REBoOC: Accelerating Block-Circulant Neural Networks in ReRAM

Yitu Wang*T, Fan Chen?, Linghao Songi, C. -J. Richard Shi*'$, Hai “Helen” Lif, Yiran Chen?
*State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, China
nstitution of Brain-inspired Circuits and Systems, Fudan University, Shanghai, China
J;Department of Electrical and Computer Engineering, Duke University, Durham NC, U.S.A.
§Department of Electrical and Computer Engineering, University of Washington, Seattle WA, U.S.A.
Email: ytwangl6@fudan.edu.cn, {fan.chen, linghao.song, hai.li, yiran.chen} @duke.edu, cjshi@uw.edu

Abstract—Deep neural networks (DNNs) emerge as a key
component in various applications. However, the ever-growing
DNN size hinders efficient processing on hardware. To tackle
this problem, on the algorithmic side, compressed DNN models
are explored, of which block-circulant DNN models are memory
efficient and hardware-friendly; on the hardware side, resistive
random-access memory (ReRAM) based accelerators are promis-
ing for in-situ processing of DNNs. In this work, we design
an accelerator named REBOC for accelerating block-circulant
DNNs in ReRAM to reap the benefits of light-weight models
and efficient in-situ processing simultaneously. We propose a
novel mapping scheme which utilizes Horizontal Weight Slicing
and Intra-Crossbar Weight Duplication to map block-circulant
DNN models onto ReRAM crossbars with significant improved
crossbar utilization. Moreover, two specific techniques, namely
Input Slice Reusing and Input Tile Sharing are introduced to
take advantage of the circulant calculation feature in block-
circulant DNNs to reduce data access and buffer size. In REBOC,
a DNN model is executed within an intra-layer processing pipeline
and achieves respectively 96x and 8.86x power efficiency im-
provement compared to the state-of-the-art FPGA and ASIC
accelerators for block-circulant neural networks. Compared to
ReRAM-based DNN accelerators, REBOC achieves averagely
4.1x speedup and 2.6 x energy reduction.

I. INTRODUCTION

DNNs play a key role in various application domains includ-
ing computer vision, natural language processing, and speech
recognition. DNN applications involve millions to billions
of matrix-vector multiplication (MVM) and therefore require
intensive computational and memory resources. The ever-
growing DNN model size has exacerbated this phenomenon,
making the deployment of DNNs on hardware challenging,
especially on end devices where the available computation
and memory resources are limited and the power budget is
constrained.

For efficient DNN processing, compressed DNN models are
explored [1] to achieve light-weight models at the algorithm
level. However, the random weight sparsity introduced in the
model compression stage and the consequent poor access
locality hinder efficient computation on processing devices.
Therefore hardware-friendly DNN model compression is pro-
posed, of which block-circulant DNNs [2] are a promising
candidate solution for efficient hardware deployment. From
a hardware perspective, data movement has become a major
performance and energy bottleneck in data-intensive DNN ap-
plications, and tremendous efforts have been made to memory-
centric accelerator design [3]-[6]. Compared with traditional
CMOS-based designs [3], [4] where logic is distributed near
or inside the memory system, the implementations based on

978-3-9819263-4-7/DATE20/©)2020 EDAA

the emerging ReRAM technology [5], [6] typically utilize
the memory itself as processing elements (PEs) by taking
advantage of their dual capabilities of both computation and
storage.

Block-circulant DNNs are adapted as the target models by
state-of-the-art customized accelerators such as CirCNN [2] on
FPGA/ASIC and STICKER-T [7] in ASIC. These two works
heavily rely on the Fast Fourier Transform (FFT) and Inverse
Fast Fourier Transform (IFFT) for computation. However,
compared to real number multiplication, multiplication of FFT
requires four real multiplications and two real additions. In
addition, in order to perform multiplication or convolution
for one layer, an FFT needs to be performed before the
multiplication between the weight and the feature map, and
an additional IFFT is required after the multiplication, which
introduces significant computational and memory overhead.

