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Conic optimization has recently emerged as a powerful tool for designing tractable and guaranteed al-
gorithms for power system operation. On the one hand, tractability is crucial due to the large size of
modern electricity transmission grids. This is a result of the numerous interconnections that have been
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nite programming can be used to address a central problem named the optimal power flow problem. We
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1. Introduction

The last several decades gave rise to substantial developments
in operations research for handling nonconvexity in optimization.
In the late eighties, it was recognized that one may remove all
the nonconvexities in quadratically-constrained quadratic opti-
mization so as to obtain a convex relaxation (Shor, 1987). A few
years later, it was observed that integer programs can likewise
be relaxed to conic (and convex) optimization problems. In fact,
there is a sequence of conic problems that ultimately yields the
integral solutions (Lovasz & Schrijver, 1991; Sherali & Adams,
1990). At the turn of the century, it was discovered that, hid-
den behind these contributions, there was a deep connection to
measure theory and algebraic geometry (Lasserre, 2000; 2001).
This led to the development of systematic approaches for solving
polynomial optimization problems to global optimality based on
sum-of-squares (Parrilo, 2000; 2003). Polynomial optimization is
very general and englobes many problems arising in operations
research: integer programming, linear programming, mixed integer

* Corresponding author.
E-mail addresses: fariba.zohrizadeh@uta.edu (F.
jinming@berkeley.edu (M. Jin), ramtin.madani@uta.edu (R
lavaei@berkeley.edu (J. Lavaei), sojoudi@berkeley.edu (S. Sojoudi).

Zohrizadeh),
Madani),

https://doi.org/10.1016/j.ejor.2020.01.034
0377-2217]© 2020 Elsevier B.V. All rights reserved.

programming, and quadratic optimization, to name a few. What
the developments of the last several decades showed was that
conic optimization, and in particular semidefinite programming,
is a central tool in addressing nonconvexity. Fortunately, there
exists a wide array of algorithms for solving these problems to
arbitrary accuracy, some of which are highly efficient and even
commercialized (Andersen & Andersen, 2000).

The development of algorithms for conic optimization dates
back to the dawn of operations research with the introduction
of the simplex algorithm. While this particular algorithm is well-
suited for linear programming, it does not generalize to other conic
programs such as semidefinite programming. Interior-point meth-
ods for linear programming (Karmarkar, 1984), however, can be
applied in the more general setting (Ben-Tal & Nemirovski, 2001;
Nesterov & Nemirovskii, 1994). One significant hurdle that needed
to be overcome was dealing with complementarity constraints as-
sociated with the optimality conditions of a semidefinite program.
This led to several numerical implementations still used today
(e.g. SeDuMi, Sturm, 1999; SDPT3, Toh, Todd, & Tiitiincii, 2012).
These can tackle dense problems with up to several hundred
variables reliably, as well as larger instances by exploiting problem
structures. This includes symmetries and sparsity. While they are
not as mature as linear solvers, there has been great progress in
recent years to develop alternative approaches, namely first-order
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methods. They are inspired by works on differential equations
in the fifties (Douglas & Rachford, 1956) and rely on operator
theory.

Parallel to these advances in operations research, the largest en-
gineering system devised by mankind came into being with the
advent of the modern electric grid. With it came highly challenging
problems in operation and planning for transmission systems, most
notably the alternating current optimal power flow (OPF) problem.
OPF is concerned with the optimization of the steady-state operat-
ing point of transmission and distribution networks in order to de-
liver electricity from suppliers to consumers as efficiently as possi-
ble. This fundamental problem was mathematically formulated in
1960s for the first time (Carpentier, 1962), and since then, due to
the economic importance of OPF, substantial research efforts have
been devoted to finding reliable solution methods to this problem
(Cain, O'Neil, & Castillo, 2012; Low, 2014a; 2014b).

The classical OPF formulation optimizes nodal complex voltages
across a given network in terms of certain criterion (e.g., genera-
tion cost) subject to quadratic equations accounting for Kirchhoff's
law, conservation of power, line thermal limits, and voltage stabil-
ity limits, among other constraints. The reader is referred to Baran
and Wu (1989), Cain et al. (2012), and Capitanescu (2016) for al-
ternative formulations of OPF. Due to the inherent complexity of
physical laws that model the flow of electricity, some of these con-
straints are non-convex, which makes the OPF problem NP-hard in
general (Bienstock & Verma, 2015; Lavaei & Low, 2012; Lehmann,
Grastien, & Van Hentenryck, 2016). One variant of this crucial prob-
lem is the security-constrained OPF where one has to account for
contingencies on network components as well. In addition to min-
imizing the cost, security-constrained OPF concurrently plans for
recourse strategies so that in case of an outage, in-service gener-
ators can compensate by adjusting their outputs. In some other
variants of this problem (namely, security constrained unit com-
mitment), unused generators are incorporated to accommodate
changes in demand and to mitigate contingencies. Several other
extensions of OPF have been studied under more general settings,
to address considerations such as the security of operation (Bai &
Wei, 2009; Capitanescu et al., 2011; Dvorkin, Henneaux, Kirschen,
& Pandzic, 2018; Madani, Ashraphijuo, & Lavaei, 2016), robustness
(Dorfler, Simpson-Porco, & Bullo, 2016; Louca & Bitar, 2018; Wu,
Conejo, & Amjady, 2018), energy storage (Li & Vittal, 2017; Marley,
Molzahn, & Hiskens, 2017; Wen, Guo, Kirschen, & Dong, 2015), dis-
tributed platforms (Dall'Anese, Zhu, & Giannakis, 2013; Guo, Baker,
Dall’Anese, Hu, & Summers, 2018a; 2018b; Lam, Zhang, & David,
2012; Watson, Silva Monroy, Castillo, Laird, & O’Neill, 2015), un-
certainty of generation (Dall’Anese, Baker, & Summers, 2017; Ven-
zke & Chatzivasileiadis, 2018; Venzke, Halilbasic, Markovic, Hug,
& Chatzivasileiadis, 2018), data-driven optimal power flow (Baker,
Dall’Anese, & Summers, 2016; Halilbasi¢, Thams, Venzke, Chatzi-
vasileiadis, & Pinson, 2018; Mieth & Dvorkin, 2018; Zhang, Shen,
& Mathieu, 2015), hybrid AC-DC grids (Bahrami, Therrien, Wong, &
Jatskevich, 2017; Venzke & Chatzivasileiadis, 2019), real-time oper-
ation (Marley et al., 2017; Tang, Dvijotham, & Low, 2017), voltage
stability (Cui & Sun, 2018; Wang, Cui, Wang, & Gu, 2018), discrete
aspects such as transformer tap positions (Bingane, Anjos, & Le Di-
gabel, 2018; Bingane, Anjos, & Le Digabel, 2019) and unit commit-
ment (Castillo, Laird, Silva-Monroy, Watson, & O'Neill, 2016; Fat-
tahi, Ashraphijuo, Lavaei, & Atamtiirk, 2017; Lipka, Oren, O'Neill,
& Castillo, 2017; Madani, Atamturk, & Davoudi, 2017), among oth-
ers (Lin, Li, Leung, & Lam, 2017). System operators solve different
variants of OPF on a daily basis in order to manage power system
operations for which more sophisticated algorithms could lead to
far more efficient and reliable decisions. Reliability is a core issue;
indeed, interruptions in power incur nearly $79 billion/year in the
United States alone according to the Energy Information adminis-
tration (LaCommare & Eto, 2006).

The complexity of OPF is further pronounced when system op-
erators need to determine additional binary decisions such as com-
mitment of generating units and the on/off status of transmission
lines. For instance, quantitative studies on real-world data sug-
gest that decremental changes via switching transmission lines can
simultaneously increase the operational security and reduce the
cost of power production (Fisher, O'Neill, & Ferris, 2008; Hedman,
O'Neill, Fisher, & Oren, 2009). However, finding optimal switch-
ing strategies is known to be NP-hard in general (Hedman, O’Neill,
Fisher, & Oren, 2008). From a computational perspective, exiting
algorithms for determining these binary decisions rely on bounds
from convex relaxations for pruning search trees and certifying
closeness to global optimality. As a result, better convex relaxations
and numerical methods for OPF can substantially improve the per-
formance of search algorithms for solving mixed-integer power
system problems.

Conventional methods for solving OPF include linear approxi-
mations, local search algorithms, particle swarm optimization, neu-
ral networks, ant colony optimization, genetic algorithms, fuzzy
logic (see Bakirtzis, Biskas, Zoumas, & Petridis, 2002; Bouktir
& Slimani, 2005; Gutierrez-Martinez, Canizares, Fuerte-Esquivel,
Pizano-Martinez, & Gu, 2010; Momoh, Adapa, & El-Hawary, 1999;
Momoh, El-Hawary, & Adapa, 1999; Pandya & Joshi, 2008 and
the references therein). A large body of literature has investigated
linear programming-based relaxations and approximations of OPF
(Alsac, Bright, Prais, & Stott, 1990; Castillo, Lipka, Watson, Oren,
& O'Neill, 2016; Coffrin & Van Hentenryck, 2014; Eldridge, O'Neill,
& Castillo, 2018; Misra, Molzahn, & Dvijotham, 2018; Shchetinin,
De Rubira, & Hug-Glanzmann, 2018; Simpson-Porco, 2018; Stott,
Jardim, & Alsag, 2009). Local search algorithms for OPF have been
studied in Wu, Molzahn, Lesieutre, and Dvijotham (2018), Bukhsh,
Grothey, McKinnon, and Trodden (2013a), Mehta, Molzahn, and Tu-
ritsyn (2016a), Mehta, Nguyen, and Turitsyn (2016b), Yu, Nguyen,
and Turitsyn (2015), and Wang, Cui, and Wang (2017). However,
the aforementioned methods do not guarantee the recovery of
globally optimal or even feasible points (Castillo & O'Neill, 2013a).
In order to find globally optimal solutions, a variety of convex re-
laxations are studied in the literature for OPF (Bienstock & Munoz,
2014; Bingane et al., 2018; Bynum, Castillo, Watson, & Laird, 2019;
Coffrin, Hijazi, & Van Hentenryck, 2015; 2016; Kuang, Ghaddar,
Naoum-Sawaya, & Zuluaga, 2017; Lavaei & Low, 2012; Lee, Nguyen,
Dvijotham, & Turitsyn, 2018; Low, 2014a; 2014b; Molzahn, Hiskens
et al, 2019; Sundar et al, 2018; Zhang & Tse, 2013). Current in-
dustry practice for solving OPF involves non-linear optimization
methods (Castillo & O'Neill, 2013b) and their variants; however,
the need for modern approaches to address future grid challenges
has been recognized by experts in the electric power industry as
well as academics (National Academies of Sciences, Engineering, &
Medicine & others, 2016). With the ever growing use of renewable
sources, power grids are currently undergoing a revolution. New
tools are needed to tackle the ever increasing complexity of system
operations. By 2040, the penetration of solar power worldwide is
expected to be at 29%; electrical vehicles are expected to comprise
33% of the global fleet; and utility-scale battery storage is predicted
to account for 7% of the total power generation (Bloomberg New
Energy Finance, 2016).

