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Abstract—Technological advances in long read se-
quences have greatly facilitated the development of
genomics. However, managing and analyzing the raw
genomic data that outpaces Moore’s Law requires
extremely high computational efficiency. On the one
hand, existing software solutions can take hundreds
of CPU hours to complete human genome alignment.
On the other hand, the recently proposed hardware
platforms achieve low processing throughput with sig-
nificant overhead. In this paper, we propose PARC,
an Processing-in-Memory architecture for long read
pairwise alignment leveraging emerging resistive CAM
(content-addressable memory) to accelerate the bottle-
neck chaining step in DNA alignment. Chaining takes
2-tuple anchors as inputs and identifies a set of corre-
lated anchors as potential alignment candidates. Unlike
traditional main memory which organizes relational
data structure in a linear address space, PARC stores
tuples in two neighboring crossbar arrays with shared
row decoder such that column-wise in-memory compu-
tational operations and row-wise memory accesses can
be performed in-situ in a symmetric crossbar structure.
Compared to both software tools and state-of-the-art
accelerators, PARC shows significant improvement in
alignment throughput and energy efficiency, thanks to
the in-site computation capability and optimized data
mapping.

I. Introduction

Long-read sequencing, also known as third-generation
sequencing technologies [1], [2], [3] have demonstrated
their potential in revolutionizing the field of genomics and
beyond, spanning over precision medicine [4], investigation
of infectious disease outbreaks [5], global food security [6],
and many other applications. It produces longer reads
of contiguous DNA base pairs (i.e., >10,000 bps) com-
pared to previous sequencing technologies, which greatly
improves the quality of genome assembly and significantly
benefits other genetic researches [7]. The state-of-the-art
technology can even offer portable, real-time sequencing
via a USB-sized sequencer [8]. Nevertheless, managing
and analyzing the obtained raw genomic data with an
exponentially growing size, also known as Moore’s Law
in molecular biology [9], imposes new computational chal-
lenges to the processing speed and efficiency of existing
computing platforms.

In general, large-scale genomic reads can be analyzed by
read mapping or de novo assembly based on the character-
istic of the underlying data and the availability of reference
genomes [10]. Although different approaches have distinct
strategies and thus provide different insights, the key step
of these methods is to examine the similarity between
pairs of sequences via pairwise alignment. In generally,

most genome aligners follow a typical seed-chain-align [11]
procedure, among which chain phase consumes >70% of
the total computation time, which thus is the focus of this
work.

The chain algorithm is an one-dimensional dynamic
programming model, where each input element is com-
pared to N previous elements to determine the best pre-
decessor. This computation procedure has three notable
features: 1) it is a memory-intensive search process; 2)
the execution of chain is dominated by simple subtraction
and comparison operations; 3) it requires little support
for floating-point computation. Therefore, we identify that
ReRAM-based associative computing is well suited for
the acceleration of chain due to its high density, low
power consumption, and the ability to perform parallel
in-situ subtraction/comparisons. In this work, we present
PARC, a Processing-in-Memory (PIM) architecture that
utilizes configurable ReRAM-based content-addressable
memory (CAM) to perform in-situ logic operations and
conventional memory access. On top of this architecture,
We also propose an efficient data mapping method and
a pipelined processing scheme. In summary, we make the
following contributions:

• To support read, write and computation function-
alities, we exploit the symmetry of the crossbar
structure, which can naturally enable dual-addressing
memory architecture to support both row-wise in-situ
computation and column-wise memory accesses for
chaining workloads.

• We share the peripheral circuitry including word-
line drivers and sense amplifiers across data arrays,
thereby minimizing the area overhead.

• We present an efficient data mapping and manage-
ment scheme for relational data structured (i.e., tu-
ple). Based on the mapping scheme, computations
are performed within the ReRAM array in a word-
parallel, bit-serial fashion.

• We compare the performance of PARC against both
software tool and state-of-the-art hardware solutions.
Results show that our design achieves significant
performance improvement and energy reduction.

