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Abstract—This paper introduces a new mathematical formu-
lation and numerical approach for the computation of distances
and geodesics between immersed planar curves. Our approach
combines the general simplifying transform for first-order elastic
metrics that was recently introduced by Kurtek and Needham,
together with a relaxation of the matching constraint using
parametrization-invariant fidelity metrics. The main advantages
of this formulation are that it leads to a simple optimization
problem for discretized curves, and that it provides a flexible
approach to deal with noisy, inconsistent or corrupted data. These
benefits are illustrated via a few preliminary numerical results.

Index Terms—elastic shape analysis, F,, ; transform, inexact
matching, varifold metrics.

I. INTRODUCTION

In this article, we are interested in the computation of
geodesic elastic distances between geometric curves. By
geometric curves, we mean curves modulo shape preserv-
ing transformations, i.e., modulo translations, rotations and
reparametrizations. Mathematically, we model the space of
geometric curves as a quotient space of infinite dimensional
manifolds. Although this construction involves several impor-
tant technicalities, we will only rely on its basic properties for
the purpose of presenting our approach. We refer interested
readers to the vast literature on this topic for additional
details [5], [14].

Our approach combines the general simplifying transform
for first-order elastic metrics, as recently introduced by Kurtek
and Needham [11], with a relaxation of the matching con-
straint using parametrization-invariant fidelity metrics, result-
ing in an efficient implementation of the inexact elastic match-
ing problem for planar curves. The main advantages of this
formulation are that it boils down to a simple optimization
problem for discretized curves, and that it provides a flexible
approach to deal with noisy, inconsistent or corrupted data.
These benefits are illustrated via a few preliminary numerical
results. In future work, we plan to exploit the full power
of this inexact matching approach as it naturally extends to
elastic shape matching models that allow for partial matching
constraints and topological inconsistencies.
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II. PROPOSED METHOD

A. Elastic metrics on the space of curves

To begin the construction of elastic metrics on the space
of geometric curves, we first need to model the space of
parametrized curves, for which we consider the set of all
smooth regular curves with values in the plane. i.e.,

Imm(M,C) := {c € C*(M,C) : |'| #0} . (1)

The reason for representing the ambient space as the complex
plane will become clear in the following section, where we
introduce a key concept of this article, the F|, ;-transform. As
mentioned previously, one can consider several group actions
on the space of parametrized curves, notably the action of
the reparametrization group Diff ; (M) and the actions of the
groups of translations, rotations and scalings. Our analysis will
primarily focus on the group of reparametrizations, which is
infinite-dimensional and by far the most difficult one to handle.
This leads us to define the space of shapes, namely curves
modulo reparametrizations and translations, as follows:

S(M,C) = Imm(M,C)/{Diff (M) x Tra}. (2)

To define a relevant metric on this space, we aim to follow
the general setup of elastic shape analysis:

i) Define an invariant Riemannian metric on the space of
regular, parametrized curves.

ii) By the invariance of this metric to reparametrizations
and translations, it descends to a Riemannian metric on
the space of shapes.

iii) Obtain a metric between shapes from the induced
geodesic distance function.

To define a Riemannian metric on the space of parametrized
curves, we note that this space carries the structure of an
infinite dimensional manifold, where the tangent space is
the space of all smooth functions C*° (M, C). Defining Rie-
mannian metrics in this infinite dimensional situation can
lead to unexpected phenomenons, such as vanishing geodesic
distance as evidenced by Michor and Mumford [2], [12].
We will restrict ourselves to a certain class of first order
metrics, first introduced by Mio et. al [13], which have been
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shown to lead to well-defined distances. For tangent vectors
h,k € T.Imm(M, C) these metrics are given by:

G (h, k) :/ a*>(Dsh, N)(Dsk, N)
M 3)
+ b*(Dsh, T)(D.k, T)ds

where a,b > 0 are constants, 7, N are the tangent and
normal vector to the curve ¢, and where ds = |c’|df, and
Dy = |Tlf\d% are arclength differentiation and integration
respectively. The name “elastic” refers to the fact that the
first term in G%° measures a bending energy of the curve,
while the second one is associated to a stretching energy.
The invariance of this family of metrics to reparametrizations
follows by a straightforward application of the change of
variable formula in the integral. Furthermore, these metrics
are by construction insensitive to translations in the plane. The
induced distance between two curves ¢y and c; in the quotient
space Imm (M, C)/{Diff (M) x Tra} is then given by:

1
d**(co,c1)* = i~n(£ G (d,¢,0,¢)dt
c, 0

“4)

where the infinimum is taken over paths of immersions ¢t —
¢é(t,-) € Imm(M,C) and reparametrizations ¢ € Diff (M),
with the boundary constraints ¢(0) = ¢ and &(1) = ¢4 o ¢.
We point out that the formulation of the induced distance
given in (4) allows us to compute the geodesic distance
d*®(co, c1) and the minimizing geodesic ¢(t) as the solution of
an optimal control problem. Direct numerical discretization of
the functional in (4) and its resolution is possible, but usually
computationally expensive [1], [3].