To remedy the aforementioned complexities, some of the most
promising computational tools for solving OPF are developed based
on conic optimization. This approach is proven to be effective in
finding globally optimal points for a variety of power system opti-
mization problems (Lavaei & Low, 2012). The benefits and draw-
backs of conic optimization for OPF have been extensively in-
vestigated in the literature (Bai, Wei, Fujisawa, & Wang, 2008;
Bukhsh, Grothey, McKinnon, & Trodden, 2013b; Farivar, Clarke, Low,
& Chandy, 2011; Farivar & Low, 2013a; 2013b; Jabr, 2006a; Lesieu-
tre, Molzahn, Borden, & DeMarco, 2011; Molzahn & Hiskens, 2016),
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leading to various improvements in both solution quality (Bose,
Gayme, Chandy, & Low, 2015; Chen, Atamtiirk, & Oren, 2016; Cof-
frin, Hijazi, & Van Hentenryck, 2017; 2017; Gan, Li, Topcu, & Low,
2015; Ghaddar, Marecek, & Mevissen, 2016; Josz, Maeght, Panci-
atici, & Gilbert, 2015; Kocuk, Dey, & Sun, 2016a; 2016a; 2016b;
2017; Liu, Bynum, Castillo, Watson, & Laird, 2018; Louca, Seiler,
& Bitar, 2014; Madani, Sojoudi, & Lavaei, 2015; Zhang & Tse,
2013) and computational cost (Andersen, Hansson, & Vanden-
berghe, 2014; Bai & Wei, 2011; Bose, Low, Teeraratkul, & Hassibi,
2015; Jabr, 2012; Jabr & Dzafi¢c, 2016; Lam et al., 2012; Madani
et al.,, 2016; Madani, Sojoudi et al., 2015; Molzahn, Holzer, Lesieu-
tre, & DeMarco, 2013; Sojoudi & Lavaei, 2011; 2014). This suc-
cess story is the object of this review paper. It is an exciting time
that some of the techniques developed in the operations research
community could be applied to a real-world large-scale industrial
problem. This has led the US Department of Energy to initiate
the first-ever grid optimization competition with a $4 million cash
prize whose goal is to increase power grid flexibility, reliability,
safety, security, and efficiency’.

We refer readers to Molzahn et al. (2019) for a thorough re-
view of power flow equations as well as their commonly-used ap-
proximations, relaxations and restrictions. In this paper, we de-
vote a particular focus to the application of conic programming
to solving optimal power flow and the resulting hierarchy of re-
laxations, as well as the related numerical algorithms. Conic re-
laxation is proven to produce a globally optimal point for many
special cases of OPF (Bose, Gayme et al., 2015; Gan et al., 2015;
Gan & Low, 2014; Huang, Wu, Wang, & Zhao, 2017; Kekatos & Gi-
annakis, 2013; Li, Liu, Wang, Low, & Mei, 2018; Madani, Lavaei,
& Baldick, 2019; Madani, Lavaei, Baldick, & Atamtiirk, 2017; Nick,
Cherkaoui, Le Boudec, & Paolone, 2018; Tan, Cai, & Lou, 2015;
Zhang, Madani, & Lavaei, 2018; Zhu & Giannakis, 2014). However,
in general, an arbitrary/generic convex relaxation may fail to pro-
duce physically meaningful solutions for OPF due to NP-hardness.
Despite that, in the presence of integer variables, the use of convex
relaxation in place of linearization can lead to far better solutions
and more efficient branch-and-bound search. Additionally, a vari-
ety of strategies are proposed in the literature to infer feasible and
near-globally optimal points from inexact conic relaxations. More-
over, several papers have shown that OPF has some hidden struc-
ture that makes conic relaxations to solve the problem to global
optimality in one shot for a large class of systems. For instance,
branch-and-bound algorithms (Chen et al., 2016; Gopalakrishnan,
Raghunathan, Nikovski, & Biegler, 2011; Phan, 2012) can be used
to iteratively partition search spaces in order to tighten conic re-
laxations. In Madani et al. (2016); Madani, Sojoudi et al. (2015) and
Natarajan, Shi, and Toh (2013), penalty terms are incorporated into
the objective of convex relaxations in order to ensure the feasibil-
ity of solutions produced by conic relaxations for OPF. In Molzahn,
Josz, Hiskens, and Panciatici (2015), Josz et al. (2015), and Molzahn
and Hiskens (2015¢), moment-based hierarchies are used to form
conic relaxations that result in globally optimal solutions for OPF.
More recently, sequential and bound-tightening convex optimiza-
tion methods are proposed in Wei, Wang, Li, and Mei (2017) with
the aim of recovering OPF feasible points (Barati & Kargarian, 2017;
Kocuk, Dey, & Sun, 2018; Wei et al., 2017; Zohrizadeh, Kheiran-
dishfard, Quarm, & Madani, 2018). To overcome the high compu-
tational cost of solving large-scale conic optimization problems,
some studies propose more efficient variants such as second-order
cone programming (SOCP) (Kocuk, Dey, & Sun, 2016b; Madani,
Atamturk et al., 2017) and quadratic programming (QP) (Coffrin,
Hijazi, & Van Hentenryck, 2016; Marley et al., 2017). Some pa-
pers have leveraged the sparsity of power networks to decompose
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large-scale conic constraints into lower-order ones (Andersen et al.,
2014; Bose, Low et al., 2015; Guo, Hug, & Tonguz, 2017; Madani
et al,, 2016; Molzahn et al., 2013).

This paper is organized as follows. First, we formulate the op-
timal power flow problem and present recently proposed convex
relaxations. They are significant due to the theoretical guarantees
they come equipped with. They are also amenable to computa-
tions on large-scale power grids. Second, we discuss the applica-
tion of sum-of-squares to complex polynomial optimization. Com-
plex numbers are used in optimal power flow problem in order
to quantify steady-state alternating currents. In fact, the optimal
power flow problem is an instance of complex polynomial opti-
mization. We demonstrate its applicability on power systems by
reviewing several recent publications. Finally, we review the latest
progress on algorithms for solving conic optimization, which has
seen a lot of activity in recent years.

1.1. Notations

The symbols R, C, N, 8", §1. and H" denote the sets of
real numbers, complex numbers, nonnegative integer numbers,
nxn real symmetric matrices, n x n symmetric positive-definite
matrices, and nxn Hermitian matrices, respectively. The no-
tations rank{-}, trace{-}, and ||| denote the rank, trace, and
Frobenius norm of a matrix. The notation X>0 means that X
is positive semidefinite. The vectorization of a matrix X is the
column-stacking operation

vecX) =[Xi1. ... X1 X0 o Xnze o Xewlt,

The cardinality of a set D is shown as |D|. The absolute value
of a complex number z is denoted as |z|. Given two vectors
xeC" and y € R", the notation |¥| <y means that the absolute
value of each element of x is smaller than or equal to the cor-
responding element of y, ie., for each ke {1,2,...,n}, we have
\/real{xk}2+imag{xk}2 < Vi Similarly, x* denotes a vector ob-
tained by taking the square of the entries of x element-wise. The
symbol diag{X} represents a column vector extracting the diagonal
elements of a matrix X. The inner product of two matrices X and
Y is denoted as XeY. The notation «x shows the vector of phase
angles of the elements of x € C". The transpose and conjugate
transpose of a complex-valued matrix X are shown as X7 and X*,
respectively. The real and imaginary parts of a complex number z
are denoted as real{z} and imag{z}. The conjugate of z is shown as
Z. The imaginary unit is represented by i.

2. Convex relaxations of optimal power flow

A variety of convex relaxations have been proposed for OPF
in recent years. These are based on conic optimization such as
semidefinite programming, second-order cone programming, and
linear programming. They provide fast and guaranteed approaches
for computing bounds on the global value of the nonconvex opti-
mization problem at hand. We next discuss recent developments
in this area. As some of these relaxations make use of the spe-
cific problem structure, we begin by describing the physics of the
problem in details. Table 1 categorizes the references cited in this
section.

2.1. Optimal power flow formulation

A power network can be represented as a graph H = (N, £),
where N and £ denote the set of buses and lines of the network,
respectively. For each bus k € NV, let v, € C denote the nodal com-
plex voltage, whose magnitude |v;| and angle <}, account for the
amplitude and phase of the voltage, respectively. The OPF prob-
lem is most commonly formulated in polar coordinates with re-
spect to |v| and £v. However, for the purpose of devising convex
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Table 1
References cited on convex relaxation of OPF.

NP-hardness of OPF

Lavaei and Low (2012), Bienstock and Verma (2015), Lehmann et al. (2016)

Semidefinite programming relaxations

Jabr (2006b), Bai et al. (2008), Jabr (2008), Lavaei and Low (2012), Sojoudi and Lavaei (2012), Coffrin et al. (2017),

Madani et al. (2016), Kocuk et al. (2016b), Madani, Atamturk et al. (2017), Zohrizadeh, Kheirandishfard, Quarm

et al. (2018)
Second-order cone programming
Quadratic programming
Lasserre hierarchy for OPF
Mixed-integer programming
Branch-and-bound
Tree decomposition

Bienstock and Munoz (2014)

Jabr (2006b), Sojoudi and Lavaei (2012), Sojoudi and Lavaei (2014), Lavaei et al. (2014), Zhang and Tse (2013)
Coffrin et al. (2016), Zohrizadeh, Kheirandishfard, Quarm et al. (2018)
Molzahn et al. (2015), Josz et al. (2015), Molzahn and Hiskens (2015c), Lasserre (2009)

Gopalakrishnan et al. (2011), Phan (2012), Liberti (2008)
Bai and Wei (2011), Jabr (2012), Molzahn et al. (2013), Andersen et al. (2014), Bose, Low et al. (2015), Madani

et al. (2016), Guo et al. (2017), Zhang et al. (2017)

Valid inequalities
Coffrin et al. (2017)
Exactness results

Kocuk et al. (2016b), Hijazi et al. (2016), Madani, Atamturk et al. (2017), Kocuk et al. (2018), Coffrin et al. (2016),

Bose et al. (2011), Sojoudi and Lavaei (2012), Li et al. (2012), Gan et al. (2012), Gan, Li, Topcu, and Low (2013), Low

(2014a), Subhonmesh et al. (2012), Lavaei and Low (2010a), Lavaei and Low (2010b), Lavaei and Low (2012),
Sojoudi and Lavaei (2012), Sojoudi and Lavaei (2014), Lavaei et al. (2014), Zhang, Lam et al. (2015), Madani, Sojoudi

et al. (2015)
Negative results and counter examples
Objective penalization

Lesieutre et al. (2011), Bukhsh et al. (2013b), Molzahn and Hiskens (2016)
Natarajan et al. (2013), Madani et al. (2016); Madani, Sojoudi et al. (2015), Molzahn et al. (2015), Zhang, Madani

et al. (2018), Zohrizadeh, Kheirandishfard, Quarm et al. (2018), Molzahn et al. (2017), Molzahn et al. (2015),
Zohrizadeh, Kheirandishfard, Nasir et al. (2018), Kheirandishfard et al. (2018)

relaxations, it is more convenient to cast OPF in rectangular coordi-
nates so that trigonometric functions are avoided. Thus, we adopt
the rectangular formulation of OPF. Readers are referred to Cain
et al. (2012) for other equivalent formulations. The complex nodal
demand at bus k is denoted by dj, € C, whose real and imaginary
parts, respectively, account for active and reactive demand. Let G
be the set of generating units, each located at one of the buses. For
each generating unit g € G, the values pg and (g, respectively, de-
note the amount of active and reactive powers. The unit incidence
matrix Ce{0, 1}19xIVl is defined as a binary matrix whose (g, k)
entry is equal to one if and only if the generating unit g belongs to

bus k. Additionally, define the pair of matrices E Ce {0, 1}lE1xV] to
be the from and to incidence matrices, respectively. We designate

a direction for each line in the network. The (I, k) entry of E is
equal to one if and only if the line €& starts at bus k, while the

