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Abstract—Due to the popularity of onboard geographic
devices, a large number of spatial-textual objects are gener-
ated in the Internet of Vehicles (IoV). This development calls for
approximate spatial keyword queries with numeric attributes in
IoV (AZSKIV}, which takes into account the locations, textual
descriptions, and numeric attributes of spatial-textual objects.
Considering large amounts of objects involved in the query pro-
cessing, this article comes up with the idea of utilizing vehicles
as fog-computing resource and proposes the network structure
called FCV, and based on which the fog-based top-k AZSKIV
query is explored and formulated. In order to effectively support
network distance pruning, textual semantic pruning, and numer-
ical attribute pruning, simultaneously, a two-level spatial-textual
hybrid index STAG-tree is designed. Based on STAG-tree, an
efficient top-k AZSKIV query processing algorithm is presented.
The simulation results show that our STAG-based approach is
about 1.87x (17.1x, resp.) faster in search time than the com-
pared ILM (DBM, resp.) method, and our approach is scalable.

Index Terms—Approximate spatial keyword query (ASKQ),
fog computing, Internet of Vehicles (IoV), numeric attribute,
traffic network.

I. INTRODUCTION

S AN important paradigm to realize intelligent trans-

portation system, Internet of Vehicles (IoV) enables
vehicles to communicate with road-side units (RSUs) and
remote cloud servers [1]. For real-time perception and geo-
graphic distribution, cloud computing is clearly not the best
choice to provide communication and computing resources,
since it is completely centralized [2]. Fog computing, by con-
trast, complements cloud computing by extending computing
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and caching capabilities to the edges of the network, and it
facilitates localization decisions and rapid response.

As a kind of fog computing, vehicle fog computing (VFC) is
considered as a promising method for supporting applications
in IoV, which uses vehicles as an infrastructure to make full
use of vehicle communication and computing resources. In
particular, VFC utilizes a large number of cooperative end-
user clients or near-user edge devices to perform huge amounts
of communication and computation [3], which differs from
other existing technologies in its proximity to end users, dense
geographic distribution, and support for mobility [4], [5]. In
order to enhance the computing and storage capabilities of
the network edge, recently, a new network structure, named
fog computing-based IoV (FC-lIoV) [6], is proposed, which
deploys fog servers at downtown intersections and accident-
prone roads to enhance the computing and storage capabilities
of the network edge.

Recently, lots of efforts are made to explore different
kinds of issues on fog-based IoV, such as the optimal
deployment and dimensionality (ODD) for autonomous driv-
ing [7] and reasonable and feasible resource allocation in
real time [8]. However, there is few work on processing
spatial-textual information generated in IoV to obtain user
interested information. In real life, due to the popularity of
on-board geographic devices, large numbers of spatial-textual
objects are generated in IoV. To effectively process the mas-
sive data collected and obtain the information that users are
interested in, spatial keyword query (SKQ) has been proposed
and discussed [9]-[13], which uses a set of keywords and a
spatial constraint to express user’s interest in exploring useful
information.

The existing work on SKQ query processing can be divided
into two categories: 1) SKQ in Euclidean space [11] and
2) SKQ in traffic networks [14]. For SKQ in traffic networks,
the schemes use real traffic network distance rather than the
Euclidean distance in the Euclidean space, and thus can bet-
ter meet the requirements of real-time applications in IoV.
Moreover, considering that some previous work focuses on
SKQ requiring exact keyword matching, and may result in too
few results returned due to the diversity of textual expressions,
recently, approximate SKQ (ASKQ) was explored. ASKQ
can handle spelling errors and conversional spelling differ-
ence (for example, color versus colour), which appear in real
applications frequently.

However, in many applications of IoV, such as mobile
e-commence, various items are generated with textual
descriptions, different attributes, and spatial locations.
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Correspondingly, the requirement of a user could include a
set of keywords, attribute-value pairs, distance limitation, or
the number k of results, for example, “oxford,” “dictionary,”
publish year = 2018 & price = 1000, and k = 5 (means the
top-5 results). To capture the requirements of users, a spatial
keyword search with numeric attributes is needed. Meanwhile,
the more queries and objects involved, the more complex
the query processing, which makes efficient query process-
ing and fast feedback on query results a challenge. This calls
for ASKQ (AZSK) with locations, textual descriptions, and
numeric attribute requirement simultaneously. To this end, we
also need to make full use of the potential communication and
computing power around query users in oV, in addition to the
efficient query processing methods.

To address the issues mentioned above, this article explores
the fog computing-based A2SK queries in traffic networks
of ToV (A2SKIV), which poses three major challenges. First,
query users and textual-spatial objects may distribute within
a large traffic networks with millions vertices and edges
in IoV. How to efficiently calculate the network distances
between queries and objects is the first issue need to be
handled. Second, with millions of textual-spatial objects in
IoV, we need to consider a large number of keywords and
attribute-value pairs. Moreover, approximate keyword match
rather than exact keyword match is considered which makes
AZSKIV search more complex. Third, many users may initiate
queries simultaneously; the proposed matching method should
be effective enough to significantly reduce the cost of query
processing.

To support network distance pruning, keyword pruning,
and numeric attribute-value pruning simultaneously, a novel
spatial-textual hybrid index structure should be designed,
which should consider the relative invariance of traffic network
structure and the dynamic variation of textual-spatial objects
and queries. First, we need a spatial index to keep the traffic
network structure in IoV, thus given the positions of an object
and a query, the network distance between them can be calcu-
lated quickly, while maintaining a reasonable and acceptable
amount of storage space. Meanwhile, a textual and numeric
index on the textual-spatial objects of each traffic network
region (subgraph) is required too. In order to save space con-
sumption, the textual information and numeric information
need to be organized efficiently and smartly. Moreover, in
order to improve the processing efficiency of a huge amount
of unqualified textual-spatial objects, some efficient pruning
rules are also needed.

In order to meet the requirements mentioned above, this
article explores A>SKIV comprehensively, and the main con-
tributions of this article are as follows.

1) The A2SKIV problem is formulated, which distinguishes
itself from existing SKQ query efforts in that it takes into
account textual similarity, numeric similarity, and spatial
proximity in traffic network space, simultaneously.

2) A two-level spatial-textual hybrid index STAG-tree is
presented. In addition, several lemmas are presented
to prune a huge amount of unrelated objects. A top-k
AZSKIV query processing algorithm based on the
STAG-tree index is designed. In addition, we discuss
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how to extend the proposed method for supporting
numeric attributes with interval values.

3) Simulation using two traffic networks together with their
spatial-textual object sets is performed to evaluate the
effectiveness of the proposed STAG-tree index and query
processing algorithm.

The remainder of this article is organized as follows. In
Section II, we review the related work. Section III presents
the system model and problem definitions. In Section IV,
we introduce a hybrid index in detail. Top-k AZSKIV query
processing algorithm is proposed in Section V. Section VI
discusses extending the method for supporting attributes with
interval values. Section VII gives the experimental evaluation
and, finally, Section VIII concludes this article.

