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This chapter introduces a new framework and algorithms to address the problem
of diffeomorphic registration on a general class of geometric objects that can be
described as discrete distributions of local direction vectors. It builds on both the
large deformation diffeomorphic metric mapping (LDDMM) model and the con-
cept of oriented varifolds introduced in previous works like [16]. Unlike previous
approaches in which varifold representations are only used as surrogates to define
and evaluate fidelity terms, the specificity of this paper is to derive direct defor-
mation models and corresponding matching algorithms for discrete varifolds. We
show that it gives on the one hand an alternative numerical setting for curve and
surface matching but that it can also handle efficiently more general shape struc-
tures, including multi-directional objects or multi-modal images represented as
distributions of unit gradient vectors.
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1. Introduction
Background

Statistical shape analysis is now regarded across the board as an important area
of applied mathematics as it has been and still is the source of quantities of the-
oretical works as well as applications to domains like computational anatomy,
computer vision or robotics. Broadly speaking, one of its central aim is to provide
quantitative/computational tools to analyze the variability of geometric structures
in order to perform different tasks such as shape comparison or classification.

There are several specific difficulties in tackling such problems in the case of
datasets involving geometric shapes. A fundamental one is the issue of defining
and computing metrics on shape spaces. A now quite standard approach which
was pioneered by Grenander in [13] is to compare shapes through distances based
on deformation groups equipped with right-invariant metrics together with a left
group action defined on the set of shapes. In this framework, the induced distance
is typically obtained by solving a registration problem i.e by finding an optimal de-
formation mapping one object on the other one. It is thus ultimately determined by
the deformation group and its metric for which many models have been proposed.
In this paper, we will focus on the Large Deformation Diffeomorphic Metric Map-
ping (LDDMM) of [4] in which diffeomorphic transformations are generated as
flows of time-dependent velocity fields.

Despite the versatility of such models, one of the other common difficulty in
shape analysis is the multiple forms or modalities that shapes may take. Look-
ing only at the applications in the field of computational anatomy, if early works
have mostly considered shapes given by medical images [19,4] or manually ex-
tracted landmarks [15], the variety of geometric structures at hand has consider-
ably increased since then, whether shapes are images acquired through multiple
modalities (MRI, CT...) [3], vector or tensor fields as in Diffusion Tensor Images
[5], fields of orientation distribution functions [8] or delineated objects like point
clouds, curves [12], surfaces [10], fiber bundles [9]...

The intent of this paper is to make a modest step toward one possible gen-
eralized setting that could encompass a rich class of shapes including many of
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the previous cases within a common representation and eventually lead to a com-
mon LDDMM matching framework. Our starting point is the set of works on
curve and surface registration based on geometric distributions like measures,
currents or varifolds [11,10,7]. In the recent article [16] for instance, an oriented
curve/surface is interpreted as a directional distribution (known as oriented vari-
fold) of its oriented tangent/normal vectors, which results in simple fidelity terms
used in combination with LDDMM to formulate and solve inexact matching prob-
lems. Yet all those works so far have restricted the role of distributions’ repre-
sentations to intermediates for the computation of guiding terms in registration
algorithms; the underlying deformation model and registration problem remains
defined over point sets with meshes.

The stance we take here is to instead introduce group actions and formulate
the diffeomorphic matching problem directly in spaces of geometric distributions.
In this particular work, we will restrict the analysis to objects in 2D and 3D and
focus on the simpler subspace of discrete distributions, i.e that write as finite sums
of Dirac varifold masses: Figure 1 gives a few examples of objects naturally repre-
sented in this form. We shall consider different models of group actions and derive
the corresponding optimal control problems, optimality conditions (Section 3) and
registration algorithms (Section 4). This provides, on the one hand, an alternative
(and theoretically equivalent) numerical framework to [16] for curve and surface
matching using currents, oriented or unoriented varifolds. But the main contribu-
tion of our proposed model is that it extends LDDMM registration to the more
general class of objects representable by discrete varifolds. In Section 5, we will
show several examples of synthetic data besides curves or surfaces that can be
treated as such, including cases like multi-directional objects or contrast-invariant
images.

Related works.

A few past works share some close connections with the present paper. For in-
stance, [5] develops an approach for registration of vector fields also within the
LDDMM setting. The discrete distributions we consider here are however dis-
tinct from vector fields as they should rather be interpreted as unlabelled particles
at some locations in space with orientation vectors attached (and with possibly
varying number of orientation vectors at a single position) as opposed to a field of
vectors defined on a fixed grid. In particular, our approach will be naturally framed
in the Lagrangian setting as opposed to the Eulerian formulation of [5]. The de-
formation model and geodesic equations that are derived in Section 3 can be also
related to the framework of [20] and [14] that introduce higher-order "jet” particles
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and higher-order similarity measures. These remain defined through labelled sets
of control points though, which is again different and arguably less flexible than
the approach we develop here.

2. Shapes and discrete varifolds

The idea of representing shapes as distributions goes back to the many works
within the field of Geometric measure theory. Those concepts have later been
of great interest in the construction of simple and numerically tractable metrics
between curves or surfaces for registration problems: the works of [12,10,9,7]
are a few examples. The framework of oriented varifolds recently exploited in
[16] was shown to encompass all those notions into a general representation and
provide a wide range of metrics on the spaces of embedded curves or surfaces. We
give a brief summary of the latter work below.

In the rest of the paper, we will call an oriented varifold or, to abbreviate, a
varifold in R" (we shall here consider the cases n = 2 or n = 3) a distribution
on the product R” x S"~!. In other words, a varifold u is by definition a linear
form over a certain space W of smooth functions on R" x S™! which evaluation
we shall write as u(®) for any test function @ € W. In all what follows, we shall
restrict our focus to ’discrete’ shapes and varifolds, leaving aside the analysis of
the corresponding continuous models. By discrete varifold, we mean specifically
that u writes as a finite combination of Dirac masses y = ):le ri8< xi,di) With ri >0,
(xi,d;) € R" x "1 for all i, in which case u(®) = ¥'¥_| r,o(x;,d;) for all ®. Such
a u can be thought as a set of unit direction vectors d; located at positions x; with
weights (or masses) equal to the r;’s. We assume by convention that the (x;,d;)
are distinct, but not necessarily that all the positions x; are: in other words, in our
model, there can be more than a single direction vector attached to each position.
In the rest of the paper, we will denote by D the set of all discrete varifolds. Note
that in this representation and unlike the cases of landmarks and vector fields,
the particles are unlabelled i.e the varifold u is invariant to any permutation of the
(xi,d;). One particular subset of interest that we shall denote D C Dis the space of
discrete varifolds with distinct positions x; (or equivalently, the discrete varifolds
that carry a single direction vector per point position).