(I, k) entry of C is equal to one if and only if line | ends at bus
k. Define Y eCWIINT as the nodal admittance matrix of the power

network and Y, YeCExIWI as the from and to branch admittance
matrices, respectively. Using the above notations, the OPF problem
can be formulated as

I'I“Linimi]%e;g| h(p) (1a)

D.q <
v e CW

subject to d + diag{vv*'Y*} =C" (p+iq). (1b)

| diag{C v Y }| < f™, (1¢)

|diag{C vv* Y }| < f™*, (1d)

vmin < Iv! < pmax {16)

p™n < p = p™, (1f

g™ < q < g™, (1g)

£diag{C vv* C} < 6™, (1h)

in terms of decision variables p£[p,]. q2[qg] and v = [v,]. In the
above formulation, objective function h(p) is the cost function, e.g.
power transmission loss or generation cost. Constraint (1b) is the
power balance equation, which accounts for conservation of energy
at all buses of the power network. Imposing this constraint en-
sures that the voltages across the network are adjusted such that
the overall complex power produced at each bus k € AV be equal
to the power consumption and power exchanges of that bus. In
order for the transmission lines to operate properly, the flows of
power entering the lines of the network from their starting and
ending buses are upper bounded by the vector of thermal/stability
limits fax e R using constraints (1c) and (1d). Similarly, the
voltage magnitudes of all buses as well as the active and reac-
tive power of the generating units are restricted by constraints
(1e) and (1g) given the limits Uiy, Vmax € RV, proin. Prmax € RI9!,
and g, Gmax € B9 In addition, constraint (1h) is imposed to
bound the phase angle differences across the lines of the network
by @max. Due to practical considerations (such as stability limits),
we make the assumption that all elements of @, are restricted
to the interval [0°, 90°].

2.2. Semidefinite programming relaxation

The OPF problem (1a)-(1h) includes nonconvex nonlinear poly-
nomial equations, which render the optimization problem non-
convex and NP-hard (Bienstock & Verma, 2015; Lavaei & Low, 2012;
Lehmann et al, 2016). Therefore, determining a global or near-
global solution to this problem in polynomial time is a daunting
computational challenge. To tackle the non-convexity of the OPF
problem and reduce its computational complexity, a huge body of
research has focused on convex relaxations. The relaxations pro-
vide lower bounds on the unknown globally optimal cost of the
OPF problem and can assure whether a solution to the OPF prob-
lem is globally optimal. A relaxation is said to be exact if the
globally optimal solution of the non-convex OPF problem can be
recovered by the optimal solution of the relaxation. The inher-
ent relation between the quadratic function of complex bus volt-
ages and the complex power imposes quadratic constraint (1b) and
makes the OPF problem (1a)-(1h) NP-hard. Nevertheless, all the
non-convexity induced by the quadratic terms disappears if the
problem is reformulated in terms of auxiliary variable W € HVI,
accounting for vv* (Bai et al.,, 2008; Esposito & Ramos, 1999; Jabr,
2008; Lavaei & Low, 2012). Using W, variable v can be dropped
from the optimization problem by equivalently replacing the
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consistency constraint W = vv* with two constraints (i) W>=0 and
(ii) rank{W} = 1. Given that, problem (1a)-(1h) can be equivalently
reformulated as:

minimiﬂz{?ﬂ h(p) (2a)

p.q e
W e Wl

subject to d + diag{WY*) =C" (p+iq). (2b)

|diag{C W ¥ }| < f™*, (2¢)

|diag{CW Y }| < f™*, (2d)

(vmin)Z < diag{W} < (vaX)Z {26)

prin < p < pu, (2f)

qmin <q= qmax‘ (2g)

[imag{W,,,}| < real{W,,} tan(6**), Y(.m)eL (2h)

W e Copr, (2i)
where Cgpf is
&Mé{HeHM H = 0, rank{H} = 1}.

Observe that in the above reformulation, constraint (2i) carries all
the nonconvexity and neglecting this constraint yields a convex
problem which can be solved in polynomial time. Motivated by
this observation, a series of work proposed to convexify and ef-
ficiently solve the OPF problem through convex relaxation tech-
niques including conic relaxations (Bai et al., 2008; Coffrin et al.,
2017; Jabr, 2006b; Kocuk et al., 2016b; Lavaei & Low, 2012; Madani
et al, 2016; Madani, Atamturk et al., 2017; Sojoudi & Lavaei,
2012; Zohrizadeh, Kheirandishfard, Quarm et al., 2018), quadratic
programming (QP) (Coffrin et al., 2016; Zohrizadeh, Kheirandish-
fard, Quarm et al.,, 2018), and Mixed-Integer programming (MIP)
(Bienstock & Munoz, 2014) relaxations of the OPF problem. The
relaxations enlarge the nonconvex feasible set Copg into a proper
convex set, and then provide a lower bound on the globally op-
timal cost associated with the global solution. One of the most
promising directions in solving the OPF problem is based on conic
relaxation of the power flow equations. This approach to the OPF
problem has attracted much attention due to its proven ability to
obtain tight lower bounds for several practical case studies (Lavaei
& Low, 2010a; 2010b; 2012). In what follows, we will discuss the
the commonly-used conic relaxation techniques for the optimal
power flow problem. The SDP relaxation of the non-convex prob-
lem (1a)-(1h) can be obtained by replacing Copr with the cone
of |N| x |N| Hermitian positive semidefinite matrices Cspp defined
as:

Cspp 2 |HeHW! |H = 0}. (3)

The SDP relaxation is exact and finds globally optimal solution of
the OPF problem (1a)-(1h) if and only if it possesses a solution
(pOPT, qOPT, WOPT) such that rank{WO°T} = 1. It has been proven in
Lavaei and Low (2012) that the SDP relaxation is exact for a purely
resistive network with no reactive loads. This condition holds for

several test cases of OPF including IEEE benchmark systems with
14, 30, 57, 118 and 300 buses after a small perturbation in a few
entries of the admittance matrix Y. The work (Sojoudi & Lavaei,
2012) showed that the success of the SDP relaxation is due to
the passivity of the power infrastructure, which was formalized
in Sojoudi and Lavaei (2014) through the notion of sign-definite
weight sets. The papers (Lavaei, Tse, & Zhang, 2014; Zhang, Lam,
Dominguez-Garcia, & Tse, 2015) proved that the SDP relaxation is
guaranteed to be exact if the phase angle difference across every
line of the network is sufficiently close (e.g. ™3 <[0, 90°]). The
paper (Tan et al., 2015) offers theoretical guarantees on the exact-
ness of SOCP relaxation for resistive networks.

However, in the absence of the aforementioned conditions, it
has been shown through counterexamples (Bukhsh et al., 2013b;
Lesieutre et al., 2011; Molzahn & Hiskens, 2016) and NP-hardness
results (Bienstock & Verma, 2015; Lehmann et al., 2016) that SDP
relaxation is not exact in general. In Lesieutre et al. (2011), a
three-bus OPF benchmark system is presented in which one of the
lines is congested and as a consequence, SDP relaxation turns out
to be inexact. In Bukhsh et al. (2013b), a number of other instances
are given by imposing lower bounds on generator reactive power
outputs, In such cases, the solution of SDP relaxation offers a lower
bound on the unknown globally optimal cost of the OPF problem.
The paper (Madani, Sojoudi et al., 2015) observed that exactness
of the SDP relaxation heavily depends on the formulation of the
line capacity constraints. Particularly, it has been shown that for
a practical system, the feasible region associated with constraint
(1h) and |v; — vyl < AP are very similar in the non-convex
space, however, their relaxations in terms of auxiliary variable
W, ie. constraint (2h) and W+ Wpm — Wiy — Wiy < (A;‘;;”‘)z, no
longer preserve this similarity and the latter constraint provides
a tighter feasible set in the lifted space. Motivated by this ob-
servation (Madani, Sojoudi et al., 2015) suggests to impose the
latter constraint to strengthen the SDP relaxation and reduce
its optimality gap. The papers (Coffrin et al., 2017) proposed to
amend the feasible set of the relaxed problem via the following
valid inequalities for all (kq,ky) € £:

o —ignex max, o max,,o
Ukl Ufzreallwh k€ 182 & — Uk2 kaWklkl — Vk] l’kl szkz

Mmax,,max (,,min,,min max ; max
> yxymax (ymingin. .y mar) (4a)

o *"9;”?:‘ min , o min o
Uk] ng real ka1 k,€ 12 ¢ — vkz Uk2 Wk1k1 = Uk] Uk] szkz
> v}r{l:invkmzin (Uﬂzaxvﬂzax o v:{l}inv}r‘gin) (4b)

where V7 = v +UE‘E“, for k={1,...,|NV|}. The papers (Josz
et al., 2015; Molzahn et al, 2015; Molzahn & Hiskens, 2015c)
propose to enhance the tightness of the relaxation by employing
Lasserre hierarchy of moment relaxation (Lasserre, 2009). The
first-order moment relaxation of the OPF problem in the hierarchy
is equivalent to the SDP relaxation (2a)-(2i) and (3). It has been
shown in Molzahn et al. (2015), Josz et al. (2015), Molzahn and
Hiskens (2015c) that increasing the relaxation order of Lasserre
hierarchy can strengthen the approximation and approaches to
the global solutions of the OPF problem. Nevertheless, this comes
at the cost of increasing computational complexity. The papers
(Gopalakrishnan et al,, 2011; Phan, 2012) employ a Branch-and-
bound algorithm (Liberti, 2008) to iteratively partition the feasible
set of the relaxation to find a solution with a smaller gap.

In addition to the exactness issues, SDP relaxation suffers from
a high computational cost, which limits its applicability espe-
cially for large-scale real-world networks (beyond 500 buses). This
motivates researchers to alleviate the complexity of solving SDP
relaxations by finding computationally cheaper alternatives such
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Fig. 1. The IEEE 14-bus power network (left figure) and its minimal tree decomposition (right figure).

as reduced-SDP relaxation and second-order cone programming
(SOCP) relaxation.