This paper is organized as follows: Section II introduces
the background and the motivation; Section III proposes
the PARC architecture; Section IV describes the strategy
of mapping chain phase onto the proposed architecture;
Section V present the evaluation setup for PARC; Section
VI discuss our experimental results. We conclude ths work
in Section VII.
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p[ ]=-1; score[ ]=w; weight[ ]=0;   //initialization
for i=1 to size_of_anchor do      // inter-task parallelism

for j=i-N to i-1 do                    
weight[j]=score[j]+α-β

p_tmp=������� �	
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s_tmp=max(weight[j])
if s_tmp<w  

score[i]=s_tmp; 
p[i]=p_tmp;

end if
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Fig. 1. Basics of pairwise alignment. (a) seed-chain-align. Sequence pairs are first seeded into hash tables and then chains are identified as
mapping candidates. A SW-based align step is selectively applied if requested; (b) Chain algorithm. Each anchor is compared against N
previous anchors to identify its predecessor with the maximum score.

II. Background, Related Work and Motivation

This section introduces the background knowledge that
facilitates our design. The basics of seed-chain-align paire-
wise alignment procedure is first described, followed by
the basics of ReRAM and its application in in-memory
computing. At last, we review related works and highlight
our motivation.

A. Pairwise Alignment
Problem statement. Pairwise alignment finds the op-

timal alignment of two genomic sequences X = x1x2. . .xm

and Y = y1y2. . .yn, where the xi and yi are chosen
from a finite alphabet. Specifically, for protein sequences
the alphabet is 20 amino acids; for DNA sequences of
interest in this work, the alphabet is 4 nucleotide bases
Σ = {A, C, G, T}. The alignment score is defined in the
form of a list of “columns” types including (1) match, (2)
mismatch, and (3) gap (insertion or deletion).

Figure 2 illustrate one possible alignment for sequences
X = ACGATCGGAT and Y = GCTCGGTAT . In
this example, we reward matching bases with score +10,
penalize mismatching bases and gaps (denoted by ‘-’) with
−4 and −5, respectively. Therefore, the final score of the
alignment is +51. Clearly, different alignments between
two sequences yield different scores. The goal of pairwise
alignment is to identify the alignment between sequence
pairs which maxmize the score.

Alignment algorithm. Sequence alignments typicall
use the two-phase Smith-Waterman (SW) algorithm [12]
which first fills a m×n (m, n respectively represent the
length of two sequences) matrix using Dynamic Program-
ming (DP) to find the maximal alignment score, followed
by a traceback phase which reconstruct the optimal local
alignment by reversing the traceback pointers starting
from the cell with highest-score. Although the SW al-
gorithm guarantees an best local alignment between two
sequences, its O(mn) time and O(mn) spatial complexity
limit its use in genomic analysis, since in practice it is often
necessary to process millions of sequences simultaneously.
Instead, BLAST [13], [14] is used as a heuristic of the
SW algorithm which employs a two-step seed-and-extend
approach. However, for long reads with high error rates,
BLAST gives a high false positive rate that results in
excessive computation in the more expensive extend stage.
To address this issue, minimap [11] chains the seeds to
potential mapping regions with a longer length before

R  Q

score= -4+(-5)∙3+10 ∙7=51

R Q 
R 
Q 

� = ����������� = ��������� � = �������� ��� = �� �������
mismatch deletion insertion

match: +10
mismatch: -4
gap: -5

Score Matrix

Fig. 2. Pairwise alignment.

extend. The chain step itself provides a higher accuracy
than many aligners, in which case the align (i.e., equiva-
lent to extend) phase becomes optional and is performed
only when necessary. Minimap’s superior performance in
processing latency and mapping accuracy with reduced
computational efforts make it the de facto general-purse
pairwise alignment tool.

Seed-chain-align. Figure 1(a) illustrats the seed-
chain-align procedure in minimap. Seed collects k-mer
minimizers (i.e., a k-long DNA sequence with minimum
value in a w-sized surrounding window) of the targeting
sequences and indexes them in a hash table by performing
a hash function Φ : Σk→Z. Then the query minimizers
are taken as seeds to find exact matches (also called as
anchor) against the hash table of the reference sequence.
The collected Anchors are stored in 2-tuples and enter
into a chain phase, which performs one-dimensional DP to
identifies correlated anchors as chains. Finally an optional
align step applies SW algorithm [12] to extend the chains
with approximate matches.