The relationship between shapes and varifolds relies on the fact that discrete
shapes, namely curve or surface meshes, can be naturally approximated by vari-
folds of the previous form. As explained with more details in the aforementioned
references, this is done by associating to any cell of the discrete mesh (i.e a seg-
ment for curves or a triangular face for surfaces) the weighted Dirac 7,8y, 4,) as
illustrated in Figure 1. In that expression, x; is the coordinates of the center of the
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Fig. 1. Some examples of data representable by discrete varifolds: (a) Piecewise linear curve. (b)
Triangulated surface. (c) A set of cells’ mitosis directions measured inside a mouse embryonic heart
membrane (cf. [18]). (d) Peak diffusion directions extracted from a slice of High Angular Resolution
Diffusion Imaging phantom data, note the presence of multiple directions at certain locations corre-
sponding to fiber crossing.

cell, r; its total length or area and d; the direction of the tangent space represented
by the unit tangent or normal orientation vector d;. It results in a mapping S — us
that associates to any discrete shape S the discrete varifold s = Zle riS(xl. ) € D
obtained as the sum over all faces i = 1,..., I of the corresponding Diracs.

The main interest of such a representation is that it gives a convenient setting
for the definition of shape similarities that are easy to compute and do not assume
pairwise correspondences between points. With the two conditions, which are
quite natural in our context, that W is a Hilbert space and that all Diracs 8(x7d)
for (x,d) € R" x §"~! belong to the dual, W then must be a Reproducing Kernel
Hilbert Space (RKHS) associated to a smooth positive definite kernel on R" x
§"1. In particular, we will follow the construction proposed in [16] and consider
separable kernels of the form k(x,d,x’,d") = p(Jx —'|*)y({d,d"}) where p and
v define positive definite kernel functions respectively on the positions between
particles and the angles between their orientation vectors. The reproducing kernel
metric on W then gives a dual metric on varifolds that explicitly writes, for u =
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i 7id(x,.d;)’
lulli- =Y ririp(Jxi —x;1*)v({di,d;)) 2.1
ij

Such metrics on W* are determined by the choice of the positive definite func-
tions p and v and provide a global measure of proximity between two discrete
varifolds. One important advantage for applications to e.g registration is that the
computation of a distance ||u— ¢/||3,« between two distributions does not require
finding correspondences between their masses but instead reduces numerically to
a quadratic number of kernel evaluations. The gradients of the metric with respect
to the x;’s and d;’s is also very easy to obtain by direct differentiation of (2.1).
Finally, we note that the expression in (2.1) is also invariant to the action of the
group of rigid motion. Namely for any rotation matrix R, translation vector / and
the group action (R.h) = L2 ri (41 one has [|(R.) g = [l

In all generality however, (2.1) may only yield a pseudo-metric on the set
of discrete varifolds 9 since the inclusion mapping D — W* is not necessarily
injective. A necessary and sufficient condition is:

Proposition 2.1: The metric || - |\w+ on W* induces a metric on ‘D if and only if k
is a strictly positive definite kernel on R" x §"~1,

The proof follows immediately from the definition of strictly positive definite ker-
nel. This condition holds in particular if both kernels defined by p and 7y are strictly
positive definite. In the case of Qo), one can provide different sufficient conditions
which are often more convenient to satisfy in practice. These involve a density
property on kernels called Cp-universality, cf [6]. A kernel on R” is said to be
Co-universal if the associated RKHS is dense in Cy(R",IR). Then one has the fol-
lowing

Proposition 2.2: If the kernel defined by p is Co-universal, y(1) > 0 and y(u) <
Y(1) forallu € [—1,1), then || - ||w+ induces a metric on D.

Proof: Let ngs and W, be the RKHS associated to p and v. By contradiction,
suppose that u, i/’ € D with llu— ¢ [lw+ =0and u# 4 in D. We can write u, 4/ in
the following form:

N N
H= Z ris(zhdi)’ o= Z rl/'s(zl--,d{)’
i=i =

where {z;}, with z; all distinct, is the reunion of point positions from both distri-
butions and [max {ri,rl} >0, m1n {r,,r } > 0. Since u and 4/ are distinct in D,
<i<N
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there is some i such that (d;,, r;,) # (d;,, ;). Without loss of generality, we may
assume ry, > r;.. Let g(-) = Y((diy,)) € Wor and choose f € Cp(R",R) satisfying
f(ziy) =1and f(z;) =0 forall i > 2. Since the kernel defined by p is Co-universal,

there exists {f,,} C W0, such that f, — f uniformly. As f, ® g € W, we have that

0=@u—p|fivg) = ;fn(Zi)(rig(di) —rig(d}))

Taking the limit n — oo, this gives:

0= f(ziy) (ripg(diy) — r1,8(djy)) = rig¥(1) = ri Y({diy i) - (22)
A
Since (diy,riy) # (dj, 7)), rig > iy and rjy > 0, we have either d;, # d; and

then A > r;, (Y(1) —¥({di,d;,))) > 0 or d;, = d;  and r;, > rj, in which case

A = (riy —rj,)¥(1) > 0. In either case the right hand side of (2.2) is positive which
is a contradiction. a

Note that the Cyp-universality assumption still implies that the kernel defined by
p is strictly positive definite. However, the assumptions on 7y are typically less
restrictive than in Proposition 2.1.

A last subclass of varifold metrics that shall be of interest in this paper is the
case of orientation-invariant kernels which amounts in choosing an even function
v in the kernel definition. This, indeed, leads to a space W* and metric || - ||w+
for which Diracs 8, 4) and 8, _4) are equal in W* for any (x,d) € R" x S"!. In
other words, elements of D can be equivalently viewed as unoriented varifolds,
i.e distributions on the product of R” and the projective space of R”, similarly
to the framework of [7]. In that particular situation, one obtains an induced dis-
tance under the conditions stated in the following proposition which proof is a
straightforward adaptation of the one of Proposition 2.2.

Proposition 2.3: If the kernel defined by p is Co-universal, Y is an even function
with¥(1) > 0 and y(u) < ¥(1) for allu € (—1,1), then || - ||w+ induces a metric on
the space D modulo the orientation.

In Section 5 below, we will discuss more thoroughly and illustrate the effects
of those kernel properties on the solutions to registration problems for different
cases of discrete distributions.

