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Energy-Efficient Power Control in Wireless
Networks With Spatial Deep Neural Networks

Ticao Zhang and Shiwen Mao ', Fellow, IEEE

Abstract—The energy-efficient power control of interfering
links in a large wireless network is a challenging task. In this
paper, we propose a deep learning based power control scheme,
termed PowerNet, that uses the devices’ geographical location
information (GLI). We show that it is possible to bypass the
complex channel estimation process and directly perform power
control with GLI when the channel state information (CSI) can
be viewed as a function of distance dependent path-loss. The
time consuming and complex channel estimation process can
thus be avoided. Moreover, with a proper training, PowerNet
transforms the on-line complexity to off-line training, and is
amenable for real-time services. Different from conventional deep
neural network (DNN) that adopts fully connected structure,
the proposed PowerNet leverages convolutional layers to better
capture the interference pattern across different links in large
wireless networks and utilizes deep residual learning to fur-
ther enhance its robustness. Simulation results demonstrate that
PowerNet can achieve a near-optimal performance at a remark-
ably high speed without explicit channel estimation. PowerNet
also exhibits a great generalization ability in terms of problem
sizes and channel fading types.

Index Terms—Deep learning, energy efficiency, power control,
interference networks.

1. INTRODUCTION

NERGY efficient power control is one of the most impor-

tant issues for the sustainable development of future
wireless networks [1], [2]. It is estimated that the energy-
efficiency (EE) will increase 2000 times compared to the
present networks [3] and the number of connected devices
will reach 50 billions by 2020 [4]. If nothing is done, the
corresponding green house gas emissions will bring a severe
impact on global warming. On the other hand, restricting the
connection of devices is unrealistic. In view of this, there
has been continued interests in improving the EE of wireless
network systems, i.e., maximizing the amount of transmit-
ted bits per joule consumption. This topic is of fundamental
importance to a variety of practical communication scenarios,
such as massive MIMO systems [5], wide-band systems [6],
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D2D networks [7], relay assisted MIMO networks [8], multi-
cell and/or small-cell orthogonal frequency division multiple
access (OFDMA) networks [9].

The EE of a wireless link is defined as a ratio, as
Rate[bit/s]

Power consumption| W]’

EE [bit/ Joule] = )
Due to the fractional nature of energy-efficient performance
metrics, conventional convex optimization theory cannot be
applied directly. Instead, duality theory and fractional pro-
gramming [10] provides a set of suboptimal solutions.
Unfortunately, due to the existence of link interference, the
numerator of EE is usually non-concave. The EE maximization
problem is thus NP-hard in general [11], [12]. It is shown
in [11] that a global optimal solution incurs an exponentially
growing complexity. Due to limited computation capacity and
stringent delay requirements, especially in a large network, it is
almost impossible to perform real-time optimal power control.

In viewing of this, several sub-optimal methods are
proposed for EE maximization problems. One common
approach is the interference cancellation technique. In [13],
the multiuser interference is mitigated with the presence of
a larger number of base station antennas. In [14], an iterative
algorithm is developed to maximize the EE with orthogonal or
semi-orthogonal subcarrier allocation schemes. However, these
works require a large number of wireless resources (orthogonal
channels) and often lead to a poor performance. Another line
of approach is alternating optimization, which is not optimal
but enjoys limited (typically polynomial) complexity. In [15],
EE is optimized by solving a series of concave-convex frac-
tional relaxations. This way, the difficult problem is tackled by
solving a series of easier approximating problems. Following
this idea, in [11], a sequential fractional programming algo-
rithm is integrated into fractional programming to compute
a suboptimal power control with an affordable complexity.
Contributions in this sense also include [8], [16]. [17], which
consider multiple antenna system, millimeter-wave system,
and full duplex systems, respectively.

However, most of the existing approaches use iterative algo-
rithms. They do not lead to a simple online implementation
and do not provide a closed-form solution. The computa-
tion demanding nature would make real-time deployment a
challenging task, especially in the rapidly changing large-
scale wireless environment. For example, in vehicle-to-vehicle
(V2V) communication where the road safety and traffic effi-
ciency directly depends on the network delay, simply relying
on conventional methods that perform channel estimation
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first and then computing the optimal power control with
iterative algorithms would waste a lot of time and channel
resources. The state-of-art approach would not be able to meet
the stringent delay requirement of the V2V communication
system.

Nowadays, deep learning has achieved great success in com-
puter vision, natural language processing, and many other
applications. Recent results have already demonstrated that
deep learning can be viewed as an efficient tool in solving
communication problems, such as channel estimation [18],
[19], signal detection [20]-[22], channel modeling [23]-[25],
beam selection [26], [27], resource allocations [28]-[30],
indoor fingerprinting [31], [32], and smart congestion con-
trol [33]. Of all the existing works, we are particularly
interested in making real-time resource allocation practical
with the aid of deep learning. In [28], a small deep neu-
ral network (DNN) is adopted to approximate a popular
interference management algorithm to maximize the sum-rate
of a network with high-accuracy. The computation time is
significantly reduced. Reference [29] proposed a framework
where a deep Q-network (DQN) is adopted to estimate a
suitable schedule and then a DNN helps to allocate power
based on this schedule to maximize the sum rate of a cellular
network. Reference [34] proposed an unsupervised learning
method to tackle the problem of the lacking of ground truth.
A DNN based optimal power control is developed in [30] to
maximize the EE of a wireless network. The developed DNN
based solution is shown to be virtually optimal with extremely
low online complexity.

However, the current DNN based resource control algorithm
is centralized. In order to perform the optimal power control,
the BS needs to know the instant channel state information
(CSI) on all the links in the network. This is sometimes
unrealistic and would cause considerable delay, especially in
large networks. Motivated by the fact that in some networks,
the second order channel statistic varies slowly and the CSI
can be viewed as a function of the distance dependent path-
loss, we investigate the possibility of training a spatial neural
network (NN) with transmitter-receiver geography location
information (GLI), which can be easily obtained by cur-
rent global positioning systems (GPS) or indoor localization
techniques [31], [32]. This way, we no longer need a com-
plex channel estimation process and the response time can
be greatly reduced. Moreover, the learning ability of current
DNNSs degrades significantly with the increase of the problem
size. Although increasing the size of the DNN can help to
alleviate this problem, the learning power is till limited and
sometimes the training loss does not decrease. To tackle this
problem, we introduced convolutional layers to better capture
the interference pattern across different links. This kinds of
structure shows great learning ability in large size problems.
Besides, Motivated by the success of residual learning, a feed-
back connection is introduced to enhance the robustness of the
developed NN. With the adoption of NN, the computational
burden is transformed from on-line to off-line. The developed
method is thus amenable for real-time applications.