In the following section, we introduce a simplifying family
of transformations, originally proposed in [11], which reduces
the above optimal control problem to a minimization problem
solely on the reparametrization function ¢, thereby dramati-
cally decreasing the computational complexity of solving (4).

B. The F, transform

The beauty in the class of G%® metrics lies in the fact that
they allow us to derive an explicit formula for the geodesic
distance on the space of parametrized, open curves. In turn,
this leads to a first order approximation of the geodesic
distance on the space of closed curves. This surprising fact
allows one to derive extremely efficient numerical methods
to solve the geodesic boundary value problem on the shape
space of unparametrized curves. The first known instance
of such a transformation was found for the metric with
constants a = b = 1 by Younes et. al. in [16], [17], and for
a =1, b=1/2, the celebrated SRV-framework, by Srivastava
et. al. [14], [15]. These transformations were then generalized
to all parameters satisfying 4a® — b*> > 0 in [4], and very
recently, to arbitrary constants by Kurtek and Needham in [11].
In what follows, we describe the latter construction in some
detail, as it is one of the two principal building blocks in our
proposed approach.

Following the presentation in [11], we define for a regular
curve c the transform

Fop : Imm(M,C) — C*(M,C)
¢ 20| |12 <N . ©)
||

Here, the power in the second factor of the Fj, p-transform
has to be understood in terms of complex arithmetic. The
following theorem has been proven in [11] and is the source
of the importance of this transformation for our purposes:

Theorem 1: The F,,; transform is an isometric immersion
from (Imm(M ,C)/ Tra, Ga’b), the space of parametrized
curves modulo translations, with values in the space
C>(M,C} of smooth functions equipped with the standard
L2-metric. For open curves, i.e., M = [0, 1], the transform is
a bijection onto the set of smooth curves that skip 0 € C.

As a consequence of the above theorem, we obtain an
explicit formula for geodesics and geodesic distances be-
tween open curves. Indeed, given open curves cp,c; €
Imm([0, 1], C), the geodesic distance between ¢y and ¢; in-
duced by the G**-metric on Imm([0, 1],C)/ Tra, also called
the elastic distance, can be written as:

1
1 Fa(co) = Fap(cr)ll72 :/ | Fap(co) = Fap(cr)[dd (6)
0
with the associated geodesic path being given by:

&(t) = Fo (1= t)Fap(co) + tFap(c1)) . (7)

However, our goal is to compute distances and geodesics
between cy and c; regardless of how they are parametrized,
which requires the study of the distance on the space
of unparametrized curves, namely, the quotient space
Imm([0, 1], C) /{Diff (M) x Tra}. We can express the distance
on this space as follows:

d**(co,c1)? = [|Fup(co)—Fap(ciop)|72 . (8)

inf

$€Diff 4 ([0,1])
We point out that computing the distance d®®(co,c;) and
its associated geodesic using (8) reduces to optimizing over
the reparametrization group Diff([0,1]) only. This is a
much simpler problem when compared to equation (4), which
required solving a minimization problem over the whole
path of regular curves in addition to optimizing over the
reparametrization group. Consequently, we observe that (8)
provides an efficient framework to compute exact distances
and geodesics between open curves on the space of un-
parametrized curves Imm([0, 1], C) /{Diff ([0, 1]) x Tra}. Fur-
thermore, for closed curves, one can use the formula for the
geodesic distance between open curves as an approximation,
which in turn still leads to efficient algorithms.

This framework readily adapts to piecewise linear curves,
which implies that numerical solutions for (8) can be computed
efficiently by discretizing the curves cg,c; and the objective
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functional in (8), and then optimizing over the reparametriza-
tion group Diff | (M) using a dynamic programming approach
as in [13], which has a complexity of the order of O(N?),
where N is the number of vertices of the discretized curves.

C. Varifold fidelity terms

The second key component of our approach is the relax-
ation term, which we use to measure discrepancy between
curves. Since the goal is to compute distances and geodesics
between geometric curves by enforcing an approximate match-
ing of one curve to another (modulo reparametrizations,
translations and rotations), it is fundamental for such relax-
ation/discrepancy terms to be independent of the parametriza-
tion of either curve. In other words, we seek discrepancy
terms that only depend on the geometric image of the curves.
However, unlike the elastic metrics introduced earlier, these
discrepancy terms do not need to be tied to Riemannian
metrics on shape spaces, but should instead be as simple as
possible to compute in practice.

