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Abstract—As the model size of deep neural networks (DNNs)
grows for better performance, the increase in computational cost
associated with training and testing makes it extremely difficulty
to deploy DNNs on end/edge devices with limited resources
while also satisfying the response time requirement. To address
this challenge, model compression which compresses model size
and thus reduces computation cost is widely adopted in deep
learning society. However, the practical impacts of hardware
design are often ignored in these algorithm-level solutions, such
as the increase of the random accesses to memory hierarchy and
the constraints of memory capacity. On the other side, limited
understanding about the computational needs at algorithm level
may lead to unrealistic assumptions during the hardware designs.
In this work, we will discuss this mismatch and provide how
our approach addresses it through an interactive design practice
across both software and hardware levels.

Index Terms—deep neural networks, model compression, hard-
ware accelerator

I. INTRODUCTION

Deep neural networks (DNNs) have been widely used in
many new application fields, such as computer vision [21],
text processing [32] and natural language processing [5]. To
achieve continuously accuracy improvement, complex models
with ever-increasing model sizes are typically trained on a
huge volume of training data. Deploying such big models in
resource constrained devices, e.g.,, end devices with limited
resources and strict response time, becomes extremely difficult
due to intensive computation.

Model Compression [7], [10], [11], [14], [15], [23], [27],
[29] is a class of approaches which significantly compresses
the scale of DNNs and hence, reducing the computation
required in reference and/or training. However, as we will
elaborate in Section II, previous methods are subject to some
restrictions. Among these limitations, the most severe problem
is that they typically produce non-structured random connec-
tivity and result in frequent access to off-chip DRAM.Off-chip
memory access consumes two orders of magnitude more en-
ergy than a floating point operation [25] and quickly becomes
the bottleneck which hinders system performance.

In this article, we review the current advance in DNN model
compression and point point out their limitations in Section II.
Then we introduce our solutions in Section III. Different
from previous research, we propose a Structured Sparsity
Learning (SSL) method which can directly learn a compact
DNN structure, offering not only well-regularized big models
with improved accuracy but also significantly optimization on
memory access for computation efficiency. Especially, SSL
presents a generic regularization to adaptively adjust multiple
structures in DNN, including structures of filters, channels,
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filter shapes within each layer, and structure of depth beyond
the layers.

From an implementation perspective, we have observed that
SSL-based hardware implementation and program optimiza-
tion can further improve system performance. We demonstrate
this observation through two research cases in Section IV: 1)
an hardware accelerator for compressed DNNs, where DNN
weights are compressed utilizing SSL. We particular proposed
Structurally-compressed Weight Oriented Fetching and In-
layer Pipeline for Memory and Computation to capture all
the benefits of hardware-friendliness from SSL. 2) an efficient
structural sparsity learning framework for speech recognition
inspired by the Intel® Gaussian Neural Accelerator (GNA) [6].
In our evaluation, both designs achieve significant performance
improvement compared to prior arts.

II. PRIOR ARTS AND MOTIVATION

A. Related Work on Model Compression

To reduce computation, many studies are performed to
compress the scale of DNN, including /) Connection pruning
and weight sparsifying, 2) low rank approximation, and 3)
model structure learning. Below we introduce these three
approaches and summarize their main features in Table 1.

Connection pruning and weight sparsifying. Han et
al. [10], [11] proposed to reduce parameters in fully-connected
(FC) layers in AlexNet and VGG-16 using connection pruning.
However, convolutional (CONV) layers are the computational
bottleneck and many new DNNs use fewer FC layers. For
instance, FC layers contribute only 3.99% of parameters in
ResNet-152 [13]. CONV layers, in contrast, account >90%
of the total computation. As shown in Figure 1, we illus-
trate the speedups in CONV layers of AlexNet on GPU
by adopting [10], [11]. The baseline is profiled by General
Matrix Multiply (GeMM) of cuBLAS. The sparse matrixes
are stored in the format of Compressed Sparse Row (CSR) and
accelerated by cuSPARSE. Since most reduction is achieved
on FC layers, no practical speedups of CONV layers are
observed. To reduce the redundancy in CONV layers, Liu et
al. [23] have achieved >90% weight sparsity of CONV layers
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Fig. 1. Evaluation speedups of AlexNet on GPU platforms and the spar-
sity [28].
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TABLE I
COMPARISON WITH PREVIOUS MODEL COMPRESSION METHODS.