Simulation results show that our proposed NN, which we
call PowerNet, can achieve a better performance in terms

of EE than the several benchmark schemes. Also, PowerNet
shows great generalization ability and robustness in terms of
both problem sizes and channel fading types. Our simulation
results demonstrate that using only GLI to perform optimal
power control is possible when channel fading is mainly char-
acterized by distance based path-loss. The performance may
decrease slightly when channel shadowing and fast fading
effect is added. However, the complex channel estimation pro-
cess can be avoided and the time delay can be greatly reduced.
Due to the parallel computation in NN, the deep learning
based method is almost 1000 times faster than the conventional
iterative optimization algorithms.

This paper is organized as follows. in Section II, we
introduce the system model and formulate our problems.
In Section III, a successive pseudo-convex approximation
(SPCA) algorithm is proposed to find a sub-optimal solution.
With the SPCA algorithm, we generate the geographical-
distance and power-allocation pairs as training data. In
Section IV, we present the proposed PowerNet to learn the
mapping between the geographical-distance and the resulting
power control schedule. In Section V, the system simulation
setup is introduced. In Section VI, our simulation study is
presented. Section VII concludes the paper.

Notation: We use x, X and X to denote scalar, vector and
matrix, respectively. z; j denotes the (i, j)th element of X; z; is
the ith element of x while x = (:4:1)*;\;1 andx_j; = (z;—)é\rzl‘#j
denotes all elements of x except z;.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a cell area with N independent D2D links, denoted
by D, randomly located in the two-dimensional region.
The transmitter and receiver pairs are indexed by i € D.
Suppose the transmit power of the ith link is denoted as p; and
hy; is the channel power gain from the transmitter of the jth
link to the receiver of the ith link, which can be modeled as

hij = gijig, @

where g;; is the small-scale fast fading power component and
ay; is the large-scale fading power component consisting of
path-loss and shadowing.

Let p= [p1,p2,---,pN] denote the power vector, then the
weighted sum rate R(p) and the total power consumption P(p)
can be expressed as

R(p) =) wiRi(p) 3)
ieD

P(p) = Z (Bpi + Pei), @)
ieD

respectively, where

hiipi )
Y jeD i hijpj + 03 )’

is the data rate on link i, w; is the weight of link i, [ is
the inefficiency of the link’s power amplifier, P ; is the fixed
circuit power consumption of link i (including baseband, RF
chain, phase shifters, and power amplifiers), and cr;‘; is the

Ri(p) = log(l +
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background noise. Hence the EE maximization problem for
the entire system can be formulated as

__ R(p)
(P1) s mee(P) = o) (6)
sit.  p; € [0, pmax], (7

where (7) denotes the peak power constraint at each link.

The goal of this paper is to develop an energy-efficient
power control algorithm, while the challenges include

1) In large networks, it is time consuming and resource
demanding to obtain the exact CSI for each link. Even
if the CSI is obtained, it may change rapidly. The CSI
update process will consume a significant amount of
resources.

2) The objective of (P1) is in the form of a sum of fractions.
Such problems are in general NP-hard [35], and thus
cannot be solved with a polynomial complexity using
existing optimization methods.

3) Considering the fact that the current wireless transceiver
design are typically executed at a timescale of mil-
liseconds, the computationally demanding nature makes
real-time implementation highly challenging. Indeed,
any change in channel realizations or number of users
will lead to a quite different power allocation. Therefore,
it would be of great importance to develop an algorithm
to solve (P1) within the channel coherence time.

To address the problem of lacking CSI, we model chan-
nel fading as a distance-dependent variable. This is generally
reasonable since in most cases, the devices’ relative positions
already capture the main features of the channel. Hence, we
can simply perform optimal power control based on geograph-
ical location information (GLI). In practice, the GLI can be
obtained via current GPS or other positioning approaches with
reduced cost. To enable real-time power control, we will intro-
duce a spatial learning method to approximate the mapping
from GLI to optimal power control. This way, the online com-
putational cost will be transferred to off-line training. A much
faster response can thus be achieved.

III. A SUCCESSIVE PSEUDO-CONVEX
APPROXIMATION APPROACH

The global optimal solution to (P1) can be found with the
branch and bound algorithm [36], which has an exponential
complexity in terms of the number of variables [11]. The
authors in [11] exploit the hidden monotonicity in the objec-
tive function to reduce the searching region from the entire
feasible set to the problem boundary, but the complexity to
find the global optimal is still exponential. When the num-
ber of links is large, this algorithm may not be suitable for
real-time operation. Therefore, we resort to a more practical
yet also sub-optimal algorithm, which we call the successive
pseudo-convex approximation (SPCA) approach [37] in this
paper.

The main idea of SPCA is to approximate the objective
function of (P1) with functions that have specific properties
(e.g., convexity) and then to obtain the solution to the original
problem by solving the approximation problem. Specifically,

we expand the nonconvex sum rate function in the numera-
tor of (6) with a first order Taylor series. Then the expanded
function is positive concave. Since the denominator of (6) is
a linear function, we retain it and do not make any changes.
The objective function (P1) is thus approximated by a pseudo
concave function (as the ratio of positive concave and linear
functions), which can be solved by some iterative algorithms
(see Definition 2). Also, this approximation ensures that the
original problem (P1) and the approximated problem shares
the same sets of stationary points (see Definition 3). Instead of
searching for the stationary points of (P1) directly, we search
the stationary points of the approximation problem. Pseudo
concavity ensures that the resulted stationary points are global
optimal for the approximated problems.