In this work, we make an important observation that block-
circulant attribute does not necessarily require FFT/IFFT,
which distinguishes our work from prior arts [2], [7]. In
general, the block-circulant DNN only favors FFT/IFFT in
the sequential processing scenario where only one processing
thread or unit is available. For DNN accelerator architectures
where massive parallelisms for MVM are available, especially
for ReRAM-based accelerators, we need a new paradigm for
processing block-circulant DNNs rather than the naive invoca-
tion of FFT/IFFT. We propose REBOC, the first accelerator for
processing block-circulant DNNs in ReRAM. REBOC utilizes
the massive parallel MVMs in ReRAM rather than FFT/IFFT.
We make the following contributions:

o We propose a novel mapping scheme with a shift
method, which utilizes Horizontal Weight Slicing and
Intra-Crossbar Weight Duplication to map the block-
circulant DNN model onto ReRAM crossbars with high
crossbar utilization.

o We propose Input Slice Reusing and Input Tile Sharing
to take advantage of the circulant calculation feature in
block-circulant DNN models to reduce data access and
buffer size. We also design an intra-layer pipeline for
achieving high processing throughput.

o We evaluate REBOC against state-of-the-art accelerators.
REBOC achieves respectively, 96x and 8.86x power
efficiency improvement, compared to the state-of-the-art
FPGA and ASIC accelerators for block-circulant neural
networks. Compared to ReRAM-based DNN acclerators,
REBoOC also achieves averagely 4.1x speedup and 2.6
energy reduction.

1472

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

Y € RCO XWyH,

W e ‘rRCoXTZCi Xe RT'ZCL'XWOHD

Fig. 1. Convertion to matrix multiplication through Toeplitz.

II. BACKGROUND AND MOTIVATION

A. Basics of Deep Neural Networks

A typical deep neural network (DNN) model is constructed
by cascading multiple convolutional (CONV) layers for feature
extraction and then placing one or more fully connected
(FC) layers at the final stage for classification. A non-linear
activation layer, such as sigmoid unit, rectified linear unit
(ReLU), leaky ReLU unit, etc., is optionally located after a
linear CONV layer to enhance the representation capability. In
general, the CONV and FC layers account for > 90% [6] of
computing and storage resources and are therefore the primary
target of accelerator design. The basic computation in the
FC layer can be formulated as matrix-vector multiplication
MVM): y = ¢(Wx), where W € R™*" is the weight
matrix, which connects input vector € R™ to output vector
y € R™, ¢(-) is an element-wise nonlinear activation function.
Note that we omit the bias for simplicity.

In CONV layers, parameters are shared spatially by sliding
a set of weight kernels across the width and height of the input
feature map (FP). Hence the number of parameter is signifi-
cantly reduced. As demonstrated in Fig. 1, CONV operations
are converted into matrix multiplication Y = (W X)) through
the Toeplitz matrix supported by current software [8], [9] and
most of the customized [5], [6] DNN acclerators.

B. Circulant DNN Model

A circulant DNN model based on circulant projection [10]
can significantly compress the conventional DNN model with
controllable storage saving and computation reduction. The
key idea is to approximate a matrix operation y = ¢(Wx)
with § = ¢(W7"x) where W™ = cire(w) is a circulate
matrix defined by a vector w = (wy,wa, -+ ,wr). We
illustrate the concept of circulant projection in Fig. 2 and refer
interested readers to [10]. CirCNN [2] further proposes a finer-
grained block-circulant method to improve efficiency by pre-
classifying the original matrix into sub-matrices and applying
compression thereafter. In general, the compression ratio and
resulting accuracy deduction are determined by block size k.
In this work, we adopt the block-circulant method in [2] as
the target circulant DNN compression model.

Design, Automation And Test in Europe (DATE 2020)

1T 1q

Wy, w; ‘[Wy | Wy | W3 | Wy

Wy | W1 | Wa | W3

Wg vk
W3 | Wy | Wi | Wy
Wy Woq { Wp | W3 | Wy | Wy
L qk ; Wy (k=4)

Fig. 2. Block-circulant weight matrix.

