DATA SCIENCE AND ARTIFICIAL INTELLIGENCE FOR COMMUNICATIONS

g
End-to-End Congestion Control

This article presents a
selected review of the
recent applications of ML
in the field of end-to-end
congestion control. In
this survey, the authors
start with a brief review of
the relationship between
congestion control and
ML. They then review the
recent works that apply
ML to congestion control.
These works either help
the agent to make an
intelligent congestion con-
trol decision or achieve
enhanced performance.

Digital Object Identifier:
10.1109/MCOM.001.1900509

Ticao Zhang and Shiwen Mao

ABSTRACT

End-to-end congestion control has been exten-
sively studied for over 30 years as one of the most
important mechanisms to ensure efficient and fair
sharing of network resources among users. As
future networks are becoming more and more
complex, conventional rule-based congestion con-
trol approaches tend to become inefficient and
even ineffective. Inspired by the great success that
machine learning (ML) has achieved in addressing
large-scale and complex problems, researchers have
begun to shift their attention from the rule-based
method to an ML-based approach. This article pres-
ents a selected review of the recent applications of
ML to the field of end-to-end congestion control. In
this survey, we start with a brief review of the rela-
tionship between congestion control and ML. We
then review the recent works that apply ML to con-
gestion control. These works either help the agent
to make an intelligent congestion control decision
or achieve enhanced performance. Finally, we high-
light a series of realistic challenges and shed light on
potential future research directions.

INTRODUCTION

The rapid development of communication tech-
nologies has triggered the emergence of new
network architectures such as cognitive radio
networks, data center networks, ultra dense
heterogeneous networks, and millimeter-wave
(mmWave) networks. Each network has its own
features and performance requirements, which
may change dynamically. The increasing capa-
bility of the network also enables a variety of
new services and applications, such as augment-
ed reality (AR), online gaming, edge computing,
and autonomous driving, entailing more stringent
requirements on the communication network.
The transport layer plays an important role in
the management of end-to-end connections for
upper layer services. The performance of emerg-
ing new applications depends heavily on the inter-
actions between the underlying network and the
transport layer. End-to-end congestion control, as
a fundamental part of the transport layer proto-
col (TCP), ensures network stability and fairness in
resource utilization. Today’s TCP congestion con-
trol mechanism relies on a design that was created
in the 1980s for wired networks. It uses a set of
pre-defined rules, for example, halving the conges-
tion window (often referred to as CWND) when a
packet loss is detected, and adjusting the CWND

according to measured round-trip time (RTT).
The same TCP design and its variants have been
employed over the past three decades. Although
these congestion control mechanisms achieve
great success, they may not perform well in today’s
or future highly dynamic and complex networks
where the network performance is affected by a
variety of factors. The congestion control prob-
lem can be modeled as an optimization problem,
while conventional rule-based methods are mostly
heuristics with no guarantee to solve the complex
problem. They often lead to sub-optimal solutions,
which may suffer poor performance.

Recently, machine learning (ML) has made
breakthroughs in a variety of application areas,
such as speech recognition, computer vision,
and robot control. ML can learn from collected
data or the environment and build models. Also,
with the recent development of computing infra-
structures (e.g., GPU, TPU, and ML libraries) and
distributed data processing frameworks, there is
now an increasing trend in leveraging complex
networking problems. For some tasks, such as
regression, classification, and decision making,
ML performs pretty well. Considering that these
tasks play basic but vital roles in networking prob-
lems, it is imperative to embrace ML techniques
for potential breakthroughs in end-to-end conges-
tion control.

In [1] the connection between artificial intel-
ligence (Al and network traffic control (NTC) is
discussed. The author shows that AI-NTC could be
the next frontier of network research, and deep
reinforcement learning (DRL) would be a prom-
ising model. Reference [2] investigates how ML
could benefit network design and optimization. A
workflow for applying ML in the network domain
is provided. Reference [3] provides an overview
of the state of the art in deep learning, a branch
of ML, for intelligent network traffic control sys-
tems. The above works are focused on network
traffic control with Al [1], networking with ML [2],
and network traffic control with deep learning [3].
They do not provide a detailed review on the rela-
tionship between ML and the specific problem
(i.e., end-to-end congestion control) that is the
goal of this article.