A. Mathematical Preliminaries
Let f : RY — R be a differentiable function with a

continuous gradient.
Definition 1: A function f(x) is convex if

N >f@+ViX)Ty-x, wyed, 8

af a8 (&) : i
where Vf(x) = (-azil, 3%: ; "15%) is the gradient of f and
X C RY is a closed and convex set.
Definition 2: A function f(x) is pseudo convex if

Vi@ T(y—x)>0= f(y) > fx), ¥x,yeX. (9

Definition 3: A point y € X' is a stationary point of f(y) if

Vi) T(x—y)>0, xedi. (10)

Remark 1: If a function f(x) is (pseudo) convex, then —f(x)
is (pseudo) concave.

Remark 2: For convex (concave) optimization, stationary
points are global optimal. For nonconvex optimization, station-
ary points are local optimal. Any stationary point of the pseudo
convex optimization is also global optimal [38, Th. 9.3.3].

B. A Successive Pseudo Convex Approximation Approach

1) The Main Idea: To begin with, we expand the sum rate
function (3) at a reference point p = p’ with a first order
Taylor series as:

R(p) ~ R(p;p*) = ) wiRi(pi;p"), (11
ieD
where
Ri(pi;p') £ Ri(pispti) + (pi—pf) D VR (pY),
ge’DJ;éz' )
Pr;cei
(12)

where Rz-(pi;pt_i) denotes the rate function of the ith user
with its transmitting power to be p; while all the other powers
are fixed to p-; = {pj};4s, ie.,

hiip;
. (13)
Y jep jpi hijp + 0}

R;(pi;p;) =log (1 -
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It can be seen that ijR,:{pg;pt) = 0,¥i # j. Before
proceeding, we show first how good the approximated func-
tion (11) will be. _

Proposition 1: R(p;p?) is differentiable, both its value and
its gradient is the same as that of R(p) at p = p’.

Proof: 1t is obvious that R(p; ]Jt)|p:pa = R(p)|p—pt- Due
to the log function, the resulting first order expansion will also
be differentiable. Now let us look at the derivative, which is

Vpiﬁz'(}"h )lpg t—vp,Rt(Ph

=Vp, Z Rj (pt)

jeD

)Ip! ¢ + Price;

= VPER(D)lF':pt. (14)
On the other hand, we have
Vs R(0;0") lp—pt = Vi | Y, R;(pisp")
jeD p=p*’
= V. By (053 9") [, _pet- (1s)

Comparing (14) and (15), we conclude that the approximating
first order funciion shares the same gradient at the reference
point p = p |
Proposition 2: R(p, pt) is concave.
Proof: Due to the log nature, each R;(p;;p’ ;) is concave
in p; since

OR;(pi; ;) _ o
Opi c1 + c2p;
82Ri(pi;p".;) ¢
2 = 3 <0,
9 p; (e1 + eapi)

where ¢; = EJGD i i} + o2 and ¢y = hy;. The second
part in (12) is a linear function in terms of p;. Hence each
Ri(p;; p_?’) is a concave function. R(p pt) is the sum of finite
concave functions, hence it is also concave. |
For the original function R;(p), it is concave in terms of
p;i but non-concave (actually convex) in terms of p;, for all
j # i. By linearizing the non-concave part {R;(p)}jeD j£i
w.rt. p; at pf, we obtain a strictly concave function in terms
of p;. Apart from concavity, the approximating function also
approximates (P1) well, in terms of both gradient and value.
This way, the EE defined in (6) can be approximated by

R(p;p’)
P(p)
Remark 3: Since the denominator in (16) is linear w.r.t. p,

the approximating function 7gg(p;p?) will approximate the

original function ngg(p;p?) well in terms of both value
and gradient. Moreover, since the numerator now becomes
concave, 7gg(p; p’) will be pseudo-concave.

After all the preparation, now we introduce the idea of the
SPCA approach here. Our goal is to find an optimal point
of (P1) with reduced cost. Due to the non-convexity of (P1),
we can only find a sub-optimal solution by searching for the
stationary point of (P1) (see Remark 2). However, directly
searching for the stationary point of (P1) is hard. Instead, we

(P2) fgr(p;p?) = (16)

/
V?}'EE(P)|p=p0 > 0: p* > pO

Fig. 1. Tllustration of (18).

search for the stationary point of the approximating problem
(P2). Although our function approximation in (16) does not
guarantee that (P1) and (P2) shares the same stationary points,
we can still use some nice properties of (P2) (see Remark 3) to
find the stationary point of (P1). Specifically, (P2) is pseudo-
concave, hence its stationary point can be easily found by
searching for its maximal point. With the stationary point of
(P2) together with the property that (P1) and (P2) have the
same gradient and value at this point, we can search for the
stationary point of (P1) at a reduced cost. The obtained station-
ary point will be a possible optimal (may still be sub-optimal)
point of (P1).

2) Algorithm Design: Now we introduce an iterative algo-
rithm to find the stationary point of (P1). As shown in
Algorithm 1, we first choose an initial point p = p° and
expand the rate function at this point. In Line 3, we search for
the point p* so that p* maximizes the approximated function
(P2). Due to pseudo concavity, p* is a stationary point of (P2).
If p* happened to be the stationary point of (P1), the iteration
stops. Otherwise, since (P1) and (P2) have the same gradient
and value at p = p{},

(P* —p) - ViEE(P) |p—po > 0, a7

implies that
(p* B p) ’ VTJ’EE(pr:pD > 0. (18)

There must exist a point of (P1) between p* and p? that
maximizes (P1) as shown in Fig. 1. Hence in Line 4, we
use a step-size to linearize the points between p* and p9
to reduce the searching space. Suppose we find a point p!
that maximizes (P1). Then we expand (P1) at point p! again
and continue the process. The sequence p’ generated by
Algorithm 1 keeps on increasing the objective function of (P1).
Since problem (P1) is nonempty and bounded, the monotone
convergence theorem (MCT) ensures that pt converges to a
limit point. Due to Line 4, each limit point is a stationary
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Algorithm 1 The Successive Pseudo Convex Optimization
Algorithm

1: Initialize t = 0 and p° € P;

2: while |[ptT! — pf||z > e do

5 Compute the optimal power control of the approximat-
ing pseudo problem

p* =argmax figg(p;P); (19)
peP
4: Compute the step size v¢;
7' =argmax 7Ee(P’ +7(@*—pY));  (20)
0<y<1
5. Update ptt! by
p =pt+4 0" ~p%); @

6: t =t-1;
7: end while

Algorithm 2 Dinkelbach’s Algorithm to Solve (19)

1: Initialize A° with F(A°) > 0 and j = 0;
2: while [N — Xt > e do
3 p*=argmax F(M,p;p’);

] peP
4 Nt =igg(p*;pt):
s j=j+1

6: end while

point to (P1). This way, we find an optimal point of (P1),
although it may not be the global optimal.