II. RELATED WORK
A. Fog Computing in IoV

In 2012, Cisco came up with the concept of fog computing.
Since then, many efficient schemes were proposed [15]-[20].
An object cloud communication architecture [3] based on
fog computing and intelligent gateway was proposed. Later,
Aazam and Huh [21] proposed a system called fog micro
data center, where the fog plays an important role in resource
management, data filtering, preprocessing, data processing,
and security measures. Meanwhile, Hou et al. [22] proposed
a new concept of VFC, using vehicles as infrastructure to
take full advantage of their communication and computa-
tion resources. An intelligent VFC system combining parking
assistance and intelligent parking was discussed [7]. In par-
ticular, a vehicle reservation auction method based on VFC
perception was designed to guide the vehicle to the avail-
able parking space with less effort during driving. Meanwhile,
the vehicle’s fog ability was utilized to compensate the vehi-
cle’s service cost through monetary reward, thus helping to
delay the sensitive computing service. Yu et al. [6] dis-
cussed the ODD of FC-lIoV infrastructure for autonomous
driving. Two different architectural patterns, namely, cou-
pling pattern and decoupling pattern, were proposed, and
the ODD problem was transformed into two integer lin-
ear programming formulas to reduce the deployment cost.
Such efforts improve the computing and storage capabili-
ties of IoV and enable lots of applications. In edge-enabled
networks, the geographic diversity of resources and various
hardware configurations need to be carefully managed to
ensure efficient utilization of resources. Lamb and Agrawal [8]
analyzed the moving edge calculation of vehicle networks and
introduced an architecture of evaluating available resources
and allocating the most reasonable and feasible resources in
real time.

B. SKQ Querying in Traffic Networks of IoV

In order to meet user’s interests in IoV, lots of efforts are
made to deal with moving top-k SKQ processing, direction-
aware SKQ processing, interactive top-k SKQ querying, key-
word search based on distributed graphs [23], why-not range-
based skyline queries [24], and location-aware error-tolerant
keyword search [25]. In order to accelerate the calculation
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of long road network distance, a multihop distance labeling
scheme (DBM) was proposed [26], which is based on the
Dijkstra method. Guo ef al. [14] discussed the distributed
SKQ search on the traffic network and proposed a new
distributed index. By using this index, each machine inde-
pendently evaluates search operations in a distributed manner.
Gao et al. [27] discussed reverse top-k Boolean SKQ search in
traffic networks, which shows how to use arbitrary k to answer
the query without anticipatory computing. Zhao et al. [28]
explored the time-aware SkQ queries on the traffic network.
They proposed a novel TG index and several algorithms to
efficiently process this type of queries. To support mobile
search and targeted location-aware advertising, an inverted
index-based solution (ILM) is proposed to improve query
performance [29]. Li et al. [30] studied the intelligent aug-
mented keyword search in real-life IoVs. A hybrid index called
ASKTI was proposed. In ASKTI, the information of traffic
network structure, keywords, Boolean expressions, and spa-
tial information of objects are smartly organized, so as to
prune unqualified traffic network space as early as possible.
Abeywickrama et al. [31] discussed how to efficiently pro-
cess SKQ queries on traffic networks and proposed K-SPIN,
a versatile framework that avoids keyword separated indexes
to reduce latency and avoid expensive operations.

To improve query processing performance in IoV, there
are many similarity functions, such as edit distance, Jaccard,
and n-gram [32]. To handle the inconsistencies and errors in
queries and data, Alsubaiee et al. [33] proposed a natural index
structure, which enhances the approximate keyword search
ability of the spatial index based on tree. An approximate n-
gram matching method was proposed [34], which uses the
long but approximate n-gram matching as the basis for prun-
ing k nearest neighbor candidates. Zheng et al. [35] explored
approximate keyword search in semantic track database and
proposed a hybrid index called Giki. Giki consists of two com-
ponents, which are SQ-Tree part using n-grams and K-Ref part
using edit distance.

Although there are many effective query processing methods
in IoV, most schemes face the following limitations.

1) Focus on exact keyword match, while ignoring approx-
imate keyword match, which can handle spelling errors
and traditional spelling differences that often occur in
practical applications.

2) Only keyword matching and attribute-value matching are
considered, ignoring spatial constraints.

3) Limited to Euclidean space, and the query search can-
not be processed in traffic networks in IoV, a realistic
application scenario.

This article fills this gap by developing a two-level spatial—
textual hybrid index, which can overcome the limitations
mentioned above in IoV.

III. SYSTEM MODEL AND PROBLEM DEFINITIONS

This section first gives the system model, and then formu-
lates top-k AZSKIV queries. Table I lists the notations that we
use in this article.
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Fig. 1.
parking. (¢) JamCloud. (d) VANETSs.

Iustration of the system model. (a) Parking IoT. (b) Roadside

A. System Model

To meet the requirements of efficient query processing and
fast feedback on query results, a fog computing-based network
structure FCV is adopted to utilize the computing and storage
capabilities of edge devices, which is a hierarchical struc-
ture that consists of three layers. Fig. 1 illustrates the system
overview and scenarios of FCV with moving and parked
vehicles’ service and applications.

The proposed FCV considers four scenarios of vehicle
behavior states. Fog computing has the natural advantage of
being closer to vehicle endpoints and mobile devices, thus
avoiding the high latency associated with complex system
responses and service failures associated with remote rout-
ing to remote cloud servers. To address communication and
computing power issues, FCV employs vehicles and mobile
devices as the infrastructures, making full use of their com-
munication and computing resources. Moreover, RSUs and fog
devices are adopted and deployed. In general, the deployment
of RSUs and fog devices focuses on intersections in the city
center and some road-sides on busy roads.

As shown in Fig. 1, the first layer of FCV is a cloud com-
puting layer which includes cloud servers and gateways. In
particular, the gateway communicates with other heteroge-
neous networks and can also send the filtered underlying data
to cloud servers.

The second one is the fog computing layer including
lightweight fog devices at network edges. Fog devices tem-
porarily cache and process the raw-date a collected, and upload
the filtered data to the cloud servers for further processing.
Fog devices can also store some frequently accessed data for
rapid-response processing.

The third layer is the accessing layer, which includes RSUs,
vehicles, and mobile devices. RSUs provide open service
access points for fog computing vehicles and mobile devices.
Note that although RSUs and fog devices are deployed in
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TABLE I
SYMBOLS AND DEFINITIONS

Notation  |Definition

0 A textual-spatial object

q An A”SKIV query

g.V(0.V) |A set of attribute-value pairs for ¢ (o)

q.L(0.L) |The location of ¢ (0)

D.4(gq,0) |The textual distance between o and ¢

Dra(q,0) |The numeric distance between o and ¢

D, (q,0) [The travel distance between o and ¢

D;ns(g,0) |The textual-numeric-spatial distance between o and
q

D{:Z(q,G:)|The lower-bound textual-numeric-spatial distance
between subgraph G; and ¢

d2P (g;, w:)|The lower-bound edit distance between word w; and
query keyword g;

similar locations, we will deploy them separately, taking into
account the flexibility of deployment. RSUs, nearby vehi-
cles, and mobile devices communicate wirelessly, exchanging
information, and collaborating on computing tasks. However,
RSUs communicate with fog devices via wired connection.
There are four types of scenarios in the third layer, as described
below.

