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Abstract—This paper introduces a new mathematical formu-
lation and numerical approach for the computation of distances
and geodesics between immersed planar curves. Our approach
combines the general simplifying transform for first-order elastic
metrics that was recently introduced by Kurtek and Needham,
together with a relaxation of the matching constraint using
parametrization-invariant fidelity metrics. The main advantages
of this formulation are that it leads to a simple optimization
problem for discretized curves, and that it provides a flexible
approach to deal with noisy, inconsistent or corrupted data. These
benefits are illustrated via a few preliminary numerical results.

Index Terms—elastic shape analysis, Fa,b transform, inexact
matching, varifold metrics.

I. INTRODUCTION

In this article, we are interested in the computation of

geodesic elastic distances between geometric curves. By

geometric curves, we mean curves modulo shape preserv-

ing transformations, i.e., modulo translations, rotations and

reparametrizations. Mathematically, we model the space of

geometric curves as a quotient space of infinite dimensional

manifolds. Although this construction involves several impor-

tant technicalities, we will only rely on its basic properties for

the purpose of presenting our approach. We refer interested

readers to the vast literature on this topic for additional

details [5], [14].

Our approach combines the general simplifying transform

for first-order elastic metrics, as recently introduced by Kurtek

and Needham [11], with a relaxation of the matching con-

straint using parametrization-invariant fidelity metrics, result-

ing in an efficient implementation of the inexact elastic match-

ing problem for planar curves. The main advantages of this

formulation are that it boils down to a simple optimization

problem for discretized curves, and that it provides a flexible

approach to deal with noisy, inconsistent or corrupted data.

These benefits are illustrated via a few preliminary numerical

results. In future work, we plan to exploit the full power

of this inexact matching approach as it naturally extends to

elastic shape matching models that allow for partial matching

constraints and topological inconsistencies.
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II. PROPOSED METHOD

A. Elastic metrics on the space of curves

To begin the construction of elastic metrics on the space

of geometric curves, we first need to model the space of

parametrized curves, for which we consider the set of all

smooth regular curves with values in the plane. i.e.,

Imm(M,C) := {c ∈ C∞(M,C) : |c′| 6= 0} . (1)

The reason for representing the ambient space as the complex

plane will become clear in the following section, where we

introduce a key concept of this article, the Fa,b-transform. As

mentioned previously, one can consider several group actions

on the space of parametrized curves, notably the action of

the reparametrization group Diff+(M) and the actions of the

groups of translations, rotations and scalings. Our analysis will

primarily focus on the group of reparametrizations, which is

infinite-dimensional and by far the most difficult one to handle.

This leads us to define the space of shapes, namely curves

modulo reparametrizations and translations, as follows:

S(M,C) = Imm(M,C)/{Diff(M)× Tra} . (2)

To define a relevant metric on this space, we aim to follow

the general setup of elastic shape analysis:

i) Define an invariant Riemannian metric on the space of

regular, parametrized curves.

ii) By the invariance of this metric to reparametrizations

and translations, it descends to a Riemannian metric on

the space of shapes.

iii) Obtain a metric between shapes from the induced

geodesic distance function.

To define a Riemannian metric on the space of parametrized

curves, we note that this space carries the structure of an

infinite dimensional manifold, where the tangent space is

the space of all smooth functions C∞(M,C). Defining Rie-

mannian metrics in this infinite dimensional situation can

lead to unexpected phenomenons, such as vanishing geodesic

distance as evidenced by Michor and Mumford [2], [12].

We will restrict ourselves to a certain class of first order

metrics, first introduced by Mio et. al [13], which have been
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shown to lead to well-defined distances. For tangent vectors

h, k ∈ Tc Imm(M,C) these metrics are given by:

Ga,b
c (h, k) =

∫

M

a2〈Dsh,N〉〈Dsk,N〉

+ b2〈Dsh, T 〉〈Dsk, T 〉ds

(3)

where a, b > 0 are constants, T,N are the tangent and

normal vector to the curve c, and where ds = |c′|dθ, and

Ds = 1
|c′|

d
dθ are arclength differentiation and integration

respectively. The name “elastic” refers to the fact that the

first term in Ga,b
c measures a bending energy of the curve,

while the second one is associated to a stretching energy.