2.3. Reduced semidefinite programming relaxation

The computational complexity of SDP relaxation motivates var-
ious studies to leverage the sparsity of power networks through
a graph-theoretic analysis, namely tree decomposition (Andersen
et al, 2014; Bai & Wei, 2011; Bose, Low et al, 2015; Guo et al,
2017; Jabr, 2012; Madani et al., 2016; Molzahn et al., 2013; Zhang,
Hong, Dall'Anese, Dhople, & Xu, 2017). An arbitrary tree decompo-
sition of the power network, denotes as B, decomposes A into sev-
eral overlapping subsets By, B, ..., Bg € N each serving as a node
of a tree where: (i) each node By, is a set containing a bag of ver-
tices of A/, (ii) each vertex in A is contained in at least one bag
of B, (iii) each pair of connected vertices in £ is contained in at
least one bag, (iv) all bags containing each arbitrary vertex in A
must be a sub-tree. The width of the tree is equal to the cardinal-
ity of the biggest {B,(}E:1 minus one. The tree-width of the net-
work graph is the minimum width over all possible tree decompo-
sitions of N. The graph of the IEEE 14-bus system and its minimal
tree decomposition are depicted in Fig. 1. Given B with B nodes,
the constraint W=0 can be represented with a set of small-sized
conic constraints as:

W{B,} >0, Vke{1,2,....B) (5)

where W{B,} represents the |By| x |B;| principal sub-matrix of W
whose rows and columns are chosen from By. The reduced-SDP re-
laxation can be obtained by substituting Copr with the cone:

Crspp 2 {H e HV! | H{B,} = 0,Vk € {1..... B}}. (6)

The reduced-SDP relaxation is exact if and only if it has a solution
(p°FT, q°FT, WOPT) such that rank{WT{B,}} =1 for k=1,...,B.

Theorem 1 (Madani et al,, 2016). The optimal objective costs of the
SDP relaxation and the reduced-SDP relaxation of the OPF problem are
the same.

Theorem 1 implies that the above decomposition provides an
equivalent but far more tractable formulation of the SDP relaxation
for large-scale power networks with a relatively small tree-width.
Nevertheless, solving large-scale instances of the OPF problem on
real-world systems can still be computationally challenging.

2.4. Second-order cone programming relaxation

The primary limitation of SDP-based relaxations is the rapid
growth of problem dimension, which makes the problem com-
putationally prohibitive to solve for large-scale power systems. A
weaker, but computationally less demanding alternative to SDP re-
laxation is the second-order cone programming (SOCP) relaxation

which was introduced in Jabr (2006b) for acyclic networks and
Sojoudi and Lavaei (2012) for general networks. The SOCP relax-
ation aims to enforce the relation between W and v through conic
constraints on 2 x 2 principle sub-matrices of W corresponding to
each line (kq1,ky) € £:

W{(ky. ky)}= [%ﬁi w’;’;] >0, V(kiky) el (7)
28] 2N,

which can be equivalently replaced by the following linear and a
rotated second-order cone constraints:

Wk1k1 5 szkz = 0, V(k], kz) €L,

(8)

2
Wik, Wiy, = ’Wk,k2 . Yk k) e L.

Therefore, the SOCP relaxation of the power flow problem is ob-
tained by optimizing problem (2a)-(2i) over the cone

Csocp 2 {H e IV | H{(k1.k2)} = 0, V(ki. ko) € £} (9)

It is evident that the SOCP relaxation is dominated by the
SDP relaxation, since constraint W>=0 ensures that every sub-
matrix of W, including the 2 x 2 principle sub-matrices, is posi-
tive semidefinite (Prussing, 1986). The SOCP relaxation is exact if
and only if it possesses a solution (p°FT, q°°T, WOPT) such that:
(i) rank{W T {(k;.k)}} =1 for all (ky,ky) e £, (ii) for every di-
rected cycle of the network, the sum of the phase of W{?npr over
all directed edges (I, m) of the cycle must be zero. It is theoreti-
cally proven that the SOCP relaxation is exact under certain tech-
nical assumptions on the physics of a power gird (Lavaei et al.,
2014; Sojoudi & Lavaei, 2012; 2014; Zhang & Tse, 2013). The pa-
pers (Bose, Gayme, Low, & Chandy, 2011; Sojoudi & Lavaei, 2012)
prove that the SOCP relaxation is exact for radial networks if load
over-satisfaction is allowed, i.e.

diag{WY*} <C"(p +iq) —d. (10)

The papers (Gan, Li, Topcu, & Low, 2012; 2013; Li, Chen, & Low,
2012; Low, 2014a; Subhonmesh, Low, & Chandy, 2012) guarantee
the exactness of the SOCP relaxation for radial networks when
there are no upper bounds on the voltage magnitudes of the buses
of the network. Therefore, in the case of acyclic power network,
SOCP relaxation is more appealing due to its tightness and compu-
tational tractability. Regardless of the above-mentioned restricted
assumptions, the SOCP relaxation is often inexact, and its opti-
mal solutions are not necessarily feasible for problem (1a)-(1h).
To strengthen the SOCP relaxation various techniques have been
suggested including valid inequalities (Kocuk et al., 2016b), cutting
planes (Hijazi, Coffrin, & Van Hentenryck, 2016; Kocuk et al., 2018;
Madani, Atamturk et al., 2017), and convex envelope (Coffrin et al.,
2016). The paper (Hijazi et al., 2016) proposed to tighten the SOCP
relaxation by imposing the conic constraints on the 3 x 3 principle
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sub-matrices of matrix variable W as:

Witk Wik, Wik,
W{ (1’(1 4 k;_‘ [(3 )} = szkl szkz szks
Wi, Wik, Wik,
B
=0, Vikika. ks) € | Be x By x By (11)
k=1

where By, By,....Bg C N are the overlapping subsets associated
with an arbitrary tree decomposition of the network for which
|Bi| =3, Yk=1,....B. The intuition behind imposing constraint
(11) is that a nonzero, Hermitian matrix W  HW! is positive
semidefinite if and only if all the principal minors of W are non-
negative. Based on this fact, constraint (11) is equivalent to con-
straint (7) together with a new constraint det{W{(kq. k., k3)}} = 0.
The paper (Kocuk et al., 2018) proposed to strengthen SOCP relax-
ation by imposing constraints on both principal and non-principal
2 x 2 minors of the W. These constraints are imposed based on the
following characterization of rank-one positive semidefinite matri-
ces.

Proposition 1. A nonzero, Hermitian matrix W « HW! satisfies con-
straints W= 0 and rank{W} = 1 if and only if all the 2 x 2 minors of
W are equal to zero and Wy, >0 for k={1,.... |N]]}.

It has been shown that constraints on non-principal 2 x 2 mi-
nors of W have physical interpretations of voltage angle differences
summing to zero over cycles of three- and four-nodes in the power
network.

2.5. Quadratic convex relaxation

The paper (Coffrin et al., 2016) proposed a Quadratic Convex
(QC) relaxation that imposes quadratic constraints in terms of the
variables |v |2, [y, vy, | cos (v, — 4vy,), and |y [lvg, | sin(£vy, —
£1y,) to enforce the relation between W and v implicitly. Under
the assumption that phase angle differences between the neigh-
boring buses in a power network are usually small, this paper com-
putes convex envelopes of the polar representation of consistency
constraint W = vv* as:

Wik = (Inl )7,
real{Wi i, } = (Vi | [, MM {cos( L, — L1y, )M
imag{Wi, i, } = {({Iv, | vy, MM {sin( L1y, — £1,))OM

Yk e N

Viki. ky) e £

Yk ky) e £
(12)

where ()T, (WM, ()5, and {f.))€ are the convex envelopes
defined as:

nT & | K= x5
(X ) = X< (anax+xmill)x_xmaxxmin

X‘:V - Xminy +yminx _ Xm'mymin
XTV ; xMaXy  ymaxy _ yMmaxymax

(Xy>M é X\:V < Xminy +ymaxx 7Xminymax (]3)
le ; Xmaxy e yminx _ Xmaxymin
(sin(x))S 2 sk = cos (%77 (x - ) +sin (),
S0z cos (5°) -+ §) —sin (55),
<1 deoskm
(cos(x))C & - (xmaxy (14)

CX > Cos (x™M¥),

where x e [xMi xMaX] apd y e [y™in yMaX] These convex envelopes
are further strengthened via second-order cone constraints (8). In
general, the exactness of all such relaxations can be verified by
checking the consistency equalities:

W,glg = IJEFT('UEZFT)* Y(ky, ky) € £. (15)

The paper (Zohrizadeh, Kheirandishfard, Quarm et al., 2018) pro-
posed a computationally efficient method, named the parabolic re-
laxation, which transforms non-convex problem (1a)-(1h) into a
convex QCQP. Since parabolic relaxation avoids conic constraints, it
requires far less computational effort and can serve as an alterna-
tive to the common practice SDP and SOCP relaxations for solving
large-scale OPF problems.

2.6. Linear programming relaxation

The paper (Bienstock & Munoz, 2014) develops a linear relax-
ation of the rectangular formulation of the OPF problem in which
the non-linearity and non-convexity come from the bi-linear equa-
tions in terms of the real and imaginary parts of the complex volt-
ages. Let us define each v, at bus k as v, = e, +if, where e, and
[ are bounded variables corresponding to the real and imaginary
parts of the vy. It has been shown that all the bi-linearity of the
rectangular formulation can be removed by performing a binary
expansion for suitably translated and scaled e;, and f;. To gain more
intuition, consider variables u, v € [0, 1]. The variable u can be ex-
pressed as:

T

u=327y;+35, (16)
j=1

where y;€{0, 1}, T>1, and 0 <8 < 2T, Given (16), the bi-linear
term uv can be relaxed as

T T
> 27w <uv <)y 27w+ 27Ty, (17)
j=1 J=1
where w; accounts for y;v. To remedy the absence of non-convex
equation w; = y;v the relaxation is strengthened via the following
valid inequalities:

w; < min{v, y;}.

wj = max{v+y;—1,0}. (18)

It has been shown that the binary expansion of the bi-linear terms
results in a computationally more efficient relaxation of the OPF
problem compared to the SDP and SOCP relaxations.

2.7. Heuristics and recovery of feasible points

Despite the effectiveness of the relaxation techniques in solv-
ing the OPF problem, their solutions may not lead to a physically
meaningful solution for problem (1a)-(1h). One promising strategy
to ameliorate this issue and implicitly enforce the rank constraint
is to augment the relaxation with penalization terms (Madani
et al., 2016; Madani, Sojoudi et al., 2015; Molzahn et al., 2015;
Molzahn, Josz, Hiskens, & Panciatici, 2017; Natarajan et al., 2013;
Zhang, Madani et al., 2018; Zohrizadeh, Kheirandishfard, Quarm
et al., 2018). The paper (Madani, Sojoudi et al., 2015) proposed to
penalize the total reactive power generation of the network by re-
placing objective function (2a) with:

h(p) + 65 Qg (19)
P

where e, =0 is the penalty coefficient. The paper (Madani et al.,
2016) proposed to penalize the apparent power loss over the series
impedance of the lines of the network using the following objec-
tive function:

h(p)+e,) qg+er )

.59 (Il.m)eL

Wi + Wim — Wim — Wi | 1], (20)

where ep, ;>0 are penalty coefficients and y; is the series
impedance of line (I, m). It has been shown that employing the
above-mentioned penalty terms elevates the off-diagonal entries of
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Table 2
References cited on convex relaxation of OPF.

