, otherwise g = ρ10k. Therefore, we derive,

E[g] =
10

9

∫ α

1
10

ρ · 10k+1 dρ+

∫ 1

α

ρ · 10k dρ

= 10k+1(
α2

2
+

1

20
) ≤ 10k+1 11

20
α =

11

20
θij∗

The inequality follows from the fact that α2

2 + 1
20 ≤

11
20α

when 1
10 ≤ α < 1. The last equality is immediate from the

definition of θij∗ .

The following observation will be useful in our analysis.

OBSERVATION 8. For any configuration f and value θ′ ≤
θij∗ , such that no rectangle Rij′s′ in f includes θ′, i.e. θ′ /∈
(s′, s′+pij′) we have L̂f (θij∗) ≤ θij∗ −min(0.34θ′, θij∗ −
θ′).

Proof. Since θ′ is not contained in the interior of any rectan-
gle in f , a rectangle in f is either to the left or to the right
of θ′. The rectangles in f after θ′ will be shifted to the right
side by at least 0.34θ′. When 0.34θ′ > θij∗ − θ′, all rectan-
gles after θ′ in f will be shifted to the right side of θij∗ . Thus
L̂f (θij∗) ≤ θ′. When 0.34θ′ < θij∗ − θ′, the rectangles in f
from θij∗ − 0.34θ′ to θij∗ will be shifted to the right side of
θij∗ . Thus L̂f (θij∗) ≤ θij∗ − 0.34θ′. Combining two cases
gives the observation.
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Consider the the interval H = (0.1θij∗ , 0.97θij∗ ]. We
upper bound Df by considering three cases.

Case 1: The interval H is not a sub-interval of any
rectangle (more precisely, the interval defined by the rect-
angle’s starting and ending times) in f . In this case there
is θ′ ∈ H that is not interior of any rectangle in f . By
observation 8, L̂f (θij∗) ≤ θij∗ − min{0.03θij∗ , 0.34θ′} ≤
θij∗ − min{0.03θij∗ , 0.34 × 0.1θij∗} ≤ 0.97θij∗ . Thus
Df ≤ zif0.97θij∗

Case 2: The interval H is a sub-interval of a good
rectangle Rijs ∈ f . We first observe that the rectangle Rijs
is shifted to the right side by at least 0.03θij∗ . If xij ≥ 9

100 ,
the rectangle Rijs is shifted to the right side by at least
0.34(s+ 0.09pij) ≥ 0.34(0.09(s+ pij)) > 0.03θij∗ . When
xij <

9
100 ,Rijs is good because s > 1

10pij . In this caseRijs
is shifted to the right side by 0.34s ≥ 0.34(0.09s+0.91s) ≥
0.34 × 0.09(s + pij) > 0.03θij∗ . As s + 0.03θij∗ < θij∗ ,
this means the total length of rectangles in f up to time θij∗
decreases by at least 0.03θij∗ due to the shifting. Thus, we
have Df ≤ zif0.97θij∗ .
Case 3: The interval H is a sub-interval of a bad rectangle
Rijs ∈ f . This is the case where we utilize strong negative
correlations.

Pr[eij , j
i∼ j∗ | Rijs, Rij∗s∗ , τij∗ , ρ]

= Pr[eij , θij ∈ I, j ;i I, j
∗ ;i I,∑

j′;iI

xij′ ≤ 1 for I s.t. θij∗ ∈ I | Rijs, Rij∗s∗ , τij∗ , ρ]

= Pr[g < θij < min{θij∗ , ŝ+ pij} | Rijs, Rij∗s∗ , τij∗ , ρ]

· Pr[j ;i I | eij , θij ∈ I,Rijs, Rij∗s∗ , τij∗ , ρ]

· Pr[j∗ ;i I | j ;i I, eij , θij ∈ I,Rijs, Rij∗s∗ , τij∗ , ρ]