One efficient approach used for similar purposes in past
works on diffeomorphic registration involves representing
shapes, like curves, as objects in special spaces of measures,
such as currents [9] or varifolds [8], [10]. This allows one to
quantify shape discrepancy by instead comparing the associ-
ated measures. Various families of distances can be considered
for such purposes, including metrics derived from optimal
transport, but more explicit ones can be constructed through
the framework of reproducing kernel Hilbert spaces (RKHS).

In the following paragraphs, we shall only give a very brief
summary of the construction of varifold discrepancy metrics.
We refer to the recent presentations of [10] or [7] for further
details and extensions of this model.

Given a parametrized planar curve ¢ € Imm(M, C), we may
associate to it a varifold p., which is specifically the measure
on the product space C x S! defined for any continuous test
function w : C x S' — R by:

Note that u. essentially corresponds to the arclength mea-
sure along the curve ¢(M), together with its unit tangent vector
d(0)/|¢'(0)] € S*. We point out that s does not depend on the
parametrization of ¢, in the sense that for any ¢ € Diff ™" (M),
one has ficog = fic. One can therefore compare two given
curves c; and ce modulo reparametrization by comparing the
varifolds pi., and p,. In particular, kernel metrics are well-
suited for our purpose as they lead to explicit expressions of
the resulting distance. Indeed, taking a positive definite kernel
on C xSt of the form k(z,u,y,v) = p(|z —y|)¢(u-v), where
p and ~y define respectively a radial kernel on C and a zonal
kernel on S!, we can construct a (pseudo-)metric || - ||var on
measures of C x S! which takes the following explicit form:

rellZr = / /M pllel0) = e(#)
(0

e ()]

) dsds’. (10)

Then, Dy ar(c1,¢2)? = ||fte; — Hes |3 4> Which we call the
varifold fidelity metric, defines a discrepancy term between the
two curves c; and co modulo reparametrizations. The specific
properties of D+, crucially depend on the choice of kernel
functions p and ~: a more thorough discussion of this topic
can be found in [10] and [1]. We also note that for the general
class of kernels defined above, the resulting discrepancy term
Dy, is equivariant to the action of translations and rotations,
namely that for any o € [0,27) and z € C, we have
DVar(eiacl + z, eiaCQ + Z) = DVar(Cla 62)-

D. Relaxed formulation of the geodesic problem

While the geodesic problem described in (8) is theoretically
and numerically appealing, it relies on an exact matching of
the template curve ¢ to the target curve c;, which may be un-
desirable in certain practical applications. For instance, if the
target curve c; is corrupted by noise, one would obtain highly
inaccurate estimates of distances and geodesics by enforcing
an exact matching of the template curve to the noisy version
of ¢;. Such practical concerns motivate the introduction of a
relaxed formulation of the variational problem in (8), which
we describe in the next paragraphs.

Going back to the original formulation of (4), the idea is
to relax the boundary constraint ¢(1) = ¢; o ¢ by using the
varifold fidelity metric D+, which was introduced in the
previous section. This is indeed valid, because under adequate
choices of kernels, c.f. [1], one has that Dvya,(c(1),¢1) =0
if and only if ¢(1) and ¢; are equal up to reparametrizations.
Therefore, we may rewrite the variational problem in (4) as:

1
inf / GOt (0,6, 0,0t st Dyae(6(1),01) = 0.
¢ 0

Now, setting ¢ = ¢(1) € Imm(M, C), it follows from Theorem
1 that the minimum of the above functional simplifies to
| Fa(co) — Fap(c)||22. If in addition, we relax the boundary
constraint with a Lagrange multiplier A > 0, we are led to the
following inexact matching problem:

inf  [|Fap(co) = Fap(c)|[22 4+ ADvar(c, c1)?.

c€Imm(M,C)

(11

We point out that this new formulation involves optimizing
over the end curve ¢ = ¢(1) only, in stark contrast with (4),
where the minimization is over a full path of immersions
as well as reparametrizations. The geodesic between cy and
the approximate matched curve c can be then recovered from
(7). However, the minimization space remains typically larger
compared to the exact F,; matching approach given by
(8). Yet, one important advantage of (11) is the flexibility
and robustness provided by the relaxation of the boundary
constraint. Indeed, it allows us to adapt the weighting factor
A to the data, which is highly desirable in some applications,
as we shall illustrate in the experiments,.