3) Algorithm Implementation: The proposed algorithm can
find a stationary point of (P1) very quickly and efficiently.
To implement Algorithm 1, the main difficulty comes from
solving problems (19) and (20). Problem (19) is in the form
of fractional programming. Hence we can use Interbranch’s
algorithm [39] to find the optimal solution in an iterative way.
The objective function of problem (20) is nonconvex and hence
it is non-trivial to solve. One promising solution is to reduce
the step-size iteratively and search successively.

The Dinkelbach’s algorithm is presented in Algorithm 2,
where the function F'(\,p;p?) is defined as

F(X\p;p!) = R(p;p') — AP(p).

In each iteration, the algorithm first finds the optimal p*
that maximizes function F(M,p;p?). Then parameter )\ is
updated. It should be pointed out that the Dinkelbach’s algo-
rithm is guaranteed to find the optimal solution of problem (19)
and converges at a super-linear speed. Moreover, problem (19)
can be actually solved in parallel as we decompose F to
multiple parallel F; as follows.

(22)

p; = argmax  Fj(}, pg;pt), Vi e D, (23)
P €[0,Pmax]
where
F; (,\, pg;l}t) = w;R; (pi; Dt) — f\(ﬁpé + P, ;),VieD.
(24)

Note that each F); is a concave function. Therefore, its max-
imum value can be obtained by setting its derivative to 0 or
simply by solving a standard convex optimization problem
very efficiently. Here we simply set the derivative to 0 to have

o 2
w; _ Ljep,j#ihipj +on

Be= )\,8 a w.,;PI'iCE:g hﬁ (25)

To satisfy the power constraints, we choose p; =
max{0, min{p;, pmax }} S0 that p; falls into the interval
[0, Pmax]- Note that this algorithm can be extended to an arbi-
trary power constraint interval [ppin, Pmax] Simply by setting
pi = max{ Pmin, MIn{p;, Pmax } }-

For problem (20), an exhaustive search for the optimal value
of A is computationally prohibitive. To reduce complexity,
we set the step size as 4* = 7™, where m is the smallest
nonnegative integer m satisfying the inequality in (26).

mee (P! + 7™ (p* — p°)) < nen(p’)

+ nr™ Ve () (0 - DY), (26)
where p € (0,1) and 7 € (0, 1) are two scalars. Note that we
do not choose a constant step size because if the step size is too
large, divergence may occur; if the step size is too small, the
convergence rate may be very slow. In our simulation study,
we choose p = 0.01 and 7 = 0.5. This successive searching
algorithm helps to balance the tension between complexity and
accuracy.

IV. DEEP LEARNING BASED POWER CONTROL

As can be seen, Algorithm 1 requires iterative loops with
complex operations. Specifically, the outer loop refines p? iter-
atively. In each loop, the iterative Dinkelbach’s algorithm is
applied to solve the sub-problem (19) and successive search
is used to solve the sub-problem (20). These iterations sig-
nificantly slow down the computational speed, which make it
hard for real-time operations.

We aim to develop a real-time system that enables opti-
mized power control with low complexity. Thanks to various
advanced machine learning techniques, we can produce a
model based on which the target values can be predicted. The
essence is to learn a function offline and with the learned func-
tion the algorithm can be deployed online. Since the instant
precise CSI is generally hard to obtain, we will use the GLI
for computing the optimal power controls. Suppose dy; is the
distance between the transmitter of the jth link to the receiver
of the ith link, we can first model the channel state h;; as a
function of d;; and then get the corresponding power control
with Algorithm 1 in the off-line stage. Note that Algorithm 1
is quite general. If precise CSI hy; is provided, it computes
the optimal power control solution. If only statistical or noise
corrupted h;; is available, the corresponding power would be
sub-optimal, but still feasible. To enable real-time response in
the on-line stage, we aim to find a function that maps {d;; } to
{pi}, given a training set of instance-label pairs ({dj}, {pi})
(i e D).

Authorized licensed use limited to: Aubum University. Downloaded on August 01,2020 at 03:51:54 UTC from |IEEE Xplore. Restrictions apply.



116 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2020

NZ
] 200
N
100
50
{dij } —>] > —> |:|—> {p:}
|| Dense
— Dense Dense Dense
Vectorize
=3 Relu - Sigmoid

Fig. 2. The structure of the DNN.

A. Deep Neural Network Model

DNN has the ability to learn complex input-output rela-
tionships due to the universal approximations [40]. As shown
in Fig. 2, it is composed of several layers. An input layer
forwards the input data to the rest of the network, hidden lay-
ers process the input data and finally an output layer applies
the final processing. DNN usually has more than one hid-
den layers. In this paper, we adopt a feedforward NN with
fully-connected layers. An input vector xg of dimension Ny
is feed to the network through the input layer, which also has
No neurons. Then it passes through L hidden layers, where
layer [ has N; neurons. Finally, the output layer processes the
information that comes from the last hidden layer. The neuron
n(n=12,...,Np in layer / is modeled as

xi(n) = fo,t (Wi i1 + b )

where W, ; € RNi-1 is the weight vector of the link between
all the neurons in layer / — 1 and the nth neuron in layer /, by, |
is the bias term of neuron n in layer [, and fy, ; is the activation
Junction which provides nonlinearity. The problem reduces to
train the weights W, ; and bias terms b, ; of the NN so that
the input-output map of the NN emulates the desired input-
output map. In this paper, the Rectified Linear Units (ReLU)
function is used in the hidden layers. Additionally, to force the
output satisfy constraints (7), we adopt the sigmoid function
as the output activation function to map the generated power
control to the interval [0, pmax]. In this paper, we choose a
DNN with three hidden layers with 200, 100, and 50 neurons
in each layer, respectively.