· Pr[
∑
j′;iI

xij′ ≤ 1 | j∗ ;i I, j ;i I, eij ,

θij ∈ I,Rijs, Rij∗s∗ , τij∗ , ρ]

≥max{min{θij∗ , ŝ+ pij} − g, 0}
pij

· u · u

· Pr[
∑

j′ 6=j,j∗;iI

xij′ ≤ 0.82]

Note that in the above equations, I is a grid interval
including θij∗ . Thus, fixing Rij∗s∗ and τij∗ means fixing
I and its starting point g. In the third equation, the first
probability is for the event eij and θij ∈ I . The second
and third probabilities are for the events that j and j∗ are
associated with I respectively, conditioned on their θ values
being in I – they are both u = 1/2. The last probability
is lower bounded by the probability that the total height of
jobs, other than j, j∗, assigned to I is at most 0.82, as only
bad jobs are associated with I , meaning xij , xij∗ ≤ 9/100.

To keep the flow of the analysis, we defer the proof of
the following lemma to the subsequent section.

LEMMA 5.6. Pr[
∑
j′ 6=j,j∗;iI

xij′ ≤ 0.82] ≥ 0.5317.

Assuming Lemma 5.6 holds true, we can complete our
analysis. We have

Pr[eij , j
i∼ j∗ | Rijs, Rij∗s∗ , τij∗ , ρ]

>0.1323 · max{min{θij∗ , ŝ+ pij} − g, 0}
pij

Applying the above inequality to Eqn. (5.27) we have.

Df

≤zif L̂f (θij∗)

− zif
∑

Rij∗s∈f

L̂ij∗s(θij∗)

− zif (1− η)

∫ 1

1
10

10

9
· 0.1323

· (max{min{θij∗ , ŝ+ pij} − g, 0}) dρ
≤zif L̂f (θij∗)

− zif
∑

Rij∗s∈f

L̂ij∗s(θij∗)

− zif (1− η)

∫ 1

1
10

10

9
· 0.1323 · (min{θij∗ , ŝ+ pij} − g) dρ

≤zif L̂f (θij∗)

− zif · 0.1323 · (1− η) ·
(

min{θij∗ , ŝ+ pij} − E[g]
)

The last inequalities come from the fact min{θij∗ , ŝ+pij} ≥
min{θij∗ , s+pij} and Lemma 5.5. We observe that L̂f (θij∗)
is also upper bounded by min{θij∗ , s + pij}. To see
this, assume s + pij < θij∗ since otherwise this claim is
immediate from the definition of L̂f (θij∗). Note that all
rectangles in f starting at time s + pij or later are shifted
to the right by at least 0.34(s+pij) ≥ 0.34∗0.97θij∗ . Since
s+pij ≥ 0.97θij∗ , this means all those rectangles are shifted
to the right side of θij∗ . Thus, we have the claim. Thus, we
have,

Df ≤zif (1− 0.1323 · (1− η)) ·min{θij∗ , s+ pij}

+ zif0.1323 · (1− η) · 11

20
· θij∗

≤zif
(

(1− 0.1323 · (1− η) · 9

20
)θij∗

)
Having η < 0.589, we can say Df ≤ zif · 0.976 θij∗ .

5.1.4 Proof of Lemma 5.6 It now remains to prove
Lemma 5.6.
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LEMMA 5.7. For any configuration f on machine i and any
grid interval I , we have

∑
Rijs∈f :Rijs is bad on i

|I ∩ (ŝ, ŝ+ pij ]|
pij

≤ 1

Proof. Fix a machine i. We first show that at most two
bad rectangles from the same configuration f , after shifting,
can overlap with a fixed grid interval I on a fixed machine
i. To streamline our analysis, by scaling all time points
uniformly, we assume wlog that I = (1/10, 1). For the sake
of contradiction, say there are more than two bad rectangles
from f overlapping with I after shifting. Suppose R̂ij′s′
is the last bad rectangle overlapping with I and R̂ijs is the
second to the last bad rectangle overlapping with I . Here we
use R̂ to denote the rectangle R after shifting.

