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Abstract

End-to-end congestion control has been exten-
sively studied for over 30 years as one of the most 
important mechanisms to ensure efficient and fair 
sharing of network resources among users. As 
future networks are becoming more and more 
complex, conventional rule-based congestion con-
trol approaches tend to become inefficient and 
even ineffective. Inspired by the great success that 
machine learning (ML) has achieved in addressing 
large-scale and complex problems, researchers have 
begun to shift their attention from the rule-based 
method to an ML-based approach. This article pres-
ents a selected review of the recent applications of 
ML to the field of end-to-end congestion control. In 
this survey, we start with a brief review of the rela-
tionship between congestion control and ML. We 
then review the recent works that apply ML to con-
gestion control. These works either help the agent 
to make an intelligent congestion control decision 
or achieve enhanced performance. Finally, we high-
light a series of realistic challenges and shed light on 
potential future research directions. 

Introduction
The rapid development of communication tech-
nologies has triggered the emergence of new 
network architectures such as cognitive radio 
networks, data center networks, ultra dense 
heterogeneous networks, and millimeter-wave 
(mmWave) networks. Each network has its own 
features and performance requirements, which 
may change dynamically. The increasing capa-
bility of the network also enables a variety of 
new services and applications, such as augment-
ed reality (AR), online gaming, edge computing, 
and autonomous driving, entailing more stringent 
requirements on the communication network.

The transport layer plays an important role in 
the management of end-to-end connections for 
upper layer services. The performance of emerg-
ing new applications depends heavily on the inter-
actions between the underlying network and the 
transport layer. End-to-end congestion control, as 
a fundamental part of the transport layer proto-
col (TCP), ensures network stability and fairness in 
resource utilization. Today’s TCP congestion con-
trol mechanism relies on a design that was created 
in the 1980s for wired networks. It uses a set of 
pre-defined rules, for example, halving the conges-
tion window (often referred to as CWND) when a 
packet loss is detected, and adjusting the CWND 

according to measured round-trip time (RTT). 
The same TCP design and its variants have been 
employed over the past three decades. Although 
these congestion control mechanisms achieve 
great success, they may not perform well in today’s 
or future highly dynamic and complex networks 
where the network performance is affected by a 
variety of factors. The congestion control prob-
lem can be modeled as an optimization problem, 
while conventional rule-based methods are mostly 
heuristics with no guarantee to solve the complex 
problem. They often lead to sub-optimal solutions, 
which may suffer poor performance. 

Recently, machine learning (ML) has made 
breakthroughs in a variety of application areas, 
such as speech recognition, computer vision, 
and robot control. ML can learn from collected 
data or the environment and build models. Also, 
with the recent development of computing infra-
structures (e.g., GPU, TPU, and ML libraries) and 
distributed data processing frameworks, there is 
now an increasing trend in leveraging complex 
networking problems. For some tasks, such as 
regression, classification, and decision making, 
ML performs pretty well. Considering that these 
tasks play basic but vital roles in networking prob-
lems, it is imperative to embrace ML techniques 
for potential breakthroughs in end-to-end conges-
tion control. 

In [1] the connection between artificial intel-
ligence (AI) and network traffic control (NTC) is 
discussed. The author shows that AI-NTC could be 
the next frontier of network research, and deep 
reinforcement learning (DRL) would be a prom-
ising model. Reference [2] investigates how ML 
could benefit network design and optimization. A 
workflow for applying ML in the network domain 
is provided. Reference [3] provides an overview 
of the state of the art in deep learning, a branch 
of ML, for intelligent network traffic control sys-
tems. The above works are focused on network 
traffic control with AI [1], networking with ML [2], 
and network traffic control with deep learning [3]. 
They do not provide a detailed review on the rela-
tionship between ML and the specific problem 
(i.e., end-to-end congestion control) that is the 
goal of this article. 

In the rest of this article, we first survey the 
state-of-the-art congestion control algorithms and 
discuss the challenges. We then introduce the 
concept of ML and the motivations for ML-based 
congestion control. We next present the recent 
advances in ML-based congestion control, and 
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conclude this article with a discussion of potential 
future directions. 

