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Abstract—We extract the lumped-parameter model of a wound-
rotor synchronous machine from its physics-based magnetic-
equivalent circuit model. Model extraction is formulated as a
weighted least square optimization with nonlinear constraints in
which time-domain trajectories of flux linkages, currents, and
the electromagnetic torque are used as input data to obtain the
parameters of the gdO model of the machine. The resulting prob-
lem is non-convex and cannot be solved using standard methods.
The optimization problem is, therefore, convexified using a cone
programming relaxation. The solution to the relaxed problem is
used as an initial point for the interior-point method, leading to
a reliable framework. Accurate estimations on stator resistance,
leakage and mutual inductances in stator and rotor, rotor speed,
effective turns-ratio between the field and stator windings, and the
number of poles are obtained. Estimated parameters are validated
against measured and estimated values reported in literature, and
are used to develop a behavioral gd0 macromodel of the machine.

Index  Terms—Convex relaxation, magnetic-equivalent
circuit, parameter estimation, cone programming, wound-rotor
synchronous machine.

1. INTRODUCTION

LECTRIC machine models can be classified into lumped-
Eparameter models, such as abc phase-domain models,
qd0 models, or voltage-behind reactance models [1], and those
based on the first principles of physics (Maxwell equations),
such as finite-element methods (FEM) or magnetic equivalent
circuits (MEC). Lumped-parameter macromodels are suitable
for system-level studies, drive-controller design, or hardware-in-
the-loop applications [1], [2]. FEM models are highly accurate
and closely mimic the hardware, but they are computationally
expensive and mainly used for the final design verification. MEC
modeling is an intuitive approach based on the circuit theory.
Herein, we extract the lumped parameters of a dynamic gd0
model from the data generated by the MEC model. We use a
mesh-based MEC model of a wound-rotor synchronous machine
(WRSM) [3]-[6] as it exhibits better numerical properties than
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Fig. 1. qd0 model extraction from the MEC model of a WRSM.

its nodal-based counterpart [7]. WRSMs are used in various
applications, e.g., aircraft generators, ship propulsion, and wind
turbines [8]. ¢d0 model extraction is analogous to replacing the
spatially-distributed reluctance network of the MEC model with
equivalent lumped-parameter components (see Fig. 1).

IEEE Std-115 [9] documents an array of tests to identify
synchronous machine parameters. Since it is not always feasible
to run all the necessary tests, various techniques estimate ma-
chine parameters using transient measurements [10]—[14]. In the
absence of hardware measurement, high-fidelity physics-based
models, that closely mimic the experimental prototype, can
be used instead. Furthermore, detailed models provide access
to a host of variables that might not be available experimen-
tally due to a limited sensory. [15] and [16] have used FEM
models to determine the parameters of equivalent circuits for
induction machines. [17] has used the data from a pulse test
applied to the FEM model of a synchronous machine to obtain
its lumped-parameter model. However, MEC models have not
yet been exploited for such macromodeling purposes. Another
aspect of our contribution is the extraction methodology. While
optimization methods based on convex relaxation have found
wide applications in power system areas [ 18]-[20], they have not
yet been properly explored for model extraction and parameter
estimation of electric machines [21], [22]. We formulate the
parameter extraction process as a weighted least-square problem
with nonlinear constraints such that it minimizes the mismatch
between trajectories produced by the MEC model and those
predicted by the ¢d0 model.
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Due to the presence of nonlinear equality constraints, the
proposed optimization problem is non-convex and cannot be
solved reliably using standard interior-point method (IPM)
solvers [23]-[25]. To eliminate the need for initialization we
propose a hybrid optimization framework based on cone pro-
gramming relaxation. We relax the original problem and feed
the resulting solution to IPM in order to arrive at fully-feasible
and globally optimal solutions [26]. The contributions of this
paper are summarized below:

® We have recovered machine parameters, namely stator
resistance, rotor speed, stator leakage inductance, g-axis
magnetizing inductance, d-axis magnetizing inductance,
equivalent turns-ratio between the field and the stator wind-
ings, and the number of poles. Extracted parameters are
compared against those values reported in literature.