27)

B. Proposed PowerNet

Despite that DNN shows a promising performance in func-
tion approximation, it has several drawbacks. First of all,
the interference pattern of neighboring links depends on the
GLI, which is two-dimensional. While the input to a DNN
should be one-dimensional. In order to process the data, DNN
vectorizes the GLI matrix as shown in Fig. 2 and then feedfor-
ward the data to the following neuron units. For small-sized
problems, this operation may work well. However, for a large-
sized problem, the vectorization process will inevitably lose

some important features, leading to performance degradation.
Moreover, when the problem size becomes large, a larger and
deeper DNN is needed for sufficient learning power. A fully
connected structure may not be efficient and optimal. In some
cases, the training process may not converge if the parameters
are not set properly. As a result, we will fail to get a proper
trained NN.

In this paper, we exploit the popular convolutional neu-
ral networks (CNNs) to capture the spatial local correlation
by enforcing a local connectivity pattern among the neu-
rons of adjacent layers. The proposed DL architecture, named
PowerNet, is presented in Fig. 3. As can be seen, the first part
of PowerNet is a convolutional layer with two-dimensional
GLI as input. The dimension of the convolutional layer is
N x N x 2, where the values 57 x Sy x S3 denotes the
length, width and the number of feature maps, respectively.
We use kernels with dimension 3 x 3 to generate a feature
map. Following the first convolutional layer, the features are
fed into two residual learning blocks. Each residual learning
block unit consists of three layers. In each residual learning
block unit, the first layer is the input layer and generates 8 fea-
ture maps. The second and the third layer generate 16 and 2
feature maps, respectively. Note that we introduced a short-
cut connections between the input layer and the output layer
of each residual block. This is inspired by the deep residual
network to solve the vanishing gradient problem caused by
multiple stacked non-linear transformations [41], [42]. After
two such residual learning blocks, we use a flatten layer to
connect the output of the residual learning block with the final
dense layer. The power control output is generated after the
nonlinear mapping in the final dense layer, which adopts the
sigmoid activation function. In PowerNet, all kernels used are
of dimension 3 x 3. LeakyRelu and batch normalization are
used to provide nonlinearities.

V. SYSTEM SETUP
A. System Parameters

We simulate a square area of lkmx1lkm. The distance
between the transmitter and receiver in a D2D link is uni-
formly distributed between [5,65] meters as shown in Fig. 4.
The antenna height of each device is 1.5m. Antenna gain G,
is —2.5 dB per device. The noise power spectral density is
—174 dBm/Hz and the noise figure is 7dB.

We adopt a short-range outdoor channel model ITU-1411
with 5SMHz bandwidth at carrier frequency of 2.4GHz. In par-
ticular, if the BS antenna height is hp, the mobile station
antenna height is Ay, and the transmission wavelength is A,
then the transmission path-loss from the transmitter of the jth
link to the receiver of the ith link (in dB) at distance dj is

dij \ .
20logipl 7= ) if d <Ry
Ly[dB] = Ly + 6 + Bon( P (28)
40logqg m’; if d > Rpp,

where Ry, = 4hyhy, /A denotes the breakpoint distance and

Ly, = |20 loglﬂ(ﬁi‘_?h,_n” denotes the basic transmission loss
at the break point. Based on the choice of large-scale fading
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Fig. 3. The structure of the proposed PowerNet.
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The layout of D2D links.

TABLE I
NETWORK PARAMETER SETTINGS

Cell range 1km > 1km
Cell frequency 2.4GHz
Bandwidth 5MHz
Distance [5,65]m
Maximum transmit power 20 dBm
Noise power spectral density | -174 dBm/Hz
Antenna height 1.5m
Antenna gain per device -2.5dB
Noise figure 7dB
Circuit static power 10dBm
Amplifier inefficiency 1

and small-scale fast fading models, we consider three types of
channel models:

1) Path Loss channel model: only the distance related path-
loss is considered. The large scale power fading a;
depends on the distance between the Tx and Rx in a
D2D link.

2) Shadowing channel model: both the distance related
path-loss and the shadowing effect are considered, while
ayj consists of both path-loss and shadowing.

3) Fast Fading channel model: path-loss, shadowing, and
small-scale fast fading power component are all jointly
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Fig. 5. The D2D link channel fading model, where o is the standard deviation
of the log-normal shadowing.

considered. This is a more accurate approximation to the
real-world fading channel.

The comparison of these three types of channel models are
presented in Table II, where £ ~ A/(0, 02) denotes log-normal
shadowing with o as the standard deviation. In the Path Loss
channel model and the Shadowing channel model, the fast
fading component g;; is not considered, hence its value is set
to 1. In the Fast Fading channel model, g;; is assumed to be
exponentially distributed with a unit mean. Based on these
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TABLE I
CHANNEL MODELS FOR D2D LINKS

Channel type

| Fading component

| Channel gain

Path Loss channel model

| Qi = 10—([.‘;;;—20“)/10

‘5*'5,3':1 |

Shadowing channel model | a;; = 107 (L4 H6-2Ga)/10 g, — 1

| his = gijexij

Fast Fading channel model | 0 = 10— (L5 +€-2Ga)/10, gi; ~ Exp(1) |

channel models, the total path-loss versus distance graph is
presented in Fig. 5. It can be seen that the Path Loss channel
model already captures the main trend of the total path-loss.
Hence it is possible to perform power allocation simply based
on the GLI metric. Comparing Fig. 5(a) with Fig. 5(b), we
notice that a larger standard deviation of the log-normal shad-
owing results in a larger fluctuations in the total path-loss.
Moreover, both fast fading and shadowing cause certain ran-
domness in the practical channel realizations. In this paper, we
will generate Path Loss channel model based on the GLI pro-
vided and then calculate the optimal power control under the
Path Loss channel model. A NN will be trained to learn a map-
ping from GLI to the optimal power control. The shadowing
effect and fast fading effect will be added to investigate the
generalization ability of the trained NN.