The invariance of this family of metrics to reparametrizations

follows by a straightforward application of the change of

variable formula in the integral. Furthermore, these metrics

are by construction insensitive to translations in the plane. The

induced distance between two curves c0 and c1 in the quotient

space Imm(M,C)/{Diff(M)× Tra} is then given by:

da,b(c0, c1)
2 = inf

c̃,φ

∫ 1

0

Ga,b(∂tc̃, ∂tc̃)dt (4)

where the infinimum is taken over paths of immersions t 7→
c̃(t, ·) ∈ Imm(M,C) and reparametrizations φ ∈ Diff(M),
with the boundary constraints c̃(0) = c0 and c̃(1) = c1 ◦ φ.

We point out that the formulation of the induced distance

given in (4) allows us to compute the geodesic distance

da,b(c0, c1) and the minimizing geodesic c(t) as the solution of

an optimal control problem. Direct numerical discretization of

the functional in (4) and its resolution is possible, but usually

computationally expensive [1], [3].

In the following section, we introduce a simplifying family

of transformations, originally proposed in [11], which reduces

the above optimal control problem to a minimization problem

solely on the reparametrization function φ, thereby dramati-

cally decreasing the computational complexity of solving (4).

B. The Fa,b transform

The beauty in the class of Ga,b metrics lies in the fact that

they allow us to derive an explicit formula for the geodesic

distance on the space of parametrized, open curves. In turn,

this leads to a first order approximation of the geodesic

distance on the space of closed curves. This surprising fact

allows one to derive extremely efficient numerical methods

to solve the geodesic boundary value problem on the shape

space of unparametrized curves. The first known instance

of such a transformation was found for the metric with

constants a = b = 1 by Younes et. al. in [16], [17], and for

a = 1, b = 1/2, the celebrated SRV-framework, by Srivastava

et. al. [14], [15]. These transformations were then generalized

to all parameters satisfying 4a2 − b2 ≥ 0 in [4], and very

recently, to arbitrary constants by Kurtek and Needham in [11].

In what follows, we describe the latter construction in some

detail, as it is one of the two principal building blocks in our

proposed approach.

Following the presentation in [11], we define for a regular

curve c the transform

Fa,b : Imm(M,C) → C∞(M,C)

c 7→ 2b|c′|1/2
(

c′

|c′|

)
a

2b

.
(5)

Here, the power in the second factor of the Fa,b-transform

has to be understood in terms of complex arithmetic. The

following theorem has been proven in [11] and is the source

of the importance of this transformation for our purposes:

Theorem 1: The Fa,b transform is an isometric immersion

from
(

Imm(M,C)/Tra, Ga,b
)

, the space of parametrized

curves modulo translations, with values in the space

C∞(M,C} of smooth functions equipped with the standard

L2-metric. For open curves, i.e., M = [0, 1], the transform is

a bijection onto the set of smooth curves that skip 0 ∈ C.

As a consequence of the above theorem, we obtain an

explicit formula for geodesics and geodesic distances be-

tween open curves. Indeed, given open curves c0, c1 ∈
Imm([0, 1],C), the geodesic distance between c0 and c1 in-

duced by the Ga,b-metric on Imm([0, 1],C)/Tra, also called

the elastic distance, can be written as:

||Fa,b(c0)− Fa,b(c1)||
2
L2 =

∫ 1

0

|Fa,b(c0)− Fa,b(c1)|
2dθ (6)

with the associated geodesic path being given by:

c̃(t) = F−1
a,b ((1− t)Fa,b(c0) + tFa,b(c1)) . (7)