Fig. 1(a) and (b) illustrates the parked vehicles and mobile
devices as infrastructures. A huge number of parked vehicles
are scattered across the traffic network in IoV. These vehicles
and mobile devices become a rich computing infrastructure,
providing powerful computing resources and storage space.
When joining the FCV, they can be used as a small data center
to deal with a variety of complex tasks. Fig. 1(c) and (d)
illustrates moving vehicles working as infrastructures. In urban
areas, traffic is usually slow. In addition, most vehicles travel
very slowly when entering the urban area, especially during
rush hours, and there is a good communication between nearby
mobile vehicles and devices. Moving vehicles can constantly
transmit information by establishing new connections. When
nearby moving vehicles join the FCV, they can collaborate
and connect with each other and complete tasks using local
computing and communication resources.

B. Problem Definition

1) Traffic Network of IoV: A traffic network of IoV is mod-
eled as a undirected weighted graph G = (V, E), where V is
a set of vertices, and E is a set of edges. A vertice v € V rep-
resents a road intersection or endpoint in the traffic network.
An edge e(v;, v;, [) € E, represents the road segment between
two vertices v; and v; (i # j), and I represents the length of
the road segment. Our model can be extended to support the
directed weighted graph, which represents unidirectional traf-
fic by simply allowing the length of e(v;, v;) be set different
from that of e(v;, v;).

2) Spatial-Textual Objects With Numeric Attributes and
Approximate Spatial Keyword Queries:

Definition 1 [Spatial-Textual Objects With Numeric
Attributes in Traffic Networks of IoV (Object for Short)]:
Object o is defined as o = (o.tags, o - V, o - L), where o.tags
is related descriptive tags containing a set of keywords, 0 - V
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is a set of attribute-value pairs, and o - L is a spatial point
on the edge of the traffic network. The size of o - V is the
number of attribute-value pairs represented by n, and so o
can be represented as

0= [tags,Al :mﬂAz:vzﬂ---ﬂAn:vﬂ, O-L}.

Definition 2 [Approximate Spatial Keyword Queries With
Numeric Attributes in IoV (A’SKIV)]: An A’SKIV query q is
defined as g = (q-W, q-V, q- L), where g- W is the relevant
keywords, g-V is a set of user-given attribute-value pairs, and
g - L is a spatial point on the edge of the traffic network. The
size of g - V is the number of attribute-value pairs represented
by m, and so g can be represented as

q:[q-W,A1 =vi[JA2=w[)[)An="m q-L}.

3) Match Semantics: For A2SKIV query g and object o, to
measure the relevance between g and o, there are three aspects
should be considered, i.e., textual distance, numeric attribute
distance, and traffic network distance between g and o.

Definition 3 (Keyword Mapping): For AZSKIV query g and
object o, a keyword mapping from q to o, i.e., .KM(0), is a
set of keywords, in which each keyword is textual closest to g
among all keywords contained by o in terms of edit distance,!
ie,w; = arg r[]iHWjeo,tags {deq (q:'s WJ)}

Definition 4 (Textual Distance): Given AZSKIV query q
and object o, we first calculate the sum of edit distance
between each keyword w; € g.KM (o) and corresponding key-
word q; € g - W. To normalize the sum of edit distance
calculated to range [0, 1], the max{|q - W|, |o.tags|}, which is
the greater one between |g- W| and |o.tags|, is also considered
as follows:

Du(g.0)= )

gieq-W

dea(qi, wi)

w1y
lg - W| x max{|qg - W|, |o.tags}

Next, let us discuss how to calculate the numeric distance
between query g and object 0. Numeric attribute distance refers
to the degree of difference between the values of g and o under
the same numeric attribute, which is expressed as the size of
difference.

For g and o, the numeric distance between q and o under
each numeric attribute A; (1 < j < m) can be expressed as
follows:
d(q.Aj, 0.4j), if 0.A; exists

d= +00. otherwise.

(2)
Then, we normalize each numeric attribute distance to
range [0, 1], and comprehensively consider the influence of
each numeric attribute distance to calculate the total numeric
distance between g and o.
Definition 5 (Numeric Distance): For each query attribute
Aj € q-V, let Mj = Max(A;)—Min(4;) = Bj x 10, where

I'The edit distance between the two strings sy and 59, dg4(s1, 52), can be
defined as the minimum number of edit operations (i.e., insertion, deletion,
or substitution), required to convert from 51 to sp. The n-gram is a common
technique for estimating edit distance between strings. For a string s, the n-
grams can be obtained by sliding a window of length n from the beginning
to the end of the string. In particular, the Minhash method [36] can be used
to estimate set similarity.
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Max(4;) and Min(A;) are the maximum and minimum values
of attribute A; for all objects in object set O, and 1.0 < §; <
10.0. Let ¢ = ¢; + 1 = 1, the numeric distance Dyq(q, 0)
between g and o can be defined as follows:

1

1
> (%)
lg- VI A}_quv(M,,-

Note: If there is any query attribute that is not in o - V,
Dh(q, 0) = +00.

Travel distance is another aspect for query effort measure-
ment, which is the length of the shortest path from query g to
object o, i.e., Dn(q.l, 0.1).

Definition 6 (Travel Distance): Since the value of the
Sigmoid function changes rapidly in the case of small vari-
ables, this is consistent with the intuition that user satisfaction
is generally more sensitive to travel distance in the case of
short distance. Therefore, we use the Sigmoid function to
normalize travel distance to range [0, 1]

2
14 e—PxDyl(g.lo.l) -

Dua(g,0) = 3)

Dtl'(q's G) =

“)

where 0 < p <1 is the distance adjustment parameter.

Finally, we adopt the concept of textual-numeric—spatial
distance and combine the measurement of spatial, textual,
and numeric relevance between g and o by using a simple
linear interpolation. In particular, the textual-numeric—spatial
distance between g and o is a linear combination of the spatial,
textual, and numeric relevance between g and o, each weighted
with parameters «, 8, and y, respectively.

Definition 7 (Textual-Numeric—Spatial Distance): Formally,
given g and o, the textual-numeric—spatial distance is denoted
as Dis(q, 0), which is defined as

Dlns(qs 0) =a X Dld(q9 0)+ﬂ x D[ld (qs 0)"’}’ X Dtr(q-: 0) (5)
where o, 8,y =0, and e+ 8+ y = 1.

C. Problem Statement

By using the textual-numeric—spatial distance Dy,s(g, 0) to
measure the combined proximity between query g and object
o, we can formally define top-k AZSKIV query below.

Definition 8 (Top-k A%SKIV Query): Given a spatial-textual
object data set O, a Top-k AESIEIV query g =1(q-W,q-V.q-
L.k retrieves a set of objects O € O, such that [O] = k and
Yo € O and 0’ € O — O, Diys(gq, 0) < Dins(q, 0').

