
REBOC: Accelerating Block-Circulant Neural Networks in ReRAM

Yitu Wang∗†, Fan Chen‡, Linghao Song‡, C. -J. Richard Shi∗†§, Hai “Helen” Li‡, Yiran Chen‡
∗State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, China

†Institution of Brain-inspired Circuits and Systems, Fudan University, Shanghai, China
‡Department of Electrical and Computer Engineering, Duke University, Durham NC, U.S.A.

§Department of Electrical and Computer Engineering, University of Washington, Seattle WA, U.S.A.

Email: ytwang16@fudan.edu.cn, {fan.chen, linghao.song, hai.li, yiran.chen}@duke.edu, cjshi@uw.edu

Abstract—Deep neural networks (DNNs) emerge as a key
component in various applications. However, the ever-growing
DNN size hinders efficient processing on hardware. To tackle
this problem, on the algorithmic side, compressed DNN models
are explored, of which block-circulant DNN models are memory
efficient and hardware-friendly; on the hardware side, resistive
random-access memory (ReRAM) based accelerators are promis-
ing for in-situ processing of DNNs. In this work, we design
an accelerator named REBOC for accelerating block-circulant
DNNs in ReRAM to reap the benefits of light-weight models
and efficient in-situ processing simultaneously. We propose a
novel mapping scheme which utilizes Horizontal Weight Slicing
and Intra-Crossbar Weight Duplication to map block-circulant
DNN models onto ReRAM crossbars with significant improved
crossbar utilization. Moreover, two specific techniques, namely
Input Slice Reusing and Input Tile Sharing are introduced to
take advantage of the circulant calculation feature in block-
circulant DNNs to reduce data access and buffer size. In REBOC,
a DNN model is executed within an intra-layer processing pipeline
and achieves respectively 96× and 8.86× power efficiency im-
provement compared to the state-of-the-art FPGA and ASIC
accelerators for block-circulant neural networks. Compared to
ReRAM-based DNN accelerators, REBOC achieves averagely
4.1× speedup and 2.6× energy reduction.

I. INTRODUCTION

DNNs play a key role in various application domains includ-

ing computer vision, natural language processing, and speech

recognition. DNN applications involve millions to billions

of matrix-vector multiplication (MVM) and therefore require

intensive computational and memory resources. The ever-

growing DNN model size has exacerbated this phenomenon,

making the deployment of DNNs on hardware challenging,

especially on end devices where the available computation

and memory resources are limited and the power budget is

constrained.

For efficient DNN processing, compressed DNN models are

explored [1] to achieve light-weight models at the algorithm

level. However, the random weight sparsity introduced in the

model compression stage and the consequent poor access

locality hinder efficient computation on processing devices.

Therefore hardware-friendly DNN model compression is pro-

posed, of which block-circulant DNNs [2] are a promising

candidate solution for efficient hardware deployment. From

a hardware perspective, data movement has become a major

performance and energy bottleneck in data-intensive DNN ap-

plications, and tremendous efforts have been made to memory-

centric accelerator design [3]–[6]. Compared with traditional

CMOS-based designs [3], [4] where logic is distributed near

or inside the memory system, the implementations based on

the emerging ReRAM technology [5], [6] typically utilize

the memory itself as processing elements (PEs) by taking

advantage of their dual capabilities of both computation and

storage.
Block-circulant DNNs are adapted as the target models by

state-of-the-art customized accelerators such as CirCNN [2] on

FPGA/ASIC and STICKER-T [7] in ASIC. These two works

heavily rely on the Fast Fourier Transform (FFT) and Inverse

Fast Fourier Transform (IFFT) for computation. However,

compared to real number multiplication, multiplication of FFT

requires four real multiplications and two real additions. In

addition, in order to perform multiplication or convolution

for one layer, an FFT needs to be performed before the

multiplication between the weight and the feature map, and

an additional IFFT is required after the multiplication, which

introduces significant computational and memory overhead.
In this work, we make an important observation that block-

circulant attribute does not necessarily require FFT/IFFT,

which distinguishes our work from prior arts [2], [7]. In

general, the block-circulant DNN only favors FFT/IFFT in

the sequential processing scenario where only one processing

thread or unit is available. For DNN accelerator architectures

where massive parallelisms for MVM are available, especially

for ReRAM-based accelerators, we need a new paradigm for

processing block-circulant DNNs rather than the naive invoca-

tion of FFT/IFFT. We propose REBOC, the first accelerator for

processing block-circulant DNNs in ReRAM. REBOC utilizes

the massive parallel MVMs in ReRAM rather than FFT/IFFT.