However, our goal is to compute distances and geodesics

between c0 and c1 regardless of how they are parametrized,

which requires the study of the distance on the space

of unparametrized curves, namely, the quotient space

Imm([0, 1],C)/{Diff(M)×Tra}. We can express the distance

on this space as follows:

da,b(c0, c1)
2 = inf

φ∈Diff+([0,1])
||Fa,b(c0)−Fa,b(c1◦φ)||

2
L2 . (8)

We point out that computing the distance da,b(c0, c1) and

its associated geodesic using (8) reduces to optimizing over

the reparametrization group Diff+([0, 1]) only. This is a

much simpler problem when compared to equation (4), which

required solving a minimization problem over the whole

path of regular curves in addition to optimizing over the

reparametrization group. Consequently, we observe that (8)

provides an efficient framework to compute exact distances

and geodesics between open curves on the space of un-

parametrized curves Imm([0, 1],C)/{Diff([0, 1])×Tra}. Fur-

thermore, for closed curves, one can use the formula for the

geodesic distance between open curves as an approximation,

which in turn still leads to efficient algorithms.

This framework readily adapts to piecewise linear curves,

which implies that numerical solutions for (8) can be computed

efficiently by discretizing the curves c0, c1 and the objective
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functional in (8), and then optimizing over the reparametriza-

tion group Diff+(M) using a dynamic programming approach

as in [13], which has a complexity of the order of O(N2),
where N is the number of vertices of the discretized curves.

C. Varifold fidelity terms

The second key component of our approach is the relax-

ation term, which we use to measure discrepancy between

curves. Since the goal is to compute distances and geodesics

between geometric curves by enforcing an approximate match-

ing of one curve to another (modulo reparametrizations,

translations and rotations), it is fundamental for such relax-

ation/discrepancy terms to be independent of the parametriza-

tion of either curve. In other words, we seek discrepancy

terms that only depend on the geometric image of the curves.

However, unlike the elastic metrics introduced earlier, these

discrepancy terms do not need to be tied to Riemannian

metrics on shape spaces, but should instead be as simple as

possible to compute in practice.

One efficient approach used for similar purposes in past

works on diffeomorphic registration involves representing

shapes, like curves, as objects in special spaces of measures,

such as currents [9] or varifolds [8], [10]. This allows one to

quantify shape discrepancy by instead comparing the associ-

ated measures. Various families of distances can be considered

for such purposes, including metrics derived from optimal

transport, but more explicit ones can be constructed through

the framework of reproducing kernel Hilbert spaces (RKHS).

In the following paragraphs, we shall only give a very brief

summary of the construction of varifold discrepancy metrics.

We refer to the recent presentations of [10] or [7] for further

details and extensions of this model.

Given a parametrized planar curve c ∈ Imm(M,C), we may

associate to it a varifold µc, which is specifically the measure

on the product space C × S
1 defined for any continuous test

function ω : C× S
1 → R by:

(µc|ω) =

∫

M

ω

(

c(θ),
c′(θ)

|c′(θ)|

)

ds. (9)

Note that µc essentially corresponds to the arclength mea-

sure along the curve c(M), together with its unit tangent vector

c′(θ)/|c′(θ)| ∈ S
1. We point out that µc does not depend on the

parametrization of c, in the sense that for any φ ∈ Diff+(M),
one has µc◦φ = µc. One can therefore compare two given

curves c1 and c2 modulo reparametrization by comparing the

varifolds µc1 and µc2 . In particular, kernel metrics are well-

suited for our purpose as they lead to explicit expressions of

the resulting distance. Indeed, taking a positive definite kernel

on C×S
1 of the form k(x, u, y, v) = ρ(|x−y|)φ(u ·v), where

ρ and γ define respectively a radial kernel on C and a zonal

kernel on S
1, we can construct a (pseudo-)metric ‖ · ‖Var on

measures of C× S
1 which takes the following explicit form:

‖µc‖
2
Var =

∫∫

M×M

ρ(|c(θ)− c(θ′)|)

γ

(

c′(θ)

|c′(θ)|
·
c′(θ′)

|c′(θ′)|

)

dsds′. (10)

Then, DV ar(c1, c2)
2 := ‖µc1 − µc2‖

2
V ar, which we call the

varifold fidelity metric, defines a discrepancy term between the

two curves c1 and c2 modulo reparametrizations. The specific

properties of DVar crucially depend on the choice of kernel

functions ρ and γ: a more thorough discussion of this topic

can be found in [10] and [1]. We also note that for the general

class of kernels defined above, the resulting discrepancy term

DVar is equivariant to the action of translations and rotations,

namely that for any α ∈ [0, 2π) and z ∈ C, we have

DVar(e
iαc1 + z, eiαc2 + z) = DVar(c1, c2).