® The model extraction is formulated as a non-convex opti-
mization problem using a hybrid cone programming and
IPM approach.

e The extracted gd0 model is validated against the MEC
model, and shown to capture dominant dynamical modes
with more than 20 times faster model execution.

The outline of the paper is as follows. Section II is a pre-
liminary review on the symbols and notations used throughout
the paper. Section III presents the dynamic MEC model and the
target ¢d0 model for WRSM. Section IV elaborates a discrete
qd0 model for WRSM, and formulates the parameter extrac-
tion process as a non-convex optimization problem. Section V
presents cone programming relaxation and objective penaliza-
tion. Section VI studies the implementation process and results.
Finally, Section VII concludes the paper.

II. NOTATION

Matrices and vectors are presented as bold uppercase and
lowercase variables, respectively (e.g., X or x). x; denotes the
ith element of vector x. X;; denotes the element in the ith row
and jth column of matrix X. R"™ is the set of column vectors
of size n x 1. R™*" is the set of matrices of size m x n. S™
denotes the set of symmetric matrices of size n. 0,, and 1,,
represent vectors of size m x 1 with all their elements as 0
and 1, respectively. Similarly, 0,, ., represents a matrix of size
m x n with all its element equal to 0. I,, is an identity matrix
of size n. ||x||2 denotes the Euclidean norm of the vector x.
diag(x) gives a diagonal matrix with elements of the vector x
along its diagonal. diag(X) gives a vector with its elements the
same as the diagonal of the input matrix. diag(X,Y’) produces
a block diagonal matrix with input matrices along its diagonal.
()7 indicates the transpose operation. ||x||2 represents x ' Zx.
(X,Y) stands for the inner product of matrices X and Y. ~
denotes the square of a variable, e.g., T represents x2 for a scalar
x and X is a vector with elements of x squared. /X denotes an
element-wise square root operation on vector X.

III. AB INITIO AND LUMPED-PARAMETER WRSM MODELS
A. Dynamic MEC Model

This section presents a concise overview of the mesh-based
MEC model of the WRSM in [3]-[6]. We have selected the

static MEC model in [3] and formed a dynamic MEC model
using the procedure laid out in [6]. Therein, the field current and
rotor speed are assumed constant. Damper windings are ignored
in [3]-[5]. Different segments of stator, rotor, and airgap are
modeled using flux tubes to form a magnetic circuit, as seen in
Fig. 1. Reluctance formulation is based on the geometry and per-
meability information of respective flux tubes [6]. Kirchhoff’s
voltage law on individual loops gives

R®=F, (1)

where R € S™ is the matrix of reluctances, ® € R™ is vector of
flux terms in each loop, F € R™ is the vector of MMF sources,
and nl is the number of loops. Note that due to the rotor motion,
the reluctances of the flux tubes in the airgap region in matrix
R changes with time and should be recalculated at every step.
The elements of F can be obtained as the product of winding
turns and currents for each magnetic loop. One can get the flux
linkages, Agpcs, using [5]

Aabcs = PN;rbcsq)sta (2)

where P is the number of poles, N ;. is the turns matrix for sta-
tor windings, and ® 4, represents the flux in loops corresponding
to stator segments of magnetic circuit.

[6] has reformulated (1) such that flux linkages, Agpcs, are the
inputs and winding currents, 2.5, are the output.

ﬁ _CsclNabcs(Ks)71 P
Csel KSNZbcs 0 iqus/Cscl
_ Nyiq 0 1f1d 3)
0 CsclI3/P >\qu$

The idea is to incorporate the machine dynamics into the oth-
erwise static relation of current and flux in (1). 24405 and Agqos
are the currents and flux linkages of the stator windings in the
rotor reference frame. 2440 = K52 qpc, Where z represents flux
linkages, currents, or voltages, and K is the reference frame
transformation matrix [1]. N ;4 is the turns matrix for the field
winding. iy;q is the field current. ¢y is a scaling factor to
condition (3). Equation (3) can be solved to obtain currents,
4dos. for given flux linkages, Aqqos.