We make the following contributions:

• We propose a novel mapping scheme with a shift

method, which utilizes Horizontal Weight Slicing and

Intra-Crossbar Weight Duplication to map the block-

circulant DNN model onto ReRAM crossbars with high

crossbar utilization.

• We propose Input Slice Reusing and Input Tile Sharing
to take advantage of the circulant calculation feature in

block-circulant DNN models to reduce data access and

buffer size. We also design an intra-layer pipeline for

achieving high processing throughput.

• We evaluate REBOC against state-of-the-art accelerators.

REBOC achieves respectively, 96× and 8.86× power

efficiency improvement, compared to the state-of-the-art

FPGA and ASIC accelerators for block-circulant neural

networks. Compared to ReRAM-based DNN acclerators,

REBOC also achieves averagely 4.1× speedup and 2.6×
energy reduction.

1472978-3-9819263-4-7/DATE20/ c©2020 EDAA

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Convertion to matrix multiplication through Toeplitz.

II. BACKGROUND AND MOTIVATION

A. Basics of Deep Neural Networks

A typical deep neural network (DNN) model is constructed

by cascading multiple convolutional (CONV) layers for feature

extraction and then placing one or more fully connected

(FC) layers at the final stage for classification. A non-linear

activation layer, such as sigmoid unit, rectified linear unit

(ReLU), leaky ReLU unit, etc., is optionally located after a

linear CONV layer to enhance the representation capability. In

general, the CONV and FC layers account for > 90% [6] of

computing and storage resources and are therefore the primary

target of accelerator design. The basic computation in the

FC layer can be formulated as matrix-vector multiplication

(MVM): y = φ(Wx), where W ∈ R
m×n is the weight

matrix, which connects input vector x ∈ R
n to output vector

y ∈ R
m, φ(·) is an element-wise nonlinear activation function.

Note that we omit the bias for simplicity.

In CONV layers, parameters are shared spatially by sliding

a set of weight kernels across the width and height of the input

feature map (FP). Hence the number of parameter is signifi-

cantly reduced. As demonstrated in Fig. 1, CONV operations

are converted into matrix multiplication Y = (WX) through

the Toeplitz matrix supported by current software [8], [9] and

most of the customized [5], [6] DNN acclerators.

B. Circulant DNN Model

A circulant DNN model based on circulant projection [10]

can significantly compress the conventional DNN model with

controllable storage saving and computation reduction. The

key idea is to approximate a matrix operation y = φ(Wx)
with ŷ = φ(W rx) where W r = circ(w) is a circulate

matrix defined by a vector w = (w1, w2, · · · , wk). We

illustrate the concept of circulant projection in Fig. 2 and refer

interested readers to [10]. CirCNN [2] further proposes a finer-

grained block-circulant method to improve efficiency by pre-

classifying the original matrix into sub-matrices and applying

compression thereafter. In general, the compression ratio and

resulting accuracy deduction are determined by block size k.

In this work, we adopt the block-circulant method in [2] as

the target circulant DNN compression model.

Fig. 2. Block-circulant weight matrix.

C. Related Work and Motivation

Previous works [2], [7] first train DNN weights using the

block-circulant pattern. MVM operations can be then trans-

formed into FFT in the frequency domain by leveraging the

circulant convolution theorem [2]. At the end of each matrix

computation, an IFFT is needed to convert the result back to

the original domain. Thanks to the small-footprint FFT/IFFT

kernels, promising energy and performance improvement have

been demonstrated in both FPGA [2] and ASIC [7] designs.