In the rest of this article, we first survey the
state-of-the-art congestion control algorithms and
discuss the challenges. We then introduce the
concept of ML and the motivations for ML-based
congestion control. We next present the recent
advances in ML-based congestion control, and
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conclude this article with a discussion of potential
future directions.

CHALLENGES AND OPPORTUNITIES

TCP is designed to provide reliable transmission
of packets across an end-to-end connection,
where congestion control is incorporated. Typical
TCP congestion control works as follows. When
started, the endpoint should quickly increase its
sending rate to achieve high utilization of net-
work resources. However, when congestion is
detected, the endpoints involved should reduce
their sending rates; when congestion is gone, the
endpoints should increase their rates for high uti-
lization of network bandwidth. Usually, the rate
keeps on increasing/decreasing, following the
network congestion state. Detection of network
congestion is usually performed at the network
edge without coordination and communication
among users, using loss or delay as indicators.

A summary of the major congestion control
mechanisms and their pros and cons are provided
in [4, Table 2]. These schemes use some signals to
detect congestion and then adjust the CWND or
sending rate according to some pre-defined rules.
Depending on the type of signals that are used
as indicators of congestion, congestion control
mechanisms can be categorized into several class-
es. For example, TCP variants Tahoe, Cubic, Reno,
and New Reno are loss-based mechanisms. These
mechanisms use packet loss to detect conges-
tion. The additive increase multiplicative decrease
(AIMD) algorithm is used to adjust the CWND.
Loss may be a signal of congestion, but some-
times congestion happens before the bottleneck
buffer is full. Early detection of congestion may
help to avoid sharp decrease in throughput. Con-
sequently, delay-based mechanisms such as TCP
Vegas and Verus have been developed, which use
delay as an indicator of congestion. More recent-
ly, some hybrid mechanisms try to combine merits
of the existing solutions. For example, Compound
TCP, which is available on all Microsoft Windows
machines, uses the sum of a delay-based window
and a loss-based window as its congestion win-
dow. Veno, a hybrid between Vegas and Reno,
adopts an explicit model of the bottleneck buffer
occupancy. BBR, adopted by Google, estimates
both bandwidth and RTT, aiming to keep CWND
equal to the bandwidth-delay product (BDP),
which is the optimal operating point.

We have to point out that such rule-based
mechanisms have several limitations:

* Adapt to new networks: Congestion control
algorithms that are designed for one specific
network may not apply to other types of net-
works. For example, TCP-NewReno was orig-
inally designed for wired links where packet
loss is often interpreted as congestion. In
wireless networks, packet loss may be caused
by either link errors or congestion. The send-
er will always halve CWND even if the loss
is caused by link errors. As a result, the link
bandwidth will not be effectively utilized.
Furthermore, the CWND update mechanism
is not effective to adapt to various network
topologies. For example, satellite network
links where the RTT is large require a more
aggressive CWND increase. Meanwhile,
mobile ad hoc networks (MANETs), where

the BDP is low, may demand a more conser-
vative CWND increase.

+ Learn from the past: The rule-based approach
uses a fixed set of rules to handle every
situation. It does not leverage past experi-
ence and assumes no prior information
such as link bandwidth, channel character-
istics, and the number of flows on shared
links. Suppose that NewReno can learn the
link bandwidth information from past expe-
rience; it could speed up the sending rate
more aggressively in the slow start phase
to improve link utilization. Inability to learn
from the past prevents endpoints from tak-
ing actions proactively.

* Performance: Today’s network is becoming
highly dynamic and complex. Ruled-based
congestion control is designed based on
humans’ understanding of the network. As
human knowledge may not always accu-
rately characterize the network features,
the resulting congestion control mechanism
may not be effective and can only achieve
sub-optimal performance.

WHY CONGESTION CONTROL WITH ML

ML is a subset of Al, where the machine (or the
agent) has the ability to accomplish a task when
facing new data or a new environment after a
training process. Existing ML techniques general-
ly fall into three categories: supervised learning,
unsupervised learning, and reinforcement learning.