3. Optimal diffeomorphic mapping of varifolds

It is essential to point out that the notion of varifold presented above contains but
is also more general than curves and surfaces as it allows to model more complex
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geometric structures like objects carrying multiple orientation vectors at a given
position. In contrast with most previous works on diffeomorphic registration that
only involve varifolds as an intermediary representation to compute fidelity terms
between shapes, the purpose of this paper to derive a deformation model and reg-
istration framework on the space D itself.

3.1. Group action

A first key element is to express the way that deformations ’act’ on discrete vari-
folds. Considering a smooth diffeomorphism ¢ € Diff(R"), we first intend to ex-
press how ¢ should transport a Dirac 8, 4). There is however not a canonical
way to define it as the nature of the underlying data affects the deformation model
itself. An important distinction to be made is on the interpretation of direction vec-
tors d, whether they correspond for instance to a unit tangent direction to a curve or
a surface in which case d is transported by the Jacobian of ¢ as D,¢(d)/|Dxd(d)|
or rather to a normal direction which instead requires a transport model involv-
ing the inverse of the transposed Jacobian i.e (D)7 (d)/|(D,0) T (d)] (see [22]
chap. 10 for more thorough discussion). To keep notations more compact, we will
write D¢ - d for a given generic action of D¢ on R” on either tangent or normal
vector and D@ -d for the corresponding normalized vector in S"~!. That being
said, we will also consider two distinct models for the action:

® 0.0(xq) = 8<¢(x) Do) (normalized action): this corresponds to transport-
ing the Dirac mass at the new position ¢(x) and transforming the orien-
tation vector as D¢ - d.

® 040, q) = |DO-d |6(¢(x)7m> (pushforward action): the position and ori-
entation vector are transported as previously but with a reweighting factor
equal to the norm of D¢ -d.

It is then straightforward to extend both of these definitions by linearity to any dis-
crete varifold in 9. In both cases, we obtain a group action of diffeomorphisms on
the set of discrete varifolds. However, these actions are clearly not equivalent. The
normalized action operates as a pure transport of mass and rotation of the direc-
tion vector whereas the pushforward model adds a weight change corresponding
to the Jacobian of ¢ along the direction d. This is a necessary term in the situa-
tion where u = ug is representing a discrete oriented curve or surface. Indeed, one
can check, up to discretization errors, that under the pushforward model, we have
d#tts = Ug(s)> in other words the action is compatible with the usual deformation
of a shape. In the result section below, we will show examples of matching based
on those different group action models.
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3.2. Orbits and isotropy groups

Although we will be focusing on special subgroups of diffeomorphisms in the
next section, it will be insightful to study a little more closely the orbits of discrete
varifolds under the normalized and pushforward actions of the full group Diff(IR")
(or similarly the equivalence classes D/Diff(R")). Let u € D which we can write
as = Zf-vzl Z?":I r;, js(xi.,d,-.j) where the x; are here assumed to be distinct positions
known that Diff(R") acts transitively on the set of point clouds of N points in
R” (as n > 2), this may no longer hold when one or several direction vectors are
attached to each point position.

In the case of the normalized action, we have ¢.u = ):?]:1 27":1 r,-m,-S(q,( 32).D6d,)"
We see that the orbit of u is then given by:

Diff,u = {v €D st Ay) € R, yi £y fori# j, IAi,...,Ay € GL(RY),

AR . Ad; j
V= Z Z Ti,jS (i ;) With uij = A | }
i=1j=1 idi,j

This is essentially the set of all discrete varifolds with any set of N distinct po-
sitions and for each i, a set of n; directions obtained by a linear transformation
of the {d; j}j—1,. n; With weights r; ; unchanged. In particular, this imposes some
constraints on the set of ’attainable’ direction vectors: clearly, if the number of
direction vectors at a given position exceeds the dimension i.e n; > n, this system

of vectors cannot be mapped in general to any other system of n; vectors on the
sphere by a single linear map. If we assume that the system of vectors at each
position x; forms a frame, i.e that for all i, n; < n and the direction vectors d; ; for
j=1,...,n; are independent, then we see that the orbit of u is given by the set of
all discrete varifolds of the form YV 27;1 7i,j0(y;u ) With distinet y;’s and (u;, ;)
in S"~! such that the (ui, j).f:17-~-7"i are independent for all i. In the special case of
n; =1 for all i, thatis u € D, the orbits are then entirely determined by the set of
weights ; which gives the identification of D/Diff(R") with ordered finite sets of
positive numbers.

With pushforward action, we have Ouu = ):fvzl ):;f"zl |D¢ - d; j|ri. 1'6(¢(x,-)7m)
and the orbit writes:

Diffyu = {v €D st Ay) € (RN, yi £y, fori# j,3Ay,..., Ay € GL(R"),

¥ Aid;
V=Y Y lAidilri B, with iy = SO
i=1j=1 N |Aid ]

In the general situation, there is again no simple characterization of the orbit.
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With the additional assumptions that n; < n and the (d; ;) j—1,... »; are independent
vectors for each i, the orbit of u is the set of all discrete varifolds of the form

N Z?';l 8i,j8(y;.u; ;) With any choice of distinct points y;, direction vectors (d;,;)
in S"~! such that the (d; ;)j are independent and weights s; ; > 0. In particular, the
action of Diff(R") in the pushforward model is transitive on all subsets of D with
fixed N, which implies that the equivalence classes of D /Diff(R") in that case are
only determined by the number of Diracs in the discrete varifold, as we would
expect.

The previous discussion thus shows that for both models and unlike the more
standard cases of landmarks or discrete vector fields, the action of diffeomor-
phisms on discrete varifolds is in general not transitive. It is therefore necessary
to formulate the registration problems in their inexact form by introducing fidelity
terms like the kernel metrics introduced in Section 2.

An alternative viewpoint is to identify the previous orbits as quotients of
Diff(R") by their isotropy subgroups, which allows to draw some parallel with the
model of jets of [14]. To simplify the presentation, let’s consider u = ¥V, 7id(x; i)
in D (thus x; # x; for i # j). Writing G, and Gz the isotropy subgroup of u for the
normalized and pushforward actions, we have the identifications Diff(R")/G}; ~
Diff,u and Diff(R")/ Gﬁ ~ Diffyu. Now, we can describe those isotropy subgroups

as follows. Denoting Sy the permutation group of {1,...,N}, we have
dy.0(d;

G = {q) € DIff(R") | 31 € Sy, Vi= 1,...,N, 0(x;) = xz(y and 22A) _ dn@}
|d¢(di)|

and

Gl ={0 €Diff(R") | In € Sy, Vi=1,...,N, 0(x;) = Xz(;) and rydy,O(di) = rr(iydniy } -

Interestingly, the isotropy group for the space of first-order jets on the landmark
set z = {x;}i—1__n as derived in [14] is given by

GV = {¢ € Diff(R") | Vi=1,...,N, 6(x;) = x; and dy,0 = Id}..