As chain step is the focus of this paper, we show the
detailed algorithm in Figure 1(b). Essentially, each anchor
is compared against N previous anchors to identify its
predecessor with the highest score. The grey block high-
lights the key operations involved in the chain step, which
include additions, subtractions and simple scaling. Table I
summarizes the notations that are used for explanation of
genome pairwise alignment. Due to page limit, we do not
give the full explanation of those parameters or the chain
algorithm. We refer interested reader to [11], [15].

TABLE I
Notations for explanation of genome pairwise alignment.

Symbols Description
Σ = {A, C, G, T } the alphabet of nucleotides
s = a1a2. . .an a DNA sequence, ai ∈ Σ
|s| length of sequence s
k-mer a k-long DNA sequence
sk

i a k-mer from s starting at i

Φ : Σk→Z a k-mer hash function
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Fig. 3. Morphable ReRAM CAM cell topology.

B. Resistive Crossbar-based Process-in-memory.
ReRAM is an emerging type of non-volatile memory

that stores information by changing cell resistances. The
resistance of a ReRAM cell can be programmed by ap-
plying a current or voltage with proper pulse-width or
magnitude. ReRAM has been extensively studies as a
promising candidate for future main memory [16]. Very
recently, many ReRAM-based in-memory accelerator were
proposed for hardware acceleration of machine learning
applications [17], [18]. However, the current ReRAM based
PIM accelerators mainly leverages ReRAM to perform
in-situ matrix-vector multiplications. The computational
requirement in genomic analysis is different. It barely
require complex computation (i.e. dot-product in machine
learning). Instead, it is a memory-intensive search process.
Thus we identify ReRAM-based associative computing as
a perfect fit. The details of the proposed dual-addressing
ReRAM CAM (content addressable memory) is elabo-
rated in Section III.

C. Related Work and Motivation
RADAR [19] proposed to accelerate the ungapped ex-

tension stage of BLAST [14] using 3D vertical ReRAM.
However, BLAST is only suitable for the previous genera-
tion of short read alignments. In addition, the 3D vertical
implementation of ReRAM is still not a mature technology
that can be used in commodity chips. Racelogic [20]
and BioSEAL [21] are two accelerators which accelerate
dynamic programming in traditional CMOS and ReRAM,
respectively. These two works, however, lack the critical
features to support backtrace. Darwin [7] is the first
accelerator for long reads mapping. It integrates hash table
based seeding and SW-based extension. Instead, we are
targeting a more efficient and accurate seed-chain-align
procedure. The work most similar to this work is proposed
in [22], which proposed an FPGA-based chain accelerator,
while we realize chain acceleration by leveraging in-situ
computation in ReRAM CAMs.

III. PARC

A. ReRAM CAM Cell
A content-addressable memory broadcasts a search word

onto the searchlines (SrLs) against a table of stored data.
Each stored word has a matchline (ML) that indicates
whether it is a match or mismatch. This matching in-
formation normally is fed to an encoder to generates
further instructions corresponding to the ML that is in

the match state. Since the area of a CAM cell affects
both the cost-per-bit and the speed/energy in a megabit
array, we propose an area-efficient CAM design shown
in Figure 3 utilizing high-density ReRAM cells. In the
proposed design, each CAM unit consists of two adjacent
complementary cells located in the same row. Specifically,
a high resistance cell RH and a low resistance cell RL pair
up to represent logic ‘1’ and a RL/RH cell pair represents
logic ‘0’. Search words on SrLs are also encodes by a
pair of complementary voltages: V/0 and 0/V represents
input signal ‘1’ and ‘0’, respectively. Here V denotes the
minimum voltage required for a read operation.