State-space representation of a synchronous machine in the
rotor reference-frame is [1]

dAgs .

d; = Vgs — Tslgs — wr)\dsa (43)
dAgs .

d;l = Uds — Tslds T wr>\qsa (4b)
dXo s .

d;) =Vos — Tslos- (40)

Ugs» Vds, and v ¢ are the g-axis, d-axis, and 0-axis voltage terms.
rs is the stator resistance, and w,. is the rotor speed. Dynamic
MEC model solves (3) and (4) in tandem. The electromagnetic
torque is calculated using [5]

P 2 na ¢ N\ 2 OP. .
MEC _ (L Paj aj
T = (2) Z: (Paj) 20, )

j=
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where ¢,; and P,; represent flux and permeance for the jth loop
in the airgap region. na is the number of airgap loops (changing
with the rotor position), and 6, is the rotor position.

B. qd0 Model

State-space representation of a lumped-parameter model is
the same as (4). However, the relation between flux linkages
and currents is formulated as [1]

)\qs = (Lls + Lmq)iqs; (63)
) 2N .
Ais = (Lis + Lina)ias + *ﬂLmdlﬂd, (6b)
3 Ng
Mos = Lisios. (60)

Ly is the leakage inductance of stator, L, and L,,q are
the ¢- and d-axis magnetizing inductances, respectively. N4
and N are the lumped equivalency of spatially-distributed field
winding and stator winding, respectively. The electromagnetic
torque becomes

3P .
T, = T(Adslqs -
qd0 parameter extraction from the MEC model is analogous to
replacing the flux linkage and current relation in (3) with (6).

Agsias). )

IV. SETTING UP THE MODEL EXTRACTION PROCEDURE

In order to extract the ¢d0 model from the MEC model, one
can compare trajectories generated from (3), (4), and (5) with
those predicted by (6), (4), and (7) and minimize their mismatch.
This requires one to discretize the gd0 model.

A. Discretizing Machine Dynamics

While a host of methods are available, (e.g., Tustin’s [27]), in
this work, the forward Euler method is adopted for its simplicity.
The discretized state trajectory for a general dynamic system
dx — f(x) using the forward Euler method is

dt
X[t + 1] = x[7] + AT x f(x). (3)

x is the state, AT is the sampling time, and 7 is the time instance.
The ¢d0 model in (4), (6), and (7) is discretized as

Al + 1] = AN[7] + Ri[r] + v][7], (9a)
Al[7] = Li|7] +Ligg, (9b)
QxT.[r] = EAT [7] Mi[7]. (9¢)

Alr] € R? and i[7] € R? are the flux linkages and currents,
respectively, in the rotor reference frame at time instance 7.
The ¢d0 subscript is dropped for brevity. v[7] in (9a) is the ¢d0
voltage terms times the sampling time, v[7] = vgq40[7] X AT
Matrices A, R, L, £, M, and () in (9) are defined as

1 —a 0 —r 0 0
A& la 1 0ol, RE|0 —r 0], (10a)
0 1 0 0 —r
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I 0 0
Qé%, L2210 1, of, (10b)
0 0 I
0 0 -1 0
L2 |l,l, M21|1 0 of, (10c)
0 0 0 0

where a £ w, AT, 1 £ 1r,AT, Iy £ Lig+ Lyng, lo = Lis +
Linasls 2 Ljs,andly £ %N]\J;” L 4. The model extraction prob-
lem presented in following sections aims to determine the values
(a,r,1y,12,13,14,Q) based on which machine parameters, w,.,

]\Jr\’;id , and P can be uniquely determined.

Ts, Lls: Lmqv Lmd’

B. Problem Formulation

Suppose that we are given the vectors AME€[7], $MEC[7], and

TMEC[7] throughout a discrete time horizon 7 € {1,2,...,t},
representing flux linkages, currents, and torque data from the
MEC model, respectively. Then, the parameter extraction for a
qd0 model from the MEC data can be formulated as the following
optimization problem:

minimize Z | A[7] — AMEC[7]|

T=1

t
o+ Z lil7] — €173,

+ 35 (Te[r] - TM7))?