Motivation for stronger relaxations of OPF Lesieutre et al. (2011)

Polynomial optimization theory
(1974)

Exploiting symmetry in polynomial

optimization

Application of polynomial optimization to OPF
Ghaddar et al. (2016)

Lasserre (2000, 2001), Parrilo (2000, 2003), Putinar (1993), Schmiidgen (1991), Marshall (2006, 2009), Stengle
D'Angelo and Putinar (2008), Waki et al. (2006), Riener et al, (2013)

Molzahn and Hiskens (2014), Josz and Molzahn (2018), Josz et al. (2015), Molzahn and Hiskens (2015c),

matrix W, which indeed promotes low-rank solutions. Given WOFT
of the penalized SDP relaxation, an approximate feasible solution
v of problem (1a)-(1g) is obtained by setting magnitude v, equal
to the square root of WﬁPT, for all ke {1....,|N]} and finding the
phases of the entries of v by minimizing the following optimiza-
tion problem:

minimize S 14WT — Lvy — Lvp| (21a)

£y e Wl (L.myeL
subject to |£ve| < 7T, Yk e N, (21b)
£y = 0. (21c)

Note that if matrix WOPT has a dominant nonzero eigenvalue,
problem (21a)-(21c) seeks to find vector v such that its line an-
gle differences are as close as possible to those suggested by
WOPT, The papers (Zohrizadeh, Kheirandishfard, Nasir, & Madani,
2018; Zohrizadeh, Kheirandishfard, Quarm et al., 2018) proposed
to incorporate linear penalty terms into the objective function
(2a) where each penalty term is based on an arbitrary initial
point of the relaxation. It has been proven in Kheirandishfard,
Zohrizadeh, and Madani (2018), Madani, Kheirandishfard, Lavaei,
and Atamturk (2018) that if the initial point is sufficiently close
to the feasible set of the non-convex OPF problem (1a)-(1h) and
satisfies a generalized linear independence constraint qualification
(LICQ) condition, the penalized relaxations produce feasible solu-
tions for the OPF problem. More precisely, penalization is guaran-
teed to result in a feasible point, if the initial distance from feasible
set is smaller than (2P)~!S, where S is the smallest singular value
of the Jacobian matrix and P is a constant value regarded as pencil
norm.

3. Sum-of-squares for polynomial optimization

The motivation for using sum-of-squares for solving the optimal
power flow problem is that the semidefinite programming Shor re-
laxation (or rank relaxation) is not strong enough to solve all prob-
lems of interest to global optimality. As was observed in Lesieutre
et al. (2011), in the LMBM3 3-bus system (named after its authors
Lesieutre, Molzahn, Borden, and Demarco) of Fig. 2, the rank con-
straint is not always satisfied at optimality in the Shor relaxation
of the optimal power flow as proposed in Lavaei and Low (2012).
For instance, when the upper limit on the power flow on line 2-
3 is equal to 48 megavolt amperes, the Shor relaxation provides
a lower bound equal to 5819.02 dollar per hour. Using sum-of-
squares of degree 2, one can construct a stronger convex relaxation
whose optimal value is 5882.67 dollar per hour (Ghaddar et al.,
2016; Josz et al.,, 2015; Molzahn & Hiskens, 2015c¢). The rank in the
relaxation is equal to one, proving that this value is globally opti-
mal. This is also the value found by the optimal power flow nonlin-
ear solver runopf in MATPOWER. The nonlinear solver can poten-
tially become stuck in a saddle point or local minimum, and thus
returns an upper bound. Since this upper bound is equal to the
lower bound found using sum-of-squares, this is another means of
confirming that we have found the global value (Table 2).

])%C‘ll +jqflc’:(31] p%'(!ll + qut‘ll
110 + 40 110 + 40
/] /N

95 + 50j

gen

0+ jg3

Fig. 2. LMBM3 3-bus system (Lesieutre et al., 2011).

This example is important from a power systems perspective
because it has a cycle, which is characteristic of transmission grids.
In contrast, distribution grids which operate at a lower voltage
level can exhibit a tree structure devoid of cycles. The advantage
of casting the optimal power flow as a polynomial optimization
problem (as is performed next) is that it allows one to construct
stronger convex relaxations. As a result, one can find global solu-
tions to a larger class of benchmarks. Theoretically, all benchmarks
instances could be solved with this approach, but some are too
computationally expensive.

3.1. Polynomial optimization

The optimal power flow problem can be seen as a special case
of polynomial optimization once it is converted into real numbers.
This class of problems admits a general procedure for solving them
to global optimality. We next illustrate some of its main features
and provide numerical examples. Note that all the constraints and
objective of the optimal power flow are polynomial functions of
degree 2 of the real and imaginary parts of the voltages. In other
words, they can written in the form

FR LY fux (22)

Jee]=2

where each monomial x¥ has coefficient f,,. A monomial is defined
by
X% :=real{v1}*1 ... real{v)}*Wlimag{vy }*WI+1 . imag{v ) *21

where oy,..., 0y are integers such that |a|:=)" W[akgl

2
k=1
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With these notations, one can define the Riesz functional

Ly(f) = Z faVa (23)
Joe| =2

where to each monomial ¥* we associate a lifted variable yy € R.

The next step of the procedure is to define a vector

xg =1 real{v} ...real{vy} imag{ri} ...imag{v)y}
real{v;}? real{v;}real{r,} ...real{r; Jimag{v .}

real{v}? ... imag{v}? I (24)

containing monomials up to a certain degree d of the real and
imaginary parts of the voltages. In order to define the moment re-
laxation of d, we define the moment matrix as My{y} éLy{xdxg}
(see Molzahn & Hiskens, 2015b for example). Also, to each con-
straint c(v) = 0 of the optimal power flow of degree less than or
equal to 2d’, we define a localizing matrix defined as

My_a{cy} = Li_ac()xa_ax]_4). (25)

With these definitions, we can define the moment relaxation of
order d as follows where the variables are y, € R for || <2d :

minimize Ly(p(v)) (26a)
subject to yo=1, (26b)
Mqy{y} = 0, (26¢)

My_ (™ — | diag{C vv* ¥ }[;} = 0, ke, (26d)
My_{IV]Z — (¥"™)?} = 0. keN, (26e)

My {W™)? = v[i} =0, keN, (26f)

Mg { ) —p™"} =0, keN, (26g)

My (PP — p(¥) } =0, keN, (26h)

Mg { q,(v) —qM™} =0, keN, (26i)

Ma_i{q;™ — q(v) } =0, kelN, (26j)

My 07 — £diag(C w* Cly} =0, (Lj)el.  (26K)

Each non-linear optimal power flow constraint has been trans-
formed into a conic constraint. At the first order of the hierarchy,
it corresponds to a linear constraint; at high-orders it corresponds
to a semidefinite constraint. In 2001, the Lasserre (2000, 2001) hi-
erarchy (see also Parrilo, 2000; Parrilo, 2003) was proposed to find
global solutions to polynomial optimization problems. It is also
known as moment/sum-of-squares hierarchy in reference to the
primal moment hierarchy and the dual sum-of-squares hierarchy.
Its global convergence is guaranteed by Putinar’s Positivstellensatz
(Putinar, 1993) proven in 1993. The assumption is Putinar’s theo-
rem is satisfied for the optimal power flow due to the constraints
real{v,}2 + imag{,}2 < v" k € N. Hence the sequence of lower

bounds provided by the hierarchy converges to the global infimum
of the polynomial optimization problem. In addition, there is zero
duality at all relaxation orders (Josz & Henrion, 2016). This is a cru-
cial property when using path-following primal-dual interior point
methods, which are some of the most efficient approaches for solv-
ing semidefinite programs.

We now focus on the result that justifies the global convergence
of the Lasserre hierarchy, namely Putinar’s (1993)) Positivstellen-
satz. This result provided a crucial refinement of Schmiidgen’s
(1991)) Positivstellensatz proven a few years earlier. It was cru-
cial because it enabled numerical computations, leading to what
is known today as the Lasserre hierarchy. Schmiidgen’s Positivstel-
lensatz essentially says that a polynomial that is positive on a set
defined by polynomial inequalities can be decomposed as a sum of
products of the polynomials multiplied by sums of squares; Puti-
nar's removes the product from the decomposition. This can be
seen in the theorem below.

Theorem 2 (Putinar’s, 1993 Positivstellensatz). Assume that there
exist R =0 and sums-of-squares py, ..., Pm such that

m
R =X —- —xi=po+ ) _pigi (27)
i=1
Iff>0o0n{xeR"| g(x) =0... gn(x) =0}, then there exists sum-
of-squares oy, ..., om such that

f=00+) o (28)
i=1

Based on this theorem, it is simple to see that whenever A
is a strict lower bound of f on the feasible set {x e R" | g;(x) =
0... gm(x) =0}, the objective function minus the lower bound
can be written using sums-of-squares. Thus, one may make the
lower bound as closely as desired to the global infimum. In fact,
in many cases, it is reached, as can be seen in the following exam-
ple.

Example 1. Consider the following polynomial optimization prob-
lem taken from Josz (2017):

x,%QER X245 42Ky — 44X — 44Xy SEoXxTHxI=1

Its optimal value is 2 —4+/2, which can be found using sums-of-
squares since:

2-4v2) =

X§ X34 200%0 —dxy —4x;  —
(V2-1)(x1 —x2)? + V2(—v2+x1 +x3)?

+ B2 =105~

It can be seen from the above equation that when (xq, x;) is fea-
sible, the first line must be nonnegative, proving that 2 —4+2 is a
lower bound. This corresponds to the first-order Lasserre hierarchy
since the polynomials inside the squares are of degree one at most.

In general, the Lasserre hierarchy has finite convergence gener-
ically. This means that for a given abritary polynomial optimiza-
tion problem, finite convergence will almost surely hold. It was
Nie (2014) who proved this result, which had been observed in
practice ever since the Lasserre hierarchy was introduced. He re-
lied on theorems of Marshall (2006, 2009) which attempted to
answer the question: when can a nonnegative polynomial have
a sum-of-squares decomposition? In Putinar’s Positivstellensatz
above, the assumption of positivity is made, which only guarantees
asymptotic convergence. Parallel to Lasserre’s contribution, Parrilo
(2000) pioneered the use of sum-of-squares for obtaining strong
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bounds on the optimal solution of nonconvex problem. He also
showed how they can be used for many important problems in
systems and control. In contrast to Lasserre, Parrilo’s (2003)) work
panders to Stengle's (1974)) Positivstellensatz, which is used for
proving infeasibility of systems of polynomial equations.

To sum up, the Lasserre hierarchy provides a sequence of
semidefinite programs whose optimal values converge (monoton-
ically) towards the global value of a polynomial optimization prob-
lem. In the case of optimal power flow, the upper bounds on volt-
age suffice to guarantee convergence of the Lasserre hierarchy and
often a low order suffices to reach global optimality.

3.2. Exploiting sparsity

In full generality, sum-of-squares are only applicable to prob-
lems of modest size. But with sparsity, the picture is different.
Thankfully, power systems are sparse and the physical equations
make them amenable to sum-of-squares.