Previous Work

| Our Work [28]

Pruning only focus on FC layers focus on the computational intensive CONV layers
[10], [11] no practical speedups of CONV layers higher speedup in CONV layers and throughout the system
LRA network structure is fixed reduce the redundancy within and/or cross layers

reiterations, fine-tuning/cross-validating are needed

no reiterations

[71. [14]. [15], [27]

search space increases linearly or exponentially

dynamically optimize DNNs with one hypar-parameter

MSL

constrain LRA scale [23]

use Group Lasso to learn sparse structure [29] or

apply group Lasso to regularize multiple DNN structures:
filters, channel, filter shapes, and layer depth

in AlexNet with 2% accuracy loss, and bypassed the issue of
Figure 1 by hardcoding the sparse weights into program.

Low rank approximation (LRA). Denil ef al. [7] proposed
to learn only a small number (e.g., <5%) of weights in
a DNN and predict the rest by exploiting the redundancy
across filters and channels. Inspired by it, Jaderberg et al. [15]
used Low Rank Approximation (LRA) to construct a low
rank basis of filters which can be applied to CPU and CPU
frameworks for tunerable (e.g., 4.5x) speedup performance
with negligible (e.g. ~1%) accuracy drop. The works in
[27] and [14] improved and extended LRA to larger DNNs.
However, the network structure compressed by LRA is fixed
and provides little flexibility. In addition, reiterations of de-
composing, training/fine-tuning, and cross-validating are still
needed to find an optimal structure for accuracy and speed
trade-off. As the number of hyper-parameters in LRA method
increases linearly with the layer depth [8] [27], the search
space increases linearly or even exponentially.

Model structure learning (MSL). Group Lasso [29] is
an efficient regularization to learn sparse structures. Liu et al.
[23] utilized group Lasso to constrain the structure scale of
LRA. To adapt DNN structure to different databases, Feng et
al. [9] learned the appropriate number of filters in DNN.

B. Motivation

Existing sparse learning or pruning methods typically result
in non-structural sparsity or connectivity. On real computing
platforms, such irregular data can lead to poor data locality,
so it can not effectively accelerate the computational process
on the hardware, and sometimes even have a negative effect.
Figure 2 illustrates the locality differences in data caused by
non-structured sparsity model and structured sparsity model on
a real computing platform. The dark gray blocks in the figure
represent non-zero data, and the dotted blocks represent data
with a value of zero. Due to the limited on-chip cache area,
the feature maps and/or weights required for the calculation
are stored in off-chip main memory. Before each calculation
starts, the cache line where the data required for the current
computation is located needs to be moved from the off-chip
main memory to the on-chip cache. In the non-structural sparse
model, as shown in Fig. 2(a), a large amount of ineffectual
data (i.e., zeros) movement occurs due to the non-structured
sparsity. The latency and energy consumption of off-chip data
access is usually two to three orders of magnitude higher than
the computation itself. It can be seen that the non-structural
sparse model does not make good use of data locality, which
will seriously extend the execution time.
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Fig. 2. An illustration of the data locality induced by non-structural and struc-
tural sparsity models and the corresponding impact on hardware execution.

We propose structured sparsity learning method which pro-
duce clustered non-zero data as shown in Figure 2(b). In this
case, the effectual data can be fetched together into the cache,
while ineffectual data is easily skipped. This results in less
data movement between the computing unit (i.e., CPU/GPU)
and off-chip memory, effectively reducing computation time
and power consumption. It can be seen that this method can
improve the cache locality and accelerate the calculation. We
also compares SSL with previous model compression schemes
as shown in Table L.

III. LEARNING STRUCTURED SPARSITY IN DNNSs

In this section, we present our study of Structured Sparsity
Learning (SSL) to regularize the structure of DNNs. We first
introduce a generic method which directly learns a compact
DNN model with hardware-friendly structured sparsity. Based
on this approach, We further discuss methods for adaptively
learning DNN structure at a finer level of granularity, such
as filter-wise, channel-wise, shape-wise and depth-wise. At the
end, we preset the experimental evaluation of SSL on general-
purpose CPU and GPU platforms.