In this work, we explore the opportunity of implementing

circulant DNN models with the emerging ReRAM memory

by taking advantage of its in-situ computing capability [5],

[6], [11]. In contrast to previous FFT-based approaches, we

identify that block circulant attribute does not necessarily re-
quire FFT/IFFT, especially for ReRAM-based designs which

feature massive parallel MVM processing capability. In RE-

BOC, MVM operations are computed directly, without the

need of converting back and forth between the original domain

and the frequency domain, since the FFT-based approach

introduces huge computational and memory overhead, and

even worse, it does not always leads to actual computation
reduction. More specifically, each complex multiplication in

FFT requires four real multiplications and two real additions

with higher precision. Therefore, for CONV layers, which

typically require smaller block size n (< 32) to preserve

reasonable accuracy [2], [7], FFT-based approach actually

increases the computation complexity rather than reducing it.

Fig. 3. REBOC overall architecture.

Design, Automation And Test in Europe (DATE 2020) 1473

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Shift method and mapping scheme.

III. DESIGN

Fig. 3 illustrates the top-level diagram of REBOC, which

consists of a set of identical processing engines (PEs) or-

ganized in a 2D array and connected through an on-chip

mesh. Each PE is composed of 4 block-circulant compute units

(BCUs) connected with a shared bus, an output buffer (OB),

max pool unit (MP), shift and add (S&A) and rectified linear

unit (ReLU). Input FP and intermediate data are temporally

stored in a PE buffer within each PE. Note that the size of

each PE buffer is 16× smaller than the eDRAM employed in

ISSAC [5] thanks to the unique data reuse system in REBOC.

Each BCU is comprised of 8 ReRAM crossbars (XBs) and

each XB consists of an ADC, a set of 1-bit DAC and

other necessary peripheral circuitry. In particular, we dedicate

a series of shift registers (SRs) and inter-connected input

buffers (IBs) to support the shift-based MVM and data reuse

scheme. The number of circulant shifts and detailed data reuse

approach are orchestrated by a controller (CTR).

A. Shift Method and Mapping Scheme

Previous ReRAM-based NN accelerators [5], [6], [11], [12]

flatten kernel weights and then map them onto crossbars. Input

FPs are re-organized accordingly and served as the wordline

(WL) voltage. Note we assume that one crossbar cell can

store one weight and defer the discussion on practical crossbar

implementations in the following section. A naı̈ve mapping

following the previous method is shown in Fig. 4 (a). Clearly,

the circulant characteristic is not exploited. Therefore, we

propose a novel mapping scheme to store the representative

vectors of each block-circulant matrix into a crossbar array,

which leads to k time storage reduction.

As illustrated in Fig. 4 (b), the weight representative vector

wr = [w1, w2, w3, w4] ofW r is mapped to a crossbar column.

To avoid expensive ReRAM writes [13] caused by w shifts, the

weight representative vector w remains stationary in our de-

sign, and we circularly shift the input vector accordingly. More

specifically, we store the input vector x = [x1, x2, x3, x4]
in the SR and apply it onto WLs when computation begins.

Therefore, we obtain y1 at the end of the first cycle. In the

next clock cycle, we shift the elements of x circularly by

one position in the SR and then multiply it by w to get

the second element y2. In this example, we obtain the output

vector y = [y1, y2, y3, y4] in four cycles. We can see that the

number of shifts depend on the size of block-circulant matrix

k.

As explained in Section II, the computation in the FC and

CONV layers are represented as matrix-vector multiplication

and the weight matrix can be further compressed into p×q
block-circulant sub-matrices with a block size of k×k as

illustrated in Fig. 2. We denote the representative vector

of block-circulant matrix W r
ij as wr

ij . For each sub-matrix,

we follow the previous described mapping methods, and the

overall mapping is conceptually demonstrated in Fig. 4 (c). To

maintain the spatial position in the original matrix, wr
i: and wr

:j

are respectively mapped onto the same wordline(s) and bitline

of a ReRAM crossbar. In general, we map (p×k) × (q×k)
weights onto a (p×k)×q ReRAM crossbar with k time mem-

ory reduction. Here, k can be greater or equal to 128 for FC

layers, while CONV layers typically utilize a k smaller than

32 [2], [7].