Waki, Kim, Kojima, and Muramatsu (2006) proposed to use
chordal sparsity in the Lasserre hierarchy. They draw on the cor-
relative sparsity graph whose vertices are the variables and whose
edges signify that two variables appear simultaneously either in a
constraint or in a monomial of the objective. The idea of Waki et al.
is to restrain the variables appearing in the sum-of-squares (a pri-
ori all variables) to subsets of variables. The approach of Waki et al.
reduces the computational burden of the Lasserre hierarchy for
sparse problems. Concerning the optimal power flow problem, it
allows one to solve some hard instances to global optimality with
up to 80 variables (Ghaddar et al., 2016) (instead of 20 without ex-
ploiting sparsity Molzahn & Hiskens, 2014). However, by using the
correlative sparsity graph discussed above, a lot of the sparsity is
lost. The authors of Josz and Molzahn (2018) thus propose a finer
notion of sparsity that takes advantage of the fact that the con-
straints are polynomials. To that effect, they define the monomial
sparsity graph whose vertices are the variables and whose edges
signify that two variables appear simultaneously in a monomial of
either the objective or a constraint. Consider the formula for com-
plex electric power which was exposed in one of the previous sec-
tions:

* *

vidg = vie| D i | = v D yuvi—vp)
I 1

= > v |1l =D Faviv; (29)
1 i

The above computations rely on Ohm's law and Kirchhoff's laws.
They lead to the main equation that appears in the optimal power
flow and many of its variants. This equation leads to constraints
like

2nvy — A+t — 2 -t — @+ 3D =1-3i (30)

where the constant terms are chosen arbitrarily. Notice that the
sparsity pattern associated to this constraint is exactly that the one
described in Fig. 3. The reason why the monomial sparsity and cor-
relative sparsity differ is due in part to the Kirchhoff's law, where
one variable ends up multiplying itself and several other variables,
but those variables do not get multiplied among themselves. Ac-
cordingly, the finer notion of sparsity (monomial sparsity) leads
to semidefinite constraints that are smaller. This enables improved
tractability. In addition, monomial sparsity allows one to apply dif-
ferent relaxation orders at each constraint.

|monomial sparsity|

correlative sparsity |

<

() 0‘0

Fig. 3. Two different notions of sparsity.

3.3. Exploiting symmetry

Consider the problem of finding global solutions to a complex
polynomial optimization problem

minimize fwv) 23 f, g (v)F (31a)
vecCt a.p
subject to (W) 2 gGiapr* ()P 20, i=1.....m

B
(31b)

We again use the multi-index notation v* := U‘fl LU o e N,
The functions f,gq,.... gy, are real-valued polynomials so that in
the above sums only a finite number of coefficients f, g and g, g
are nonzero and they satisfy f;.ﬁ = fge and g;‘_a‘ﬁ =gip.- The
feasible set is defined as K:={reC" : g;(v.v*)=>0,i=1,..., mj}.
Example 2. In Bukhsh et al. (20133, WB2, V"* =1.022 p.u.), an

instance of the optimal power flow is proposed. It yields the fol-
lowing complex polynomial optimization problem

minimize 8lvy — 1a)? (32a)
Vi,V € C
subject to 0.9025 < |11|* <1.1025 (32b)

0.9025 < |1,]? < 1.0568 (32¢)

2+ 10D + (2—10Dwvt — 41,2 =350  (32d)

(=10 +2Dwvy + (=10 =21 + 20|r,|? = =350 (32e)

Notice that if (1y, v5) is a feasible point, then so is (e v, eif15)
for all # € R (this is due to the absence of any constraints on the
angle of slack bus in our formulation, which is generally regarded
as the global phase ambiguity). When converted to real numbers
U1 £ x1 +x3i and 15 £ Xy + x4i, it yields

minimize 8(x1 —x2)% + 8(x3 — x4)?

X1,X2,X3, X5 € R

(33a)

subject to 0.9025 = x? +x3 < 1.1025 (33b)

0.9025 < x3 +x3 < 1.0568
(33¢)

4x1%7 + 4X3Xg + 20X1X4 — 20X3x%; — 4x3 +4x3 =350  (33d)



E Zohrizadeh, C. Josz and M. Jin et al./European Journal of Operational Research 287 (2020) 391-409 401

—20x1xz — 20x3x4 + 4X1X4 — 4X3Xz 4 20x3 + 203 = —350
(33e)

Notice that if (x;, X, X3, X4) is a feasible point, then so is
(—X1, =Xz, —X3, —Xg).

The above symmetries allow one to cancel many terms in the
Lasserre hierarchy at no loss of bound quality. A complex version
of the Lasserre hierarchy can be constructed by using D'Angelo and
Putinar's (2008)) Positivstellensatz, similar to Putinar’s Positivstel-
lensatz, but for Hermitian sum-of-squares rather than regular real
sum-of-squares. On the examples above, the real and complex hi-
erarchies yield the same bounds at the first, second, and third or-
ders (888.1, 894.3, and 905.7 megawatt respectively), but the com-
plex hierarchy is cheaper to compute due to the reduced size of
the semidefinite constraints. The rank of the real and complex mo-
ment matrices guarantee that global convergence is reached at the
third order.

We conclude this section by noting that for general polynomial
optimization problems (not necessarily complex), one may exploit
symmetry using the techniques developed in Riener, Theobald, An-
drén, and Lasserre (2013).

3.4. Inner approximations of the sum-of-squares cone

We next discuss some restrictions one can impose on the set
of sum-of-squares polynomial in order to transform it from a
semidefinite cone into a second-order cone. Following Majumdar,
Ahmadi, and Tedrake (2014) and Ahmadi and Majumdar (2019),
a polynomial o (X) = } 4|24 OwX” is a scaled diagonally-dominant
sum-of-squares (SDSOS) if it is of the form

o, B € N,

Pi- gk € R. (34)

o) =Y (P + qa)’  where
k

This is equivalent to the existence of (¢y gl pl=¢ Such that

2 la|<2d OaX” = X |u| 18] =d (paﬁx‘”ﬁ where ¢ is of the form

3 NeB (35)
lee|, 18] <d
o #p

where each matrix N®# has zeros everywhere expect for four en-
tries N9A(a, o), NA(a, B), N*P(B, a), N©# (B, B) e R such that

NeB(a, o)  NeP(a, B)
(Na-ﬂ(ﬂ,m N“-ﬁ(ﬂ,ﬁ))to' 50

These can be viewed as second-order conic constraints. In the
sum-of-squares problem of order d, if we restrain the sum-of-
squares variables o, ...,om to be SDSOS, then in the moment
problem of order d, we are relaxing each semidefinite constraint
as follows

(Mdm(a,oz)

Mg (y) (e, B) B
My (y)(B. o) )*0 Via|. |l <d, o#8,

My (y)(B. B)
(37)

(Mu_k, gy (a.a)

M, (gy)(@. B i
Mg, (gy)(B.a) )70 Via|, |Bl<d—k;, o#p.

M, . (@) (B.B)
(38)
Naturally, these can also be viewed as second-order conic con-

straints. For their application to polynomial optimization, see
Kuang, Ghaddar, Naoum-Sawaya, and Zuluaga (2018, QM-DSOSr,

QM-SDSO0Sr) and Kuang et al. (2017). In particular, they have been
applied to the optimal power flow problem, enabling one to com-
pute lower bound for medium-sized test cases (several hundreds of
variables). In a similar flavor, in Molzahn and Hiskens (2015a), the
moment constraint is maintained as a positive semidefinite con-
straint, but the localizing matrices are relaxed to multiple second-
order conic constraints. This guarantees that the relaxation is
stronger than the first-order Lasserre relaxation. In some instances,
there is a computational gain, but in others, the approach is un-
able to find a minimizer whereas the Lasserre hierarchy does. Such
are the conclusions in Molzahn and Hiskens (2015a), and there is
no clear explanation for when it is beneficial to use second-order
conic constraints. It is known that using the cheaper second-order
conic constraints does not guarantee convergence, even in the case
of a convex optimization problem with two variables (Josz, 2017;
Kurpisz & de Wolff, 2019; Zhang, Josz, & Sojoudi, 2018). Specifi-
cally, one could use second-order cone programming in the mo-
ment relaxation of the optimal power flow of order d by replacing
the constraints (26¢)-(26k) with constraints that enforce all 2 x 2
submatrices to be positive semidefinite.

4. Numerical algorithms for semidefinite programming

In the previous two sections, we have discussed general
methodologies for solving nonconvex optimization problems to
global optimality. These rely on solving a conic optimization effi-
ciently on a large scale. We focus below on numerical algorithms
for solving semidefinite programming, of which second-order cone
programming and linear programming are subclasses. Three gen-
eral approaches are presented. We begin with first-order meth-
ods which have a small cost per iteration and include for example
the alternating direction method of multipliers (ADMM). Next, we
explain the reasoning behind interior-point methods which were
originally designed for linear programming. Last, we discuss non-
convex methods that reformulate the semidefinite programming
into a nonconvex problem by taking advantage of the fact that we
are interested in low-rank solutions.

4.1. Semidefinite programming

To streamline the presentation, we focus on the standard SDP
formulation:

minimize CeX (39a)

X e §"
subject to AX)=hb (39b)
X >0, (39¢)

where CeS", beR™, and A(X) = [Al X Am -X]T is the
linear matrix operator. The dual problem is given by:

maximize b’y (40a)

yeR™" S s
subject to A*(y)+S=C (40Db)
§$>0, (40c¢)

where A*(y) =3, y;A; is the adjoint operator of A. We state
some nondegeneracy assumptions, which are standard for com-
plexity bound analysis and satisfied for a wide range of problems
(Alizadeh, Haeberly, & Overton, 1997).

Assumption 1 (Nondegeneracy condition). Given the primal and
dual problems, assume that:
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1. (Linear independence) The matrix A=
[vec(A;} vec{An}| has full column-rank (ie., ATA is
nonsingular);

2. (Slater's condition) There exist y and X, §>0 such that
A(X)=b and A*(y) + S = C are satisfied.

The linear independence condition requires that the number of
constraints m does not exceed the degrees of freedom %n(n +1).
By embedding the problem within a slightly larger problem us-
ing the homogeneous self-dual embedding technique (Ye, Todd,
& Mizuno, 1994), Slater’s condition can be also satisfied. While
we focus on the standard formulations as in (39) and (40), there
is no loss of generality. For instance, to incorporate an inequal-

ity A;»X > b;, we can introduce X = :} that extends the di-

X
or
mension of X by 1, and introduce an extra equality equation that
constrains the element x = A; « X — b;. In addition, all of the com-
plexity bounds discussed below can be generalized to conic pro-
grams posed on the Cartesian product of multiple semidefinite

- cm ny ny
cones K=8," x8,° x---x8".