Example 1: Fig. 2 illustrates an example of Top-k A2SKIV
query on the traffic network in IoV, with ten spatial-textual
objects and one query located on the edges. Each object has
a set of keywords and a set of attribute-value pairs to provide
its description information, and a spatial point on the edge of
the traffic network to describe its location. The query g con-
tains four items: 1) a set of query keywords {Theater, coffee};
2) attribute-value pairs for “A1 = 4.4 & Ax = 457; 3) a spa-
tial point g for its current location; and 4) a value k = 1
for top-1 related objects wanted. Note that A; ="rating,” and
Az = “pec (per capita consumption).” We first consider os,
06, 07, and og, whose network distances from query g are the
four most shortest ones among all the objects in O.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 5, MAY 2020

O Vertex O  Object
B Border vertex A Query
Textualspatial obejets:

0y:({Restaurant, Theater, Mall},{A,=4.5,A,=70,A;=yes}.l;)
02:({Bakery,Pizza,Bread},{A;=4.6,A,=65,A;=yes}, ;)
03:({Coffee,Italian},A,=4.2,A,=78},1;)

04:({ Coffee,bread},{A;=4.6,A,=55,A=yes},l;)

o05:({ Theater,Italian,Coffee},{A;=4.6,A4,=50,A;=yes},15)
0g:({Theatre,Coffee,Bread},{A,=4.3,A,=45, A =yes},k;)
04:({Italian,Fish,Bread},{A,=4.6,A,=62,A;=no},l;)

0g:({ Theatre,Pizza,Coffee},{A,;=4.5,A,=56,A;=yes},ly)
og:({Theatre,Coffee}, {A,=4.8.A,=ves}.lg)

A, rating; A,. pee; A;, on_smoking;

Fig. 2. Example of Top-k AZSKIV query.

( Begin |

¥ Al
1. Hybrid index S l

construction Pruning technique
l Lo design

2. Top=k A?SKIV query
pr g sch design | Top=k A’SKIV query
Il ool processing algorithm

3. Support attributes with ol

interval values : |
| ni ¥

= R
| End |

Fig. 3. Flowchart of Top-k AZSKIV query processing.

Assume M; = Max (A1) —Min(A;) =5—-0=5, M, =
Max (A7) — Min(4A2) =200 —0 = 200, e; = 1, e3 = 3,
p=0.1,and ¢ = f§ =y = (1/3), we can get

Dns(q, 06) = (1/3) x (1/2) x ([1/7]1+0) +(1/3) x (1/2) x
([0.1/51 + 0) + (1/3) x (12/(¢ %*7)] — 1) = 0.1631.

Similarly, we can get Dy,;(q, 05) = 0.1649, Dys(q, 07) =
0.1682, and Diys(g, 09) = +o00. Note that Dyq(g, 0g) = 400
since og does not have query attribute Az, thus Diys(g, 09)
equals +-co. Then, object og is the top-1 result object of g at
this moment, and other objects can be evaluated similarly.

In the following three sections, the detailed method for top-k
AZSKIV query processing is proposed, which includes hybrid
index construction, Top-k AZSKIV processing scheme design,
and extending our index constructed to support attributes with
interval values. Top-k AZSKIV processing scheme consists
of pruning techniques and query processing algorithms. The
query processing flowchart is then shown in Fig. 3.
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Fig. 4.

IV. HYBRID INDEX FOR A2SKIV QUERY PROCESSING

To improve query performance and efficiently prune irrele-
vant objects for AZSKIV queries as many as possible, a novel
two-level spatial-textual hybrid index structure STAG-tree is
proposed as shown in Fig. 4, which supports network distance
pruning, textual pruning, and numeric attribute pruning simul-
taneously. STAG-tree also considers the relative invariance of
traffic network structure and the dynamic variation of objects
and queries. Then, the flowchart of building the STAG-tree is
illustrated in Fig. 5.

A. Build G-Tree Component

G-tree [37] is an assembly based index and can efficiently
support location-based queries on traffic network in IoV. A
traffic network is modeled by an undirected weighted graph
G = {V, E} as mentioned before, and G-tree can be constructed
by using graph partitioning. First, the graph G is marked as
the root of G-tree, and then G is partitioned into f equal-
sized subgraphs G1, Ga. ..., Gy, ie., |[Vg,|. VG|, ..., |ng| are
almost the same, and works as the parent node of these sub-
graphs. Note for G; may exist u € V; such that 3(u,v) € E
and v ¢ V;, such node u is called a border, and Bg; is used to
represent the border set in graph G;. Thus, G; can be denoted
by G; = {Eg,. Vg, Bg,;}, where Eg,, Vg, and Bg; denote the
vertices, edges, and borders in G; which meet the following
conditions: 1) Ulziz-f Vg, =V;2) fori#j, Vg, (Vg =9;
3) forYu,v € Vg, if (u,v) € Eg,, then (v, u) € Eg,; and 4) for
Yu € Vg;,3(u,v) € E and v ¢ V;, then u € Bg;}. Then, sub-
graph G; is partitioned recursively, and the steps are repeated
until each subgraph has no more than t vertices. Note that
f and t are adjustable parameters. For example, as shown in

©

STAG-tree index. (a) G-tree component. (b) Textual and numeric component. (c) TA-ref index for leaf subgraph.

r ~
| Begin |

l

‘ 1. Bulld G-tree component

For each
leaf node

Calc keywrod
signature

Calc Min{A,) and

For each
non-eaf
node

Calc keyword
signature
Max(A,) for each A,
Cale Min{A,) and

Max(A,) for each A Build TA-ref part

: 5

v !
2, Build textual & numeric
component

End

Fig. 5. Flowchart of building the STAG-tree index.

Fig. 2, the traffic network Gg is first divided into two sub-
graphs Gy and Gy. Then, G;(Gy, resp.) Gi1 and Gi2 (G2 and
G2, resp.). Assume f = 2 and v = 6, the G-tree structure
of the traffic network in Fig. 2 can be obtained as shown in
Fig. 4(a). Note that the numbers under the ID of each subgraph
are the IDs of its borders.

To accelerate the shortest path calculation, G-tree keeps the
distance metrics (DM) which include the shortest-path dis-
tance between each border—border pair (border—vertex pair,
resp.) for nonleaf nodes (leaf nodes, resp.). Particularly, an
efficient bottom-up method is adopted to accelerate the dis-
tance computation. In this way, the DMs of the G-tree in
Fig. 4(a) can be obtained, and the DM of each subgraph
(or graph) is given next to it. The total space complexity of
G-tree is O(logyf * /T * |V]| + log(|V|/7) * log%f * |V]),
where |V| is total number of vertices in graph G, f is the
fan-out of nonleaf G-tree nodes for graph G, and t is the
maximum number of vertices contained in each leaf node of
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G-tree. Note that log%, ﬁ, and logf(|V|,z‘t) are small num-
bers, thus the size of G-tree is scalable. Please refer to [37] for
details.

B. Build Textual and Numeric Component

Second, as shown in Fig. 4(b), the dynamic part of the index,
i.e., a textual and numeric index on objects, is constructed. For
each nonleaf subgraph (node) G;:

1) ID of the subgraph G; is stored;

2) calculate and keep: a) the keyword signature of all the
objects within G; and b) the Min(A;) and Max(A;) of
each numeric attribute Ay, which are the minimum and
maximum values of A for all the objects in G;. If no
object in G; has attribute Ax, Max(Ax) = Min(4y) =
+00;

3) the entries pointing to the subgraphs of G; is stored.

For each leaf subgraph (node) G;, we also calculate and keep
the first two items similar to the nonleaf subgraph:

1) ID of G;;

2) the keyword signature, and Min(A;) and Max(Ay) for

each numeric attribute Ay.

The third item of the nonleaf subgraph is not required in
the leaf subgraph, since it does not have any subgraphs. In
addition, for each leaf subgraph, we also construct and keep
the TA-ref index part as follows.