Optimization of Block-circulant Mapping Scheme: As men-

tioned above, block-circulant compression can effectively re-

duce memory requirements by a factor of k. However, when

taking the actual size of a crossbar into account, the resulting

matrix will occupy a narrower crossbar width and ultimately

lead to resource underutilization. In the following analysis, we

assume that the crossbar size is 128×128 and each ReRAM

cell can store 2 bits. For a CONV layer with 256 filters and

a block size of 16, only 25% of the crossbar is utilized. To

address this challenge, we propose Horizontal Weight Slicing
to allocate different bit slices of a weight to adjacent bitlines

in the same crossbar. This forced adjacency can effectively

improve crossbar utilization. In addition, we explore the trade-

off between hardware and performance by Intra-Crossbar
Weight Duplication.

Fig. 5. Optimization of block-circulant mapping scheme (a) Horiziontalized
weights (b) Intra-crossbar weight duplication.

1474 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

Horizontal Weight Slicing (HWS). Given the limited preci-

sion of ReRAM cells and analog circuits, each matrix element

is mapped to multiple crossbars, and the resulting partial sums

are combined by subsequent shift-and-add (S&A) reduction

networks in previous works [5], [6]. However, in order to

mitigate low bitline utilization caused by block-circulant com-

pression, we devise a horizontal weight slicing scheme that

reaps the benefits of increased utilization and shared input FP

at the same time. As an example, HWS is shown in Figure 5(a),

every 2-bit matrix coefficient is sequentially mapped onto a

crossbar cell in the same wordline. Note that in this design

we use 2-bit cells, the technique can be generalized to many-

bit ReRAM devices. The side benefit for HWS is that input

FPs can be shared without being distributed to and buffered

in multiple crossbars, reducing the communication overhead

and input buffer requirement.

Intra-Crossbar Weight Duplication (ICWD). The trade-off

between hardware and performance is a common adjustment

factor exploited in ReRAM-based accelerator design [6], [11]

to realize spatial parallelism. However, circulant DNN models

require a modified parameter replication approach to support

their circulant execution model. A conceptual example of the

proposed Intra-Crossbar Weight Duplication is demonstrated

in Figure 5(b). Instead of duplicating the original weight

representative vector wr, a circulant form of wr is stored in

the same XB. In this example, we have a duplication degree of

g = 2, resulting in 2× execution time reduction at the cost of

2× hardware overhead. ICWD can be utilized with a flexible

g considering a specific DNN topology, compression ratio and

available hardwre resource.

B. Input Data Reusing and Sharing

Analysis of Redundant Data Access to External Memory:

Due to the overlapped computation of CONV layers and

the mapping scheme proposed above (weight representative

vectors are stationary on crossbars), most of the FP elements

need to be accessed for more than once as input. Usually,

we need to reorganize the 3D FP into a 2D matrix with

many duplicated FP elements as shown in Fig. 1. How-

ever, the reorganization brings two problems. First, it needs

(r2HoWo − HiWi)Ci external memory space to store the

duplicated FP elements [14]. Second, it leads to more access to

the external memory, which consumes much energy. To solve

this problem, we propose two methods: Input Slice Reusing
and Input Tile Sharing. We use the example shown in Fig. 6

Fig. 6. Input feature map reorganization.

to explain. In this example, the width and height of the FP are

both 5, and the number of input channels is 128. The filter size

is 3×3 and the stride is 1. We denote X(i, ., .), i = 1, 2, 3, 4, 5
as the input tiles, and X(i, j, .), j = 1, 2, 3, 4, 5 as the input

slices. Each input slice is composed of 128 FP elements.

The relationship between input tiles and input slices is also

illustrated in Fig. 6. It is obvious that the 2D matrix has

duplicated input tiles and in each input tile, there are also

duplicated input slices.

Input Slice Reusing (ISR). REBOC uses input buffers (IBs)

to implement ISR. As Fig. 7(a) shows, at the beginning, input

slices 1, 2 and 3 are, respectively, allocated in three connected

IBs. After SRs fetch the input slices from IBs, input slice 2

and 3 are transferred to the top IBs for data reuse. Meanwhile,

input slice 1 is exhausted from the top IB and input slice 4 is

allocated into the bottom IB. Finally, input slice 2 is exhausted

and input slice 5 is allocated, and input slices 3 and 4 are

reused. In this way, redundant data access and extra memory

space requirement of the input slices in each input tile can be

avoided.