Challenges and Opportunities
TCP is designed to provide reliable transmission 
of packets across an end-to-end connection, 
where congestion control is incorporated. Typical 
TCP congestion control works as follows. When 
started, the endpoint should quickly increase its 
sending rate to achieve high utilization of net-
work resources. However, when congestion is 
detected, the endpoints involved should reduce 
their sending rates; when congestion is gone, the 
endpoints should increase their rates for high uti-
lization of network bandwidth. Usually, the rate 
keeps on increasing/decreasing, following the 
network congestion state. Detection of network 
congestion is usually performed at the network 
edge without coordination and communication 
among users, using loss or delay as indicators. 

A summary of the major congestion control 
mechanisms and their pros and cons are provided 
in [4, Table 2]. These schemes use some signals to 
detect congestion and then adjust the CWND or 
sending rate according to some pre-defined rules. 
Depending on the type of signals that are used 
as indicators of congestion, congestion control 
mechanisms can be categorized into several class-
es. For example, TCP variants Tahoe, Cubic, Reno, 
and New Reno are loss-based mechanisms. These 
mechanisms use packet loss to detect conges-
tion. The additive increase multiplicative decrease 
(AIMD) algorithm is used to adjust the CWND. 
Loss may be a signal of congestion, but some-
times congestion happens before the bottleneck 
buffer is full. Early detection of congestion may 
help to avoid sharp decrease in throughput. Con-
sequently, delay-based mechanisms such as TCP 
Vegas and Verus have been developed, which use 
delay as an indicator of congestion. More recent-
ly, some hybrid mechanisms try to combine merits 
of the existing solutions. For example, Compound 
TCP, which is available on all Microsoft Windows 
machines, uses the sum of a delay-based window 
and a loss-based window as its congestion win-
dow. Veno, a hybrid between Vegas and Reno, 
adopts an explicit model of the bottleneck buffer 
occupancy. BBR, adopted by Google, estimates 
both bandwidth and RTT, aiming to keep CWND 
equal to the bandwidth-delay product (BDP), 
which is the optimal operating point. 

We have to point out that such rule-based 
mechanisms have several limitations: 
•	 Adapt to new networks: Congestion control 

algorithms that are designed for one specific 
network may not apply to other types of net-
works. For example, TCP-NewReno was orig-
inally designed for wired links where packet 
loss is often interpreted as congestion. In 
wireless networks, packet loss may be caused 
by either link errors or congestion. The send-
er will always halve CWND even if the loss 
is caused by link errors. As a result, the link 
bandwidth will not be effectively utilized. 
Furthermore, the CWND update mechanism 
is not effective to adapt to various network 
topologies. For example, satellite network 
links where the RTT is large require a more 
aggressive CWND increase. Meanwhile, 
mobile ad hoc networks (MANETs), where 

the BDP is low, may demand a more conser-
vative CWND increase. 

•	 Learn from the past: The rule-based approach 
uses a fixed set of rules to handle every 
situation. It does not leverage past experi-
ence and assumes no prior information 
such as link bandwidth, channel character-
istics, and the number of flows on shared 
links. Suppose that NewReno can learn the 
link bandwidth information from past expe-
rience; it could speed up the sending rate 
more aggressively in the slow start phase 
to improve link utilization. Inability to learn 
from the past prevents endpoints from tak-
ing actions proactively. 

•	 Performance: Today’s network is becoming 
highly dynamic and complex. Ruled-based 
congestion control is designed based on 
humans’ understanding of the network. As 
human knowledge may not always accu-
rately characterize the network features, 
the resulting congestion control mechanism 
may not be effective and can only achieve 
sub-optimal performance.

Why Congestion Control with ML
ML is a subset of AI, where the machine (or the 
agent) has the ability to accomplish a task when 
facing new data or a new environment after a 
training process. Existing ML techniques general-
ly fall into three categories: supervised learning, 
unsupervised learning, and reinforcement learning.
•	 Supervised learning uses a set of labeled 

samples to learn a mapping between the 
input and output spaces. Depending on 
whether the output is continuous or not, 
supervised learning can be categorized as 
regression and classification. Deep neu-
ral network (DNN), convolutional neural 
network (CNN), recurrent neural network 
(RNN), naive Bayesian (NB), decision tree 
(DT), and support vector regression are typi-
cal techniques in supervised learning.