TA-Ref Index: TA-ref index, as shown in Fig. 4(c), is used to
organize the textual and numerical information of the objects
in each nonleaf subgraph, to facilitate textual distance and
numeric distance calculation of objects in subgraphs. TA-ref
index consists of two parts: 1) T-ref and 2) A-ref.

T-Ref Part: As far as we know, it is unfeasible to calculate
the edit distance during query processing by directly using the
Wagner—Fischer algorithm [32]. Thus, for each leaf subgraph
Gi, we construct the T-ref part to index the edit distance of the
objects within G;. For G;, we select a set of reference keywords
R(G)= {wg"} to index the edit distances between the keywords
contained in the objects within G; and R(G;).

To construct the T-ref part for G;, we need to divide the key-
words contained in all the objects within G; into N clusters, and
select a reference keyword wg" for each cluster, thus to mini-
mize the mathematical expectation of editing distance in each
cluster. To this end, k-means clustering algorithm is adopted to
obtain each cluster and its corresponding reference keyword.
Thus, each object o; within G; is indexed in a Bt -tree by the
key y(o¥). The key y(o}) is calculated according to the edit
distance between the keyword wi and the reference keyword
w,g,:, ie., y(o!) = e.1(w,,,,1rv') +nx C(0 <n < N), where C
equals the maximum edit distance between the reference key-
word of the cluster and the keywords belonging to the cluster.
To facilitate the edit distance calculation in query processi gg
we also calculate and keep the dlslance lower limit DL(wy))
and the distance upper limit DU(wr i) for each cluster.

Example 2: Fig. 4(c) gives the T-ref for subgraph G2,
where the keywords of objects within Gy, are partitioned into
three clusters, whose reference keyword is “Theater,” “coffee,”
and “bread,” respectively.
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A-Ref Part: A-ref part is to facilitate the numeric distance
calculation of the objects in subgraphs. For each numeric
attribute Ay (1 < k < n) of the system, we use [k — 1,k)
to represent the value range of the objects with attribute Ay.
To map the attribute values of objects to the value ranges of
attributes, each object o; within G; is indexed in a B*-tree
by the key y(ok) The key y(ok) is calculated according to its
attribute value, i.e. y(o“) = ([0;. Vi 1/IMi D) +k—1(0 < k < n),
where 0;.V is the attribute value of object o; for A, and
M = Max(Ar) — Min(Ag). Note that Max(A;) and Min(Ag)
are the maximum and minimum values of attribute Ay for all
the objects in O.

Example 3: Fig. 4(c) also gives the A-ref for subgraph
Gi2, where the numeric attributes of objects within Gy are
partitioned into three clusters, whose value range is [0, 1),
[1, 2), and [2, 3), respectively. For example, the attribute
value for A; of og is 45, and M, = 100, and then we have
y(02) = (45/100) +2 — 1 = 1.45.

Remember, we partition the traffic network into equally
sized subgraphs, while minimizing the number of border ver-
tices at the same time. And then, the index part of each
subgraph is constructed accordingly. To allocate the work-
load among different fog-devices in the second layer of our
FCV structure, the information of STAG-index is partitioned,
each corresponding to a subgraph. For a fog server, the index
part of the subgraph on which it resides and the subgraphs
surrounding it will be stored in the server.

V. PROCESS AZSKIV QUERIES IN [oV

This section introduces the top-k AZSKIV query processing
method based on the STAG-tree index.

A. Pruning Techniques

First, several lemmas are introduced to efficiently prune the
unrelated traffic network space and unqualified spatial-textual
objects in IoV.

Lemma I: Given a top-k AZSKIV query g =
L, k) and a subgraph G;, G; can be ignored if

l 2
rl'lll'l gl, _ 1
Gi, q) = (Dm: T )

where oy is the kth nearest neighbor of g.
Proof: For any object o in G;, we have

q-W.q-V,q-

Dus(q, 0) = axDy(q, 0)+BxDna(q, 0)+y xDy(q, 0)
> yxDy(q, 0)

in 1 2
if dy"™(Gi, )>——ln( Dalan 1)

through transformation, for each o € G;, we have

DI'IS 70
Dy(q,0) > M

Thus, we have

Dll'ls(q's 0) = Y X Dtl'(q7 O) > Dms(q, Ok)'
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As a result, any object o0 in G; cannot be a top-k result
object. Thus, G; can be ignored. |
Lemma 2: Given a top-k AZSKIV query g = (g- W.q -
V,q-L,k) and a subgraph G;, if Vgq; € q - W, gj.signature N
G;.signature = @, then G; can be ignored.
Proof: For G, if Vq; € q- W, g;.signature N G;.signature =
@, which means that for any query keyword g;, there is
no object in G; textual similar with g;, hence, G; can be
ignored. |
Lemma 3: Given a top-k A?SKIV query g = (g - W,q -
V.q-L,k) and a subgraph G;, if 34; € q - V, such that
Max(A;)(orMin(4;)) for G; equals +oco, then G; can be
ignored.
Proof: For subgraph G;, if 3A; € g - V, whose Max(A;)
(or Min(4;)) for G; equals +o0, it means G; does not include
any object containing attribute A;, which also means that the
numeric distance d; for any object o in G; equals +oco. Thus,
Dyd(q, 0) equals +oo, which in turn makes Dy,s(g. 0) equal
+o00. Any object o in subgraph G; cannot be a top-k result
object. Thus, G; can be ignored. |
Lower Bound Distance Computation: The pruning strength
of the above three lemmas is relatively limited. In order to
further reduce unrelated subgraphs, for any subgraph G;, we
calculate D{;E (q. Gi) as follows.
1) G; is nonleaf subgraph.
a) If G; is not pruned by Lemmas 1, 2, or 3, we reduce
DLB(q, G;) by assuming Dy(g. G;) equals 0.
b) To calculate Dkg(q, Gi), for each query attribute
Ay, we compare its value for Ag, i.e., g.A;.v, with
the value range [Min(Ax), Max(A)] of G;. If q.Ag.v
falls in [Min(Ag), Max(Ag)], assume that dy = 0;
otherwise, dy = min{|q.Ax.v —Min(Ap)|, |g.Ag.v —
Max(Ag)|}. Then, D' (g, G;) is obtained by (3).
¢) To calculate D]t;B(q, G;), we use the shortest
network distance between q and the border ver-
tices of G;, if g does not belong to G;; otherwise,

DLB(q,Gi) = 0.
Finally, DLB(¢,G) = @ x 0+ B x D1B(q,G) + v x
DLB(q.Gy).

2) G; is leaf subgraph.

a) The calculation of Dﬁf (g, Gi) and D{;B (g, Gy) is the
same as that of the nonleaf subgraph.

b) The TA-ref index of leaf subgraph G; will be
used to calculate D{;]E'(q, Gi), whose focus is the
calculation of d]gf(q;,w;) for each query key-
word ¢; € q - W and its most mapping key-
word w; for objects in G;. We will detail how to
determine w; and its corresponding object o; as
follows.

Calculating dﬁf{q,-, w;) for g;: Since the edit distance fol-
lows the triangle inequality, we make use of the edit distances
between g and reference keywords of the T-ref part in TA-ref
index for G;.