T=1

(11a)

subject to

AT+ 1] = A[7] + a x [<Ao[7], M[7],0] " —r x i[r] + v[7],
r=1,2,....,t—1 (11b)

7] = diag{[l1, lo, 13]}a[7] + [0, ls, O] X ifa,

r=1,2,...,t (llo)

Q% T.[7] = %AT[T] (il ia [, 0], 7 = 1,2, ¢

variables
{Al7] € R%,i[r] e R*, T.[r] e R}, _, ,
a7l1,l27l3,l47r,Q e R. (lld)
The 3 x 3 matrices A, and Ag are defined as
(651 0 0 61 0 0
A2 |0 ay O], Ag2 |0 B 0 (12)
0 0 Q3 0 0 ﬂg

(a1, 9,a3), ($1,02,3) and v are user-defined non-negative
weights given to flux, current and torque data, respectively.
The objective function in (11a) represents the total mismatch
between the MEC and ¢d0 trajectories. The equality constraint in
(11b) represents the state equation for the ¢d0 model. Constraints
in (11c) and (11d) form the flux linkage-current relationship
and torque expressions, respectively. The auxiliary variable
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@ = 1/P is defined to reduce the order of torque equation from
three (cubic) to two (quadratic), which will help in the following
convex formulation. To summarize, the optimization problem in
(11) minimizes the sum of scaled residuals for trajectories of flux
linkages, currents, and torque to uniquely obtain A\, ¢, T, A, R,
L, ¢, and @ subject to the constraints in (11a)—(11d).

V. CONVEX RELAXATION AND NUMERICAL SEARCH

Without proper initialization, local search algorithms may fail
to converge to a globally optimal solution or even a feasible
point. To address this issue, we use cone programming relaxation
followed by IPM to reliably solve the problem (11a)—(11d). The
proposed convex relaxation is explained next.

A. Cone Programming Relaxation

The original optimization problem in (11) is non-convex due
to the presence of bilinear terms:

® a A\3[7], a A1[7] and r ¢[7] in (11Db);

® [y i1[7], Iz i2[7] and I3 i3[7] in (11c); as well as

o \i[7] i2[T], A2[7] i1[7] and Q T¢[7] in (11d).

The aforementioned nonlinearity can be tackled by introduc-
ing new variable (i.e., lifting the problem). To this end, define

flr] & [ado[r], —ad]7], 0], (13a)

h[r] = r x i[7], (13b)
z[7] & diag{[ls, l2, l3]} i[7], (13¢)
wlr] £ [Mi[rlizlr], Ao[r]ia[7], 0], (13d)
0[] £ Q x T.[7]. (13e)

The aforementioned auxiliary terms participate in (11b)—(11d)
and can be used to simplify them, as we will demonstrate later.
However, in order to streamline the relaxation process, it is
necessary to reformulate the definitions in (13) as follows:

V@ a2) (olr] = Mafr]2) = |i[r] - adalr]],
V@ a2) (ulr] = Mfrl2) = | falr] + adalr]]
fs[r] =0
Oulr] = M[r12) Galr] = ia[r) = falr] = Malialr]l
VGalr] = Xelr2) @alr] — a7 12) = fwalr] = Aalrlia [l

ws[r] =0

r=1,2,...,t (l4a)

r=1,2,...,t (14b)

diag{[ly —1{, I2 — 13, Is — I3]}(i[r] — diag{i[r]}i[r])

= |z[r] — diag{[l1, lo, I3]} i[7]| 7=1,2,...,t (l4c¢)
V(7 = r2)(ilr] — diag i[r]}ilr)

= |h[r] — r x i[7]] T=12,...,t (14d)
V(@ - @) (@l - 1)

= |0[7] — Q x T.[7]| T=1,2,...,t (lde)

where
LEEB 1,212 13212 (15a)
a2ad? T2 Q2 Q% (15b)
A[r] & diag{A[7]}A[7], 7T=1,2,...,t (15¢)
i[r] £ diag{i[r]}i[r], T=1,2,...,t (15d)
T[] &2 T, [r]?. 71=1,2,...,t (15¢)

It can be observed that the equations in (14) are equivalent to
(13). In what follows, we will transform all of equalities in (14)
and (15), in order to arrive to a convex relaxation:

minimize » o' (A[7] + diag{ A" [7]HAM[r] — 2X[r]))

T=1

+3 8" (i[r] + diag{iM™[7]} (™[] — 2i[r]))

+ > (Telr] = 2 T[] Tefr] + T [r]?)