We can notice that Gﬁl) is actually a subgroup of both G, and Gfﬁ, which shows

again that the deformation models on discrete varifolds considered here comes
with additional invariances, in particular the invariance to permutation of the Dirac
varifolds in g, in contrast with the labelled particles of [20, 14].

3.3. Optimal control problem

With the definitions and notations of the previous sections, we can now intro-
duce the mathematical formulation of the diffeomorphic registration of discrete
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varifolds. As mentioned in the introduction, we will rely on the LDDMM model
for generating diffeomorphisms although other transformation spaces and models
could be taken as well. In short, we consider a space of time dependent velocity
fields v € L?([0,1],V) such that for all € [0, 1], v, belongs to a certain RKHS V
of vector fields on R”. We will write K : R" x R" — R" the vector-valued repro-
ducing kernel of V. From v, one obtains the flow mapping ¢; at each time ¢ as
the integral of the differential equation d,¢; = v, o ¢} with o9 = Id. The deforma-
tion group Gy is then defined as the set of all flow maps ¢} for all velocity fields
v € L*([0,1],V). With the adequate assumptions on the kernel of V, this is a sub-
group of Diff(R") and it is naturally equipped with a right-invariant metric given
onV by [y |[v¢||3dz. This right-invariant metric can be then shown to descend to a
metric on the orbit spaces of discrete varifolds for the action of Gy, which can be
described in a similar way as in the previous section. We refer to [22] for a detailed
exposition of the LDDMM framework.

Now, consider two discrete varifolds uy = ):le ri,OS(xi‘07d,'70) (template) and ji =
ZJQ=1 F j6(5j7 ) (target). As uo and it may very well not belong to the same orbit,
we introduce the registration problem in its inexact formulation which consists in
the variational problem:

1
agminz o) {E0) = [ Il M) -alf G

subject to either u(¢) = (7)o in the normalized action scenario or u(t) = (97 )#to
for the pushforward model, and A being a weight parameter between the regular-
ization and fidelity terms in the energy. This is easily interpreted as an optimal
control problem in which the state variable is the transported varifold u(z), the
control is the velocity field v and the cost functional is the sum of the standard
LDDMM metric on the deformation and a discrepancy term between p(1) and the
target given by a varifold kernel metric as in (2.1). Those optimal control problems
are well-posed in the following sense:

Proposition 3.1: If V is continuously embedded in the space C5(R",R"), or
equivalently if K is of class C* with all derivatives up to order 2 vanishing at
infinity, then there exists a global minimum to the problem (3.1).

Proof: The result follows from an argument similar to that of the existence of
minimizers in usual LDDMM registration problems. If (V") is a minimizing se-
quence in L?([0,1],V) then thanks the first term of E, we may assume that (v")
is bounded in L?([0,1],V) and therefore that, up to extracting a subsequence,
v — v* weakly in L2([0,1],V). It then follows from the results of [22] (Chap-
ter 8.2) that the sequence of diffeomorphisms (¢}") and their first-order dif-
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ferentials (dqﬁ") converge uniformly on every compact respectively to ¢{* and
do!". In particular, for all i = 1,...,P, V' (x;) — ¢! (x;) and do}" (x;) — d¢}" (x;).
Then, from the expressions of the group actions and the metric (2.1), we obtain
that either |9} )otto — il —— (0} )otto — il or 110} Jasto — il ——
(0% )#pto — fa||3«. Finally, using the weak lower semicontinuity of the norm in
L%(]0,1],V), it gives in both cases:

E(v*) <lim inf E(V")

n—yoo

and consequently v* is a global minimizer of E. a

3.4. Hamiltonian dynamics

By fixing the final time condition u(1) and minimizing fol |lve||Zdt with those
boundary constraints, the resulting path ¢ — u(z) corresponds to a geodesic in
D for the metric induced by the metric on the deformation group. We can further
characterize those geodesics as solutions of a Hamiltonian system. For that pur-
pose, we follow the general setting developed in [2] for similar optimal control
problems.

In our situation, we can describe the state u(r) as a set of P particles each
given by the triplet (x;(¢),d;(t),ri(t)) € R" x S"~! x R*_ representing its position,
orientation vector and weight. From 3.1, we have that x;(r) = ¢} (xi0), di(t) =
D¢y -dio and r;(t) = rio for the normalized action and r;(¢) = |D9; - dig|rip in
the pushforward case. Differentiating with respect to ¢, the state evolution may be
alternatively described by the set of ODEs

Xl(l) = v (xi(1))

di(t) = Py (Dvi - di(t))

] 0 (normalized)

ri(f) = { <d,-(t),DVt ~di(l‘)>i’i(f) (pushforward)

where Py )1 denotes the orthogonal projection on the subspace orthogonal to
d;i(t), Dv; - d;i(t) corresponds to the infinitesimal variation of the action of D¢
on vectors of R” introduced in 3.1: it is given specifically by Dv; - d;(t) =
Dy, (1yvi(di(t)) in the tangent case and Dv; - d;(t) = —(Dxi(,)v,)T(d,»(t)) in the nor-
mal case. Note that other choices of transformation of the weights could be treated
quite similarly by modifying accordingly the last equation in the previous system.
In what follows, we detail the derivations of the optimality equations in the case
of tangent direction vectors for both normalized and pushforward group action
models, the situation of normal vectors being easily tackled in similar fashion.
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3.4.1. Normalized action

In the case of normalized action, {r;(t)}£_, are time independent as previous dis-
cussed. So we can choose the state variable of the optimal control problem to be
q:={(xi,d;), i=1,---,P} € R?" with the infinitesimal action