•	 Unsupervised learning focuses on classify-
ing unlabeled samples into different clusters. 
It is mainly used for data dimension reduc-
tion in continuous cases or clustering in dis-
crete cases. Restricted Boltzmann machine 
(RBM), autoencoder (AE), Gaussian mixture 
model (GMM), principal component analysis 
(PCA), and k-means clustering are usually 
used in unsupervised learning. 

•	 Reinforcement learning (RL) is an environ-
ment-based approach where the agent is 
trained to solve decision making problems 
through interactions with the environment. 
Typical RL techniques include Q-learning, the 
actor-critic algorithm, and the deep determin-
istic policy gradient (DDPG) algorithm.
A comparison between supervised and unsu-

pervised learning is given in Table 1. The latest 
breakthroughs, such as deep learning, generative 
adversarial networks (GANs), and transfer learn-
ing, also have great potential to deal with many 
complex problems such as end-to-end congestion 
control. 

Conventional congestion control only con-
siders several measurements such as packet loss 
and/or RTT as indicators of congestion. The entire 
decision making process relies on these measure-

ML is a subset of AI, 

where the machine (or 

the agent) has the abil-

ity to accomplish a task 

when facing new data 

or a new environment 

after a training process. 

Existing ML techniques 

generally fall into three 

categories: supervised 

learning, unsupervised 

learning, and reinforce-

ment learning.
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ments and the pre-defi ned rule based on human 
understanding of the network. The rule-based 
mechanism is more susceptible to many unpre-
dictable factors, resulting in poor performance. 
ML, on the other hand, aims to construct algo-
rithms or models that can learn to make decisions 
directly from past experience or the network envi-
ronment. It does not need accurate network mod-
els. Hence, it has the potential to outperform the 
rule-based mechanism. 

Nowadays intensive computational resources 
are provided by both the central controller and 
edge servers. Cutting-edge technologies such as 
edge computing, network slicing, and software-de-
fi ned networking are changing the way network 
traffic is managed. Moreover, the emergence of 
several dedicated libraries, such as TensorFlow, 
Caff e, and PyTorch, has greatly simplifi ed the pro-
cess of building an ML model. By leveraging these 
computational resources, ML-based congestion 
control is becoming feasible. In practice, a model 
can be trained with global information over a long 
time interval with the computation resources. The 
model parameters can be updated one at a time. 
In the online deployment stage, the decision can 
be inferred using the trained ML model with a few 
computations. 

recent AdVAnces In 
Ml-bAsed congestIon control

Over the past few years, there have been sever-
al works on ML-based congestion control. TCP 
Remy [5] is the fi rst example, where the authors 
model congestion control as a decision making 
problem under uncertainty. Each endpoint can 
make decisions on whether to send packets or 
not. As shown in Fig. 1, the network model is 
assumed to be Markovian. The network state con-
sists of three variables: an exponentially weight-
ed moving average (EWMA) of the inter-arrival 
times of acknowledgments (ACKs), an EWMA of 

the sending times of those same packets, and the 
ratio between the most recent RTT and the lowest 
measured RTT. The traffic is modeled as a sto-
chastic process that switches unicast fl ows on or 
off  between sender-receiver pairs. After observing 
the network state, the agent adjusts the CWND 
to achieve a balance between high throughput 
and low latency. This ML-based algorithm out-
performs the human-designed end-to-end algo-
rithms, including Cubic, Compound, and Vegas 
[5]. However, TCP Remy works well at the price 
of a stringent assumption on the network and traf-
fi c models. 

Unlike the offline training approach adopted 
in TCP Remy, Performance-Oriented Congestion 
Control (PCC) [6] uses online training and does not 
make similar assumptions on the network model. 
In each micro-experiment, PCC chooses a send-
ing rate and observes the selective ACK (SACK), 
which is used to measure the utility of an action 
(delivery ACK, loss, and latency). PCC runs several 
micro-experiments continuously, and an empirically 
optimal rate control policy is learned in an online 
manner such that the utility can be maximized. 
PCC achieves 10 times performance improvement, 
with better fairness and stability, over TCP CUBIC. 
However, its performance over wireless networks 
is aff ected by buff erbloat, and it has not been test-
ed in real-world network environments.

congestIon control WIth drl
More recently, advanced learning algorithms such 
as RL and DRL have been incorporated into con-
gestion control design. Just as a human learns a 
skill from past experience, with RL the endpoint 
can learn the optimal congestion control policy 
from its observations of the network environment 
and past experiences. These mechanisms do not 
rely on pre-defi ned rules and exhibit stronger abil-
ity to intelligently adapt to the changing environ-
ment. DRL embraces the advantages of DNN to 
train the learning process and to achieve scalabili-
ty (over RL); thereby, learning speed and learning 
ability can both be improved. 