First, the edit distance between g; and each reference key-
word wg", ie., ded(qg,wg"), is calculated. If ded(q,-,wgf) €
[DL(w{'), DU, let d&B(g;, w;) = 0, and the processing
for k; completes.
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Otherwise, we choose w, = argming<j<, {ded(qi, wg-" )}
and its two bounding values DL(wY') and DUW?), and let
d'B(g;, w;) equal min((dea(qi, w¥') — DLW)), dea(qi, wo)—
DU(wY'))). Then, by using all the d“B(g;, w;), DEB(q, G;) can
be obtained through (1).

Finally, D2 (q, Gi) = & x Di*(q, Gi) + B x Dif (¢, G) +
y x DB (g, Gy

Lemma 4: Given a top-k A2SKIV query g = (¢-W,q-V, g-
L, k) and a subgraph G;, if DLB(q, G;) > Dins(q, 0k), where o
is with the same meaning of Lemma 1, and DLE(q, G)) is the
lower bound of the textual-numeric—spatial distance between
query g and any object o in G;, G; can be ignored.

Proof: Since D{;E (g, Gi) = Dus(q, ox), for any object o €
Gi, there exist at least k objects whose textual-numeric—spatial
distance between query g is smaller than that of o, thus o
cannot be a top-k result object. Hence, G; can be ignored. W

B. A’SKIV Query Processing Algorithm

Now we are ready to discuss the AZSKIV query processing
algorithm using STAG-tree index, which is called A2S?KG.
It takes as inputs an STAG-tree ST and an AZSKIV query
q = (q-W,q-V,q-L,k), and outputs the result object
set Sresult- AZSZ2KG progressively accesses the nearest sub-
graphs and retrieves the most relevant objects. Finally, the
k objects with the smallest textual-numeric—spatial distance
value, Diys(g, 0), form the query result set.

The detailed steps of the A2S2KG algorithm are shown in
Algorithm 1. First, a min-heap HG is initialized to empty
for organizing the nodes (subgraphs) or objects to be visited.
Moreover, a set Sequir is adopted to keep the result objects for
query g, and a float Dy is initialized to be oo for keeping
the textual-numeric—spatial distance of the current kth nearest
neighbor from query g. In particular, HG is an ordered struc-
ture and D{;E (g, Pnode) is the key of a node (subgraph) Ppode
in HG.

A?S’KG first locates the leaf node (subgraph), leaf(q).
where g lies in. For each object o in leaf(q), it inserts o together
with its Dy,;(q, o) into heap HG, and updates D,y accordingly,
if Dis(g, 0) is no larger than Dy (lines 4-6). Then, it uses
pointer Ppo4e to keep the upper most node (subgraph) vis-
ited of ST and uses variable Pig to keep the lower bound
of the textual-numeric—spatial distance between query g and
Phodes i-€., DEB(q, PNode). Let Ppoge point to leaf(q) and Prg
be Dtlr‘,]s;(q, Pnode) (line 7), and then visit ST in a bottom-
up manner (lines 8-23). If HG is empty, the adjust function
is called to move Ppgge to its parent node and update Prg
accordingly (line 10). The adjust function will also process
each unvisited child nodes of new P, .4.. The detail steps of
the adjust function are shown in Algorithm 2.

Next, a tuple (c, dis) is popped-out from HG. Note that
(c, dis) is the head element of HG, and HG is ordered by
the (lower bound of) textual-numeric—spatial distances of its
elements from query gq. If dis, which is the (lower bound of)
distance of head element ¢ from query g, is larger than P,
then the query answer may be existed in the parent node of
Prode. thus the adjust function is called to move Ppogde to its
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Algorithm 1: A2S2KG Algorithm

: STAG-tree ST AG. AZSKIV query g=(q.W, q.V, q.L,
k)
output: Set Sp.guir
begin
Sresuty="; float Dy = +00; HG = 0
Locate the leaf node (subgraph) leaf(g) where g lies;
for each object o € leafiq) do
if Dins(q, 0) < Dy then
|_ HG .push(O, Dyy5(g. 0)); /lupdate D,y accordingly;

input

S e W e e

Node=1€af(q); PLe = DEE(q, Prode):
while (S| < k && (HG % B || Proge # Ro) do
9 if HG=§ then

-
= I

10 | Adjust(Pyoge, PLB, HG);

11 (c, dis)=HG.pop();

12 if dis > Prp&P,,4. # Rp then

13 | Adjust(Pyode, PLB. HG);

14 else

15 if c is an object then

16 | insert c into Sypqu:

17 else

18 if ¢ is a nonleaf subgraph then
19 for each unvisited child node s € ¢ do
20 | |_ Gjudge(s);

21 else

22 for each object 0 € ¢ do
23 L | Ojudge(o);

parent node and update Ppg accordingly (line 13). Otherwise
(dis <= Prp), there are three cases: 1) c¢ is an object, then
¢ is a result object since ¢ is the object with the minimum
textual-numeric—spatial distance (lines 15 and 16); 2) c is a
nonleaf subgraph, then for each unvisited subgraph s of c,
function Gjudge (shown in Algorithm 3) is called to process
each s; and 3) c is a leaf subgraph, then for each object o of
¢, function Ojudge is called to process o.

The detailed steps of the Adjust function are shown in
Algorithm 2. It first moves Ppqge to its parent node (line 2).
Then, for each unvisited child node s of Ppgge, the Gjudge
function (Algorithm 3) is called to check if s possibly con-
tains result objects, and if true, we calculate the lower bound
of the textual-numeric—spatial distance between s and query g,
i.e. D{;E‘ (g, 5). Finally, Ppg, which keeps the minimum value
of D]g,s (g. s) for all the child nodes of Ppeqe, is returned.

The pseudocode of the Gjudge function is shown in
Algorithm 3. For node s, Gjudge uses Lemmas 1-3, respec-
tively, to check if s is a qualified subgraph, otherwise, s is
safely pruned and 1, which is the uppermost limit of Di,s(g, 5),
is returned. If s is not pruned, we: 1) calculate DL <(q,5)
and 2) push s together with Df;g (g, s) into HG (update Dyk
accordingly), and return DE;E(q, 5) if D{;,E’(q, 5) < Ds(q. 01);
otherwise, s is pruned by Lemma 4 and 1 is returned, since
if DthE (. 5) > Dus(q, 0k), s cannot contain any result object.
The processing step of the Ojudge function is similar to that of
the Gjudge function, and so we omit the discussion for space
limitation.

Algorithm 2: Adjust Function

input : Py, Prg, HG
output: P;p
1 begin

Pnode=PnNode Parent;
for each unvisited child node s of Pnode do
Dy, s=Gjudeg(s);
if Dy < Prp then
|_ P L.B:Dms;

O S

Time Complexity Analysis: Finally, we discuss the time com-
plexity of the A?S’KG algorithm. Given an object 0 and a
top-k A2SKIV query g = (q-W, g-V, g-L, k), o is a candidate
result object for g if: 1) o-V contains all the numeric attributes
of g-V,ie.,Vg-V-Aj,1 <i<m,Jo-V-A; = q-V-A;, whose
probability can be represented as Pram(o) and 2) 3g; e g- W,
gj.signature N G;.signature # @, whose probability can be
represented as Prgm(o).