Generic method. We use W to
represent the 4-D weight tensor of the [-th convolutional
layer in a DNN, where N;, C;, M; and K, are the size of
weight tensor along the axes of filter, channel, height and
width, respectively. We denote the collection of all weights
in the total L convolutional layers as W. Then the proposed
generic optimization target of a DNN with structured sparsity
regularization can be represented as:

6 RN;XC],XI\/];XKL

L
E(W)=Ep(W)+X-R(W)+X- > Ry (W<l>) )

=1
The first two items on the right side of the formula, Ep (W)
and R(-), are commonly used in normal DNN training, rep-
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Fig. 3. The proposed Structured Sparsity Learning (SSL) for DNNs [28].

resenting the loss on data and non-structured regularization
(e.g., L2-norm) applying on every weight respectively. The key
of SSL is we adopted group Lasso [19], [30] to effectively zero
out all values on a set of weights w, denoted in the third item
on the right side of the formula as Ry(w) = 25:1 w9,
, where w(9) is a group of partial weights in w and G is the
total number of groups. Different groups may overlap. Here

p 2
| |l, is the group Lasso, or [[w@ ||, = />0 (w§g>) :

where |w(9)| is the number of weights in w(9).

Adaptive SSL with a finer level of granularity. By
exploring the way of splitting weight groups w(9), SSL is
able to adaptively provide the filer-wise, channel-wise, shape-
wise, and depth-wise structured sparsity as shownn in Figure 3.
For simplicity, we omit the first two items in Eq. 1 and only
formulate the R,(w) term in the following expressions.

1) Suppose Wéi) is the ny-th filter and W(?l is the
c;-th channel of all filters in the [-th layer. The regularization
of group Lasso to penalize unimportant filters and channels
can be formulated as:

SIE S0 IR0
An Z Z HWWMI,IHQ +)‘C'Z HVV:,C[,:,:Hg 2)

=1 \n;=1 1=1 \¢=1

Note that zeroing out a filter in the [-th layer results in a
dummy zero output feature map, which in turn makes a cor-
responding channel in the (I + 1)-zh layer useless. Hence, we
combine the filter-wise and channel-wise structured sparsity
in the learning simultaneously.

2) Assume W(IC)L my .k, denotes the vector of all correspond-
ing weights located at spatial position of (my, k) in the 2D
filters across the ¢;-th channel. We define Wflc)hmhkl as the
shape fiber related to learning arbitrary filter shape because a
homogeneous non-cubic filter shape can be learned by zeroing
out some shape fibers. The regularization of group Lasso in

learning shapes of filers becomes:

L [/ C M K
As-z(z 5> wv:iz,,,”,klu) o

=1 \¢;=1m;=1k=1

3) We also explore the depth-wise sparsity to regularize
the depth of DNNs in order to improve accuracy and reduce
computation cost. The corresponding regularization of group
Lasso is )‘d'ZlL:I ||[W (]|, Note that zeroing out all the filters
in a layer will cut off the message propagation in a DNN so
that the output neurons cannot perform any classification, we
propose to to leverage the shortcuts across layers to solve this
issue which is similar as the idea proposed by the structure

of highway networks [26] and deep residual networks [12].
Detailed illustration can be found in [28].

Evaluation on CPU/GPU. Experimental results show that
SSL achieves on average 5.1x and 3.1x speedups of con-
volutional layer computation of AlexNet against CPU and
GPU, respectively, with off-the-shelf libraries. These speedups
are about twice speedups of non-structured sparsity. Mean-
while, the regularized DNN structure significantly improves
classification accuracy. The results show that for CIFAR-10,
regularization on layer depth reduces a 20-layer Deep Residual
Network (ResNet) to 18 layers while improves the accuracy
from 91.25% to 92.60%, which is still higher than that of
original ResNet with 32 layers. For AlexNet, SSL reduces the
error rate by ~1%.