Column-wise search. To search a word, MLs are pre-
charged to V. Each bit of the search word is represented
with a pair of complementary voltages on the SrLs. Fig-
ure 3 shows an example for search “10” in an array which
stores “01” and “11”. The voltage on the ML of each
ReRAM cell is V . Thus, within each pair, only the cell
with a 0 voltage on SrL is activated as highlighted in blue.
We denote the read current of a cell in high resistance
state (HRS) and low resistance state (LRS) as IH and
IL, respectively. In this case, a sensed current IL (IH)
at the end of a row indicates a 1-bit match (mismatch).
Normally, the fine-grained bit-wise matching information
is not needed. For a n-bit search, the threshold current
can simply be set as nIL. Rows with a current lower than
nIL indicates a word mismatch.

Row-wise read/write. For regular read/write, we
reserve a group of column sense amplifiers (SAs) at the
vertical end of each SrL. As denoted in light blue text in
Figure 3, MLs and SrLS serves as regular wordlines (WLs)
and bitlines (WLs) when performing row-wise memory
access.

CAM-based addition. The execution of chain is
dominated by simple subtraction, and comparison such
as min, max operation as illustrated in the grey block in
Figure 1(b). The calculation of min, max can be realized
by a read followed by a parallel 1-bit comparison. with
negligible overhead. The bottleneck of computation is the
calculation of anchor distance ri − rj and qi − qj . We pro-
posed to implement abstraction on CAM without moving
huge anchor dataset (i.e., averagely 8MB in our profiling)
between memory hierarchies. We store anchors in CAM
in consecutive rows which facilitates in-situ calculation

0 0 0 0
0 1 1 0
1 1 1 1
1 1 1 0

0 0 0 0 0 0
0 1 1 0 0 1
1 1 1 1 1 0
1 1 1 0 0 1

0 0 0 0 0 0 0
0 1 1 0 0 1 1
1 1 1 1 1 1 0
1 1 1 0 1 0 1

(a) Operands Layout
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Fig. 4. CAM-based 1-bit addition.
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of distance. Detailed mapping scheme is illustrated in
Section IV. In general, the two elements in each tuple
is located in neighboring arrays. The subtraction can be
viewed as addition with 2’s complement. We structure
multiple-bit addition as series of 1-bit addition.

Figure 4 demonstrated the computation flow of CAM-
based 1-bit addition. The left part shows 1-bit addition
truth table, where a, b, Ci are the two operands and the
carry-in bit, co, s denotes the carry-out bit and sum. The
operands are located in each single row with carry bit
initialized as ‘0’. A controller first sequentially searches all
the 8 possible input combinations of a, b, and c, and the
corresponding values are written into sum s and carry bit
c in the following cycle. For instance, as shown in the right
part of Figure 4. The carry-bit column is first initialized as
‘0’. Then the SrLs of bit ‘A0’, ‘B0’ and ‘C’ are activated
(denoted in color blue). The first entry in the addition
truth table is first searched in the CAM array. In this
case we get a match in row 1. So C and S0 will be written
as ‘0’ and ‘0’ accordingly in the next cycle. Following the
similar search procedure, we searches every entry in the
truth table to perform the addition for every bit to obtain
the final results. Note that in each cycle, the carry bit C
is updated in-situ to save memory space.

B. PARC Architecture
PE organization. Figure 5 illustrates the organization

of one PE structure in PARC, which allows each memory
row to be searched, read, and write. PARC leverages
ReRAM CAM to perform in-memory execution. Each
array contains four dual-accessing ReRAM crossbars and
a score memory which stores the floating-point scores for
each anchor. The four ReRAM CAM arrays share a row
decoder, a wordline driver, a match line pre-charger, a
search line mask, and a column decoder and driver. A
PE also has a small array of 1-bit comparator to support
comparison, a registers to record α, and a look-up table
based memory for calculating β in chain algorithm, which
are respectively denoted as cmp, α-flag, and LUT in
Figure 5.