(16a)
subject to
AT+ 1] = A[7] = f[7] = hl7] + v[7], T=1,2,...,t—1
(16b)
Alr] = 2[r] + [0, Iy, 0] X ifia, r=1,2,...,t (l6c)
07] = g(wgm Cunfrl), =12t (16d)
71 Z l%v _2 Z 157 l_3 Z l§7 (16e)
a>d, T>r* Q>Q% (16f)
Alr] > diag{A[7]}A[7], T=12....t (169
i[r] > diag{i[r]}i[7], T=1,2,...,t (16h)
T,[7] > T.[r)? r=1,2,...,t (160
V(@ a2) (Galr] = Xalr]2) > | falr] - adelr],
V(@—a2) (alr] = M[r2) > | falr] + ahir]]
fa[r] =0 T=12,...,t (16)

wslr] =0 F=1,2,...,t (16k)
Jaiag{l — B, T~ B, b — B} (ilr] - ding(ilr }ilr))

> |z[r] — diag{[l1, l2, I3]} 2[7]] 7=1,2,...,t (16])
\/(f —r2)(i[7] — diag{i[r]}i[r])

> |h[7] —r x i[7]] T=1,2,...,t (16m)
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> |0[7] — Q x Te[7]]| 7=12,...,t (16n)
variables
{A[T],i[T],X[TW[TLf[T],h[T],Z[TL eR}_,,

{T.[r] GR} _—_

(L,ll,ZQ,lg,l4,7",Q,C_Lll,l_z,l_g,?:,Q € R.

The non-negative weights in the objective function in (16a)
are o = diag(A,) and B = diag(Ag). Equality constraints in
(16b)—(164d) are the same as those in (11b)—(11d) which describe
the WRSM model equations. The inequalities in (16e)—(16k)
implicitly impose (13)—(15) to preserve equivalency to the orig-
inal problem in (11) and the convexified problem in (16). It
is straightforward to observe that (16e)—(16k) are convex if
formulated as linear matrix inequalities:

L a o Rl ] [P R [(1)P R _

rlr] Asoklr]] = | Aa—[7] ] [ A3—klT] ] o
(17a)

- . - T

Ae[T]  wg[7] k[T] || AklT] B

U/k[T] EH[T}_ = _de[T]] Ldk[T]] Pl
(17b)

[T ozl U I ! B )
|#5(7] W]} - Lk[ﬂ] Lk[r]l k=123 (79

[ T hk[T] r r T -

| Fk[7] ik[T]] . Lk[ﬂ] L‘km] k=123 (174

- Q 0[] Q 0 T -

0[7] T@k[ﬂ] N Toilr)| | Tonlr] k=1,2,3
(17e)

The optimization problem in (16) is a relaxation and its
solution may not be feasible for the original problem in (11).
Nonetheless, the solution of convex relaxation can be used as an
initial point for any general-purpose IPM solver.

As an alternative to IPM, [28] proposes a penalization method
to find feasible and near-optimal solutions to problems of the
form (11). This approach is regarded as penalized convex re-
laxation. Let & = ({\[7],2[7], T.[7]}_ . a, 1, l2, 13,7, Q) be
an optimal solution for the convex problem (16). If & is not
feasible for the original nonconvex problem, one can incorporate
a penalty term of the form

i (TN dlr), Lol Yoy, o, 1,7, Q)
= na(@ — 2aa + a2) + 0. (F — 2/r + 72)
+ 10(Q — 2QQ + Q%) + my, (I — 2011y + 1)

+ iy (Iy — 2laly + 13) + mi, (I3 — 2I3l5 + 12)

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 35, NO. 2, JUNE 2020

+ oy S_WIAR] — 22 [P + A [FIA[)

o> (3] — 2 [7lilr] + 4 [rlilr])

T=1
+ 1z, Z 7] = 2T.[r|T.[7] + T2), (18)
in the objective function of relaxation, and solve
additional rounds to obtain fully feasible points with

satisfactory objective values. In (18), the parameters
Nas Mrs NQs My s My M s M\ iy NT, = 0 are user-defined.