IV. SSL-BASED HARDWARE IMPLEMENTATION AND
PROGRAM OPTIMIZATION

A. CASE I: Hardware Accelerator for Compressed DNNs [16]

Motivation. With the rise of machine learning algorithms
and their widespread use, specific hardware accelerators de-
signed for machine learning have become a hot research
topic in the computing community. The core computation in
DNNs can be summarized as pairwise multiplications between
the input feature map and the weight matrix, followed by
additions to produce the elements in the output feature map.
The key stimulus observations of the sparse DNN accelerator
are that most of the computations performed by the DNN are
essentially ineffectual because of the multiplication involving
a large number of zero operands These calculations do not
contribute to the final result and thus can be skipped. Cn-
vlutin [1] uses zero activation as an indicator to eliminate
the relevant computation, but does not exploit zero weights
to further reduce the amount of calculation. The work in [18]
eliminates the computation involved in both zero weight and
zero activation, however, its performance is compromised by
its lower parallelism.

To overcome the shortcomings of previous work, we provide
a algorithm and hardware co-designed solution to support
efficient sparse DNN processing. We conclude the comparison
between our work and previous works in Table II. Specifically,
the DNN weights are first structurally compressed to eliminate
zero parameters by leveraging SSL. Based on this hardware-
friendly DNN model, we consider both zero DNN activa-
tion and zero weights at the same time. Two technologies,
Structurally-compressed Weight Oriented Fetching (SWOF)
and In-layer Pipeline for Memory and Computation (IPMC),
are particularly proposed to further increase system perfor-
mance.

Design Methodology. Figure 4 illustrates the overview of

the proposed sparse DNN accelerator. It mainly consists of
TABLE II
COMPARISON WITH PREVIOUS SPARSE DNN ACCLERATORS.

| Zero Act. | Zero W. | Parallelism

Convlutin [1] v X medium
[18] v v low
Our Work [16] v v extreme high
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Fig. 4. The top-level of the proposed architecture [16].

a global SRAM on-chip buffer, 16 processing engines (PE)
connected in a mesh and an addressing unit. Each PE consists
of a number of input buffers (IB), a position vector (PV)
for the index, and serveral calculation units (CUs). Note
that here CUs leverage the emerging resistive random access
memory (ReRAM) with computation capability to perform in-
situ DNN execution. In addition, some auxiliary circuitry such
as ADCs, DACs, and peripheral components (e.g., buffers and
rectification linear unit (ReLU) modules, efc.) are included.

In order to overcome the negative impact of the afore-
mentioned non-structured sparsity, we first adopt SSL-based
method to zero out weights during the training process. More
specifically, we apply regularization to the filter and channel
dimensions simultaneously due to the correlation that all-zero
filter renders the corresponding channel useless in the next
layer of the neural network. In practice, filter-wise regular-
ization can be considered as row reduction; while channel-
wise and shape-wise regularization are column reductions in
the weight matrix. In this way, we obtain a hardware-friendly
DNN model.

Next, we eliminate the ineffectual computation caused by
zero activation by Structurally-compressed Weight Oriented
Fetching (SWOF). Instead of naively fetch data from off-
chip memory, SWOF locates non-zero activation associates
with non-zero weights in two steps, namely, Row-SWOF and
Column-SWOEF. The sparsity of the rows and columns of a
layer are recorded in Row sparsity vector (RSV) and column
sparsity vector (CSV), respectively. Row-SWOF is based on
the observation that data fetch for the activation in the j-th
channel of the (i + 1)-th layer can be terminated if SSL has
eliminated the j-th filter of the i-th layer. The indexes of non-
zero value in RSV are delivered to the addressing unit. We
call the refined activation tiles as Channel Reduced Activation
(CRA) in SRAM buffers. The valid activation data is first
reshaped to match the original filter size before loaded into
the input buffer. Then the Column-SWOF looks into each
channel tiles. Only non-zero activation stay and their positions
in filter are recorded in position vector (PV). Fetching unit
(FU) compares the indexes of the remaining columns in CSV
with those in PV. FU only delivers the activation with mutual
indexes to CU.