Sharing of peripheral circuitry. The baseline design
requires a set of vertical sense amplifiers connected to
MLs and a set of horizontal sense amplifiers connected
to BLs, as illustrated in Figure 3. These two sets of
SAs introduce significant overhead in terms of both area
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Fig. 6. PARC architecture overview.

and computational energy. Hence, we adopt the sense
amplifier sharing scheme in [23] by rotating the arrays
90◦ in turn. As demonstrated in Figure 5, adjacent SAs are
used on a search, while the neighboring SAs a litter further
are leveraged for conventional memory access. Moreover,
wordline drivers are also shared among the crossbar arrays
within a PE by global wordline. At a time, only a pair
of crossbar array in a PE can be activated and used to
perform column-wise search or row-wise access.

PARC architecture overview. Figure 6 demon-
strated the PARC architecture. At the top level, it consists
a scheduler which fetch anchor list from the database and
distributes tasks among PEs, an array of PEs which chain
the anchors, and a collector that output the results (i.e.,
chains and scores) to DRAM. Each row of PEs handles
the anchors from the same reference sequence, such that
multiple PE rows perform calculations in an independent
manner.

IV. Data Layout and Application Mapping

A. Data Structure and Data Layout
Anchors are organized as 2-tuples (r, q), where r and q

are both 32-bit integer [11]. Conventional main memory
is a linear address space starting at zero. Normally, all
fields of a tuple are stored consecutively. In PARC, tuples
are mapped into two neighboring arrays which shares a
wordline driver as highlighted in red in Figure 5. Based
on this efficient relational data layout, we explain how the
execution of chain is mapped onto PARC.

B. Application Mapping
Computing distance ri − rj and qi − qj. The 2’s

complement of current target anchor (ri, qi) is applied
onto the SrLs. In this case, we obtain rj − ri and qj − qi

(j ∈ [i − N, i − 1]) in parallel. The addition operation is
performed in a bit-serial fashion as explained in Section III
which takes 32 logic cycles. Within each cycle, the sing-
bit addition table entries are searched and corresponding
results are written into both sum and carry regions,
denoted by � and � in Figure 5.

Computing α, g, β. To compute α = min(rj − ri, qj −
qi, w), we read both rj and qj out in a bit-serial fashion
starting from the most-significant-bit (MSB). With each
PE, the dedicated comparator array cmp � compares 32
pair of 1-bit value in parallel and store the results in α-
flag �. To compute g, we utilize the CAM-based addition
again. Results are store back into the same PE denoted as
� in Figure 5. After g is obtained, we look up in LUT �
to obtain the value of β.
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Fig. 7. Comparison results on power, throughput and power efficiency.

Computing weight. First score(j) is read out from
score memory and temporarily stored in �. then we
compute score(j) + α − β. It takes another 32 cycles for
1-bit addition. To find the s_tmp = max(weight(j)) and
p_tmp = argmax(weight(j)), cmp � compares 32 pairs
of 1-bit value in parallel and stores the results back into
the same PE denoted as 	.

Putting It All Together. Following the flow �
through 	. The comparison between current anchor and
N previous anchors are calculated in parallel in one run.

C. System Integration
Similar to [23], PARC is implemented modularly in

a DIMM attached to the main memory system. While
PARC features non-volatile CAM data arrays, PARC
arrays do not include any of the priority index logic,
population count logic, the reduction network, or pro-
grammable microcontrollers. Instead, PARC tailors the
data and control paths to pariwise alignment, which
entails minimal logic for chaining. At the same time,
the peripheral circuitry of the array and the processing
units are all pipelined, which significantly improves the
processing throughput and makes the design overhead
tolerable.

V. Experiment Methodology

Long Reads Dataset. We generate 10Kbp long reads
using a PacBio reads simulator [24]. Without loss of
generality, We set the genome sequencing error rate as
20% and the coverage as 30×.

Baseline. As comparison baselines, we run min-
imap [11] on the 8-core Intel E5-2630v3 CPU with 128GB
main memory at a maximum frequency of 2.4 GHz and
on the NVIDIA Geforce GTX 1080 with 8 GB GDDR5

TABLE II
Configuration of CPU/GPU.