The static circuit power consumption is set to P.; =
10dBm and the amplifier inefficiency is set as g = 1. All
devices have the same maximum transmit pOWer pmax =
20dBm and the weight w; = 1, for all 7 € D. The parameters
are listed in Table L

The NN is implemented in Keras 2.2.4 with
TensorFlow 1.8.0 as backend on a computer with a 3.7GHz
i7 Intel Core, one GeForce GTX 1080Ti graphic card, and
32GB memory. The number of training samples and testing
samples are set as 250000 and 5000, respectively.

B. Data Generation

The data is generated in the following manner. First, the
channel power gain {h;} are generated following the Path
Loss channel model, which only accounts for the impact of
distance related path-loss. The corresponding optimized power
vector p; is generated by running the SPCA algorithm. To
ensure the scalability of the NN, we normalize the corre-
sponding device distance information d;; as d;; = dy; /( V2R),
where R is the square side length of the area. We also nor-
malize the output power control as p; = pi/Pmax. Then the
normalized c_igj together with p; form one entry of the training
dataset. We repeat the process for multiple times to generate
the entire training data set. 10% of the training dataset is used
for validation in the training process.

C. Training Process

Suppose for a training input Et-j and the desired training
output {p;}, {p:} is the corresponding NN output. Then the
learning process consists of minimizing the following loss
function

£=E[(m: - 57, (29)

We choose a batch size of 100 and the training epoch to
be 300. The optimization problem is solved by the ADAM
optimizer.

D. Testing Stage

We generate the channels following the same distribution as
in the training stage. Then we compute the resulted EE with
the solution obtained by SPCA. We will test the robustness
and generalization capabilities of the trained NN by generating
channels that consider the impact of both shadowing and fast-
fading.

VI. SIMULATION RESULTS
A. Training Loss and Validation Loss

The training and validation loss for the DNN is presented
in Fig. 6(a). We change the number of D2D links while fix
the number of neurons and network structure of the DNN. It
can be seen that for a large-sized problem (e.g., N = 30), the
training loss decreases at the first few epochs and after approx-
imately 50 epochs, the training loss almost stays at a fixed
level. Also, the training loss and validation loss match well,
which suggests there is no overfitting problems or under fitting
problems. While for a small-sized problem (e.g., N = 5), the
training loss decreases gradually and it still keeps decreasing
after even more than 200 epochs. As training goes on, there is
a slight mismatch between the training loss and the validation
loss. Hence there exists an under-fitting problem. Moreover,
the training loss for a large-sized problem is generally greater
than that for a small-sized problem. This is because we use
the same DNN structure for problems of all sizes. DNN shows
a greater learning ability for small-sized problems hence the
corresponding training loss is much lower.

We also plot the corresponding training and validation loss
for the proposed PowerNet in Fig. 6(b). Training and valida-
tion loss decreases rapidly at the beginning of the training.
After approximately 200 epochs, the training loss and val-
idation loss almost keeps at a fixed level. Hence, in our
simulation, choosing the number of training epochs to be 300
is reasonable for this problem. Different from DNN, for both
large-sized problems (e.g., N = 30) and small-sized problems
(e.g., N = 5), the validation loss and the training loss matches
very well. There is no overfitting problem here. Moreover,
comparing Fig. 6(a) with Fig. 6(b), we find that for small-
sized problems, DNN has a smaller training loss while for
large-sized problems, PowerNet has a smaller training loss.
This is because kernel maps of dimension 3 x 3 only works
well for a moderate size of problems. If the problem size is
too small, either max pooling or average pooling would incur
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TABLE III
AVERAGED EE (kbps/Joule) FOR DIFFERENT TYPES OF FADING CHANNELS
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N | Methods Path Loss channel model Shadowing channel model Fast Fading channel model
EE (kbps/Joule) Percentage | EE (kbps/Joule) Percentage | EE (kbps/Joule) Percentage
DNN 0.6683 99.10% 0.6340 96.16% 0.5872 95.38%
5 PowerNet | 0.6636 98.40% 0.6306 95.63% 0.5849 95.01%
SPCA 0.6744 100% 0.6594 100% 0.6157 100%
DNN 0.5577 95.69% 0.5136 91.10% 0.4796 90.12%
10 | PowerNet | 0.5518 94.69% 0.5087 90.24% 0.4757 89.39%
SPCA 0.5828 100% 0.5637 100% 0.5322 100%
DNN 0.4203 88.90% 0.3775 82.50% 0.3556 81.26%
20 | PowerNet | 0.4346 91.93% 0.3862 84.40% 0.3630 82.96%
SPCA 0.4728 100% 0.4576 100% 0.4356 100%
DNN 0.3378 83.46% 0.2984 75.76% 0.2822 74.27%
30 | PowerNet | 0.3603 89.09% 0.3158 80.18% 0.2973 78.22%
SPCA 0.4048 100% 0.3939 100% 0.3800 100%
10 * location of devices (i.e., GLI). There is no unpredictable ran-
—— training domness. If we adopt practical channels as training data, the
validation unpredictable randomness resulted from shadowing and fast
fading may incur an overfitting problem.
2105, B. Generalization Performance
In this subsection, we investigate the EE performance of
the DNN and PowerNet and test their generalization ability
by changing the size of the problem and the type of fading
channels.
1p-6 | | | _ | _ 1) Averaged EE of the Testing Samples: The averaged EE
0 50 100 150 200 250 300 performance over all testing samples for different types of
Bpech fading channels is presented in Table III. The baseline method
is the SPCA algorithm given in Algorithm 1. First of all, it can
(a) DNN (see Fig. 2). g g & . i
be seen that for small-sized problems where N = 5, under the
10 = Path Loss channel fading model, both the trained DNN and
e 5r:|:gla:nt?on the PowerNet achieve a satisfactory performance. Specifically,
DNN achieves 99.10% of the baseline performance and
PowerNet achieves 98.40% of the baseline performance. DNN
performs slightly better than PowerNet in this case but their
in performance gap is almost negligible. As with the increase
v 10-5 4 &
& TR ) |07 T of the problem size, when N = 30, the performance of
N=q DNN degrades significantly and only 83.46% of the baseline
performance can be achieved. On the other hand, the proposed
PowerNet still achieves 89.09% of the baseline performance.
Hence, the proposed PowerNet has a stronger generalization
10-% , | , | | . ability than the conventional DNN in terms of problem sizes.
o 2 20 15°h 200, 230 340 This is because PowerNet leverages the convolutional layer to
epoc

(b) PowerNet (see Fig. 3).