Thus, the total probability of an object o being a candi-
date object of g, Prcand(0), equals Pram(o) * Prgm(0). Note
here k result objects are required, the total number of objects
visited is (k/[Prcand(0)]). For each object o being visited,
the time costs for computing its D4(q, 0) and Dy4(g, 0) are
O(|q-W|x|o.tags|) and O(|q-V|*|o-V|), respectively. Assume
Wyis and Vy;s are the total numbers of distinct keywords and
distinct numeric attributes in the system, respectively. Thus,
the time complexity for textual and attribute matching in query
processing is O((k/[Prcanda(0)]) * (W dls dls))

To estimate the value of Pram(o), assume m and n are
the numbers of numeric attributes for o and g, respectively,
and m > n, we have, Pram(0) = CI % ([C'"dl_"_n],![ D=
([ les_n] / [C"‘ ]) Here, Cl is the number of combmauons of
taking i elements from a set of j.

For object o and query g, it is difficult to calculate the exact
value of Prgm(o), thus we use the probability of o.tags con-
taining at least one keyword in g- W to approximate Prgam(0).
Assume m and n are the numbers of keywords for o and g,
respectively, and m > n. Thus, we have

CWyn .
Henelbiies 1— _C'*-.;f:’ ifm<Wg,—n
1, otherwise.

Since we use the G-tree to compute the shortest path dis-
tances, the time cost for computing Dy (g, 0) is O(r *logt +
logf(|V|/r)*log2f* [V]) [37]. To sum up, the time comple)uty
of the A2S2KG algorithm is O([k/(Prcmd(o))]*( 2 AVI)+
T xlog T +loge(|V]/7) * long x| V]).

VI. SUPPORT ATTRIBUTES WITH INTERVAL VALUES

In real applications, the attribute value of an object is not
necessarily a specific value, but usually an interval of values.
In this section, we discuss extending our STAG-tree index to
handle this situation, where the attribute value of the object is
an interval of values.
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Algorithm 3: Gjudge Function

input : ST AG, AZSKIV query ¢, node §
output: Dg(q, )
1 begin
* in A ¥ -
2 if dip"(q, 5) > = ln(v_u.t_H 1) then

¥
3 |_ return 1;  //s is pruned by Lemma 1;

4 if Yq; € q.W, g;..signature N s.signature = ) then
|_ return 1;  //s is pruned by Lemma 2;

6 if A € q.V, such that Max(Ag)(orMin(Ag)) for G;.SGA
equals +0o then

7 |_ return 1;  //c is pruned by Lemma 3;

8 if Df‘mB(q, 5) > Dy then

9 | return 1;  //s is pruned by Lemma 4;

10 else

11 HG .push(c, Dfl;g(q, §)); /lupdate Dy accordingly;
12 return Dgi(q, 5);

A. Modification of Numeric Distance Calculation

First, we modify the calculation of the numeric distance
between query ¢ = (¢ - W,q-V,q - L, k) and object 0 =
(o.tags, 0-V, 0-L), for objects with attributes of interval values
(IV for short). Remember that numeric attribute distance refers
to the degree of difference between the values of query g and
object o under the same numeric attribute.

For query g and object o, the numeric distance d between
g and o for attribute A of interval values can be expressed as
follows:

400, if 0.A; not exists
0, if 0.Ar.IV C q.A;.IV
&= M, if 0.A;.IV does not intersect )
with g.Ap.IV
l0.Ap.IV|—
l0.Ag.IV N q.Ag.IV], otherwise.

Then, by using (3), we normalize each noninfinite numeric
attribute distance to range [0, 1], and comprehensively con-
sider each noninfinite numeric attribute distance to calculate
the total numeric distance between g and o.

Note: 1) My = Max(Ar)-Min(Ag); 2) if there is any query
attribute not existing in o - V, the numeric distance between g
and o, i.e., Dyy(q, 0), equals +-oo.

B. Index Modification

Next, we discuss extending STAG-tree index to support
queries and objects with attributes of interval values. In partic-
ular, the A-ref part needs to be modified to accommodate the
interval values of numeric attributes for objects and queries.

In Section IV-A, for each numeric attribute Ay (1 < k <
n), we use [k — 1, k) to represent attribute-value range of Aj.
Moreover, we map o0;.Vi, which is the attribute value for Ay
of object o; within G;, to the value range of Ay by the key
y(of-") = ([0;.Vi]/My) + k — 1(1 < k < n). To accommodate
the interval values for attribute Ay, we use 0;.Vi.L and 0;.V;.R
to represent the left and right bound of the interval values for
0;.Ay, respectively. Then, map 0;.V}.L and 0;.V}.R to the value
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Aref:
AAA A Ag PMAAAA AP A AR
E \_/'\/\/\/\/'\-/
\/A(\srgge\/ A's range A's range A's range
Fig. 6. A-ref modification.
TABLE II
CHARACTERISTICS OF THE DATA SETS
Attribute FL CAL
Number of vertices 1,070,376 | 21,048
Number of edges 1,356,399 | 21,693
Number of objects 10M 200k
Avg. number of keywords in objects | 6.1 52
Avg. number of attributes in objects | 4.3 4.1
Number of queries 1k 1k

range of Ay by the key y(o{-‘.L) = ([0i.Vik.L1/My) + k— 1 and
y(0;.R) = ([0;.Vi.R1/My) + k — 1(1 < k < n), respectively.

Example 4: As shown in Fig. 6, we add the fourth numeric
attribute, i.e., A4 (business hours), for the objects in the system,
and the value range of A4 is [3, 4). Assume that the business
hours for og are from 8:00 to 12:00, and M4 = 24 since there
are 24 h in a day. Thus, we have y(og.L) =(@8/24)+4—-1=
3.33, and y(og.R) =(12/24)+4 —1 = 3.50.

The query processing steps are similar to that in Section V,
except for the calculation of Dpq4(q, 0).

VII. PERFORMANCE EVALUATION
A. Experimental Settings

1) Data Sets: We use two data sets, Florida (FL for short)
and California (CAL for short), to test the performance of
the proposed methods. FL. and CAL consist of the traffic
network, the users, and points of interest (POIs) of Florida
and California, respectively. The object information for CAL
comes from the Geographic Names Information System in
the United States (geonames.usgs.gov/domestic). Each object
includes an object ID, a textual description, and a location
within the road traffic network. For the FL data set, we use
the objects extracted from Twitter (www.twitter.com), and each
object includes an object ID, a Twitter message, a time of pub-
lication, and a location in the Florida transportation network.
The detail information of FL and CAL is shown in Table 1I.

2) Queries: To evaluate the performance of A?'SKIV, we
generate a set queries, including locations, keywords, and
attribute-value pairs. The keywords and attributes of AZSKIV
queries are also obtained from Twitter. In addition, attribute
values are randomly selected and range from 1 to 1000. The
number of query keywords and query attributes ranges from
1to 5 and 1 to 4, respectively, with a default value of 2.