C. Related Work and Motivation

Previous works [2], [7] first train DNN weights using the
block-circulant pattern. MVM operations can be then trans-
formed into FFT in the frequency domain by leveraging the
circulant convolution theorem [2]. At the end of each matrix
computation, an IFFT is needed to convert the result back to
the original domain. Thanks to the small-footprint FFT/IFFT
kernels, promising energy and performance improvement have
been demonstrated in both FPGA [2] and ASIC [7] designs.

In this work, we explore the opportunity of implementing
circulant DNN models with the emerging ReRAM memory
by taking advantage of its in-situ computing capability [5],
[6], [11]. In contrast to previous FFT-based approaches, we
identify that block circulant attribute does not necessarily re-
quire FFT/IFFT, especially for ReRAM-based designs which
feature massive parallel MVM processing capability. In RE-
Boc, MVM operations are computed directly, without the
need of converting back and forth between the original domain
and the frequency domain, since the FFT-based approach
introduces huge computational and memory overhead, and
even worse, it does not always leads to actual computation
reduction. More specifically, each complex multiplication in
FFT requires four real multiplications and two real additions
with higher precision. Therefore, for CONV layers, which
typically require smaller block size n (< 32) to preserve
reasonable accuracy [2], [7], FFT-based approach actually
increases the computation complexity rather than reducing it.

Global Buffer

SR: Shift Register CTR: Controller
MP: Max Pool Unit OB: Output Buffe
S&A: Shift & Add 1B: Input Buffer
XB: Memristor Crossbar

PE: Processing Element

S&H: Sample & Hold

BCU: Block-circulant Compute Unit

Fig. 3. REBOC overall architecture.

1473

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

BL1 . .
10 w w
@ WL1 11 q1
Yi| |[Wi| Wz W3 Wy 2l [k
vl 12| @ :
V2| _ |Wa| W1 Wy W3 =1 = Overall
- x Xy | X3 @ — : . : pk
Y3 | |Ws3|ws| Wi W, Mapping
X1| | X4 @ wL4 r r
Wip Wap
YVa Wo| W3 | Wy | Wy —
y Wr Y2)1 k
Cyc2 Cycl e q—5 7
(@) (b) (c)
Fig. 4. Shift method and mapping scheme.
III. DESIGN number of shifts depend on the size of block-circulant matrix

Fig. 3 illustrates the top-level diagram of REBOC, which
consists of a set of identical processing engines (PEs) or-
ganized in a 2D array and connected through an on-chip
mesh. Each PE is composed of 4 block-circulant compute units
(BCUs) connected with a shared bus, an output buffer (OB),
max pool unit (MP), shift and add (S&A) and rectified linear
unit (ReLU). Input FP and intermediate data are temporally
stored in a PE buffer within each PE. Note that the size of
each PE buffer is 16 x smaller than the eDRAM employed in
ISSAC [5] thanks to the unique data reuse system in REBOC.
Each BCU is comprised of 8 ReRAM crossbars (XBs) and
each XB consists of an ADC, a set of 1-bit DAC and
other necessary peripheral circuitry. In particular, we dedicate
a series of shift registers (SRs) and inter-connected input
buffers (IBs) to support the shift-based MVM and data reuse
scheme. The number of circulant shifts and detailed data reuse
approach are orchestrated by a controller (CTR).

A. Shift Method and Mapping Scheme

Previous ReRAM-based NN accelerators [5], [6], [11], [12]
flatten kernel weights and then map them onto crossbars. Input
FPs are re-organized accordingly and served as the wordline
(WL) voltage. Note we assume that one crossbar cell can
store one weight and defer the discussion on practical crossbar
implementations in the following section. A naive mapping
following the previous method is shown in Fig. 4 (a). Clearly,
the circulant characteristic is not exploited. Therefore, we
propose a novel mapping scheme to store the representative
vectors of each block-circulant matrix into a crossbar array,
which leads to k time storage reduction.