In congestion control, each endpoint adjusts 
its sending rate or CWND based on its observa-
tions of measured RTT, ACK, and so on. This can 
be viewed as a decision making problem. Under 
uncertain and stochastic environments, the deci-
sion making problem is usually modeled as a Mar-
kov decision process (MDP). The goal is to fi nd an 
optimal policy for the MDP so that the expected 

Figure 1. An illustration of Remy congestion control (fi gure courtesy of [5]).

Table 1. Supervised vs. unsupervised learning.

Supervised learning Unsupervised learning

Training data
Discrete case
Continuous case
Accuracy of results
Number of classes

Labeled
Classifi cation
Regression

High
Known

Unlabeled
Clustering

Dimensionality reduction
Less accurate
Not known
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cumulative reward can be maximized. As shown 
in Fig. 2, a DRL agent interacts with the network 
environment by adjusting its actions (e.g., the 
sending rate or CWND) based on observed net-
work state (e.g., RTT, CWND, and the inter-arrival 
time of ACKs). A DNN is trained to map state to 
action so that the reward metric (e.g., throughput 
and/or latency) can be optimized. Recent works 
on DRL-based congestion control are summarized 
in Table 2. QTCP is the fi rst work that leverages 
RL to design congestion control algorithms [7]. It 
helps senders gradually learn the optimal conges-
tion control policy in an online manner, without 
requiring prior knowledge of the network model. 
Reference [8] presents a DRL-based scheme 
called Aurora, which uses a fully connected DNN 
to learn the state-action pairs from stored histori-
cal data. This method is surprisingly robust to envi-
ronments outside the scope of training. TCP-RL, 
proposed in [9], uses RL to dynamically confi gure 
the congestion control parameters for both short 
and long TCP fl ows when the environment chang-
es. The performance evaluation is based on a real 
implementation. 

References [10, 11] investigate the multi-path 
TCP (MPTCP) congestion control problem. A sin-
gle agent is used in [10] to dynamically and jointly 
optimize congestion control for all active flows. 
Apart from incorporating a long short-term mem-
ory (LSTM) model in the DRL framework to better 
capture the network dynamics, [10] for the first 
time integrates the actor-critic mechanism into 
DRL for continuous congestion control. In [11], 
the authors focus on the congestion control per-
formance degradation problem of MPTCP caused 
by path diversity. For practical deployment, 
the authors in [11] propose an asynchronous 
RL-based framework to decouple model training 
and execution. The congestion control rules are 
generated off line and applied for real-time online 
decision making of window adjustment. Refer-
ence [12] considers the initial congestion window 
(IW) selection problem in an mmWave network. 
A DRL-based online decision making approach 
is proposed to adjust the IW such that the flow 
completion time (FCT) is optimized. 

perforMAnce enhAnceMents

The congestion control problem has its own char-
acteristics and is impacted by many factors. ML 
techniques, especially supervised learning and 
unsupervised learning, have high potential to clas-
sify packet losses and predict congestion-related 
parameters for improved performance. 

Loss Classifi cation: As mentioned before, the 
inability to distinguish packet loss caused by con-
gestion and degraded channel quality in wireless 
networks will result in poor throughput. For next 
generation cellular networks, where wireless links 
are more easily blocked, accurately identifying the 
cause of packet loss will be of vital importance to 
improve the congestion control performance.

Various ML models have been used to infer 
the cause of packet loss at the network edge. For 
example, [13] uses expectation-maximization (EM) 
to identify the packet losses caused by contention 
and congestion in optical networks. The classi-
fication helps to improve the TCP throughput. 
Reference [14] develops a loss-predictor-based 
congestion control mechanism with supervised 

learning for wireline networks. It achieves a better 
trade-off of throughput and delay compared to 
NewReno. Such classifi ers usually achieve higher 
classifi cation accuracy than non-ML approaches. 
TCP variants built upon these ML-based classifi-
ers have been shown to outperform the standard 
rule-based solutions.