4.2, First-order methods

One of the most promising first-order methods for solving
large-scale SDP problems is the alternating direction method of
multipliers (ADMM), which is closely related to the augmented
Lagrangian method proposed in the mid-1970s (Gabay & Mercier,
1976; Glowinski & Marroco, 1975). The ADMM algorithm experi-
enced a revival in the past decade, in a large part due to the pub-
lication of a popular and influential survey by Boyd et al. (2011) for
applications in distributed optimization and statistical learning.
Two popular variations of ADMM for solving large-scale SDPs are
proposed by Wen, Goldfarb, and Yin (2010) and O'Donoghue, Chu,
Parikh, and Boyd (2016). Following the treatment of Wen et al.
(2010), we start by defining the augmented Lagrangian function for
the dual problem:

L(X.y.8) =—b'y+X o (A" (W)+S-C) + Z%HA*@) +S—CJ
(41)

where X € 5" and >0 is the penalty coefficient. By adding the
quadratic term to the Lagrangian function, the augmented La-
grangian £,(X.y.5) is strongly convex in y and X and has a
Lipschitz-continuous gradient. This essentially smoothes the pri-
mal problem and allows a gradient-based optimization to be ef-
fectively employed. Starting from the initial primal variable X°, the
augmented Lagrangian method solves in each iteration

minimize  £,(X*.y.S)  subject to S0, (42)

yeRM S e S"

for y*! and S**!, and then updates the primal variable X**! by

N A*(yk+1)+sk+1 -C
m 8

Instead of jointly minimizing Eu(Xk,y, S) with respect to y and
S, which can be very time consuming for large-scale problems,
ADMM minimizes the augmented Lagrangian function with respect
to y and S separately, and hence no longer solving problem (42) ex-
actly (Wen et al., 2010):

xEela gE (43)

Yl :—arg min £, (X" y, 5% (44a)
yeR"

sV arg min - £, (XX y*1S) st S=0. (44b)
Segsn

The above order of (43), (44a) and (44b) is not important, and
the iterates converge towards the solutions of (39) and (40) for all
fixed >0 (Wen et al, 2010, Thm 2). Here, the y-update has a
closed-form solution based on first-order optimality of the uncon-
strained problem

yl = —(ATA) " (u(AX*) —b) +A(Sk -0)). (45)

where ATA is invertible by Assumption (1), and the S-update is
given by the projection of a symmetric matrix onto the positive
semidefinite cone:

Sl —[V]..  where V =C— A4*(y*") — uX*, (46)

which also has a closed-form solution based on the spectral de-
composition

n
V= Z UiU;Ul-T‘
i=1

where {v; € C"} | and {o; € R}, denote the sets of eigenvectors
and eigenvalues of V, respectively. The above iteration is closely re-
lated to the regularization method (Malick, Povh, Rendl, & Wiegele,
2009) and the boundary point method (Povh, Rendl, & Wiegele,
2006), where X* is fixed until &(S"+1 —V*1) is nearly feasible.
Although the sequence is convergent, in practice, a heuristic based
on balancing the primal and dual residuals to adjust the value of
/¢ seems to help the numerical performance (see Wen et al., 2010,
Sec. 3.2; Boyd et al., 2011, Sec. 3.4 for implementation details).

As discussed in Section 2, due to the sparsity of network
topologies, the capability of solving large-scale SDP relaxations
of OPF can be enhanced by exploiting the sparsity pattern and
parallelization (Fukuda, Kojima, Murota, & Nakata, 2001; Madani,
Kalbat, & Lavaei, 2018; Sun, Andersen, & Vandenberghe, 2014). A
fundamental difficulty of SDP is induced by the positive semidef-
inite constraint, X >0, which densely couples all O(n?) elements
of the matrix X. The complexity comes from solving the linear
systems known as the normal equation or the Schur complement
equation, which is fully-dense. By defining a representative graph
for the large-scale SDP problem, we can reduce the SDP formu-
lation using a tree/chordal/clique decomposition technique intro-
duced above (Theorem 1). This decomposition replaces the large-
scale SDP matrix variable X with the submatrices X{B,} using
a tree decomposition of the power network, where By is a bag
of vertices of N. Similar to (43), (44a) and (44b), a distributed
ADMM-based algorithm can be derived to solve the reduced SDP
problem iteratively. The main speedup is achieved in the S-update,
where instead of performing spectral decomposition on a large
n x n matrix (performing this step using dense linear algebra re-
quires O(n3) time and ©(n?) memory), this expensive operation
is needed for only multiple submatrices of orders bounded by
the treewidth. By finding the optimal solution for the distributed
SDP, one could recover the solution to the original SDP formu-
lation using an explicit formula (see Madani, Kalbat et al., 2018,
Sec. IV-B for the implementation). The idea of tree decomposi-
tion of a sparse SDP into smaller sized SDPs is first proposed in
Fukuda et al. (2001), which then solves the subproblems by inte-
rior point methods. Using a first-order splitting method, Sun et al.
(2014) solves the decomposed SDP problem created by Fukuda
et al. (2001), but the algorithm needs to solve an optimization sub-
problem at every iteration. The employment of ADMM to solve
the reduced problem is proposed in Madani, Kalbat, and Lavaei
(2015) and Madani, Kalbat et al. (2018). It also studies the appli-
cation to OPF in real-world grids (for instance, the SDP relaxation
of OPF for a European grid with 9241 buses (Josz, Fliscounakis,
Maeght, & Panciatici, 2016) amounts to simple operations over 857
matrices of size 31 by 31 and 14,035 matrices of size 2 by 2).

As for the convergence rate of ADMM, it has been shown in
He and Yuan (2012) that the sequence converges with sublinear

[V]y =) max(o;, 0w, (47)
i=1
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objective error O(1/k) in an ergodic sense, and the method con-
verges to L accurate digits in O(exp(L)) iterations in the worst
case. In practice, it has been shown that ADMM often performs
much better, converging to L accurate digits in just O(L) iterations
for a wide range of SDP test problems (Wen et al., 2010; Zheng,
Fantuzzi, Papachristodoulou, Goulart, & Wynn, 2017). The sparse
structure that arises from OPF can be further exploited in the
ADMM updates. The y-update is dominated by the solution of
(ATA)y =r, which has the worst-case complexity of O(n®) time
and O(n*) memory using standard Cholesky factorization for fully
dense matrix A. However, for large and sparse A, efficiency can be
substantially improved by using an incomplete factorization as the
preconditioner within an iterative solution algorithm like conju-
gate gradients (Saad, 2003), and by reordering the columns of A
using a fill-minimizing ordering like minimum degree and nested
dissection (George & Liu, 1981). In addition to SDP reduction via
tree decomposition, the S-update can be further improved when
the optimal solution X* is known to be low-rank, where it may be
possible to use low-rank linear algebra and an iterative spectral
decomposition such as Lanczos iterations to reduce the complexity
to as low as O(n) per iteration.

In addition to ADMM, other first-order methods include smooth
gradient methods (Nesterov, 2007), augmented Lagrangian meth-
ods (Kocvara & Stingl, 2003), conjugate gradients (Toh & Kojima,
2002; Zhao, Sun, & Toh, 2010), which are applied either to (39) di-
rectly, or to the Hessian equation associated with an interior-point
solution. Because all of these algorithms have inexpensive per-
iteration costs but a sublinear worst-case convergence rate, they
can compute an e-accurate solution in O(1/¢) time. As a result,
they are most commonly used to solve very large-scale SDPs with
moderate accuracy requirements.

4.3. Interior-point methods

The modern study of interior-point methods was initiated
by Karmarkar (1984) and their extension to SDPs was due to
Nesterov and Nemirovskii (1994) and Alizadeh (1995). The devel-
opment of primal-dual interior-point methods began with Kojima,
Mizuno, and Yoshise (1989) and Kojima, Megiddo, Noma, and
Yoshise (1991) and was further developed in early papers such
as Vandenberghe and Boyd (1995) and Helmberg, Rendl, Vander-
bei, and Wolkowicz (1996). It was eventually extended to SDP and
SOCP in a unified way by Nesterov and Todd (1997, 1998). To solve
SDPs, modern solvers, such as SDPT3 (Tiitiincii, Toh, & Todd, 2003),
SeDuMi (Sturm, 1999; 2002), and MOSEK (Andersen & Andersen,
2000), rely predominantly on interior-point methods. The interior-
point method can be applied to SDP by introducing the logarith-
mic barrier function for positive semi-definite (PSD) cones, which
is equivalent to the log-determinant penalty for determinant max-
imization (Vandenberghe, Boyd, & Wu, 1998), since

n n
= Zlogkj(x) =— lognlj(X) = —logdetX,

j=1 J=1
where the eigenvalues ;(X) are nonnegative for all je[n]. By re-
placing the PSD constraints in the primal and dual formulations
(39) and (40), one can obtain a sequence of problems with only
linear equality constraints:

minimize CeX — ptlogdetX (48a)
X est
subject to A(X) =b, (48b)
and
maximize b'y+ JtlogdetS (49a)

yeRMS e §"

subject to A*(yY)+5=C, (49Db)

whose solutions are denoted as X, and (Y, S ), respectively. It is
straightforward to show that (48) and (49) form primal-dual pairs
up to a constant offset. Typically, directly solving either the primal-
scaled or the dual-scaled problem can suffer from accuracy and ro-
bustness issues. One popular method, called primal-dual interior
method, aims at solving (48) and (49) simultaneously by resolving
their joint Karush-Kuhn-Tucker (KKT) optimality condition:

Primal feasibility: A(X,)=Db (50a)
Dual feasibility: ~ A*(y,) +8=C (50b)
Complementarity slackness: XS, = ul (50¢)

where the barrier parameter i > 0 is connected to the duality gap
of the original SDP formulation (39) and (40) in the following
way:

n =X, eS,=CeX,—b'y,.
and

CeX <CeX,; <CeX"+npu,
b’y — npu < bTy# <b'y",

where X* € §"x and (y*, §*) are the optimal solution of (39) and
(40), respectively. By gradually decreasing p towards 0, the solu-
tions {Xy, ¥u. Sy} form a sequence of convergent iterates, known
as central path, that eventually approaches the optimal solution. To
ensure theoretical guarantees of convergence, primal-dual interior-
point methods for SDP often use Newton's method to solve the
KKT conditions in (50), while keeping each update within a wide
neighborhood of the central path

Naoly) i= {{X.y.s} € F : Amin(XS) > %x-s],

where F is the feasible region for the primal and dual programs
in (39) and (40). The extent of the neighborhood is characterized
by ¥ (0, 1), which is typically chosen with a value like 103, The
algorithm is guaranteed to converge to an approximate solution ac-
curate to L digits after at most O(nL) Newton iterations. The con-
vergence can be often achieved within 30 to 50 iterations in prac-
tice.

Many of the real problems like ACOPF have inherent structures
such as sparsity and low rank, but standard off-the-shelf interior-
point solvers cannot fully exploit these structures to improve con-
vergence speed. To capture sparsity, several modifications or re-
formulations have been proposed (Andersen et al., 2014; Fukuda
et al., 2001; Kim, Kojima, Mevissen, & Yamashita, 2011; Madani
et al., 2016; Madani, Sojoudi et al., 2015; Nakata, Fujisawa, Fukuda,
Kojima, & Murota, 2003; Vandenberghe, Andersen et al., 2015;
Zhang & Lavaei, 2017b).