&v={ (v(x0). Py (Doy(@) ) i =1, P}

and introduce the Hamiltonian

H(p.g.v) = (plegy) — 5 IV}

i

1
(pi" () 4 By (P, Di(di)) = 5 VI

=

Il
-

where

p= {(Pgl)wfz))» i=1,.. ’p} c R2P

is the adjoint variable of state g. We call pgl) the spatial momentum and pgz) the
directional momentum. From Pontryagin’s maximum principle, the Hamiltonian

dynamics is given by the forward system of equations

50 = (xi0)
di(t) =Py (D

xi
P (1) = —(Dy wfﬁ 0
~(Dv (%UmT@my@@@D (32)
(1) = ~(Dyyyve) Py (07 (1))
<<>ﬁ<m0 i(di(1))
HdOD<)wmmA%w

and optimal vector fields v satisfy
<Vt’h> = ( (t) é’;q h)
Z )+ (Payo (P17 (1)) Dy i (1)

for any h € V and ¢ € [0, 1]. The reproducing property and reproducing property
for the derivatives in a vector RKHS give [20] that Vx € R”, z € R",v € V and
multi-index o,

(K(x,-)z,v)v = (20 8:|v)

(D$K (x,-),v)y = zI D%(x).
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With the above properties, we obtain the following expression of v

C (1)
vi(-) =Y K(u(t), )p (1)
k=1
+ DK (5(1), ) (de(0), Py (7 (1))) (3.3)

where we use the shortcut notation D{K(x,-)(uj,up) for the
vector Dy (K(x,)uz)(u1). In Figure 2, we show an example of geodesic and re-
sulting deformation for a single Dirac varifold, which is obtained as the solution
of (3.2) with the initial momenta shown in the figure. It illustrates the combined
effects of the spatial momentum which displaces the position of the Dirac and of
the directional momentum that generates a local rotation of the direction vector.

Jit eyt
o 1-momen thn
ot Hibn nomentum
1 pasitian
posiftion /&
fan| & direction direction diFection
djsfet Uion| momentul
dirgction dHarec i op—momemtum

t=0 t:1/2 r=1

Fig. 2. Example of geodesic for a single Dirac in the normalized action case.

3.4.2. Pushforward action

As in the previous section, we set the state variable g := {(x;,d;,r;), i =
1,---,P} € (R" x S"! x R* )P, the infinitesimal action

Ev= {(V(Xi)apdii(dx,-v(di)),ri<di,dxl-V(d,-)>) ci=1,-- ’p}

and the Hamiltonian

1
H(p.q.) = Y (p"v(x)) + (P (), (@) ) + o i v(d)) = S VI
i=1

(3.4)

page 14
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where p = { (p(l),pgz),p?)) yi=1,-- ,P} e R4+DP_ Applying again Pontrya-

gin’s maximuml principle, we obtain the forward system
%o =wi(x)
di =P (dyv(d;))
f’,’ =1r; <di7dx,'vt(di)>
B = =) Py = (@ v, )T (P (1)) = Pt i v(- ) d
p = —dyopf (P + (<diapl(2)> —riplc)) [dyve +dyv] ] (d)
o+ (disdyve(di)) py”
Y = —p (diydyvi (i)

(3.5)

with optimal vector field of the form

P
vi(x) =Y, K(xk,x)P;EI) + D K (¢, x) (dk,PdkL (P;(f)) +P1(<3)rkdk) . (3.6)
i=1

From the forward equations (3.5), we see that %(di(t),d;(t)) = 0 and
(%r,-(t)po)(t) = 0, hence ||d;(¢)|| and r,-(t)p(S)(t) are constant along geodesic

i i
paths. Similarly to the normalized action case, we can use use those conserva-
tion properties to reduce the number of state and dual variables as follows.

Let the new state variable be ¢ = {(x;,u;), i =1,---,P} and the Hamiltonian

P
1
H(p.g,v) = Y (pi" v)) + (pi dyv(aa)) = 5 I (3.7)
i=1
The forward equations and optimal vector field v derived from this Hamiltonian
are
%1(t) = v (1))
di(t) = dy, (v (uit)) 35
(1 1 2 2 .
P (0) = ~(dyr) Tl = (@0 vl )l
B (1) = —(dyu) P (1)
and
s (1) @)
vi(x) = Y K (e, x)py () + D1 K (e, %) (e (1), o7 (1)) - (3.9)
k=1

Then this new system is rigorously equivalent to the original one in the following
sense:

Proposition 3.2: Any solution of (3.8) + (3.9) is such that (xi(t),ui(t), |u,(t)|)
is a solution of (3.5) + (3.6). Conversely, any solution (x;(t),d;(t),ri(t)) of (3.5)
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+ (3.6) with initial conditions satisfying <pl(2) (0),ul~(0)> = r,~(0)p§3>(0) gives the
solution (x;(t),r;(t)di(t)) to (3.8) + (3.9).

t=0 l:1/2 r=1

Fig. 3. Examples of geodesics in the pushforward action case.

The proof is given in Appendix. Note that these equations can be also obtained
in a more particular case as the geodesic equations on the tangent bundle of the
space of landmarks, as derived for instance in [1] (Section 3.5). In what follows,
we will thus replace the system (3.5) by (3.8).

Remark 3.3: We point out that there are other conserved quantities in the previ-
)

ous system. In particular, it’s easy to see that < D; ,di> is constant along geodesics

since
% <pl(»2),di> =— <(dxiv,)Tp,(-2),d,-> + < ,(i),dxl.vt(di)> =0.

Figure 3 shows two geodesic trajectories of a single Dirac varifold for different
initial momenta. In particular, we can again observe the effect of the directional
momentum p<2> on the dynamics and resulting deformations. In addition to similar
rotation effects as in the normalized action case, local contraction or expansion can
be generated as well, depending precisely on the angle ( p(z),d,->.

i
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4. Registration algorithm and implementation

We now turn to the issue of numerically solving the optimization problem (3.1).
We will follow the commonly used method for such problems called geodesic
shooting (cf [21]). Indeed, from the developments of Section 3.4, we see that opti-
mizing (3.1) with respect to vector fields v can be done equivalently by restricting

to geodesics and thus by optimizing over the initial momenta variables p(()l) and

p(()z) that completely parametrize those geodesics through the Hamiltonian equa-
tions.

4.1. Computation of E

Let a template and target discrete varifold be given as in Section 3.3. As mentioned
above, we can rewrite the energy E as a function of the initial momenta that we
will denote p(()l) = (p(l)(O)) and p(()z) =( @) (0)):

i i

E, 0P = Hy(po, go) + A (1) — 13+ @.1)
————
=g(q(1))

where ¢ is the initial state, u(1) is the varifold corresponding to the final time
state ¢(1) with g(g(1)) the resulting fidelity term between u(1) and the target
varifold, and H, is the reduced Hamiltonian H,(p,q) = H(p,q,v) for the optimal
v given by (3.3) or (3.9) (note that H,(p(t),q(r)) is conserved along solutions of
the Hamiltonian systems thus giving the above expression of the energy).