Fig. 6. Training and validation loss.

some kinds of distortion. We can infer that DNN may perform
better in small-sized problems, while the proposed PowerNet
may be more suitable for medium-sized or large-sized prob-
lems. We will validate our conjecture in Section VI. Finally,
we find that neither DNN nor PowerNet has an overfitting
problem. This is because the channel pattern comes from the

better capture the interference patterns and the residual block
makes the model more robust.

We also compare the achieved EE performance under dif-
ferent channel settings. The adopted NNs are trained with
the GLI based on the Path Loss channel model. It can be
seen that the performance of both the trained DNN and
PowerNet does not degrade too much when we apply the
trained model on a different channel setting. Specifically, when
N =35, the trained DNN achieves a 96.16% performance for
the Shadowing channel model and a 95.38% performance for
the Fast Fading channel model. The proposed PowerNet also
achieves a similar performance. Even when the problem size
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Fig. 7. Empirical cumulative distribution function (cdf) for different types

of fading channels.

grows larger to N = 30, the proposed PowerNet still achieves
an 80.18% performance under the Shadowing channel and a
78.22% performance under the Fast Fading channel model.
This demonstrates that the distance based Path Loss channel
model already captures the main channel characteristics. It is
feasible to train the NN with the GLI. This way, the time-
consuming channel estimation process can be avoided, which
further reduces the response time. This is extremely impor-
tant for delay sensitive D2D applications, e.g., high-speed
vehicle-to-everything (V2X) communication scenarios [43].
When N = 30, due to the structure of convolutional layers,

the proposed PowerNet outperforms DNN by 5.63% under
Path Loss channel model, 4.42% under shadowing channel,
and 3.95% under Fast Fading channel model in terms of the
achieved averaged EE. Hence it is more suitable for large-
sized problems to adopt PowerNet than DNN. In conclusion,
the proposed PowerNet exhibits great generalization ability in
terms of both problem sizes and channel fading types.

2) Cumulative Distribution Function (CDF) of the Testing
EE Samples: The empirical cumulative distribution functions
(CDF) for different channel fading models are presented in
Fig. 7. In all the cases, the CDFs of both PowerNet and DNN
are obtained by feeding the GLI to a trained NN. For SPCA,
the CDF for different types of fading channels comes by run-
ning Algorithm 1 with the corresponding channel realization
as input.

Fig. 7(a) shows the CDF performance under the Path Loss
channel model. It can be seen that for both the DNN and
PowerNet, the performance gap from the optimal SPCA algo-
rithm is almost negligible when N = 5. This shows that both
PowerNet and DNN have great learning ability for small-
sized problems. When N = 30, the performance gap from
the optimal increases. However, the proposed PowerNet out-
performs the DNN, which again validates that the proposed
PowerNet is more suitable for large-sized problems.

When shadowing and fast fading effect are added, the
performance gap from SPCA for both the DNN and PowerNet
starts to increase, as shown in Fig. 7(b) and Fig. 7(c). This is
because the DNN and PowerNet are trained with GLI, which
only captures the distance-based path-loss, while the SPCA
utilizes the real-time CSI to perform optimal channel control.
Although SPCA achieves a better performance, the complex
channel estimation process will waste a lot resources and the
iterative nature causes real-time deployment issues. On the
other hand, PowerNet and DNN do not rely on real-time CSI,
but they still achieve a promising performance. For exam-
ple, in Fig. 7(c), when N = 5, the performance gap is less
than 0.03 kbps/Joule. Even for large-sized problems (N = 30),
PowerNet still achieves nearly an average EE that is 80% that
of the SPCA and outperforms DNN.

C. Impact of the Transmit Power Budget

To investigate the impact of the transmit power budget pmax.,
we provide two benchmark algorithms here:

1) Random Power: each device randomly choose a trans-

mitting power that is uniformly distributed between
[0, Pmax]

2) Max Power: each device chooses its maximum power to

transmit.

For a small-sized network (N = 5), The EE performance
comparison for different algorithms is given in Fig. 8. It can be
seen that when pnay is small, to achieve a high EE, each device
is encouraged to transmit data with its maximum power. Hence
Max Power transmission is near optimal. DNN, PowerNet and
Max Power all share a similar performance as the optimal
benchmark algorithm, SPCA. When pp,ay is large enough, the
resulted power control will always satisfy the power budget
constraints. Hence the optimal power control does not change
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Fig. 8. EE performance comparison for different types of fading channels
(N = 5).

any more. The EE will stay at a fixed level. However, in this
case, Max Power transmission will cause severe interference
to other links and the EE will decrease dramatically. As a
comparison, Random Power transmission performs slightly
better than Max Power transmission, but the performance is
still not satisfactory. On the contrary, the deep learning based
method can achieve a near optimal performance. In Fig. 8(a),
the performance gap from optimal in the Path Loss channel
model is almost zero. Even when shadowing and fast fading
are added, the performance gap from SPCA is also small, as
shown in Fig. 8(b) and Fig. 8(c). This experiment shows that
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(N = 30).

deep learning based method is quite suitable for small-sized
problems. Compared with SPCA, the deep learning based
method does not require any instant CSI. The response time
is greatly reduced.