Input Tile Sharing (ITS). Fig. 7(b) illustrates that for one

CONV layer whose filter width and height are both 3, we

can partition the crossbars into 3 groups – XB G1, XB G2
and XB G3 – to store the CONV layer weight representative

vectors. Once one input tile is fetched, it is shared by all

the corresponding crossbar groups in processing. For example,

once the gray input tile X(3, ., .) in Fig. 7(b) is accessed from

the PE buffer, it can be used as input of XB G1, XB G2 and

XB G3 at the same time. Therefore, after completing compu-

tation of input tiles with their matched weight representative

vectors in crossbar groups, we can get corresponding partial

sums (psums). We can get psum3,1, psum3,2 and psum3,3 in

the case of the gray input tile X(3, ., .). As shown in Fig. 7(b),

with psum1,1, psum2,2 and psum3,3, we can get next layer’s

input tile Xnext(1, ., .) (before pooling and ReLU). Although

in some cases we should store part of psums in the global

buffer because of the limited buffer resource in each PE,

ITS reduces the redundant access to external memory of the

duplicated input.

C. Intra-layer Pipeline Design

Pipeline has been widely exploited in most state-of-art

ReRAM-based accelerators [5], [6], [11]. In REBOC, we

support intra-layer pipeline (ILP), where different parts of

different layers from the same frame can be processed simul-

Fig. 7. Input data reusing and sharing (a) Input slice reusing (b) Input tile
sharing.

Design, Automation And Test in Europe (DATE 2020) 1475

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MAPPING AND INTERMEDIATE STORAGE OF DIFFERENT ACCELERATORS

Accelerators Mapping Scheme Intermediate storage
Atomlayer [12] Row-disjoint Ho·Wo·Co

ISSAC [5] Overlap (Ho·(r − 1) + r)·Co

Pipelayer [6] Overlap Ho·Wo·Co·r2
ILP WRV Ho·Co·r2

ILP+ISR WRV Ho·(r − 1)·Co + r·Co

ILP+ITS WRV r·Co

ILP+ISR+ITS WRV Co

TABLE II
NETWORK TOPOLOGY

Dataset NN model MAC bit-precision Block-size
MNIST LeNet FC:2bit Conv:4bit FC:128 Conv:16

ImageNet AlexNet FC:4bit Conv:4bit FC:128 Conv:16
DataDJI TinyYolo Conv:6bit Conv:32

CIFAR-10 CifarNet FC:2bit Conv:4bit FC:128 Conv:16

taneously for high throughput and the saving of memory space

for intermediate results. Thus, ILP can also reduce the access

to external memory for energy saving.

The partial outputs of layer i − 1 are stored in PE buffer

and used as the input of layer i. Once Ci input elements (Co

output elements of layer i − 1) show up as an input slice,

which is a part of the input tile, they can be allocated to the

corresponding input buffer for ITS and then for ISR. After

processing r − 1 input tiles and one input slice (X(1, ., .),
X(2, ., .) and X(3, 1, .) in Fig. 7), we can get the input slices

of layer i + 1 consecutively. To get a balanced pipeline, we

also adopt intra-layer parallelism like Pipelayer [6] and the

parallelism granularity depending on the MACs of different

layers of the processed NN.

Table I compares the mapping scheme and intermediate

storage of different accelerators and techniques we proposed.

WRV denotes the mapping scheme of weight representative

vectors. Note that the intermediate storage means the memory

of intermediate results that can be directly used in the next

layer’s processing. The extra psum access to global buffer of

ITS is not included here but we consider the overhead in our

evaluation. It is obvious that, with ISR and ITS, REBOC’s inter-

mediate storage is much smaller than that of others. Therefore,

REBOC’s PE buffer need not to be as large as eDRAM buffer

of ISSAC. And in fact, under most circumstances, ISSAC’s

64 KB buffer cannot be fully exploited. Thus, our design has

better area and power efficiency.