The expression of H, as well as the resulting reduced Hamiltonian equations
can be obtained in all generality by plugging the expression of v in the equations
of Section 3.3. In our implementation, we actually restrict to the more particular
case of radial scalar kernels for the vector fields in V, i.e we assume that K (x,y) =
h(|x — y|?)I,.. Then the reduced Hamiltonian for the normalized case becomes:

1

H.(p,q) =3 (Kyp:p), (4.2)

where K, is a symmetric positive definite matrix which is defined as follows. Let

H=(H)j = (h)
A= (A)ix = 2 (xi — x;, di)
B = (B)i = — [4hac(xx — xi,di) (xp — x;, die) + 2hii(di, i) |

with /i, being a shortcut for h(|x; —x;|?) and
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I;—d; -d]T O
Pu()= ’
O Id—dN-dg

Then we define

2. (Ira 0 " Hel Aol (I 0
T\ 0 Py A1) Bol, 0 P,

where ® denotes the Kronecker product. For the pushforward action case, we
define H, A and B as in normalized action case with d; and d; replaced by u; and
uy, then

1
H(p.q) =3 (Kqpsp) (4.3)

where

K. — H®Il; ARl
T\ (Aol Bel )’

This gives us explicitly the first term of the energy in (4.1).

Now, the time evolution of g and p can be also rewritten equivalently in re-
duced Hamiltonian form, which expressions are given in full for radial scalar ker-
nels in the Appendix. We numerically integrate those differential systems using
an RK4 scheme, which we experienced to be better-adapted to these systems than
the simpler Euler midpoint integrator used in [16]. Then, given initial momenta
pél) and p(()z), integrating those equations forward in time produces the final state
q(1) and its corresponding varifold u(1). It is then straightforward to evaluate
the second term in (4.1) through the expression of the varifold norm (2.1); in the
pushforward case one only needs to apply the additional intermediate operation
of converting state g(1) = (x;(1),u;(1)) into (x;(1),% (1), |u;|(1)). We will discuss
different choices of kernels for the varifold metric in the result section.

4.2. Computation of the gradient of E

The second element we need is the gradient of the energy with respect to the
momenta. The first term being directly a function of py, it can be differentiated
easily and gives the following gradient:

VpoHr(P0.90) = Kqpo (normalized)
VpoHr(Poﬂo) = K,po (pushforward)
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The fidelity term g(g(1)) in (4.1), however, is a function of the final state
q(1) which is in turn a function of the momenta through the Hamiltonian system
of equations. The computation of the gradient is therefore more involved due to
the complicated dependency of ¢(1) in pg. The standard approach for optimal
control problems of this form (cf for example [21] or [2]) is to introduce the adjoint
Hamiltonian system:

Z(1) = d(3,H,,0,H,)"Z(r)

with Z = (G, p)" the vector of the adjoint variables. Then, as detailed in [2], the
gradient of g(g(1)) with respect to py is given by 5(0) where (G(t), p(t))7 is the
solution of the adjoint system integrated backward in time with §(1) = Vg(g(1))
and (1) =0.

For the particular Hamiltonian equations considered here, the adjoint system
is tedious to derive and to implement. We simply avoid that by approximating the
differentials appearing in the adjoint system by finite difference of the forward
Hamiltonian equations, following the suggestion of [2] (Section 4.1) which we
refer to for details. Note that another possibility would be to take advantage of au-
tomatic differentiation methods, as used recently for some LDDMM registration
problems by the authors of [17].

Lastly, the end time condition Vg(g(1)) in the previous adjoint system is com-
puted by direct differentiation of the varifold norm (2.1) with respect to the final
state variables. This is actually more direct than in previous works like [7,16]
where the gradients are computed with respect to the positions of vertices of the
underlying mesh. Here, we have specifically, for the normalized model:

P
9xg(q(1) =2 Y 2rirjp’ (bi(1) —x;(DP)v({eti(1),d; (1)) (xi(1) —x5(1)) —2...

j=1
P
94;8(q(1)) =2 ;rirjp(l)w(l) —x (P (di(1).d;(1))).dj(1) —2...

where the ... denote a similar term for the differential of the cross inner product

(u(1),f@)w=. In the pushforward case with state variables (x;(1),u;(1)), we first

compute d;(1) = u;(1)/|u;(1)| and r;(1) = |u;(1)| and obtain d,,g(g(1)) with the

same expression as above while d,,g(g(1)) is given by a simple chain rule.
Finally, with the above notations, the gradient of E writes:

VpoE =Kgpo+Ap(0) 4.4

respectively V, E = K, po+ Ap(0) in the pushforward case.
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4.3. Gradient descent algorithm

The solution to the minimization of (4.1) is then computed by gradient descent
on py = ( péli), p(()zi)) s Note that this is a non-convex optimization problem.
AP0 ).

yeouy

Until convergence, each iteration consists of the following steps:

(1) Given the current estimate of pg, integrate the Hamiltonian equations forward
in time to obtain ¢(1).

(2) Compute the gradient Vg(gq(1)).
(3) Integrate the adjoint Hamiltonian system backward in time to obtain V , E.

(4) Update pg: we use two separate update steps for the spatial and directional mo-
mentum which are selected, at each iteration, using a rough space search approach
leading to the lowest value of E.

5. Results

We now present a few results of registration using the previous algorithm on sim-
ple and synthetic examples. Our implementation equally supports objects in 2D or
3D, we will however focus on examples in R? here simply to allow for an easier
visualization and interpretation of the results.

5.1. Curve registration

We begin with a toy example of standard curve matching to compare the result
and performance of our discrete varifold LDDMM registration algorithm with
the state-of-the-art LDDMM approach for curves such as the implementations of
[10,16]. The former methods share a very similar formulation to (3.1) and also
make use of varifold metrics as fidelity terms, the essential difference being that
the state of the optimal control problem is there the set of vertices of the deformed
template curve which is only converted to a varifold for the evaluation of the
fidelity term at each iteration. But the dynamics of geodesics still correspond to
usual point set deformation under the LDDMM model.

We consider here the pushforward model for the action of diffeomorphisms
on discrete varifolds that we have seen is compatible with the action of diffeomor-
phisms on curves. In this case, the two formulation and optimization problems for
curve registration are theoretically equivalent up to discretization precision. We
verify it with the example of Figure 4 for which both algorithms are applied with
the same deformation kernel, varifold metric and optimization scheme. Note that
in our approach, template and target curves are first (and only once at the begin-
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Fig. 4. Curve registration using point-mesh LDDMM (1st row) and our proposed discrete varifold
LDDMM (2nd row). On the last row is shown the evolution of the total energy across the iterations for
both algorithms.

ning) converted to their discrete varifold representations as explained in Section
2.