Furthermore, it is fairly straightforward to specify (11) in
the case of piecewise linear curves; the interested reader may
refer to [11] regarding the discretization of the F,, ; term, while
discretizations of varifold terms are thoroughly examined in
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t=1/3
Fig. 1.

A=20

d*® =0.1152 d*® =0.1289

YU

t=2/3 t=1

Geodesic between a circle and the red target curve obtained for a = 1, b = 0.8 and A = 1000.

A = 1000

Exact matching

d*b =0.1412 d*® =0.1436

Fig. 2. Effect of A on the geodesic path and estimated distance. The last column shows the result obtained with the exact matching algorithm of [11].

[7]. This allows us to turn (11) into a finite dimensional
minimization problem over the position of the vertices of the
final curve c. In practice, we use a limited memory BFGS
algorithm to minimize the discretized functional in (11), with
initializations like ¢ = c¢g or ¢ = c¢; depending on the
application at hand.

Finally, in addition to translations and reparametrizations,
it is also possible to further quotient out rotations in this
framework, which is necessary in certain applications. Due to
the equivariance properties of both the elastic distance and the
varifold fidelity metric with respect to the action of rotations,
one can modify (11) to quotient out by rotations as follows:

inf||Fop(co) = Fap(e)|[32 + ADvar(ec,c1)® (1)
where the minimization is now over both ¢ € Imm(M, C) and

the rotation angle « € [0, 27).

III. EXPERIMENTAL DATA AND RESULTS

We now present a few results of geodesic distance compu-
tation using the relaxed framework presented in Section II-D.

A simple example. We start with a simple example to
provide a basic comparison of our method with an exact
matching method, and to illustrate the effect of some of the
model parameters. Fig. 1 shows a reconstructed geodesic
evolution between two curves, obtained using our proposed
approach, with elastic parameters ¢ = 1, b = 0.8, and a large
value of A = 1000 for the weighting parameter. This enforces
a close matching to the target curve, and thus, the resulting

geodesic and distance d**(co,c) = ||Fap(co) — Fap(c)||Le
obtained using our approach is comparable to the geodesic
and distance d**(co, c;) obtained with the exact approach of
[11], as shown in Fig. 2. We also observe that decreasing
A leads to a less precise matching and smaller elastic distance.

Noisy curves. One possible advantage of our relaxed frame-
work is the ability to estimate meaningful elastic distances un-
der noise. We illustrate this in Fig. 3, where the target curve is
corrupted by noise. In this example, the exact elastic distance
given by the algorithm of [11] equals d**(cg,c;) = 0.5358,
which is unreasonably high, mainly due to the irregularity of
the target curve. Our algorithm, in contrast, estimates an end
curve ¢ which is essentially an approximate and regularized
version of ¢y, leading to a distance d**(cy, ¢) = 0.1078, which
is a more accurate estimate of the actual distance to the noise
free version of the target curve.

Fig. 3. Left: source (blue) and noisy target curve (red). Right: estimated
geodesic with our proposed approach for a = 1, b = 0.5 and A = 40.
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Clustering comparison. The ability to perform robust es-
timation of distances in the presence of noise may in turn
improve statistical analysis methods based on elastic distances.
We illustrate this on a simple unsupervised clustering task, per-
formed on a set of 40 shapes selected from the Kimia database,
some of which have been corrupted by noise. The chosen
dataset consists of four different categories of shapes, namely
bones, bottles, hammers and keys. To cluster the shapes, we
compute all the pairwise (rotation-invariant) distances between
them, using both the exact matching and our relaxed approach.
We then apply the classical multi-dimensional scaling method
to the resulting pairwise distance matrices to project the dataset
onto a two-dimensional space. The resulting projections are
shown in Figure 4, where one can observe that the presence of
noise has a negative impact on the quality of clusters obtained
using the exact matching approach, while the relaxed approach
leads to much more consistent clusters.

i,
o
%

=

= ‘4

Fig. 4. Multidimensional scaling plots obtained with the proposed relaxed
approach (left) and the exact matching approach (right).