VI. MODEL GENERATION AND VERIFICATION

A. System Setup

The MEC model of a 2 kW WRSM is adopted from [3].
The machine is constructed using M19 steel laminations, and
copper conductors are used for stator and field windings. The
optimization experiments are run on a workstation equipped
with Intel(R) Core 17-6700 CPU (4 cores) at 3.40 GHz and 32 GB
of RAM with Windows 10. The conic optimization problem in
(16) is solved using the SDPT3 4.0 [29] and MOSEK [30] solver
running on CVX [31] in the MATLAB 2017b environment.
Local search is implemented using MATPOWER Interior Point
Solver (MIPS) [32].

B. Training Data Generated by the Dynamic MEC Model

We have considered an unbalanced operation of the WRSM to
generate training data with non-zero zero-sequence flux linkage
and current components. Zero initial conditions are assumed for
the states. Fig. 2 shows the flux linkages, currents, and electro-
magnetic torque waveforms generated using the MEC model.
The highlighted portions of plots in Fig. 2, that include 100
data points, are used in parameter extraction. More data points
will improve the solution, albeit at the expense of computational
time.

C. Model Extraction Procedure

The optimization problem in Section V-A is first solved using
cone programming relaxation. The result is used as an initial
condition for IPM. The tuning gains for the relaxed problem
are Ao = Ag = diag{1,1,0.001} and v =1. A flat initial
condition is assumed with all unknown variables set to 1. The
length of the time horizon is t = 100. Conic relaxation solves
(16) over a convexified version of the feasible set of (11). Table I
shows the relaxation results. The obtained set is not necessarily
a feasible point (e.g., see L;s), but can be a good initial point
for IPM. In comparison, in all of our experiments, five rounds
of penalized relaxation (see (18)) resulted in feasible points and
parameters similar to those of IPM.

The tuning gains for IPM are A, = diag{10*,10*,10%},
Ag = diag{0.001,0.001,0.001}, and v = 0.1. Table II tabu-
lates the parameters extracted by IPM after solving (11). These
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100 data points

0.02
go.m
2 0
-0.01

-0.02
0.06 T T T

TABLE I
INITIAL PARAMETERS OBTAINED USING A SINGLE RUN OF CONVEX
RELAXATION: MEC-BHI (t = 100)

Parameter MEC [3], [33] Estimated J%eMismatch
Parameters  (w.r.t. MEC model)

wy-*(rad/sec) 376.99 376.98 0.0005
rs(Q) 0.1729%:* 0.1729 0

L;s (mH) 0.83 0.27 67.47

Lynq (mH) 3.06 3.38 10.45

Lyng (mH) 4.71 5.19 10.19

Sy 10.94 10.23 6.50

P 4 4. 44550k -

“Electrical angular speed of the rotor. ““Directly obtained from the MEC
model. ““The number of poles, P, takes even integers.

TABLE 1T
MACHINE PARAMETERS EXTRACTED USING HYBRID CONE PROGRAMMING
RELAXATION AND IPM: MEC-BHI1 (t = 100)

o 0.02

0.04 0.06
Time (s)

0.08 0.1

Fig.2. Time-domain transients for flux linkages, currents, and electromagnetic
torque. Operating condition is ir1q = 0.25 A, wr = 3600 RPM, vgs = 10V,
vgs = 0V, and vos = 0.25 V. The sampling length is AT = 2.22 x 10~ % s.
Only the highlighted sections of the data are used for model extraction.

parameters are compared against those reported in [3] (corre-
sponding to MEC-BH1 model). Reference value of the stator
resistance, 75 = 0.1729 €, is directly obtained in the MEC
model [3] using equivalent length and area of the windings. The
reference value for the effective turns ratio between the field
and stator windings, ]\J,\’;” , is taken from that reported in [33].