+ Supervised learning uses a set of labeled
samples to learn a mapping between the
input and output spaces. Depending on
whether the output is continuous or not,
supervised learning can be categorized as
regression and classification. Deep neu-
ral network (DNN), convolutional neural
network (CNN), recurrent neural network
(RNN), naive Bayesian (NB), decision tree
(DT), and support vector regression are typi-
cal techniques in supervised learning.

+ Unsupervised learning focuses on classify-
ing unlabeled samples into different clusters.

It is mainly used for data dimension reduc-

tion in continuous cases or clustering in dis-

crete cases. Restricted Boltzmann machine

(RBM), autoencoder (AE), Gaussian mixture

model (GMM), principal component analysis

(PCA), and k-means clustering are usually

used in unsupervised learning.

+ Reinforcement learning (RL) is an environ-
ment-based approach where the agent is
trained to solve decision making problems
through interactions with the environment.
Typical RL techniques include Q-learning, the
actor-critic algorithm, and the deep determin-
istic policy gradient (DDPG) algorithm.

A comparison between supervised and unsu-
pervised learning is given in Table 1. The latest
breakthroughs, such as deep learning, generative
adversarial networks (GANs), and transfer learn-
ing, also have great potential to deal with many
complex problems such as end-to-end congestion
control.

Conventional congestion control only con-
siders several measurements such as packet loss
and/or RTT as indicators of congestion. The entire
decision making process relies on these measure-

ML is a subset of Al,
where the machine (or
the agent) has the abil-
ity to accomplish a task
when facing new data
or a new environment
after a training process.
Existing ML techniques
generally fall into three
categories: supervised
learning, unsupervised
learning, and reinforce-
ment learning.
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Figure 1. An illustration of Remy congestion control (figure courtesy of [5]).

Supervised learning Unsupervised learning

Training data
Discrete case
Continuous case
Accuracy of results
Number of classes

Labeled Unlabeled
Classification Clustering
Regression Dimensionality reduction
High Less accurate
Known Not known

Table 1. Supervised vs. unsupervised learning.

ments and the pre-defined rule based on human
understanding of the network. The rule-based
mechanism is more susceptible to many unpre-
dictable factors, resulting in poor performance.
ML, on the other hand, aims to construct algo-
rithms or models that can learn to make decisions
directly from past experience or the network envi-
ronment. It does not need accurate network mod-
els. Hence, it has the potential to outperform the
rule-based mechanism.

Nowadays intensive computational resources
are provided by both the central controller and
edge servers. Cutting-edge technologies such as
edge computing, network slicing, and software-de-
fined networking are changing the way network
traffic is managed. Moreover, the emergence of
several dedicated libraries, such as TensorFlow,
Caffe, and PyTorch, has greatly simplified the pro-
cess of building an ML model. By leveraging these
computational resources, ML-based congestion
control is becoming feasible. In practice, a model
can be trained with global information over a long
time interval with the computation resources. The
model parameters can be updated one at a time.
In the online deployment stage, the decision can
be inferred using the trained ML model with a few
computations.

RECENT ADVANCES IN
ML-BASED CONGESTION CONTROL

Over the past few years, there have been sever-
al works on ML-based congestion control. TCP
Remy [5] is the first example, where the authors
model congestion control as a decision making
problem under uncertainty. Each endpoint can
make decisions on whether to send packets or
not. As shown in Fig. 1, the network model is
assumed to be Markovian. The network state con-
sists of three variables: an exponentially weight-
ed moving average (EWMA) of the inter-arrival
times of acknowledgments (ACKs), an EWMA of

the sending times of those same packets, and the
ratio between the most recent RTT and the lowest
measured RTT. The traffic is modeled as a sto-
chastic process that switches unicast flows on or
off between sender-receiver pairs. After observing
the network state, the agent adjusts the CWND
to achieve a balance between high throughput
and low latency. This ML-based algorithm out-
performs the human-designed end-to-end algo-
rithms, including Cubic, Compound, and Vegas
[5]. However, TCP Remy works well at the price
of a stringent assumption on the network and traf-
fic models.