As illustrated in Fig. 4 (b), the weight representative vector
w” = [wy, wa, w3, wy] of W7 is mapped to a crossbar column.
To avoid expensive ReRAM writes [13] caused by w shifts, the
weight representative vector w remains stationary in our de-
sign, and we circularly shift the input vector accordingly. More
specifically, we store the input vector x [€1, T2, T3, 24]
in the SR and apply it onto WLs when computation begins.
Therefore, we obtain y; at the end of the first cycle. In the
next clock cycle, we shift the elements of z circularly by
one position in the SR and then multiply it by w to get
the second element y». In this example, we obtain the output
vector y = [y1, Y2, Y3, y4] in four cycles. We can see that the

1474

k.

As explained in Section II, the computation in the FC and
CONV layers are represented as matrix-vector multiplication
and the weight matrix can be further compressed into pxgq
block-circulant sub-matrices with a block size of kxk as
illustrated in Fig. 2. We denote the representative vector
of block-circulant matrix W/, as w;;. For each sub-matrix,
we follow the previous described mapping methods, and the
overall mapping is conceptually demonstrated in Fig. 4 (c). To
maintain the spatial position in the original matrix, w;, and w;
are respectively mapped onto the same wordline(s) and bitline
of a ReRAM crossbar. In general, we map (pxk) X (gxk)
weights onto a (pxk)xq ReRAM crossbar with k£ time mem-
ory reduction. Here, k can be greater or equal to 128 for FC
layers, while CONV layers typically utilize a k£ smaller than
32 [2], [7].

Optimization of Block-circulant Mapping Scheme: As men-
tioned above, block-circulant compression can effectively re-
duce memory requirements by a factor of k. However, when
taking the actual size of a crossbar into account, the resulting
matrix will occupy a narrower crossbar width and ultimately
lead to resource underutilization. In the following analysis, we
assume that the crossbar size is 128x128 and each ReRAM
cell can store 2 bits. For a CONV layer with 256 filters and
a block size of 16, only 25% of the crossbar is utilized. To
address this challenge, we propose Horizontal Weight Slicing
to allocate different bit slices of a weight to adjacent bitlines
in the same crossbar. This forced adjacency can effectively
improve crossbar utilization. In addition, we explore the trade-
off between hardware and performance by Intra-Crossbar
Weight Duplication.

X7 || X1 @ @

X3| X2 @t@

X4 || X3 @’@

X1 || Xq | ~wa)—(y)
b;bg b5b4(a)b3b2 b1 by (b)

Cyc2 Cycl

Fig. 5. Optimization of block-circulant mapping scheme (a) Horiziontalized
weights (b) Intra-crossbar weight duplication.

Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

Horizontal Weight Slicing (HWS). Given the limited preci-
sion of ReRAM cells and analog circuits, each matrix element
is mapped to multiple crossbars, and the resulting partial sums
are combined by subsequent shift-and-add (S&A) reduction
networks in previous works [5], [6]. However, in order to
mitigate low bitline utilization caused by block-circulant com-
pression, we devise a horizontal weight slicing scheme that
reaps the benefits of increased utilization and shared input FP
at the same time. As an example, HWS is shown in Figure 5(a),
every 2-bit matrix coefficient is sequentially mapped onto a
crossbar cell in the same wordline. Note that in this design
we use 2-bit cells, the technique can be generalized to many-
bit ReRAM devices. The side benefit for HWS is that input
FPs can be shared without being distributed to and buffered
in multiple crossbars, reducing the communication overhead
and input buffer requirement.

Intra-Crossbar Weight Duplication (ICWD). The trade-off
between hardware and performance is a common adjustment
factor exploited in ReRAM-based accelerator design [6], [11]
to realize spatial parallelism. However, circulant DNN models
require a modified parameter replication approach to support
their circulant execution model. A conceptual example of the
proposed Intra-Crossbar Weight Duplication is demonstrated
in Figure 5(b). Instead of duplicating the original weight
representative vector w”, a circulant form of w" is stored in
the same XB. In this example, we have a duplication degree of
g = 2, resulting in 2x execution time reduction at the cost of
2x hardware overhead. ICWD can be utilized with a flexible
g considering a specific DNN topology, compression ratio and
available hardwre resource.