As we can see, the resulting geodesics and deformations are consistent be-
tween the two methods. This is also corroborated by the very similar values of the
energy at convergence. Interestingly however, although each iteration in our model
is arguably more expansive numerically compared to standard curve-LDDMM
due to the increased complexity of the Hamiltonian equations, the algorithm con-
verges in a significantly lesser number of iterations. Whether this observation gen-
eralizes to other examples or other optimization methods will obviously require
more careful examination in future work.

5.2. Registration of directional sets

We now turn to examples that are more specific to the framework of discrete vari-
folds.
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Choice of the varifold metric

First, we examine more closely the effect of the metric || - ||+ on the registration
of discrete varifolds. The framework we propose can indeed support many choices
for the kernel functions p and v that define fidelity metrics || - ||w+ with possibly
very different properties. This has been already analyzed quite extensively in [16]
but only in the situation where varifolds associated to a curve or a surface. We con-
sider here the same examples of kernels and briefly discuss what are the specific
effects to expect when matching more general varifolds in 2 which may involve
several orientation vectors at a given position.

t=0 t=1/3 t=2/3 t=1

Fig. 5. Matching of pairs of Dirac varifolds (template is in blue and target in red) under the normal-
ized action with different choices of kernels: Binet on the first row, unoriented Gaussian (c; = 1) on
the second and oriented Gaussian (G5 = 2) on the last one. The linear kernel leads to the same result
as the former in that particular case.

The results of Propositions 2.2 and 2.3 hold under the assumption that the
kernel defined by p is a Cp-universal kernel on R”, which restricts the possible
choices to a few known classes (cf [6] for a thorough analysis). Here, we will

[x—x/ \2

focus on the class of Gaussian kernels given by p(jx—x'|>) =e~ o witha width
parameter G > 0 that essentially provides a notion of spatial scale sensitivity to the

NN
ASE
Vo3

page 22
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metric, and which must be adapted to the intrinsic sizes of shapes in each example.
In combination with p, as in [16], we introduce the following four kernels on
St

e Y((d,d")) = (d,d’) (linear kernel): this choice is related to the particular
subclass of currents [10]. In that case, the resulting || - ||+ is clearly only
a pseudo-metric on D since the linearity implies that in W*: 8, _4) =
—S(X,d) and for any d; # —da, S(Xm) +8(x.d2) = |d, +d2‘8<x M)

Td ]
However, we still obtain a metric on the subspace D thanks to Propo-
sition 2.2.

e Y({d,d")) = (d,d’)* (Binet kernel): y being an even function, as discussed
in Section 2, the resulting metric on W* is invariant to the orientation
of direction vectors. According to Proposition 2.3, we then have a dis-
tance on D modulo the orientation. Note however that with this particu-
lar choice, one does not obtain a metric (but only a pseudo-metric) on D

modulo the orientation, as we will illustrate in the examples below.

, - (1-(dd"?) . . ..
o y({d,d")) =e © (unoriented Gaussian kernel): this is another

example of orientation-invariant kernel considered in [7] corresponding

to a particular construction of Gaussian kernels on the projective space.

In contrast with Binet kernel, it does induce a metric on D modulo ori-

entation.

2 U

/ -5(-{dd)) . . . .

o Y((d,d") =e o (oriented Gaussian kernel): this kernel is the
restriction of the standard Gaussian kernel on R” to the sphere S"~!. As
such, it can be shown to be Cy-universal on S"~! and thus, from Proposi-

tion 2.1, lead to a metric on the entire space D.

We illustrate the aforementioned properties on a very simple registration
example between pairs of Dirac varifolds located at the same position x i.e
O(x.dy) + O(x.a,) and S(x.d’,) + S(X%). In Figure 5, the template and target pairs of
Diracs are matched based on the normalized action model. The estimated match-
ing and deformations clearly differ with the choice of kernel but each of these
result is in fact perfectly consistent with the different invariances of those ker-
nels. Indeed the two Diracs are exactly matched to the target using the oriented
Gaussian kernel since || - ||w+ is in that case a metric on the entire space D. They
are however matched to the opposite vectors with the unoriented Gaussian kernel
which is indeed insensitive to orientation. In the case of Binet kernel, in addition
to orientation-invariance, there exists other pairs of Diracs which are distinct in D
but coincide in W*. For example, it can be easily verified that all discrete varifolds
of the form &, 4,) + 8, 4,) With orthogonal vectors d; and d, are equal in W*,
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<t

t=0 t=1/3 t=2/3 =1

Fig. 6. Registration of pairs of Dirac varifolds with the pushforward model for both the linear and
oriented Gaussian kernel.

which is reflected by the result in Figure 5.

We emphasize the difference of behavior between linear and oriented Gaussian
kernels with the example of Figure 6 associated this time to the pushforward action
model. The result shown in the first row is a consequence of the fact that fidelity
terms derived from the linear kernel only constrains the sums d; + d> and d{ + dé
to match.

Multi-directional varifold matching

Finally, Figure 7 shows an example of matching on more general discrete vari-
folds that involve varying number of directions at different spatial locations. This
is computed with the normalized action using an oriented Gaussian kernel for
the fidelity term. Although purely synthetic, it illustrates the potentialities of the
proposed approach to register data with complex directional patterns.

t=0 r=1/3 r=2/3 r=1

Fig. 7. Registration of multi-directional sets. The lengths of vectors correspond to the weights of the
Dirac varifolds.

page 24
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5.3. Contrast-invariant image registration

A last possible application worth mentioning is the registration of images with
varying contrast. Indeed, an image I modulo all contrast changes is equivalently
represented by its unit gradient vector field %. Note that this may in fact be only
defined at isolated pixels in the image, specifically the ones where the gradient is
non vanishing. Within the setting of this work, it is thus natural to associate to /

the discrete varifold

by = )69

Vl(xi);é08<xi’%(xi)

It is straightforward that gy is invariant to increasing contrast changes. It also
becomes invariant to decreasing ones by quotienting out the orientation of the
unit gradient vectors, which in our framework is simply done by selecting an
orientation-invariant kernel Y((d,d’)) to define || - ||w~. In Figure 8, this approach is
used to map two oppositely contrasted synthetic phantom brain images. We show
both the alignment of the discrete varifolds as well as the full deformation applied
to the image itself. Note that these images have no noise and a simple structure
with relatively low number of non-vanishing gradients. There will be clearly the
need for more validation to be done in the future in order to evaluate the practical-
ity and robustness of this method for real multi-modal medical images.