CPU

Intel Xeon E5-2630 V3, 8 cores
2.4 GHz, 8×(32+32)KB L1 Cache
8×256KB L2 Cache,20MB L3 Cache
128GB main memory

GPU
NVIDIA Geforce GTX 1080
1607 Base Clock
CUDA version 8

TABLE III
Simulated scheme comparison

Name Year Description
FPGA [22] 2019 FPGA-based chain accelerator
Darwin [7] 2018 CMOS Read Mapping Accelerator
BioSEAL [21] 2019 ReRAM-based DP accelerator

graphic memory, respectively. Detailed configuration of
CPU/GPU baselines are summarized in Table II.

We use NVSIM-CAM [25] to model the latency, power
and area of ReRAM arrays. We adopted the ReRAM cell
model from [26] with a crossbar size of 256 × 256. The
comparators, drivers and other peripheral circuitry are
synthesized by Cadence Design Compiler with 32nm PTM
process technology. The bus and connections are modeled
and estimated using Cadence Virtuoso with TSMC 32nm
technology. We also evaluated the PARC architecture
using four state-of-the-art alignment accelerators shown
in Table III.

VI. Evaluation

We built pairwise alignment for long reads on various
platforms to study the performance and throughput. Note
that although all of the accelerators under-test support
long reads alignment, the underlying algorithms they use
are not the same. Specifically, we run minimap [15] on
CPU, GPU, FPGA [22], and PARC. Compared with
general CPU/GPU platforms, FPGA and PARC are cus-
tomized hardware accelerators for minimap. For Dar-
win and BioSEAL, we run Dynamic Programming based
alignment algorithm as both design are specialized for
DP models. We summarize the detailed die size, off-chip
memory capacity, power, read alignment throughput, and
power efficiency in Table IV.

As visualized in Figure 7 (a), the power consumption
increases from general CPU/GPU platform to customized
FPGA and ASIC accelerators. For FPGA and Darwin, the
increased power is mainly due to the the intrinsic high
computation and memory complexity. For instance, Dar-
win require huge capacity of off-chip memory to store com-
plex intermediate data, and hash tables. While BioSEAL
and PARC both utilize CAM arrays which consume more
power than conventional RAMs.

We show the throughput (sequence per seconds) in Fig-
ure 7 (b). PARC stands out as the best high-throughput
solution. The second best is Darwin. Figure 7 (b) We
further compares the power efficiency (throughput per
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Fig. 8. Energy and area breakdown of PARC.
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TABLE IV
The comparison between different platforms.

CPU GPU FPGA [22] Darwin [7] BioSEAL [21] PARC
Die Size (mm2) 2.4K 314 16K 28K 230 87

Off-chip Memory(GB) 128 8 64 128 0 0
Power(W) 85 180 300 442 600 680

Throughput(query/sec) 60K 200K 4.5M 5.7M 177K 12.9M
Throughput/Watt 706 1.11K 15K 12.9K 295 18.9K

watt) in Figure 7 (c), which clearly demonstrates that
PARC provides the best solution to accommodate the
intensive computation in long reads alignment in terms
of throughput per unit power.

Figure 8 also shows the energy and area breakdown in
PARC. In general, sense amplifier consumes 58% energy
and 51% area. The ReRAM CAM array together with the
score memory consume less than 20% energy and area. In
our future work, we plan to design more efficient architec-
ture to reduce the overhead of peripheral circuitry.

VII. Conclusions

In conclusion, we propose a ReRAM CAM based ac-
clerator for DNA long read pairwise alignment. We ex-
ploit the symmetry of the crossbar structure to enable
dual-addressing memory architecture which supports both
row-wise in-situ computation and column-wise memory
accesses. We also present an efficient data mapping and
management scheme. Based on the mapping scheme, com-
putations are performed within the ReRAM arrays in
a word-parallel, bit-serial fashion. Compared to software
tools on CPU and GPU, PARC provides 215× and 64×
throughput improvement, respectively. Compared to the
state-of-the-art accelerator, Darwin, PARC shows respec-
tive 2.3× and 1.5× improvement in terms of throughput
and power efficiency.
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