B. Input Data Reusing and Sharing

Analysis of Redundant Data Access to External Memory:
Due to the overlapped computation of CONV layers and
the mapping scheme proposed above (weight representative
vectors are stationary on crossbars), most of the FP elements
need to be accessed for more than once as input. Usually,
we need to reorganize the 3D FP into a 2D matrix with
many duplicated FP elements as shown in Fig. 1. How-
ever, the reorganization brings two problems. First, it needs
(r?H,W, — H;W;)C; external memory space to store the
duplicated FP elements [14]. Second, it leads to more access to
the external memory, which consumes much energy. To solve
this problem, we propose two methods: Input Slice Reusing
and Input Tile Sharing. We use the example shown in Fig. 6

s C
\9?0 reorganize X(l,.,.) X(Z’-:-)X(&-;-)
o i X2,.,) | X3B,.,)|X@,..)
X3,) | X4,)XG,.,.)
- R(CE) X(3.1,.) |[X(3.2,.) |[X(33,.)
a8 X(3.2,) |X(3.3,.) |[XGB4.)
W X33, XG4 [XEED

128

Fig. 6. Input feature map reorganization.

Design, Automation And Test in Europe (DATE 2020)

to explain. In this example, the width and height of the FP are
both 5, and the number of input channels is 128. The filter size
is 3x 3 and the stride is 1. We denote X (i, .,.),i =1,2,3,4,5
as the input tiles, and X (4,7,.),7 = 1,2,3,4,5 as the input
slices. Each input slice is composed of 128 FP elements.
The relationship between input tiles and input slices is also
illustrated in Fig. 6. It is obvious that the 2D matrix has
duplicated input tiles and in each input tile, there are also
duplicated input slices.

Input Slice Reusing (ISR). REBOC uses input buffers (IBs)
to implement ISR. As Fig. 7(a) shows, at the beginning, input
slices 1, 2 and 3 are, respectively, allocated in three connected
IBs. After SRs fetch the input slices from IBs, input slice 2
and 3 are transferred to the top IBs for data reuse. Meanwhile,
input slice 1 is exhausted from the top IB and input slice 4 is
allocated into the bottom IB. Finally, input slice 2 is exhausted
and input slice 5 is allocated, and input slices 3 and 4 are
reused. In this way, redundant data access and extra memory
space requirement of the input slices in each input tile can be
avoided.

Input Tile Sharing (ITS). Fig. 7(b) illustrates that for one
CONV layer whose filter width and height are both 3, we
can partition the crossbars into 3 groups — X B_G1, XB_G2
and X B_G3 - to store the CONV layer weight representative
vectors. Once one input tile is fetched, it is shared by all
the corresponding crossbar groups in processing. For example,
once the gray input tile X (3, .,.) in Fig. 7(b) is accessed from
the PE buffer, it can be used as input of X B_G1, X B_G2 and
X B_G3 at the same time. Therefore, after completing compu-
tation of input tiles with their matched weight representative
vectors in crossbar groups, we can get corresponding partial
sums (psums). We can get psumg 1, psums 2 and psums 3 in
the case of the gray input tile X (3, .,.). As shown in Fig. 7(b),
with psumy 1, psums 2 and psums 3, we can get next layer’s
input tile X™**!(1,.,.) (before pooling and ReLU). Although
in some cases we should store part of psums in the global
buffer because of the limited buffer resource in each PE,
ITS reduces the redundant access to external memory of the
duplicated input.

C. Intra-layer Pipeline Design

Pipeline has been widely exploited in most state-of-art
ReRAM-based accelerators [5], [6], [11]. In REBOC, we
support intra-layer pipeline (ILP), where different parts of
different layers from the same frame can be processed simul-

@l &l [

= Z = [x8_61[xB_G2 | x8_G3]

(0] (v (0]

= N w X(1,.,.)||pswmy

— — i

@ @ 28 X(2,.,.)|ps APS 2

2 B @ X@3,.,.) ezt

2 o 2 s)|| DS 1|ps 2PS S XTE(,.,.)