6. Conclusion and future work

We have proposed, in this paper, a framework for large deformation inexact reg-
istration between discrete varifolds. It relies on the LDDMM setting for diffeo-
morphisms and include different models of group action on the space of varifolds.
In each case, we derived the corresponding optimal control problems and the as-
sociated geodesic equations in Hamiltonian form. By combining those with the
use of kernel-based fidelity metrics on varifolds, we proposed a geodesic shooting
algorithm to numerically tackle the optimization problems. We finally illustrated
the versatility and properties of this approach through examples of various natures
which go beyond the classical cases of curves or surfaces.

Several improvements or extensions of this work could be considered for fu-
ture work. From a theoretical standpoint, it would be for instance important to
derive a more general ’continuous’ varifold matching model i.e with more gen-
eral distributions than Dirac sums. Besides, higher dimensional varifolds could be
possibly introduced within our model, although this would involve dealing with
direction elements in Grassmann manifolds as in [7] instead of the simpler S"~!.
Lastly, future work will also include adapting the existing fast GPU implementa-
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i

t=1

Fig. 8. Registration of images modulo contrast changes. The matching is computed between the
discrete varifolds associated to both images with the normalized action model and unoriented Gaussian
fidelity term. The estimated deformation can be then applied to the template image.

tions for LDDMM to the new dynamical systems appearing here, with the objec-
tive of making the whole approach more scalable to real data applications.
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APPENDIX
Proof of Proposition 3.2

Let (X,-(t),u,-(t),Pﬂl)(t),P-(z) (t)) and V;(-) satisfy equations (3.8) and (3.9), then

1 1

it’s straightforward to verify that
COFIONON RONRON IO
= (Xm0, )], 2 0), i) [P (1), (PP (0,7 ))
is a solution of equation (3.5) for V with the initial conditions
(X:(0), @(0). |ui(0)], P (0),ui(0) [P (0), (P (0), (0))).
Moreover, we see that
(PP 0.a0)) = (wl). PP 0)) = r(t)py” 1), v (6.1)

which leads to V; being equal to the vector field v, defined in (3.6) and therefore
to a solution for the system (3.5).

Conversely, let (xi(t),di(t),r,-(t),pl(l)(t),pgz) (t),p§3>(t))) and v, (-) satisfying
(3.5) and (3.6) with initial conditions such that

(p?(0),di(0)) = ri(0)p (0). 6:2)

l

Now let (Xl-(t), ui(t),Pl-(l) (t),P(2> (t)) be the solution of (3.8) with the initial con-
dition

(3:(0),(0)di(0). " (0).p” (0))
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and vector field v,(-). We define V,(-) as in (3.9), then as in previous discussion,
we see that

(X)), ()] P (0, i) [P (0), (PP (1), 00) ) )

is the solution for (3.5) with initial value

/N

X(0),(0), ui(0) |, 2" (0), [ui(0) [P (0), (P (0),7(0) ))

= (x(0).di(0),1(0). 5" (0),p (0).p”(0)) .

Since (xi(t),di(t), ri(t),p(l)(t),p(z) (t),p(3>(t))) is a solution for the same initial

i i i

value problem, by uniqueness of ODE, we obtain

TN

xi<t)?di<t)>ri(t)’pgn(t>7p§2)<t)?p§3)(t))

_ 1 2 2) N —
= (X0 750), [us ()], P (1), lus0)|P) (), (PP 0).75(0)) ), ¥ € [0,1).
Also, we have equation (6.1), and from this equation we have
(2 (3) (2) (2) (3) (2)

Pdki(pk))erk rkdi = py, +(<Pk adk>7pk rk>dk:pk

and hence

K, )t + DiK () (di p2)

=
—
S~—"

I
D1~

=~
Il
—_

K(Xe, )P + DK (X, ) (e, PP) = Vi ).

Il
M~

=~
I
—_
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Reduced Hamiltonian equations

For convenience, let us denote f(|x; — x;|?) by fi; for any function f. Then the
reduced Hamiltonian equations for the normalized action can be shown to be

Xi :Zllehkipl((l)+2hki<xk xi,di)P, dl(p;(())
& =Xl 2t xdry ()

— [4h (xic — xi, dli ) (xi *Xi,d )+ 2hyi(dy. di)| P, at (P;(f))
" ZZfl{ [thi<p;<<l>7p§1)>+47iki< — i, di) (P dl(pl(c ))7p§1)>}

a5, 11 7))
+(8hg)<x — iy i) (X — X0, dy) + A (d, ) dL ,PdL(pEZ)»]}(xk—xi)

|20 Py (), P = 4ok = i i) (P (), Py (P1)

Shatpl), dmpfz )) + 4l o — . i) (P, <p£2>>,Pdil<pE”>
=¥ [2h <,,k Py () + Al — x,7dk>< 1 ()P (0] (k=)
+2hk,< Py () Py (P7) )
—<d,-7p,< >>§ i Xk — Xi,di)p (1)—1—[4hki<xk—xi,dk><xk—xi,di>
+2hii{de, i) | <p§3>>}
;)
)

{thl<-xk Xiy < >
. d D dy, d; @)y gy L,?
+ k1<xk Xiy di <xk Xi, >+ kl< k> > < di(pk )v l> p;

In the pushforward action case, these equations are:

% =Yi hkip]<<]> + 2 (v — xi, ”k>pl(<2>

i = Yhy — 2k {x —xi, Mi)P;El) — [Ahi (e — i i) (e — Xi, ) 4 2 (i )| p](cz)
p =xr { [2hki <P/(cl)7pgl)> + 4 (o — xi, ) <P;E2)ap,(l)>}

- [4}%‘ (i —xi,ui) (py pi)

+ (Sh,(j) (o — Xy uge) (e — Xz, 145) +4hki<dk,di)) (p,<(2>,p52))} }(xk —X;)

+ 2hki<171(<2)’17,(1)> — Ay (x — xi, Mi><P;(<2)’P,(2)> u

— 20 (p" P + g — x,10) (D V) |
P,z) =Yi, [2hki <P;(<l),l?,(2)> + by (X — Xi, ux) <P;((2)’P,(2>>] (ok — x;)

+2y <P1<{2) ) P,('2>> U