Congestion Prediction: Congestion prediction 
plays an important role in dynamic routing, con-
gestion control, congestion avoidance, and pro-
active network management. In practice, when 
congestion actually happens, it has already aff ect-
ed the throughput performance signifi cantly, and 
it may be too late to adopt further actions. If con-
gestion or congestion-related parameters, such 
as TCP throughput and RTT, can be accurately 
predicted, the sender can proactively respond to 
congestion. Currently, there are mainly two direc-
tions of research on estimation of congestion-relat-
ed parameters: formula-based and history-based. 
Formula-based approaches integrate the sender’s 
measurements, such as RTT, packet loss rate, and 
CWND, into a formula to generate predictions. 
However, timely gathering of such information 
is not easy, especially in today’s highly dynamic 
and complex networks. Moreover, the ever-evolv-
ing feature of TCP makes it hard to maintain an 
accurate formula-based model. History-based 
approaches refer to some time series analysis tech-
niques, such as the exponential weighted moving 
average (EWMA) algorithm used by TCP for esti-
mating RTT. However, time series analysis may 
also be inaccurate in some cases. 

To deal with the limitations of convention-
al mechanisms, ML-based approaches (mainly 
supervised and unsupervised learning) have been 
adopted for congestion prediction. Reference [15] 
applies support vector regression (SVR), a use-
ful ML tool for multivariate regression, to predict 
TCP throughput. Recently, [14] has developed a 
loss predictor using random forest, a supervised 
learning technique, to predict the probability of 
packet loss caused by congestion. This method 
can predict and reduce packet loss events, lower 
the frequency of sending rate reduction, and 
achieve higher throughput. These works all pre-
dict congestion-related parameters from passive 
measurements with ML approaches, which have 
great potential in parameter prediction. 

Figure 2. Framework of DRL for congestion control.
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ML-Based Congestion Control Workflow

As real network data is generally hard to obtain 
and label, we have to point out that RL, which 
does not require network data, will be a dom-
inant model to implement ML-based conges-
tion control. It has the potential to find the 
best decision based on trial and error and help 
the endpoints to quickly react to environment 
changes. Supervised learning and unsupervised 
learning can leverage historical data for potential 
performance improvement. For example, [12] 
combines the merit of both DRL and supervised 
learning. The system is implemented with DRL 
for online decision making. A supervised learning 
approach is utilized to extract features from the 
collected data during online learning for perfor-
mance improvement. 

Figure 3 illustrates the generic workflow for 
implementing congestion control with ML. The 
problem is first formulated as a decision making 
problem. Depending on the measured signals 
and the goal, the corresponding state, action, and 
reward should be properly defined. In the model 
training process, various training methods can be 
used to help the model learn the best control pol-
icy through interactions with the environment. 
The training data can be collected, based on 
which features can be extracted with supervised/
unsupervised learning for potential performance 
improvement. Finally, the model is ready to be 
deployed in a real environment.

Challenges and Outlook
ML exhibits great potential for end-to-end con-
gestion control. However, most ML algorithms so 
far are optimized for simple network topologies. 
There is no fully implemented and well-tested 
ML-based congestion control mechanism in a real 
environment. We outline some potential future 
research directions here. 

Real Data Collection

Collecting a large amount of high-quality data 
along with network profiles is challenging. Most of 
the existing works rely on simulated datasets gen-
erated based on a specific network type. Hence, 
the resulting ML model may not be compatible 
with a practical system. For supervised learning, 
the collection of labeled data may be labor-in-
tensive and costly. It could save a lot of repeated 
experiments if there are unified open source data-
sets and a shared standard platform for research-
ers to compare their developed mechanisms. 
Moreover, due to the high test cost of large-scale 
networks and the difficulty in accessing these net-
works, simulators with high speed and high fidelity 
are in great demand. 

Fairness, Robustness, and Generalization

ML-based congestion control might be unfair to 
existing solutions. If ML-based congestion control is 
trained in an environment where it competes with 
existing mechanisms, it might learn to occasional-
ly cause packet loss to force other TCP protocols 
to back off so that it can occupy more network 
resources. How to coexist properly with other 
existing protocols is challenging. Moreover, due to 
specific requirements of network systems, network 
protocols often require a worst performance guar-
antee. ML-based congestion control needs to be 
robust to the rapidly changing environment. Finally, 
the generalization ability of the ML algorithm is 
also required to ensure that the model can adapt 
to network dynamics without retraining the model 
every time the network condition changes. 