3 o] o] X&) PSUML 2pSUM, X ¥(2,.,.)

8 7 .8 8 XG5, psumg e (3,.,.)
Tl e U u]

B SR IB SR IB SR

(a) (b)

Fig. 7. Input data reusing and sharing (a) Input slice reusing (b) Input tile
sharing.

1475

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MAPPING AND INTERMEDIATE STORAGE OF DIFFERENT ACCELERATORS

TABLE III
SIMULATION CONFIGURATION

Accelerators ~ Mapping Scheme Intermediate storage DRAM 128GB Global Buffer | 128KB
Atomlayer [12] Row-disjoint H, W,-C, Base Clock 1200MHz PE Buffer 4KB
ISSAC [5] Overlap (Ho-(r —1) +1)-C, IB per XB 256B SR per XB 123B
Pipelayer [6] Overlap H,-Wo-Cor? Crossbar Size | 128 x 128 || #XBs per CU 8
ILP WRV H,-Cor? #CUs per PE 4 #PEs 16
ILP+ISR WRV H, (r—1)-Co, +7-C,
ILP+ITS WRV r-Cl, 1000
ILP+ISR+ITS WRV Co
TABLE Il 100 u
NETWORK TOPOLOGY 10 S §_ ||
Dataset NN model MAC bit-precision Block-size @CirCNN_FPGA mCirCNN_ASIC = STICKER-T DOurs_]
MNIST _ LeNet FCi2bit Convidbit FC:128 Convil6 * \| N| N m B
ImageNet AlexNet FC:4bit Conv:4bit FC:128 Conv:16 0.1
DataDJI Tiny Yolo Conv:6bit Conv:32 AlexNet LeNet TinyYolo CifarNet GEOMEAN
CIFAR-10 CifarNet FC:2bit Conv:4bit FC:128 Conv:16 Fig. 8. Normalized power efficiency comparison.

taneously for high throughput and the saving of memory space
for intermediate results. Thus, ILP can also reduce the access
to external memory for energy saving.

The partial outputs of layer ¢ — 1 are stored in PE buffer
and used as the input of layer 7. Once C; input elements (C,
output elements of layer ¢ — 1) show up as an input slice,
which is a part of the input tile, they can be allocated to the
corresponding input buffer for I7S and then for ISR. After
processing r — 1 input tiles and one input slice (X(1,.,.),
X(2,.,.) and X (3,1,.) in Fig. 7), we can get the input slices
of layer 7 + 1 consecutively. To get a balanced pipeline, we
also adopt intra-layer parallelism like Pipelayer [6] and the
parallelism granularity depending on the MACs of different
layers of the processed NN.

Table I compares the mapping scheme and intermediate
storage of different accelerators and techniques we proposed.
WRYV denotes the mapping scheme of weight representative
vectors. Note that the intermediate storage means the memory
of intermediate results that can be directly used in the next
layer’s processing. The extra psum access to global buffer of
ITS is not included here but we consider the overhead in our
evaluation. It is obvious that, with ISR and /7S, REBOC’s inter-
mediate storage is much smaller than that of others. Therefore,
REBOC’s PE buffer need not to be as large as eDRAM buffer
of ISSAC. And in fact, under most circumstances, ISSAC’s
64 KB buffer cannot be fully exploited. Thus, our design has
better area and power efficiency.

IV. EVALUATION
A. Benchmarks

We evaluate the proposed REBOC accelerator on four
datasets: MNIST [15], ImageNet [16], CIFAR-10 [17] and
DataDJI [18]. The networks used in our evaluation are LeNet
on MNIST, AlexNet on ImageNet, CifarNet on CIFAFR-10,
and TinyYolo on Datall. For fair comparison and accuracy, we
use different configurations of MAC bit-precision and block
size for different NNs in our evaluation, which are almost the
same as Sticker-T [7]. Table II illustrates the details of the
configurations.