As seen in Table II, the i)ercentage mismatch for the estimated

Parameter MEC (3], [33] Hardware [3] Estimated %Mismatch
Parameters  (wrt MEC/Hardware)
w,*(rad/sec) 376.99 376.99 377.10 0.02 / 0.02
rs(82) 0.1729%* 0.21 0.1738 0.52/17.23
L5 (mH) 0.83 0.90 0.75 9.06 / 16.13
Lyng (mH) 3.06 3.07 2.94 3.74 /1 4.05
Lypq (mH) 4.71 4.46 4.74 0.66 / 6.30
\Il\f“‘ 10.94 Not available 11.16 2.00 /-
4 4 3.90%** -/ -

“Electrical angular speed of the rotor. “*Directly obtained from the MEC model. ***The
number of poles, P, takes even integers.

TABLE III
MACHINE PARAMETERS EXTRACTED USING HYBRID CONE PROGRAMMING
RELAXATION AND IPM: MEC-BH2 (t = 100)

Parameter MEC [3], [33] Hardware [3] Estimated 9%Mismatch
Parameters  (wrt MEC/Hardware)

w,*(rad/sec) 376.99 376.99 377.12 0.03 / 0.03
rs(Q) 0.1729%* 0.21 0.1737 0.46 / 17.28
L;s (mH) 0.82 0.90 0.74 9.75 1 17.77
Liyq (mH) 2.94 3.07 2.834 3.40 /7.49
Lypq (mH) 4.33 4.46 4.34 0.23 /2.69
RIS 10.94 Not available 1135 375/ -

P 4 4 3,89 -/ -

“Electrical angular speed of the rotor. ““Directly obtained from the MEC model. “**The
number of poles, P, takes even integers.

parameters w.r.t. MEC reference values is highest for L;; at
9.06%, whereas the rest of the parameters are estimated within
3.8% accuracy. Estimation error with respect to the hardware
values is obviously higher given the inherent mismatch between
the original MEC model and the hardware prototype in [3].
It should be noted that parameters reported for MEC model
should be considered for comparative purpose. [3] also proposed
a second MEC model of WRSM, named MEC-BH2, to address
the discrepancy between the anhysteretic BH curve used in the
MEC model and BH curve obtained from the material used in the
machine design. For completion, results for parameter extraction
on MEC-BH2 model are also provided in Table III.

In the problem formulation in (11) and (16), transients of
flux linkages, currents, and electromagnetic torque are also
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Fig. 3. Trajectories obtained from IPM compared with the MEC data for
MEC-BHI using t = 100. Apart from the machine parameters listed in Table II,
transients of flux linkages (/\qs, Ads» Aos), currents (igs» ids» %0 s), and elec-
tromagnetic torque (7%) are also obtained from the solution to the optimization
problem.

considered as optimization variables. The IPM solution recov-
ers these variables along with the machine parameters. Fig. 3
compares the time-domain transients of input MEC data and the
trajectories obtained by the optimization process for MEC-BHI.
The red curves in Fig. 3 show the data from the MEC model that
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Fig.4. Zero-sequence flux linkage transients from MEC model (red), and two
qd0 models with parameters obtained from [3] and using the proposed method.

TABLE IV
COMPUTATIONS AND TIME DURATIONS FOR HYBRID CONE PROGRAMMING
RELAXATION AND IPM

Test Case Iterations Running Time
SOCP | IPM | SOCP(s) | IPM(s) | Total(s)

MEC-BHI (t = 100) 38 8 6.01 5.78 11.79

MEC-BH2 (t = 100) 42 8 6.40 6.02 12.42

is given as an input to the optimization algorithm (the shaded
portion of transients in Fig. 2). The black curves are transients
obtained from the IPM algorithm applied to the optimization
problem in (11). As the low-order ¢qd0 model cannot capture
all dynamics generated by the MEC model, the optimization
algorithm will minimize the mismatch between the trajectories
of the input MEC model and the extracted ¢d0 model.