Cross-Layer Optimization

In ML, it is common to use the reward function as 
the optimization objective. Common reward func-
tions can maximize throughput, minimize latency, 
reduce loss or fairness, or a combination of these 

Table 2. A Summary of ML-based congestion control schemes.

Algorithm States Actions  Rewards Pros Cons

QTCP [7] 
(2018)

Sending interval, 
ACK interval, RTT

Select CWND with RL
Large throughput, low 

latency

1. Generalization to different network 
topologies,

2. Higher throughput than NewReno
Limited performance evaluation 

Aurora [8] 
(2019)

Latency gradient, 
latency ratio, 
sending ratio

Adjust sending rate with 
DRL

Large throughput, low 
latency, low packet 

loss rate

1. Robust to environment,
2. Outperforms BBR, PCC-Vivace and Remy

Limited test on network changes

TCP-RL [9] 
(2019)

Throughput, RTT, 
loss rate

Adapt the initial window of 
connection and the conges-

tion control algorithm

Large throughput, 
low RTT

1. Dynamical parameter configuration,
2. Improved TCP transmission performance

Untested in highly dynamic 
network conditions

DRL-CC [10] 
(2019)

Sending rate, RTT, 
RTT deviation, 

goodput, CWND

Select CWND with single 
agent DRL in MPTCP

Large goodput, fairness

1. Performance improvement in terms of 
goodput,

2. Flexible and robust,
3. TCP friendly

Large state space increases the 
complexity 

SmartCC 
[11] 

(2019)

Sending rate, ACK 
interval, (subflow)

Select congestion control 
rules in MPTCP

Large throughput, low 
RTT, low jitter fairness

1. Addresses path diversity in HetNet,
2. Asynchronous learning framework to 

reduce overhead,
3. Performance improvement in throughput, 

RTT, e.t.c.

 1. Does not consider TCP 
friendliness

2. Lack real deployment test

IW-DRL [12] 
(2019)

FCT, RTT, 
throughput

Select the initial CWND 
with DRL

Low FCT

1. Algorithms converges stable and fast,
2. Adaptive on-line decision making, 

3. Software-defined networking (SDN) 
implementation,

4. Flow completion time(FCT) reduction

Does not optimize congestion 
directly 
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functions. Since the reward function can be chosen 
by the designer, some higher-layer application met-
rics, such as users’ quality of experience (QoE), can 
also be incorporated in the reward function design. 
For example, it is reported that in 2020, more than 
80 percent of Internet traffi  c is video related, and 
much of it is carried by TCP. Congestion control 
algorithms that aim to maximize users’ QoE could 
be of great importance. Cross-layer optimization is 
a promising research direction.

deployMent In reAl enVIronMents

Most of the existing DRL-based congestion control 
algorithms are tested in simulated environments 
but not in real-world environments. In the future, 
the rule table needs to be embedded in the operat-
ing system kernel, and the ML model needs to be 
implemented as a system service. Then a prototype 
can be developed, based on which the adaptation 
ability of the congestion control algorithms can be 
tested under dynamic network conditions. 

conclusIons
Today’s network is becoming more and more 
complex, and it is imperative to embrace ML 
techniques to design eff ective congestion control 
algorithms. Despite the advances made in recent 
works, there is still considerable room for improv-
ing network performance by redesigning smart 
congestion control protocols with ML. There is 
still a long way to go toward putting ML-based 
congestion control into practice for some prac-
tical issues. In this article, we provide a selected 
review of the recent advances on ML-based end-
to-end congestion control. We also discuss open 
problems that need to be further investigated 
from both the networking and ML perspectives.
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Figure 3. Workfl ow of ML-based congestion control.

Today’s network is 

becoming more and 

more complex, and 

it is imperative to 

embrace ML techniques 

to design effective 

congestion control 

algorithms. Despite 

the advances made 

in recent works, there 

is still considerable 

room for improving the 

network performance 

by redesigning smart 

congestion control pro-

tocols with ML.

MAO_LAYOUT.indd   57MAO_LAYOUT.indd   57 7/7/20   3:45 PM7/7/20   3:45 PM

Authorized licensed use limited to: Auburn University. Downloaded on August 01,2020 at 03:47:51 UTC from IEEE Xplore.  Restrictions apply. 