D. Relaxed formulation of the geodesic problem

While the geodesic problem described in (8) is theoretically

and numerically appealing, it relies on an exact matching of

the template curve c0 to the target curve c1, which may be un-

desirable in certain practical applications. For instance, if the

target curve c1 is corrupted by noise, one would obtain highly

inaccurate estimates of distances and geodesics by enforcing

an exact matching of the template curve to the noisy version

of c1. Such practical concerns motivate the introduction of a

relaxed formulation of the variational problem in (8), which

we describe in the next paragraphs.

Going back to the original formulation of (4), the idea is

to relax the boundary constraint c(1) = c1 ◦ φ by using the

varifold fidelity metric DVar, which was introduced in the

previous section. This is indeed valid, because under adequate

choices of kernels, c.f. [1], one has that DVar(c(1), c1) = 0
if and only if c(1) and c1 are equal up to reparametrizations.

Therefore, we may rewrite the variational problem in (4) as:

inf
c̃

∫ 1

0

Ga,b(∂tc̃, ∂tc̃)dt s.t DVar(c̃(1), c1) = 0 .

Now, setting c = c̃(1) ∈ Imm(M,C), it follows from Theorem

1 that the minimum of the above functional simplifies to

‖Fa,b(c0)− Fa,b(c)‖
2
L2 . If in addition, we relax the boundary

constraint with a Lagrange multiplier λ > 0, we are led to the

following inexact matching problem:

inf
c∈Imm(M,C)

||Fa,b(c0)− Fa,b(c)||
2
L2 + λDVar(c, c1)

2 . (11)

We point out that this new formulation involves optimizing

over the end curve c = c̃(1) only, in stark contrast with (4),

where the minimization is over a full path of immersions

as well as reparametrizations. The geodesic between c0 and

the approximate matched curve c can be then recovered from

(7). However, the minimization space remains typically larger

compared to the exact Fa,b matching approach given by

(8). Yet, one important advantage of (11) is the flexibility

and robustness provided by the relaxation of the boundary

constraint. Indeed, it allows us to adapt the weighting factor

λ to the data, which is highly desirable in some applications,

as we shall illustrate in the experiments,.

Furthermore, it is fairly straightforward to specify (11) in

the case of piecewise linear curves; the interested reader may

refer to [11] regarding the discretization of the Fa,b term, while

discretizations of varifold terms are thoroughly examined in
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t = 0 t = 1/3 t = 2/3 t = 1

Fig. 1. Geodesic between a circle and the red target curve obtained for a = 1, b = 0.8 and λ = 1000.

λ = 10 λ = 20 λ = 1000 Exact matching

da,b = 0.1152 da,b = 0.1289 da,b = 0.1412 da,b = 0.1436

Fig. 2. Effect of λ on the geodesic path and estimated distance. The last column shows the result obtained with the exact matching algorithm of [11].

[7]. This allows us to turn (11) into a finite dimensional

minimization problem over the position of the vertices of the

final curve c. In practice, we use a limited memory BFGS

algorithm to minimize the discretized functional in (11), with

initializations like c = c0 or c = c1 depending on the

application at hand.

Finally, in addition to translations and reparametrizations,

it is also possible to further quotient out rotations in this

framework, which is necessary in certain applications. Due to

the equivariance properties of both the elastic distance and the

varifold fidelity metric with respect to the action of rotations,

one can modify (11) to quotient out by rotations as follows:

inf
c,α

||Fa,b(c0)− Fa,b(c)||
2
L2 + λDVar(e

iαc, c1)
2 (12)

where the minimization is now over both c ∈ Imm(M,C) and

the rotation angle α ∈ [0, 2π).

III. EXPERIMENTAL DATA AND RESULTS

We now present a few results of geodesic distance compu-

tation using the relaxed framework presented in Section II-D.