The leakage inductance, L;,, reported in [3], are obtained
using the conventional zero-sequence test as documented in [34].
Alternatively, the leakage inductance value obtained here pro-
vides the best fit between the transients produced by MEC and
qd0 models. Fig. 4 compares the zero-sequence flux linkage,
Aos, of MEC data against transients produced by two gd0
models with two different sets of parameters. The waveform
colored green (named ‘qd0 [3]’) corresponds to the gd0 model
with parameters taken from [3], while the waveform colored
black (named ‘qd0 optimal’) corresponds to the gd0 model with
parameters from Table II. It is evident from Fig. 4 that the
machine parameters obtained in this paper provide a better fit
to the MEC data. Mean absolute percentage error (MAPE) [35]
can be used to quantify the errors between the curves in Fig. 4.
MAPE is defined as

MAPE — 100% Z ‘ Ve (t (t) , (19)

YMEC

where Yygc represents the transients from the MEC model and
Y is the transients produced by the gd0 models. The MAPEs
for ‘qd0 [3]” and ‘qd0 optimal’ compared to the MEC data for
Fig. 4 are 40.04% and 37.42%, respectively.

Table IV provides the iteration counts and times required for
both cone programming (CVX with the SDPT3 4.0 solver) and
IPM (MIPS solver) methods. Note that the longer time horizon
also increases the computation time needed to obtain the optimal
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Fig.5. Open-circuit operation of the static MEC model in [3] and the resulting
qd0 model (if;q = 1 A, wy = 1000 RPM).
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Fig. 6. Flux linkage, current, voltage, and electric torque for the extracted gd0
model compared against the MEC model, when connected to a balanced load
(if1a =1 A, wr = 3600 RPM, Rj,qq = 20 Q).

solution, as the number of unknown variables (and equality
constraints) also increases.

D. MEC vs qd0 Model Comparison

The MEC model of the WRSM had been validated against a
hardware prototype [3]. Herein, we reproduce Figure 10a of [3]
to compare our gd0 model against the validated MEC model. The
WRSM is run under an open circuit with iy = 1 A and w, =
1000 RPM. Fig. 5 shows the phase-a voltage waveform for the

extracted gd0 model, and that obtained by the static MEC model.
The harmonic effects of the spatial distribution of stator slots are
evident in the MEC model. The voltage waveform produced by
both models are in agreement.

Next, the gd0 model and the dynamic MEC model are sim-
ulated with 77 = 1 A, w, = 3600 RPM, and a balanced load
Rioaa = 20 Q. The phase-a transients, as seen in Fig. 6, show
that the resulting gd0 model mimic the essential dynamics of
the MEC model. The physical time for a 5-cycle (83.3 ms)
simulation run for the MEC and ¢d0 models are 0.8362 s and
0.0377 s, respectively. The ¢gd0 model is more than 20 times
faster than the dynamic MEC model.

VII. SUMMARY

The macromodel of a 2 kW WRSM is successfully extracted
from its dynamic MEC model. The parameter extraction process
is formulated as an optimization problem; This problem is first
covexified using a cone programming relaxation method and,
then, the resulting solution is used to initialize the IPM solver. We
have successfully extracted all the machine parameters within
4% accuracy with respect to the original MEC model; The
leakage inductance, L;s, was estimated within 10% accuracy.
The extracted gd0 model is compared against MEC model,
and exhibits acceptable fidelity with an appreciable gain in
the simulation speed. Future work could include model extrac-
tion for a more general gd0 model that accounts for spatial
harmonics. This would be a compromise between the MEC
model and the classical gd0 model with constant inductance
terms. We envision that adding any general form of gd0 model
would change the equality constraints of the optimization prob-
lem. To accommodate non-sinusoidal winding distributions, the
flux linkage-current relation in (6) will include rotor-position-
dependent inductance terms. Therefore, the equality constraints
in (11c) will be updated to include expressions that are products
of time-varying inductances and winding currents (instead of
time-invariant inductances and currents). Given the circumfer-
ential motion of the rotor, additional equality constraints would
be needed to address the periodicity of inductances.
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