IV. EVALUATION

A. Benchmarks

We evaluate the proposed REBOC accelerator on four

datasets: MNIST [15], ImageNet [16], CIFAR-10 [17] and

DataDJI [18]. The networks used in our evaluation are LeNet

on MNIST, AlexNet on ImageNet, CifarNet on CIFAFR-10,

and TinyYolo on DataJI. For fair comparison and accuracy, we

use different configurations of MAC bit-precision and block

size for different NNs in our evaluation, which are almost the

same as Sticker-T [7]. Table II illustrates the details of the

configurations.

TABLE III
SIMULATION CONFIGURATION

DRAM 128GB Global Buffer 128KB
Base Clock 1200MHz PE Buffer 4KB
IB per XB 256B SR per XB 128B

Crossbar Size 128 × 128 #XBs per CU 8
#CUs per PE 4 #PEs 16

Fig. 8. Normalized power efficiency comparison.

B. Experiment Setup

We build a ReRAM simulator based on NVSim [19] to

evaluate REBOC. The configuration of the simulation is shown

in Table III. The models of buffers and register are extracted

from CACTI [20] with a 65nm technology. For ADC energy

and sensing time, we extract data from [21]. We adopt ReRAM

write/read latency and energy from [22] as 29.31ns/50.88ns,

1.08pJ/3.91nJ. We also build a Pipelayer-like accelerator,

which does not support intra-layer pipeline and the data reuse

system we proposed, using the same hardware configurations.

When comparing REBOC with ASIC/FPGA, the baseline is

the FPGA implementation of Cir CNN [2].

C. Comparison with ASIC/FPGA

Power efficiency (GOPs/s/W) is the metric to compare

REBOC with [2], [7]. The configurations of MAC bit-

precision of different NNs are shown in Table II. The MAC

bit-precision of CirCNN FPGA and CirCNN ASIC are 16bit

because if the weights are quantized to 4bit, the accuracy

degrades much (the accuracy of AlexNet is lower than 20%)

because in CirCNN architecture the configuration bit-precision

of FFT/IFFT and MAC should be the same but FFT/IFFT

need higher bit-precision. In [7], the configuration is more

flexible, which allows FFT/IFFT have higher bit-precision than

MAC. As shown in Fig. 8, on average, the power efficiency

of REBOC is 96× higher than CirCNN FPGA, 8.86× higher

than CirCNN ASIC and 1.93× higher than STICKER-T for

the four benchmarks in our evaluation. Firstly, this is because

REBOC does not need to fetch weights from external memory,

and we can delicately map the weights onto crossbars to make

PEs get maximally exploited and duplicate the weights to

make the pipeline balanced. Thus, REBOC’s performance is

harder to be weakened by the variations of operations of dif-

ferent layers or NN models. However, due to their architecture

design, the power efficiency of Cir CNN [2] and STICKER-

T [7] vary and the hardware resource of them cannot be fully

exploited simultaneously when processing different NNs. The

performance of FFT module is the bottleneck because FFT

module has much poorer computation parallelism and needs

1476 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Normalized energy saving of CNN layers.

higher bit-precision. REBOC has lower power efficiency than

STICKER-T for AlexNet because in AlexNet, nearly 90% of

parameters belong to the FC layers. Thus, when processing the

large FC layers with large block size (eg., 128), STICKER-T

can get both of its FFT module and MAC module maximally

exploited to achieve better power efficiency.

D. Comparison with ReRAM-based Accelerator

Energy Results. Fig. 9 illustrates the energy consumption

of CONV layers in the benchmarks. The average energy saving

of REBOC for the benchmark’s Conv layers is 2.6×. For each

benchmark, we report the energy consumption of intra-layer

pipelined REBOC (ILP), intra-layer pipelined REBOC with

input slice reusing (ILP+ISR), intra-layer pipelined REBOC

with input tile sharing (ILP+ITS) and intra-layer pipelined

REBOC with both input slice reusing and input tile sharing

(ILP+ISR+ITS). Intra-layer pipeline achieves energy savings

because it does not need to store all the intermediate results

of one layer in the global buffer or DRAM and re-access them

before processing next layer as the baseline does. ITS and ISR
further reduce the access to external memory to save more

energy.