A simple example. We start with a simple example to

provide a basic comparison of our method with an exact

matching method, and to illustrate the effect of some of the

model parameters. Fig. 1 shows a reconstructed geodesic

evolution between two curves, obtained using our proposed

approach, with elastic parameters a = 1, b = 0.8, and a large

value of λ = 1000 for the weighting parameter. This enforces

a close matching to the target curve, and thus, the resulting

geodesic and distance da,b(c0, c) = ||Fa,b(c0) − Fa,b(c)||L2

obtained using our approach is comparable to the geodesic

and distance da,b(c0, c1) obtained with the exact approach of

[11], as shown in Fig. 2. We also observe that decreasing

λ leads to a less precise matching and smaller elastic distance.

Noisy curves. One possible advantage of our relaxed frame-

work is the ability to estimate meaningful elastic distances un-

der noise. We illustrate this in Fig. 3, where the target curve is

corrupted by noise. In this example, the exact elastic distance

given by the algorithm of [11] equals da,b(c0, c1) = 0.5358,

which is unreasonably high, mainly due to the irregularity of

the target curve. Our algorithm, in contrast, estimates an end

curve c which is essentially an approximate and regularized

version of c1, leading to a distance da,b(c0, c) = 0.1078, which

is a more accurate estimate of the actual distance to the noise

free version of the target curve.

Fig. 3. Left: source (blue) and noisy target curve (red). Right: estimated
geodesic with our proposed approach for a = 1, b = 0.5 and λ = 40.
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Clustering comparison. The ability to perform robust es-

timation of distances in the presence of noise may in turn

improve statistical analysis methods based on elastic distances.

We illustrate this on a simple unsupervised clustering task, per-

formed on a set of 40 shapes selected from the Kimia database,

some of which have been corrupted by noise. The chosen

dataset consists of four different categories of shapes, namely

bones, bottles, hammers and keys. To cluster the shapes, we

compute all the pairwise (rotation-invariant) distances between

them, using both the exact matching and our relaxed approach.

We then apply the classical multi-dimensional scaling method

to the resulting pairwise distance matrices to project the dataset

onto a two-dimensional space. The resulting projections are

shown in Figure 4, where one can observe that the presence of

noise has a negative impact on the quality of clusters obtained

using the exact matching approach, while the relaxed approach

leads to much more consistent clusters.

Fig. 4. Multidimensional scaling plots obtained with the proposed relaxed
approach (left) and the exact matching approach (right).

Topological noise. One last interesting feature of our formu-

lation of the elastic matching problem is that it provides the

possibility to compare curves which exhibit small topological

variations. This is enabled by the varifold discrepancy terms,

which are quite flexible in dealing with curves of different

topologies and/or orientations. Fig. 5 shows an example bor-

rowed from [11], where the two curves, despite being very

close in shape, are topologically not equivalent. This may

occur for instance due to inconsistencies or imprecisions in

the segmentation process. This small topological difference

induces a large elastic distance in the exact matching set-

ting, where one finds that da,b(c0, c1) = 3.9. However, by

relaxing the constraint, in this case, using an orientation-

invariant instance of varifold metric, we recover a rather

natural matching which leads to a significantly smaller elastic

distance da,b(c0, c) = 0.027.

Fig. 5. Left: example of two curves that have similar geometric images, but
have different topologies. Right: estimated matching by our algorithm.

IV. CONCLUSION AND FURTHER EXTENSIONS

We have proposed an inexact reformulation of the elastic

matching problem for planar curves, which takes advantage of

both the simplification provided by the Fa,b transform, and the

versatility of varifold-based discrepancy terms. Our approach

provides a robust way to deal with geodesic distance compu-

tations in the presence of noise and perturbations. Moreover,

we expect that this approach could be extended to the more

challenging situation of immersed surfaces: this has so far only

been touched upon for some very specific choice of metric in

[6]. Another promising avenue, which is the subject of ongoing

work by the authors, is to leverage the flexibility of the varifold

representation for modelling and estimating weight functions

defined on the shapes. This can allow us to incorporate partial

data matching constraints, which have seldom been considered

in this elastic metric framework, and could possibly enable the

joint modelling of elastic and topological variations.
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