The first category of modifications focus on the solution of the
Hessian equation, which dominates the per-iteration cost:

Hy=r,

where H = [AT (K*° ®K5C)A], A= [vec{Al} vec{Am}]‘ and
ICG¢ is the positive definite scaling matrix, which is the matrix ge-
ometric mean of the primal iterate X and the inverse of the dual
iterate S. Despite that the data matrix A are sparse, the Hessian
matrix H is often fully-dense because K¢ is fully-dense. As a re-
sult, to solve for the Hessian equation, standard approach of dense
Cholesky factorization needs to be employed for both sparse and
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low-rank problem and dense and high-rank problem, which result
in approximately the same amount of time and memory use.

To deal with this issue, one can employ the preconditioned con-
jugate gradient (PCG) algorithm, which requires a single matrix-
vector product with the governing matrix H and a single matrix-
vector product with the inverse of the preconditioner H in each
iteration (Barrett et al., 1994). The key to numerical performance
is a preconditioner that has desirable characteristics, such as being
similar to H in a spectral sense while much cheaper to invert. For
instance, a preconditioner of a low-rank perturbation of the sparse
matrix was proposed in Zhang and Lavaei (2017a), where

H=1ATA+KK", (51)

where K is a matrix with rank at most nrank(X*), which is
constructed to improve the conditioning of the preconditioner.
In particular, it has been proved that the joint condition num-

ber :Amax(ﬂ'_]H)/km-m(ﬂ_lﬂ) is an absolute constant O(1).
This can be combined with the standard PCG convergence result
to vield that PCG with the described H can solve the Hessian
equation to L digits of accruacy in at most O(L) iterations.

Another approach exploits the sparsity structure of the prob-
lem through convex reformulations. A common approach is to use
clique tree conversion which reformulates a size-n semidefinite
cone into a series of smaller cones. The idea was first proposed
in Fukuda et al. (2001), Nakata et al. (2003), and was later refined
in Kim et al. (2011).

B

minimize D CeW(B} (52a)
W cgm k=1
B

subject to D A eW{B}=b. ief{l... m} (52b)
k=1

Wi{B} =0, ke{l,2,...,B} (52c)

Since the OPF problem has inherent sparsity structures, this
reformulation is able to reduce the computation time from tens
of hours to tens of minutes for some large-scale benchmark sys-
tems (Jabr, 2012; Madani et al., 2016; Madani, Sojoudi et al., 2015;
Molzahn et al., 2013). While empirical results indicate that many
instances of the reformulated problem can be solved in near-linear
time using an interior-point method, there are problem instances
that could attain the worst-case cubic complexity (Fukuda et al.,
2001; Kim et al., 2011; Madani et al., 2016; Madani, Sojoudi et al.,
2015; Nakata et al., 2003). The key issue is due to the large num-
ber of overlapping constraints imposed during the reformulation,
which can significantly increase the complexity to solve the nor-
mal equations in each interior-point iteration. Specifically, these
overlapping constraints may contribute up to O(w*n?) nonzero el-
ements to the normal matrix, thereby pushing the per-iteration
cost of an interior-point method to cubic O(n?) time and quadratic
0(n?) memory. Here, e is the treewidth of the network and n is
one of the dimensions of X. Further speed-ups were obtained by
dropping some of the overlapping constraints, though the reformu-
lation may no longer be exact (Andersen et al., 2014). Nevertheless,
it has been shown in Zhang and Lavaei (2017b) that one can ap-
ply the dualization technique of Lofberg to (52) before solving the
problem using a general-purpose interior-point solver. In this way,
the overlapping constraints contribute exactly ©(w?*n) nonzero ele-
ments to the normal matrix of the dualized problem, which makes
it possible to guarantee sparsity in the normal equations.

A class of SDPs which includes ACOPF as a special case, called
decoupled SDPs, have been defined in Zhang and Lavaei (2017h).

Definition 1 (Decoupled SDP). Given index sets B = {B...., Bg},
we say that the linear constraints A; e W = b; is decoupled if there

exists By, € B and some choice of A;, e /%! such that
AEOW:A”(.W{B;(} YW e s".

We say that an instance of (39) is decoupled if all linear constraints
are decoupled.

In the particular case of a decoupled SDP, it has been shown
that there exists an algorithm that: (1) converts (39) into an in-
stance of (52); (2) solves the dualized version of (52) to L accu-
rate digits; and (3) recovers a corresponding solution of (39) in
O(wb3.n13.1) time and O(w*-n) memory space (see Zhang &
Lavaei, 2017b, Theorem 1 for details, which also gives a construc-
tive proof of this result). It is worthwhile to mention that the
original, non-dualized version of (52) is not guaranteed to achieve
near-linear time complexity due to the existence of some explicit
examples of decoupled SDPs that force the problem to attain its
worst-case cubic time complexity (Zhang & Lavaei, 2017b). This
work thus provides a theoretical guarantee for efficiency as ob-
served in existing empirical studies on ACOPF. It has been shown
that the algorithms achieved near-linear time performance for an
array of benchmark OPF systems with over 10,000 buses, solving
each problem instances to 7 digits of accuracy within 6 minutes.

4.4. Nonconvex methods

In addition to the first-order and interior point methods, there
exist some nonconvex reformulations of the original convex SDP
problem (39) to exploit the low-rank and sparsity structure. One
important method, also known as the Burer-Monteiro method, is
based on the outer product factorization X' = RR', where R ¢
R™T js a rank-r matrix (Burer & Monteiro, 2003; Journée, Bach,
Absil, & Sepulchre, 2010). This reformulation is mainly motivated
by the following theoretical result for low-rank SDP, which was
proved concurrently in Barvinok (1995) and Pataki (1998).

Theorem 3 (Barvinok, 1995; Pataki, 1998). Consider (39) with m
equality constraints. Then, there exists an optimal solution X* of
(39) with rank T satisfying 7(7f +1)/2 < m.

This result indicates that as long as r (i.e., the number of
columns of the reformulated matrix variable R) is large enough,
such a reformulation will have an optimal solution set that in-
cludes some or all optimal solutions to (39). This also leads to the
following nonlinear program:

minimize Ce (RR") (53a)
R c Rl’ixr
subject to A(RR™) = b, (53b)

which replaces the positive semidefinite constraint in (39) with the
quadratic equality constraint X = RR'. An immediate advantage is
the reduction of the number of variables from n? to nxr, which
can be substantial when R is limited to be low-rank. However, the
problem is no longer convex due to the nonlinear equality con-
straint; therefore, it requires some effective numerical algorithms
to solve, In particular, a limited BFGS augmented Lagrangian algo-
rithm was developed in Burer and Monteiro (2003), which opti-
mizes over the augmented Lagrangian function:

L(R.y,0) =Ce(RR") — Y y;(A;e (RR") — b;)
i=1

0« ) TN B2
+j;(ﬂ;'(RR) bi)“, (54)

where the variables R < R"™*" and y € R™ are unrestricted, and
the penalty parameter o is positive. The basic idea behind this
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function is the penalization of infeasible points to deal with the
equality constraints. Specifically, the last term measures the vi-
olation of equality constraints scaled by the penalty coefficient
o. Under some reasonable assumptions, an iterative scheme can
be used to obtain an estimate of (y*, o) given the current pri-
mal iterate R, which can be shown to be a convergent sequence.
The method demonstrated favorable empirical results compared to
other standard techniques such as interior point method on some
standard SDP benchmark examples. Despite the empirical success,
the original paper (Burer & Monteiro, 2003) only provides guar-
antees of local convergence due the nonconvex nature. Recently,
the theory gap started to close with a series of papers (Bandeira,
Boumal, & Voroninski, 2016; Bhojanapalli, Boumal, Jain, & Netra-
palli, 2018; Boumal, Voroninski, & Bandeira, 2016; Park, Kyrillidis,
Bhojanapalli, Caramanis, & Sanghavi, 2016). For instance, the pa-
per (Boumal et al., 2016) provides strong performance guarantees
for the Burer-Monteiro approach in the particular cases of syn-
chronization and community detection. In particular, it established
strong correlation of the ground truth with second-order critical
points. The paper (Bhojanapalli et al., 2018) extended the result
from exact second-order stationary points to approximate second-
order stationary points, which often arise in practice, and showed
that with high probability, the Burer-Monteiro approach can find
the global optimal in the aforementioned scenarios. However, the
proof is limited in the sense that the analysis relies on the man-
ifold structure of the rank-restricted search space, which is not a
mild condition in practice.

The application of Burer-Monteiro method to the OPF problem
has been investigated in Marecek and Taka¢ (2017), which em-
ploys the well-established Augmented Lagrangian approach (Conn,
Gould, & Toint, 1991) and a parallel coordinate descent with a
closed-form step. The method compares favorably with SDP based
methods (Madani et al.,, 2016) on small-scale instances, but expe-
rienced numerical difficulties on large instances, such as the Polish
network with more than 2000 nodes. This motivates the combina-
tion of first- and second-order methods (Liu, Liddell, Marecek, &
Takac, 2017) and the need to exploit the parallelization feature of
first-order methods.

5. Conclusion

Convex relaxations have come a long way in addressing the op-
timal power flow problem. Only a decade ago, finding globally op-
timal solutions of real-world benchmarks was considered an in-
tractable problem. Today, it is possible to make accurate computa-
tions on networks with thousands of buses and tens of thousands
of constraints with global guarantees. However, several challenges
remain. First, when minimizing generation costs instead of total
power production, no approach is yet able to systematically find
a global minimizer on large-scale networks. It is promising that
very good bounds can be found on the global objective function
and that near-global solutions can be extracted. New convex relax-
ations could be designed to better handle non-convex objectives,
as opposed to non-convex constraints.

In this work, we have summarized the body of research on
conic relaxations of the OPF problem. We cast OPF in a lifted rect-
angular form and surveyed the state-of-the-art:

« semidefinite programming relaxation and strengthening valid
inequalities,

* reduced semidefinite programming based on graph-theoretic
decompositions

« second-order cone programming relaxation

» quadratic convex relaxation

linear programming relaxation.

Additionally, we covered heuristics and recovery algorithms
that can be used towards projecting an infeasible solution of con-
vex relaxations onto the non-convex feasible set of OPF. Complex
sum-of-squares hierarchy is surveyed as another remedy for cases
where basic convex relaxations fail to produce a globally optimal
solution. Lastly, we covered scalable first- and second-order nu-
merical algorithm for solving large instances of OPF relaxations.

As demonstrated in this paper, semidefinite programming and
sum-of-squares based relaxations are effective tools for tackling
challenging instances of OPF. Hence, one of the major barriers to-
wards incorporating accurate OPF models into real-world power
system problems is the lack of reliable mixed-integer solvers that
are compatible with high-order semidefinite programming con-
straints. It should be emphasized that power flow nonlinearity is
one among many sources of complexity in power optimization
problems. Three of the other major research challenges involve the
presence of integer parameters, uncertainties, and transient phe-
nomena. Finer modeling of the power system should be consid-
ered to account for discrete aspects such as transformer ratios and
the turning on or off of generating units (Bingane et al., 2018; Bin-
gane et al., 2019). Additionally, dynamical aspects could be con-
sidered, as in transient stability analysis. Finally, data-driven ap-
proaches should be incorporated into OPF formulations to realize
secure and resilient operation.
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