In-layer Pipeline for Memory and Computation (IPMC) is

TABLE III
WEIGHT MATRIX SPARSITY OF COMPRESSED MODELS [16].
| Network | Convl | Conv2 | Conv3 | Conv4 | Conv5
= LeNet 0.00% 0.00% - - -
S AlexNet 9.29% 12.11% | 39.78% | 46.32% 0.00%
CaffeNet | 0.00% 0.00% 1.57% 2.86% 0.00%
g LeNet 20.00% | 94.80% - - -
2 | AlexNet 0.00% 61.21% | 77.11% | 85.03% | 81.17%
§ [ CaffeNet | 0.00% 23.50% | 39.00% | 38.50% | 24.50%
TABLE IV

PERFORMANCE IMPROVEMENT AND ENERGY SAVING.

| Scheme | LeNet | AlexNet | CaffeNet
Pert. Soeedu SWOF-only | 332x | 2.81x 1.39%
- OPeCAUD TSWOFAIPMC | 481x | 4.40% 225%
Ene. Savin SWOF-only | 3.25x | 2.77x 1.23x
& € [SWOF+IPMC | 3.70x | 3.07x 1.59%

further proposed to decouple the computation and memory ac-
cess to speed up the DNN execution process. Unlike previous
ReRAM-based DNN accelerators [2]—[4], [24], where data ac-
cess and computation are performed in the same logical cycle,
IPMC provides the flexibility to skip the computation stage
when input activation in the buffer are all zero. In addition,
IPMC also brings the benefits of throughput improvement. For
instance, assuming two consecutive activation vectors (v1, v2)
are non-zeros (i.e., need to be computed), the buffer holds
fetched vector vl in one cycle, but in the next cycle, this
buffer can be used to hold v2 while v1 is in computation.

Evaluation. We evaluate the proposed design using LeNet
[22] on MNIST and AlexNet [20]/CaffeNet [17] on LSVRC
2012 (i.e., a subset of ImageNet with approximately 1000
categories and 1000 images in each category). All the training
data are reshaped to 256 x256 pixels. We summarize the ratio
of zeros in each layer in Table III.

Row sparsity indicates a reduction in the filter, and column
sparsity indicates a decrease in filter shapes and channels.
We can see that SSL can effectively compress the model.
Table IV summarizes the normalized hardware performance
and power savings achieved by using the proposed sparse
DNN accelerator compared to the baseline accelerator in [24].
In general, our design achieves GeoMean speedups of 2.16x
and 3.37x when applying SWOF-only and SWOF+IPMC,
respectively. The increment illustrates our accelerator gains
extra speedup with IPMC. In addition, our experimental results
have also shown that the reduction in filters brings more
acceleration on hardware platforms than the reduction in filter
shapes and channels.

B. CASE I1I: An SSL Framework for Speech Recognition [31]

Motivation. We further extend SSL to the more challenging
Recurrent Neural Networks (RNNs) where the basic recurrent
unit is shared across in time series. Therefore, compressing
(or even removing) the unit can aggressively affect all the
time steps. We proposed Efficient Sparse Structures (ESS)
learning method for acoustic modeling in speech recognition.
ESS simultaneously reduce the sizes of input updates, gates,
hidden states, cell states and outputs within the sophisticated
RNN structure.
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Fig. 5. The visualization of weight matrices learned by ESS [31].
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Design Methodology. ESS is a three-step training pipeline.
We first train RNN from scratch with structured-sparsity
learning method. At the end of this step, a sparse model
at the desired sparsity level will be generated. However, the
accuracy of the model is relatively low and will be recovered
in the following two steps. In the second step, we fix the zero
parameters learned in the previous step to prevent the structural
sparsity from updating in the next step. At the end, the sparse
model will be used as an initial input model and be trained for
additional epochs. Here, the extra group Lasso regularization
term in the first step is disabled while the model is retrained to
recover the accuracy. Because all the zero parameters are fixed
in the second step, only nonzero elements can be updated. In
this way, the learned sparsity is maintained while the accuracy
gradually increases. Due to the page limit, we omit the details
and refer interested readers to [31].

Evaluation. We use the open-source Kaldi toolkit to con-
duct experiments. As visualized in Figure 5, the learned
structures show significant sparsity with different group sizes
(e.g., 8, 16). Although matrices (i.e., columns in Figure 5)
demonstrate difference among each other, the learning process
makes it converge to an optimal configuration across all the
matrices.

V. CONCLUSION

In this work, we summarize our recent research on cross-
layer optimization to accelerate DNNS. Structured Sparsity
Learning (SSL) can adaptively adjusts multiple structures
(e.g., filter, channels, filter shapes, network depths) in a DNN
to obtain a compact and light model. Through two design
cases, we show that SSL-based hardware implementation
and program optimization can provide further improvements.
Our conclusion is that only interactive design practices that
span algorithm and hardware levels can maximize system
performance.
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