We also provide a similar plot for a large-sized network
(N = 30) in Fig. 9. Comparing Fig. 8 with Fig. 9, we find
that with the increase of network size, the deep learning based
method shows a performance degradation. This is because we
fix the number of neurons and the number of training samples
to be the same. The same NN structure is used for all problem
sizes. When N = 5, the input dimension is 25. When N = 30,
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the input dimension increases to 900. DNN exhibits great capa-
bility in learning such small-scale input-output relationship.
Sometimes increasing the number of hidden layers or increas-
ing the number of neurons in each hidden layer may help
to improve the learning ability to a certain extent. However,
this is not always true. In our experiment, when we adopt a
DNN with 3 hidden layers and 200 neurons in each layer,
the training loss failed to decrease when applied the training
data with N = 30. In other words, if the parameters are not
set properly, we may fail to properly train a DNN. On the
contrary, due to the adoption of the convolutional layer and
deep residual learning, the proposed PowerNet do not have
such training problems. We also note that, for a large-sized
problem, PowerNet always outperforms DNN regardless of
the value of the power budget pmax and the channel fading
types. This experiment again demonstrates the superiority of
the proposed PowerNet model.

D. Complexity Comparison

1) Computational Analysis: Since both the DNN and
PowerNet is trained based on the SPCA, their performance
will not exceed that of the SPCA. The reason why we want to
adopt PowerNet is that the deep learning based method has a
lower online complexity and it is more suitable for real-time
deployment.

The complexity of the NN based methods comes from two
parts: the off-line training stage and the on-line computation
stage. The off-line training stage complexity mainly comes
from the training dataset generation. It does not have any
impact on the algorithm’s real-time on-line operations. In this
paper, we generate the training dataset with the measurement
of distance based large-scale fading. They can be obtained
by existing channel modeling methods as well as ray-tracing
approaches. Compared with other works that collect training
data from the instant CSI, our methods significantly simplifies
the training data preparation process. The on-line complex-
ity comes from the linear combination of layer input and
activation function operations, which is almost negligible.

As a comparison, the existing SPCA algorithms require one
outer iterations and two inner iterations. Suppose the outer
loop has a; iterations. Two inner loops which are used to
solve (19) and (20) has by and by iterations, respectively.
Then the total iterations will be a;(b; + bg). Although the
Dinkelbach’s algorithm converges quickly, in each iteration
a gradient has to be computed. In the successive step-size
search loop, the step-size is narrowed down until a satisfac-
tory result is found. In large networks, such computations will
significantly slow down the real-time response.

2) Experiment Verification: For a fair comparison, we write
the algorithms in python and run them under the parameter
setting introduced in Section V-A. We present the computation
time comparison in Table IV. First of all, look at the CPU
time. For DNN, the average running time is almost 1000 times
faster than SPCA under different problem sizes. PowerNet is
150 times faster than SPCA when N = 5 and 16 times faster
when N = 30. Deep learning based approach works fast due
to the simple neuron network computations. In contrast, the

TABLE IV
COMPUTATIONAL TIME COMPARISON

CPU GPU
N | Methods tirrie (s} percentage | . (ms) percentage
DNN 0.022 0.17% 0.025 0.33%
5 PowerNet | 0.091 0.69% 0.109 1.44%
SPCA 13.268 100% 7.546 100%
DNN 0.008 0.07% 0.026 0.32%
10 | PowerNet | 0.160 1.43% 0.107 1.33%
SPCA 11.159 100% 8.066 100%
DNN 0.012 0.09% 0.026 0.27%
20 | PowerNet | 0.483 3.75% 0.115 1.20%
SPCA 12.887 100% 9.549 100%
DNN 0.019 0.11% 0.029 0.25%
30 | PowerNet | 1.107 6.10% 0.131 1.14%
SPCA 18.161 100% 11.541 100%

iterations in SPCA significantly slow down the algorithm. The
reason why PowerNet performs a bit slower than DNN is that
PowerNet performs convolutional operations and it is deeper
than the DNN. However, the speed difference is not significant
in small-sized problems.

Actually, for a large-sized problem, the running time of the
NN can be further reduced if a GPU is enabled. This is because
the implementation of NN is highly amenable for parallel pro-
cessing. The benefit of the parallel computation power of GPU
can be fully exploited. By running all the algorithms on GPU,
the gap between DNN and PowerNet narrows down signifi-
cantly in large-sized problems. For example, when N = 30,
DNN is only 4.56 times faster than the proposed PowerNet
with GPU (as a comparison, the DNN is 55 times faster than
PowerNet when the CPU is used). PowerNet is almost 88 times
faster than SPCA (as a comparison, it is 16 times faster than
SPCA when the CPU is used). Hence, with the deployment
of GPU, PowerNet achieves a significant saving in running
time compared to SPCA and DNN. Moreover, SPCA requires
considerable extra time to perform channel estimation, while
PowerNet and DNN only use GLI which is much easier to
obtain.

3) Neural Network Size Comparison: When it comes to
algorithm deployment, the NN size is also an important issue.
when N = 30, the total trainable parameters for PowerNet
is 57,378, while the total number of parameters for DNN
is 206,880, which is about 3.6 times of that of PowerNet.
Hence, the size of the proposed PowerNet is much smaller than
that of the conventional DNN. PowerNet is more suitable to
be deployed on devices with memory constraints. Considering
that in many cases, the number of D2D links may change
with time. Hence, pre-trained PowerNet models with differ-
ent configuration N should be pre-computed and stored in the
memory. Each time, when the configuration N is changed, the
corresponding trained PowerNet will be restored. Hence NN
size should also be taken good care of to ensure a promising
generalization ability in terms of the number of D2D links.

VII. CONCLUSION

This paper developed a deep learning power control algo-
rithm, termed PowerNet, for EE maximization in wireless
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networks. The developed method adopted convolutional lay-
ers to better capture the interference pattern and utilized deep
residual learning to enhance its robustness. Simulation results
demonstrated that the proposed PowerNet could achieve
a near-optimal EE performance at a much faster speed.
Moreover, different from conventional optimization algo-
rithms, which require the knowledge of precise CSI, the
proposed PowerNet could perform power control based on
GLI which can be obtained by current positioning system.
This way, the channel estimation process could be saved
and the developed approach would be extremely suitable for
the scenarios where devices change their location rapidly.
Compared with other DNN based approaches, PowerNet
exhibited great generalization ability in terms of both problem
sizes and channel fading types. For future work, it would
be interesting to further reduce the complexity of the online
procedure for model-driven deep learning for physical layer
communications.
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