Unlike the offline training approach adopted
in TCP Remy, Performance-Oriented Congestion
Control (PCC) [6] uses online training and does not
make similar assumptions on the network model.
In each micro-experiment, PCC chooses a send-
ing rate and observes the selective ACK (SACK),
which is used to measure the utility of an action
(delivery ACK, loss, and latency). PCC runs several
micro-experiments continuously, and an empirically
optimal rate control policy is learned in an online
manner such that the utility can be maximized.
PCC achieves 10 times performance improvement,
with better fairness and stability, over TCP CUBIC.
However, its performance over wireless networks
is affected by bufferbloat, and it has not been test-
ed in realworld network environments.

CONGESTION CONTROL WITH DRL

More recently, advanced learning algorithms such
as RL and DRL have been incorporated into con-
gestion control design. Just as a human learns a
skill from past experience, with RL the endpoint
can learn the optimal congestion control policy
from its observations of the network environment
and past experiences. These mechanisms do not
rely on pre-defined rules and exhibit stronger abil-
ity to intelligently adapt to the changing environ-
ment. DRL embraces the advantages of DNN to
train the learning process and to achieve scalabili-
ty (over RL); thereby, learning speed and learning
ability can both be improved.

In congestion control, each endpoint adjusts
its sending rate or CWND based on its observa-
tions of measured RTT, ACK, and so on. This can
be viewed as a decision making problem. Under
uncertain and stochastic environments, the deci-
sion making problem is usually modeled as a Mar-
kov decision process (MDP). The goal is to find an
optimal policy for the MDP so that the expected
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cumulative reward can be maximized. As shown
in Fig. 2, a DRL agent interacts with the network
environment by adjusting its actions (e.g., the
sending rate or CWND) based on observed net-
work state (e.g., RTT, CWND, and the inter-arrival
time of ACKs). A DNN is trained to map state to
action so that the reward metric (e.g., throughput
and/or latency) can be optimized. Recent works
on DRL-based congestion control are summarized
in Table 2. QTCP is the first work that leverages
RL to design congestion control algorithms [7]. It
helps senders gradually learn the optimal conges-
tion control policy in an online manner, without
requiring prior knowledge of the network model.
Reference [8] presents a DRL-based scheme
called Aurora, which uses a fully connected DNN
to learn the state-action pairs from stored histori-
cal data. This method is surprisingly robust to envi-
ronments outside the scope of training. TCP-RL,
proposed in [9], uses RL to dynamically configure
the congestion control parameters for both short
and long TCP flows when the environment chang-
es. The performance evaluation is based on a real
implementation.

References [10, 11] investigate the multi-path
TCP (MPTCP) congestion control problem. A sin-
gle agent is used in [10] to dynamically and jointly
optimize congestion control for all active flows.
Apart from incorporating a long short-term mem-
ory (LSTM) model in the DRL framework to better
capture the network dynamics, [10] for the first
time integrates the actor-critic mechanism into
DRL for continuous congestion control. In [11],
the authors focus on the congestion control per-
formance degradation problem of MPTCP caused
by path diversity. For practical deployment,
the authors in [11] propose an asynchronous
RL-based framework to decouple model training
and execution. The congestion control rules are
generated offline and applied for real-time online
decision making of window adjustment. Refer-
ence [12] considers the initial congestion window
(IW) selection problem in an mmWave network.
A DRL-based online decision making approach
is proposed to adjust the IW such that the flow
completion time (FCT) is optimized.

PERFORMANCE ENHANCEMENTS

The congestion control problem has its own char-
acteristics and is impacted by many factors. ML
techniques, especially supervised learning and
unsupervised learning, have high potential to clas-
sify packet losses and predict congestion-related
parameters for improved performance.

Loss Classification: As mentioned before, the
inability to distinguish packet loss caused by con-
gestion and degraded channel quality in wireless
networks will result in poor throughput. For next
generation cellular networks, where wireless links
are more easily blocked, accurately identifying the
cause of packet loss will be of vital importance to
improve the congestion control performance.

Various ML models have been used to infer
the cause of packet loss at the network edge. For
example, [13] uses expectation-maximization (EM)
to identify the packet losses caused by contention
and congestion in optical networks. The classi-
fication helps to improve the TCP throughput.
Reference [14] develops a loss-predictor-based
congestion control mechanism with supervised

Reward
(e.g., throughput, latency)

Function approximation

Network
Environment

_ Agent
Action
(e.g., sending rate,
state b | »
(e.g., RTT, ACK)

Observed network states

Figure 2. Framework of DRL for congestion control.

learning for wireline networks. It achieves a better
trade-off of throughput and delay compared to
NewReno. Such classifiers usually achieve higher
classification accuracy than non-ML approaches.
TCP variants built upon these ML-based classifi-
ers have been shown to outperform the standard
rule-based solutions.