3) Algorithms: Our STAG-tree-based method (STAG for
short) will be compared with two baseline methods, DBM [26]
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TABLE III
EVALUATION PARAMETERS USED IN THE EXPERIMENT

Values

FL: 2,4,6,8,10 (M)

CAL: 10,50,100,150,200 (K)
Number of query results (k) 5,10,15,20,25

Number of query keywords (|¢.W1])[1,2,3,4,5

Number of query attributes (|¢.V]) [1,2,3,4

Preference parameter o 0.1,0.2,0.33,04,0.5
Preference parameter 3 0.1,0.2,0.33,04,05
Preference parameter -y 0.1,0.2,0.33,04,0.5

Parameter
Object cardinality ([D])

and ILM [29], in terms of memory consumption and process-
ing time. Specifically, DBM is based on the Dijkstra method.
Starting from query g, DBM performs network expansion
for candidate objects and calculates the textual-numeric—
spatial distance of the object o encountered from query g,
i.e., Dins(g, 0). In order to accelerate the calculation of long
road network distance, a multihop distance labeling scheme is
adopted. ILM is an inverted-list-based scheme. For each key-
word w, let the set of n-grams [32] contained in w be §,,. Thus,
for object o, we have S, = Uyyep.tagsSw- For each n-gram ¢,
a list /; containing the ID of objects, whose n-grams contain
¢, can be obtained. For each query keyword g; € g - W, S
is computed, and then by using the heap algorithm [38], the
object lists Iy;s (for each § € Sg;) are merged, to get a new
list /;, of objects for g;, whose objects are sorted in descend-
ing order of |Sy; N S,|. Thus, the objects sharing no common
n-gram with g can be safely pruned. Similarly, for each query
attribute A;, we also have a list l4; containing the ID of objects
which contain attribute A;. Thus, the objects do not contain all
the attributes A; € g - V are ignored.

B. Efficiency Measurement

This section evaluates the performance of three methods
by varying the object cardinality, number of query results
(k), number of query keywords, number of query attributes,
and the values of preference parameters («, 8, and y). The
memory space for query processing is also studied. The main
parameters and their values are shown in Table III.

1) Memory Consumption: The memory consumption of
three methods is shown in Fig. 7, which increases as the num-
ber of objects increases. The more objects, the more storage
space they take up. Generally speaking, STAG and ILM con-
sume more memory resource than that of DBM for both FL
and CAL data sets. For ILM, the reason is that it builds an
inverted list for each keyword and attribute, and the object
IDs store multiple copies in inverted lists. As for STAG, we
build T-ref and A-ref part to keep the textual and numeric
information of each object.

2) Effect of |D|: The running time of methods with respect
to the number of objects in the system is shown in Fig. 8. It
is observed that STAG outperforms its competitors. On aver-
age, the STAG-based approach is about 1.87x (17.1x, resp.)
faster in processing time than the compared ILM (DBM, resp.)
method. It is due to the fact that STAG can prune huge amounts
of unpromising objects based on network distance, textual
similarity, and attribute similarity, simultaneously. Fig. 8 also
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Fig. 9. Effect of k on processing time. (a) FL data set. (b) CAL data set.

shows that the running time of three methods increases as the
object cardinality increases. It is natural since more related
objects need to be considered when there are more objects
in IoV. Moreover, STAG and ILM are much more scalable
on the FL. and CAL data sets than DBM, because DBM
checks objects in the order being encountered. On the contrary,
STAG and ILM arrange the objects according to keywords
and attributes. Therefore, objects that do not contain all
query attributes (or do not have any keyword similar to any
query keyword) can be pruned securely, which makes both
approaches more scalable than DBM.

3) Effect of k: The effect of value k (number of results
wanted) on the running time of STAG, ILM, and DBM is
evaluated. Fig. 9 shows that STAG significantly outperforms
ILM and DBM, since it uses the STAG-tree index to prune
large parts of unqualified objects. On the contrary, DBM per-
forms the worst because it examines all the objects in the order
being encountered and then computes their textual-numeric—
spatial distance values. As for the stability of methods, when
the value of k varies, all methods incur higher cost with larger
k, because the larger £ is, the more related objects need to be
examined. For STAG, the increase of k value has no obvious
effect on the performance due to the effective pruning scheme.
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Fig. 11. Effect of |g-V| on processing time. (a) FL data set. (b) CAL data set.

4) Effect of |q-W|: We also evaluate the query performance
when the number of query keywords, |g - W|, varies. Fig. 10
shows that the running time of all methods increases with the
increment of |q - W|. For STAG and ILM, the reason is that
an object with any keyword similar to any query keyword has
a chance to be one of the query results, thus more qualified
objects need to be considered with larger |g - W|. The pro-
cessing time of DBM increases slightly with larger |q - W],
because it requires more computation time to calculate the
textual-numeric—spatial distance values of objects. Not sur-
prisingly, STAG gets the best performance of three methods.
For example, STAG requires only 36.4% (6.3%, resp.) pro-
cessing time of ILM (DBM, resp.) when |q - W| equals 3 for
FL data set.

5) Effect of |q-V|: Now we continue to evaluate the impact
of number of query attributes, |g- V|, on performance of three
schemes. Fig. 11 shows that all methods incur less processing
time with larger query attributes. The reason is twofold. On
the one hand, a candidate object is needed to contain all query
attributes, and the more query attributes there are, the fewer
eligible objects there are. On the other hand, the calculation
of numeric distance values for candidate objects is little more
difficult with more query attributes. Overall, the former out-
weighs the latter, so the total processing cost of the methods
decreases as the number of query attributes increases. It is
worth noting that the decreasing tendency of STAG is more
obvious than its competitors due to its significant pruning abil-
ity, i.e., most of the cells (subgraphs) in STAG tree can be
ignored as more attributes are queried.

6) Effect of o, B, and y: Parameters o and 8 control the
importance of textual and numeric similarity between queries
and objects, respectively. When the value of o or f changes
separately, there is no fixed impact pattern on the performance
of query processing. As a result, we do not give the results of
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Fig. 12. Effect of ¥ on processing time. (a) FL data set. (b) CAL data set.

o and B for effective measurement, and only show the impact
of y on query efficiency. Note that varying the value of y
means varying the sum of o and B. Fig. 12 gives the query
performance of these three methods for different p values.
Again, our STAG significantly outperforms its competitors.
On average, it incurs only 38.0% (6.5%, resp.) query time of
ILM (DBM, resp.) for the CAL data set. As for the stability of
methods when the value of y varies, three methods incur lower
cost with larger y, since larger ¥ means the spatial proximity
between the query and objects becomes more important, thus
the candidate objects may locate within a more concentrate
range and fewer relevant objects need to be considered.

VIII. CONCLUSION

This article formulated and solved fog-computing-based
AZSKIV in IoV. A fog-based network structure FCV is
adopted to improve query processing efficiency and reduce
query feedback time. To deal with AZSKIV queries, a two-
level hybrid index STAG-tree is proposed, whose first level is
a G-tree which accelerates the calculation of the network dis-
tance between objects and the query, and whose second level
is the textual and numeric component which efficiently orga-
nizes the information of objects within the subgraphs of traffic
network in IoV. In addition, several lemmas are presented to
prune a huge number of unqualified textual-spatial objects,
and an efficient top-k AZSKIV query processing algorithm
was presented. The effectiveness of the proposed index and
query processing algorithm is verified by extensive experimen-
tal evaluation using real and composite data sets. The results
also showed that the proposed scheme is effective in appli-
cations, such as mobile search and targeted location-aware
advertising in IoV.
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