1476

B. Experiment Setup

We build a ReRAM simulator based on NVSim [19] to
evaluate REBOC. The configuration of the simulation is shown
in Table III. The models of buffers and register are extracted
from CACTI [20] with a 65nm technology. For ADC energy
and sensing time, we extract data from [21]. We adopt ReRAM
write/read latency and energy from [22] as 29.31ns/50.88ns,
1.08pJ/3.91n]. We also build a Pipelayer-like accelerator,
which does not support intra-layer pipeline and the data reuse
system we proposed, using the same hardware configurations.
When comparing REBOC with ASIC/FPGA, the baseline is
the FPGA implementation of Cir_CNN [2].

C. Comparison with ASIC/FPGA

Power efficiency (GOPs/s/W) is the metric to compare
REBocC with [2], [7]. The configurations of MAC bit-
precision of different NNs are shown in Table II. The MAC
bit-precision of CirCNN_FPGA and CirCNN_ASIC are 16bit
because if the weights are quantized to 4bit, the accuracy
degrades much (the accuracy of AlexNet is lower than 20%)
because in CirCNN architecture the configuration bit-precision
of FFT/IFFT and MAC should be the same but FFT/IFFT
need higher bit-precision. In [7], the configuration is more
flexible, which allows FFT/IFFT have higher bit-precision than
MAC. As shown in Fig. 8, on average, the power efficiency
of REBOC is 96 higher than CirCNN_FPGA, 8.86x higher
than CirCNN_ASIC and 1.93x higher than STICKER-T for
the four benchmarks in our evaluation. Firstly, this is because
REBOC does not need to fetch weights from external memory,
and we can delicately map the weights onto crossbars to make
PEs get maximally exploited and duplicate the weights to
make the pipeline balanced. Thus, REBOC’s performance is
harder to be weakened by the variations of operations of dif-
ferent layers or NN models. However, due to their architecture
design, the power efficiency of Cir_CNN [2] and STICKER-
T [7] vary and the hardware resource of them cannot be fully
exploited simultaneously when processing different NNs. The
performance of FFT module is the bottleneck because FFT
module has much poorer computation parallelism and needs

Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

4r =
| Bbaseline @ILP mILP+ISR SILP+ITS |:|ILP+ISR+ITS]
3 N m
! N
N
2 f S
N
, N
1f N
, 3
0 K

AlexNet Tinyyolo CifarNet GEOMEAN

Fig. 9. Normalized energy saving of CNN layers.

higher bit-precision. REBOC has lower power efficiency than
STICKER-T for AlexNet because in AlexNet, nearly 90% of
parameters belong to the FC layers. Thus, when processing the
large FC layers with large block size (eg., 128), STICKER-T
can get both of its FFT module and MAC module maximally
exploited to achieve better power efficiency.

D. Comparison with ReRAM-based Accelerator

Energy Results. Fig. 9 illustrates the energy consumption
of CONV layers in the benchmarks. The average energy saving
of REBOC for the benchmark’s Conv layers is 2.6 x. For each
benchmark, we report the energy consumption of intra-layer
pipelined REBOC (ILP), intra-layer pipelined REBOC with
input slice reusing (ILP+ISR), intra-layer pipelined REBOC
with input tile sharing (ILP+ITS) and intra-layer pipelined
REBoOC with both input slice reusing and input tile sharing
(ILP+ISR+ITS). Intra-layer pipeline achieves energy savings
because it does not need to store all the intermediate results
of one layer in the global buffer or DRAM and re-access them
before processing next layer as the baseline does. ITS and ISR
further reduce the access to external memory to save more
energy.