Congestion Prediction: Congestion prediction
plays an important role in dynamic routing, con-
gestion control, congestion avoidance, and pro-
active network management. In practice, when
congestion actually happens, it has already affect-
ed the throughput performance significantly, and
it may be too late to adopt further actions. If con-
gestion or congestion-related parameters, such
as TCP throughput and RTT, can be accurately
predicted, the sender can proactively respond to
congestion. Currently, there are mainly two direc-
tions of research on estimation of congestion-relat-
ed parameters: formula-based and history-based.
Formula-based approaches integrate the sender’s
measurements, such as RTT, packet loss rate, and
CWND, into a formula to generate predictions.
However, timely gathering of such information
is not easy, especially in today’s highly dynamic
and complex networks. Moreover, the ever-evolv-
ing feature of TCP makes it hard to maintain an
accurate formula-based model. History-based
approaches refer to some time series analysis tech-
niques, such as the exponential weighted moving
average (EWMA) algorithm used by TCP for esti-
mating RTT. However, time series analysis may
also be inaccurate in some cases.

To deal with the limitations of convention-
al mechanisms, ML-based approaches (mainly
supervised and unsupervised learning) have been
adopted for congestion prediction. Reference [15]
applies support vector regression (SVR), a use-
ful ML tool for multivariate regression, to predict
TCP throughput. Recently, [14] has developed a
loss predictor using random forest, a supervised
learning technique, to predict the probability of
packet loss caused by congestion. This method
can predict and reduce packet loss events, lower
the frequency of sending rate reduction, and
achieve higher throughput. These works all pre-
dict congestion-related parameters from passive
measurements with ML approaches, which have
great potential in parameter prediction.
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Algorithm States Actions Rewards Pros Cons
o 1. Generalization to different network
Q(TZEE)B[;] ;Elll(jlﬂirl\?slerl\ng Select CWND with RL R tr};?gf?pm’ 2 topologies, Limited performance evaluation
! y 2. Higher throughput than NewReno
e Laltaetr;;ycgrrzttjils " HA I S g v Lfi;étg:ntch rOIL(J)s\t]pgz’kleotW 0 RO (D O Limited test on network changes
(2019) 1 ratio, DRL ¥, oW p 2. Outperforms BBR, PCC-Viivace and Remy g
sending ratio loss rate
Adapt the initial window of . o . .
TCP-RL[9]  Throughput, RTT, . Large throughput, 1. Dynamical parameter configuration, Untested in highly dynamic
connection and the conges- . i
(2019) loss rate . . low RTT 2. Improved TCP transmission performance network conditions
tion control algorithm
Sending rate. RTT 1. Performance improvement in terms of
DRL-CC[10] 81a& RIL  Select CWND with single . goodput, Large state space increases the
RTT deviation, . Large goodput, fairness h .
(2019) oodout. CWND agent DRL in MPTCP 2. Flexible and robust, complexity
goodput, 3. TCP friendly
1. Addresses path diversity in HetNet,
SmartCC Sending rate, ACK [RSURERITC IR Lo:ce throughput, low 2. Asynchronous learning framework to 1. Does not cpn5|der TCP
(] interval, (subflow) rules in MPTCP RTT, low jitter fairness ez frendiiness
(2019) ! o] 3. Performance improvement in throughput, 2. Lack real deployment test
RTT, etc
1. Algorithms converges stable and fast,
L 2. Adaptive on-line decision making, . .
IW-DRL [12] FCT, RTT, Select thg initial CWND Low FCT 3. Software-defined networking (SDN) Does not optimize congestion
(2019) throughput with DRL . . directly
implementation,
4. Flow completion time(FCT) reduction
Table 2. A Summary of ML-based congestion control schemes.
ML-BASED CONGESTION CONTROL WWORKFLOW REAL DATA COLLECTION

As real network data is generally hard to obtain
and label, we have to point out that RL, which
does not require network data, will be a dom-
inant model to implement ML-based conges-
tion control. It has the potential to find the
best decision based on trial and error and help
the endpoints to quickly react to environment
changes. Supervised learning and unsupervised
learning can leverage historical data for potential
performance improvement. For example, [12]
combines the merit of both DRL and supervised
learning. The system is implemented with DRL
for online decision making. A supervised learning
approach is utilized to extract features from the
collected data during online learning for perfor-
mance improvement.