The proof idea is to show that even if R̂ij′s′ barely
overlaps with I , the second to the last rectangle R̂ijs must
start before I . So, we can assume ŝ′ = 1. For notational
convenience, let p := pij and p′ := pij′ . As Rij′s′ is
bad, we know ŝ′ = 1.34s′. From the observation that
the two rectangles do not overlap and their relative order
doesn’t change by the shifting, we have s′ ≥ s + p. Since
Rijs is bad, we have s ≤ (1/10)p. Therefore, we have
1 = 1.34s′ ≥ 1.34(s + p) ≥ 1.34(11s) = 14.75s. Thus,
we have ŝ = 1.34s ≤ 1/11. This means R̂ijs starts before I
does. This, R̂ijs is the first bad rectangle from f overlapping
with I , a contradiction.

From the above argument, it is straightforward to see
that if the first bad rectangle overlapping with I is fully
contained in I , then it is the only bad rectangle from f
overlapping with I . In this case, the summation is exactly
one. To see this is in fact the maximum of the summation,
fix two adjacent bad rectangles R̂ijs and R̂ij′s′ from the
same configuration, move I to the left or to the right. Since
p′ > p from the above argument, it is easy to see that when
we increase R̂ij′s′ ’s overlap with I by one unit and decrease
R̂ijs’s overlap with I by one unit, the summation decreases.
This implies the summation is at most one, as desired.

LEMMA 5.8. For any machine, the expected total height of
jobs associated with a grid interval I on the machine is at
most u.

Proof. We have

E[
∑
j;iI

xij ] =
∑
j

xij Pr[j ;i I]

=
∑
j

xij
∑

s:Rijs is bad on i

xijs
xij

Pr[j ;i I | Rijs]

=
∑
j

xij
∑

s:Rijs is bad on i

xijs
xij
· u · |I ∩ (ŝ, ŝ+ pij ]|

pij

= u
∑
f

∑
Rijs∈f :Rijs is bad on i

zif ·
|I ∩ (ŝ, ŝ+ pij ]|

pij

≤ u
∑
f

zif (Lemma 5.7)

≤ u

The third equality follows since j is associated with I

when θij ∈ I , which occurs with probability |I∩(ŝ,ŝ+pij ]|pij

conditioned on Rij = Rijs, and an independent fair coin
(u = 1/2) gives a head.

To prove Lemma 5.6, we use the following well-known
concentration inequality.

THEOREM 5.1. (THEOREM 2.3 OF [32]) Let Z be the sum
of n independent random variables where each random
variable takes value in [0,K]. Let µ = E[Z]. Then for any
λ ∈ [0, 1], we have

Pr
[
Z ≥ (1 + λ)µ

]
≤ e−λ

2µ/3K .

Let Zj′ denote the indicator variable for the event j′ ;i

I . Then, we know E[Z :=
∑
j′ 6=j,j∗ xij′Zj′ ] ≤ u = 1/2.

Note that xij′Zj′ ≤ 9/100, as j′ is associated with interval
I only when it is bad on machine i; thus, we can set
K = 9/100. Further, {Zj′}j′ 6=j,j∗ are independent from
one another. Therefore, by setting λ = 0.64, we obtain,

Pr[
∑

j′ 6=j,j∗;iI

xij′ ≤ 0.82] = 1− Pr[
∑

j′ 6=j,j∗;iI

xij′ ≥ 0.82]

≥ 1− exp(−0.642 · 0.5/(3 ∗ 0.09)) > 0.5317.

This completes the proof of Lemma 5.6.
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[15] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: a
special case of scheduling unrelated parallel machines. In
SODA, 2008.

[16] U. Feige. On allocations that maximize fairness. In SODA,
2008.
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