Performance Results. As described above, ILP can speed
up processing Conv layers of one frame and the speedup is
nearly a direct function of the nunmber of Conv layers in
benchmarks. Thus, intra-layer pipelined REBOC achieves the
highest speedup for TinyYolo, improving the performance to
7.69x. ITS and ISR do not achieve obvious improvement for
speedup because compared with the latency of computation
and ADC sensing time, the latency of accessing data from the
buffer is relatively tiny. However, the combination of ITS and
ISR can still bring 1.06x speedup to the ILP. On average,
REBOC achieves 4.1x speedup.

V. CONCLUSION

In this work, we proposed REBOC, a ReRAM based accel-
erator to efficiently process block-circulant neural networks,
which utilizes massive parallel MVM processing in ReRAM

for computation rather than the naive FFT/IFFT. For REBoC,
10

AN |
L mbaseline @ILP ®ILP+ISR DILP+ITS OILP+ISR+ITS}—— |

ol |

CifarNet GEOMEAN

VA

RN

nZlN

LeNet

o N A O ©

AlexNet Tinyyolo

Fig. 10. Normalized speedup of CNN layers.

Design, Automation And Test in Europe (DATE 2020)

we developed Horizontal Weight Slicing and Intra-Crossbar
Weight Duplication to map block-circulant DNN models onto
ReRAM crossbars efficiently. Input Slice Reusing and Input
Tile Sharing are particularly designed to reduce the data access
and buffer size. An intra-layer processing pipeline was also
proposed for high throughput. From the evaluation, REBOC
achieved significant speedup and power efficiency compared
with state-of-the-art accelerators for block-circulant neural
networks and ReRAM based accelerators.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the Science and
Technology Commission of Shanghai Municipality under
Grants 16JC1420300 and 2018SHZDZXO01. This work was
also supported in part by NSF-1910299 and NSF-1822085.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of grant agencies or their
contractors.

REFERENCES

[1] S. Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” ICLR, 2016.
[2] C. Ding et al., “CirCNN: Accelerating and Compressing Deep Neural
Networks Using Block-Circulant Weight Matrices,” in MICRO, 2017.
[3] Y. Chen et al., “Diannao family: Energy-efficient hardware accelerators
for machine learning,” Commun. ACM, 2016.
A. Farmahini-Farahani et al., “Nda: Near-dram acceleration architecture
leveraging commodity dram devices and standard memory modules,” in
HPCA, 2015.

[5] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[6] L. Song et al., “PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning,” in HPCA, 2017.

[71 J. Yue et al, “7.5 A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified
Neural Network Processor Using Block-Circulant-Enabled Transpose-
Domain Acceleration with 8.1 x Higher TOPS/mm? and 6T HBST-
TRAM-Based 2D Data-Reuse Architecture,” in ISSCC, 2019.

[8] “Caffe.” https://caffe.berkeleyvision.org/.

[9] “Tensorflow.” https://www.tensorflow.org/.

[10] Y. Cheng et al., “An exploration of parameter redundancy in deep
networks with circulant projections,” in ICCV, 2015.

F. Chen et al., “ReGAN: A pipelined ReRAM-based accelerator for
generative adversarial networks,” in ASP-DAC, 2018.

X. Qiao et al., “AtomLayer: A Universal ReRAM-Based CNN Accel-
erator with Atomic Layer Computation,” in DAC, 2018.

M. J. Marinella et al., “Multiscale co-design analysis of energy, latency,
area, and accuracy of a reram analog neural training accelerator,”
JETCAS, 2018.

A. Anderson et al., “Low-memory GEMM-based convolution algorithms
for deep neural networks,” arXiv, 2017.

Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 1998.

J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR, 2009.

S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” PNAS, 2016.

C. Ding et al., “Req-yolo: A resource-aware, efficient quantization
framework for object detection on fpgas,” in FPGA, 2019.

X. Dong et al., “Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” TCAD, 2012.

N. Muralimanohar et al., “Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0,” 2007.

T.-H. Yang et al., “Sparse reram engine: Joint exploration of activation
and weight sparsity in compressed neural networks,” in ISCA, 2019.
D. Niu et al., “Design of cross-point metal-oxide reram emphasizing
reliability and cost,” in ICCAD, 2013.

[4

=

[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

1477

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