Figure 3 illustrates the generic workflow for
implementing congestion control with ML. The
problem is first formulated as a decision making
problem. Depending on the measured signals
and the goal, the corresponding state, action, and
reward should be properly defined. In the model
training process, various training methods can be
used to help the model learn the best control pol-
icy through interactions with the environment.
The training data can be collected, based on
which features can be extracted with supervised/
unsupervised learning for potential performance
improvement. Finally, the model is ready to be
deployed in a real environment.

CHALLENGES AND OUTLOOK

ML exhibits great potential for end-to-end con-
gestion control. However, most ML algorithms so
far are optimized for simple network topologies.
There is no fully implemented and well-tested
ML-based congestion control mechanism in a real
environment. We outline some potential future
research directions here.

Collecting a large amount of high-quality data
along with network profiles is challenging. Most of
the existing works rely on simulated datasets gen-
erated based on a specific network type. Hence,
the resulting ML model may not be compatible
with a practical system. For supervised learning,
the collection of labeled data may be labor-in-
tensive and costly. It could save a lot of repeated
experiments if there are unified open source data-
sets and a shared standard platform for research-
ers to compare their developed mechanisms.
Moreover, due to the high test cost of large-scale
networks and the difficulty in accessing these net-
works, simulators with high speed and high fidelity
are in great demand.

FAIRNESS, ROBUSTNESS, AND GENERALIZATION

ML-based congestion control might be unfair to
existing solutions. If ML-based congestion control is
trained in an environment where it competes with
existing mechanisms, it might learn to occasional-
ly cause packet loss to force other TCP protocols
to back off so that it can occupy more network
resources. How to coexist properly with other
existing protocols is challenging. Moreover, due to
specific requirements of network systems, network
protocols often require a worst performance guar-
antee. ML-based congestion control needs to be
robust to the rapidly changing environment. Finally,
the generalization ability of the ML algorithm is
also required to ensure that the model can adapt
to network dynamics without retraining the model
every time the network condition changes.

CROSS-LAYER OPTIMIZATION

In ML, it is common to use the reward function as
the optimization objective. Common reward func-
tions can maximize throughput, minimize latency,
reduce loss or fairness, or a combination of these
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Figure 3. Workflow of ML-based congestion control.

functions. Since the reward function can be chosen
by the designer, some higher-layer application met-
rics, such as users’ quality of experience (QoE), can
also be incorporated in the reward function design.
For example, it is reported that in 2020, more than
80 percent of Internet traffic is video related, and
much of it is carried by TCP. Congestion control
algorithms that aim to maximize users’ QoE could
be of great importance. Cross-layer optimization is
a promising research direction.

DEPLOYMENT IN REAL ENVIRONMENTS

Most of the existing DRL-based congestion control
algorithms are tested in simulated environments
but not in real-world environments. In the future,
the rule table needs to be embedded in the operat-
ing system kernel, and the ML model needs to be
implemented as a system service. Then a prototype
can be developed, based on which the adaptation
ability of the congestion control algorithms can be
tested under dynamic network conditions.

CONCLUSIONS

Today’s network is becoming more and more
complex, and it is imperative to embrace ML
techniques to design effective congestion control
algorithms. Despite the advances made in recent
works, there is still considerable room for improv-
ing network performance by redesigning smart
congestion control protocols with ML. There is
still a long way to go toward putting ML-based
congestion control into practice for some prac-
tical issues. In this article, we provide a selected
review of the recent advances on ML-based end-
to-end congestion control. We also discuss open
problems that need to be further investigated
from both the networking and ML perspectives.
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Today's network is
becoming more and
more complex, and

it is imperative to

embrace ML techniques

to design effective
congestion control
algorithms. Despite
the advances made
in recent works, there
is still considerable

room for improving the

network performance
by redesigning smart

congestion control pro-

tocols with ML.
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