Performance Results. As described above, ILP can speed

up processing Conv layers of one frame and the speedup is

nearly a direct function of the nunmber of Conv layers in

benchmarks. Thus, intra-layer pipelined REBOC achieves the

highest speedup for TinyYolo, improving the performance to

7.69×. ITS and ISR do not achieve obvious improvement for

speedup because compared with the latency of computation

and ADC sensing time, the latency of accessing data from the

buffer is relatively tiny. However, the combination of ITS and

ISR can still bring 1.06× speedup to the ILP. On average,

REBOC achieves 4.1× speedup.

V. CONCLUSION

In this work, we proposed REBOC, a ReRAM based accel-

erator to efficiently process block-circulant neural networks,

which utilizes massive parallel MVM processing in ReRAM

for computation rather than the naive FFT/IFFT. For REBOC,

Fig. 10. Normalized speedup of CNN layers.

we developed Horizontal Weight Slicing and Intra-Crossbar

Weight Duplication to map block-circulant DNN models onto

ReRAM crossbars efficiently. Input Slice Reusing and Input

Tile Sharing are particularly designed to reduce the data access

and buffer size. An intra-layer processing pipeline was also

proposed for high throughput. From the evaluation, REBOC

achieved significant speedup and power efficiency compared

with state-of-the-art accelerators for block-circulant neural

networks and ReRAM based accelerators.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the Science and

Technology Commission of Shanghai Municipality under

Grants 16JC1420300 and 2018SHZDZX01. This work was

also supported in part by NSF-1910299 and NSF-1822085.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of grant agencies or their

contractors.

REFERENCES

[1] S. Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” ICLR, 2016.

[2] C. Ding et al., “CirCNN: Accelerating and Compressing Deep Neural
Networks Using Block-Circulant Weight Matrices,” in MICRO, 2017.

[3] Y. Chen et al., “Diannao family: Energy-efficient hardware accelerators
for machine learning,” Commun. ACM, 2016.

[4] A. Farmahini-Farahani et al., “Nda: Near-dram acceleration architecture
leveraging commodity dram devices and standard memory modules,” in
HPCA, 2015.

[5] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[6] L. Song et al., “PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning,” in HPCA, 2017.

[7] J. Yue et al., “7.5 A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified
Neural Network Processor Using Block-Circulant-Enabled Transpose-
Domain Acceleration with 8.1 × Higher TOPS/mm2 and 6T HBST-
TRAM-Based 2D Data-Reuse Architecture,” in ISSCC, 2019.

[8] “Caffe.” https://caffe.berkeleyvision.org/.
[9] “Tensorflow.” https://www.tensorflow.org/.

[10] Y. Cheng et al., “An exploration of parameter redundancy in deep
networks with circulant projections,” in ICCV, 2015.

[11] F. Chen et al., “ReGAN: A pipelined ReRAM-based accelerator for
generative adversarial networks,” in ASP-DAC, 2018.

[12] X. Qiao et al., “AtomLayer: A Universal ReRAM-Based CNN Accel-
erator with Atomic Layer Computation,” in DAC, 2018.

[13] M. J. Marinella et al., “Multiscale co-design analysis of energy, latency,
area, and accuracy of a reram analog neural training accelerator,”
JETCAS, 2018.

[14] A. Anderson et al., “Low-memory GEMM-based convolution algorithms
for deep neural networks,” arXiv, 2017.

[15] Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 1998.

[16] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR, 2009.

[17] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” PNAS, 2016.

[18] C. Ding et al., “Req-yolo: A resource-aware, efficient quantization
framework for object detection on fpgas,” in FPGA, 2019.

[19] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” TCAD, 2012.

[20] N. Muralimanohar et al., “Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0,” 2007.

[21] T.-H. Yang et al., “Sparse reram engine: Joint exploration of activation
and weight sparsity in compressed neural networks,” in ISCA, 2019.

[22] D. Niu et al., “Design of cross-point metal-oxide reram emphasizing
reliability and cost,” in ICCAD, 2013.

Design, Automation And Test in Europe (DATE 2020) 1477

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on July 30,2020 at 03:54:11 UTC from IEEE Xplore. Restrictions apply.