B
=0
R4

Y

Topological noise. One last interesting feature of our formu-
lation of the elastic matching problem is that it provides the
possibility to compare curves which exhibit small topological
variations. This is enabled by the varifold discrepancy terms,
which are quite flexible in dealing with curves of different
topologies and/or orientations. Fig. 5 shows an example bor-
rowed from [11], where the two curves, despite being very
close in shape, are topologically not equivalent. This may
occur for instance due to inconsistencies or imprecisions in
the segmentation process. This small topological difference
induces a large elastic distance in the exact matching set-
ting, where one finds that d“vb(cmcl) = 3.9. However, by
relaxing the constraint, in this case, using an orientation-
invariant instance of varifold metric, we recover a rather

IV. CONCLUSION AND FURTHER EXTENSIONS

We have proposed an inexact reformulation of the elastic
matching problem for planar curves, which takes advantage of
both the simplification provided by the F7, ;, transform, and the
versatility of varifold-based discrepancy terms. Our approach
provides a robust way to deal with geodesic distance compu-
tations in the presence of noise and perturbations. Moreover,
we expect that this approach could be extended to the more
challenging situation of immersed surfaces: this has so far only
been touched upon for some very specific choice of metric in
[6]. Another promising avenue, which is the subject of ongoing
work by the authors, is to leverage the flexibility of the varifold
representation for modelling and estimating weight functions
defined on the shapes. This can allow us to incorporate partial
data matching constraints, which have seldom been considered
in this elastic metric framework, and could possibly enable the
joint modelling of elastic and topological variations.

REFERENCES

[1] M. Bauer, M. Bruveris, N. Charon, and J. Mgller-Andersen. A relaxed
approach for curve matching with elastic metrics. ESAIM: Control,
Optimization and Calculus of Variations, 25:72, 2019.

[2] M. Bauer, M. Bruveris, P. Harms, and P. W. Michor. Vanishing geodesic
distance for the Riemannian metric with geodesic equation the KdV-
equation. Ann. Global Anal. Geom., 41(4):461-472, 2012.

[3] M. Bauer, M. Bruveris, P. Harms, and J. Mgller-Andersen. A numerical
framework for Sobolev metrics on the space of curves. SIAM J. Imaging
Sci., 10(1):47-73, 2017.

[4] M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor. Constructing
reparameterization invariant metrics on spaces of plane curves. Differ-
ential Geom. Appl., 34:139-165, 2014.

[5] M. Bauer, M. Bruveris, and P. W. Michor. Overview of the geometries
of shape spaces and diffeomorphism groups. J. Math. Imaging Vis.,
50:60-97, 2014.

[6] M. Bauer, N. Charon, and P. Harms. Inexact Elastic Shape Matching
in the Square Root Normal Field Framework. In Geometric Science of
Information, pages 13-20, 2019.

[71 N. Charon, B. Charlier, J. Glaunes, P. Gori, and P. Roussillon. Fidelity
metrics between curves and surfaces: currents, varifolds, and normal
cycles. In Riemannian Geometric Statistics in Medical Image Analysis,
pages 441 — 477. Academic Press, 2020.

[8] N. Charon and A. Trouvé. The varifold representation of non-oriented
shapes for diffeomorphic registration. SIAM journal of Imaging Science,
6(4):2547-2580, 2013.

[9] J. Glaunes, A. Qiu, M. Miller, and L. Younes. Large deformation

diffeomorphic metric curve mapping. International Journal of Computer

Vision, 80(3):317-336, 2008.

I. Kaltenmark, B. Charlier, and N. Charon. A general framework for

curve and surface comparison and registration with oriented varifolds.

Computer Vision and Pattern Recognition (CVPR), 2017.

S. Kurtek and T. Needham. Simplifying transforms for general elastic

metrics on the space of plane curves. Preprint, 2018.

[10]

(11]

. . .. . 12] P. W. Michor and D. Mumford. Vanishing geodesic distance on
natural matching which leads to a significantly smaller elastic e spaces of submanifolds and diffeomorphisms. gDué: Math., 10:217-245
distance d®*(cg, c) = 0.027. (electronic), 2005.
[13] W. Mio, A. Srivastava, and S. Joshi. On shape of plane elastic curves.
Int. J. Comput. Vision, 73(3):307-324, July 2007.
[14] A. Srivastava and E. Klassen. Functional and Shape Data Analysis.
Springer Series in Statistics, 2016.
[15] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. Shape analysis
of elastic curves in Euclidean spaces. IEEE T. Pattern Anal., 33(7):1415-
1428, 2011.
[16] L. Younes. Computable elastic distances between shapes. SIAM J. Appl.
Math., 58(2):565-586 (electronic), 1998.
[17] L. Younes, P. W. Michor, J. Shah, and D. Mumford. A metric on shape
) o o space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Fig. 5. Left: example of two curves that have similar geometric images, but Natur., 19(1):25-57, 2008.
have different topologies. Right: estimated matching by our algorithm.
516

Authorized licensed use limited to: Johns Hopkins University. Downloaded on August 01,2020 at 03:41:12 UTC from IEEE Xplore. Restrictions apply.



