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Abstract—As the model size of deep neural networks (DNNs)
grows for better performance, the increase in computational cost
associated with training and testing makes it extremely difficulty
to deploy DNNs on end/edge devices with limited resources
while also satisfying the response time requirement. To address
this challenge, model compression which compresses model size
and thus reduces computation cost is widely adopted in deep
learning society. However, the practical impacts of hardware
design are often ignored in these algorithm-level solutions, such
as the increase of the random accesses to memory hierarchy and
the constraints of memory capacity. On the other side, limited
understanding about the computational needs at algorithm level
may lead to unrealistic assumptions during the hardware designs.
In this work, we will discuss this mismatch and provide how
our approach addresses it through an interactive design practice
across both software and hardware levels.

Index Terms—deep neural networks, model compression, hard-
ware accelerator

I. INTRODUCTION

Deep neural networks (DNNs) have been widely used in

many new application fields, such as computer vision [21],

text processing [32] and natural language processing [5]. To

achieve continuously accuracy improvement, complex models

with ever-increasing model sizes are typically trained on a

huge volume of training data. Deploying such big models in

resource constrained devices, e.g.,, end devices with limited

resources and strict response time, becomes extremely difficult

due to intensive computation.

Model Compression [7], [10], [11], [14], [15], [23], [27],

[29] is a class of approaches which significantly compresses

the scale of DNNs and hence, reducing the computation

required in reference and/or training. However, as we will

elaborate in Section II, previous methods are subject to some

restrictions. Among these limitations, the most severe problem

is that they typically produce non-structured random connec-

tivity and result in frequent access to off-chip DRAM.Off-chip

memory access consumes two orders of magnitude more en-

ergy than a floating point operation [25] and quickly becomes

the bottleneck which hinders system performance.

In this article, we review the current advance in DNN model

compression and point point out their limitations in Section II.

Then we introduce our solutions in Section III. Different

from previous research, we propose a Structured Sparsity
Learning (SSL) method which can directly learn a compact

DNN structure, offering not only well-regularized big models

with improved accuracy but also significantly optimization on

memory access for computation efficiency. Especially, SSL

presents a generic regularization to adaptively adjust multiple

structures in DNN, including structures of filters, channels,

filter shapes within each layer, and structure of depth beyond

the layers.

From an implementation perspective, we have observed that

SSL-based hardware implementation and program optimiza-

tion can further improve system performance. We demonstrate

this observation through two research cases in Section IV: 1)
an hardware accelerator for compressed DNNs, where DNN

weights are compressed utilizing SSL. We particular proposed

Structurally-compressed Weight Oriented Fetching and In-
layer Pipeline for Memory and Computation to capture all

the benefits of hardware-friendliness from SSL. 2) an efficient

structural sparsity learning framework for speech recognition

inspired by the Intel® Gaussian Neural Accelerator (GNA) [6].

In our evaluation, both designs achieve significant performance

improvement compared to prior arts.

II. PRIOR ARTS AND MOTIVATION

A. Related Work on Model Compression

To reduce computation, many studies are performed to

compress the scale of DNN, including 1) Connection pruning

and weight sparsifying, 2) low rank approximation, and 3)
model structure learning. Below we introduce these three

approaches and summarize their main features in Table I.

Connection pruning and weight sparsifying. Han et
al. [10], [11] proposed to reduce parameters in fully-connected

(FC) layers in AlexNet and VGG-16 using connection pruning.

However, convolutional (CONV) layers are the computational

bottleneck and many new DNNs use fewer FC layers. For

instance, FC layers contribute only 3.99% of parameters in

ResNet-152 [13]. CONV layers, in contrast, account >90%

of the total computation. As shown in Figure 1, we illus-

trate the speedups in CONV layers of AlexNet on GPU

by adopting [10], [11]. The baseline is profiled by General

Matrix Multiply (GeMM) of cuBLAS. The sparse matrixes

are stored in the format of Compressed Sparse Row (CSR) and

accelerated by cuSPARSE. Since most reduction is achieved

on FC layers, no practical speedups of CONV layers are

observed. To reduce the redundancy in CONV layers, Liu et
al. [23] have achieved >90% weight sparsity of CONV layers
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Fig. 1. Evaluation speedups of AlexNet on GPU platforms and the spar-
sity [28].
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TABLE I
COMPARISON WITH PREVIOUS MODEL COMPRESSION METHODS.

Previous Work Our Work [28]

Pruning
[10], [11]

only focus on FC layers focus on the computational intensive CONV layers
no practical speedups of CONV layers higher speedup in CONV layers and throughout the system

LRA
[7], [14], [15], [27]

network structure is fixed reduce the redundancy within and/or cross layers
reiterations, fine-tuning/cross-validating are needed no reiterations
search space increases linearly or exponentially dynamically optimize DNNs with one hypar-parameter

MSL use Group Lasso to learn sparse structure [29] or apply group Lasso to regularize multiple DNN structures:
constrain LRA scale [23] filters, channel, filter shapes, and layer depth

in AlexNet with 2% accuracy loss, and bypassed the issue of

Figure 1 by hardcoding the sparse weights into program.
Low rank approximation (LRA). Denil et al. [7] proposed

to learn only a small number (e.g., <5%) of weights in

a DNN and predict the rest by exploiting the redundancy

across filters and channels. Inspired by it, Jaderberg et al. [15]

used Low Rank Approximation (LRA) to construct a low

rank basis of filters which can be applied to CPU and CPU

frameworks for tunerable (e.g., 4.5×) speedup performance

with negligible (e.g. ∼1%) accuracy drop. The works in

[27] and [14] improved and extended LRA to larger DNNs.

However, the network structure compressed by LRA is fixed

and provides little flexibility. In addition, reiterations of de-

composing, training/fine-tuning, and cross-validating are still

needed to find an optimal structure for accuracy and speed

trade-off. As the number of hyper-parameters in LRA method

increases linearly with the layer depth [8] [27], the search

space increases linearly or even exponentially.
Model structure learning (MSL). Group Lasso [29] is

an efficient regularization to learn sparse structures. Liu et al.
[23] utilized group Lasso to constrain the structure scale of

LRA. To adapt DNN structure to different databases, Feng et
al. [9] learned the appropriate number of filters in DNN.

B. Motivation
Existing sparse learning or pruning methods typically result

in non-structural sparsity or connectivity. On real computing

platforms, such irregular data can lead to poor data locality,

so it can not effectively accelerate the computational process

on the hardware, and sometimes even have a negative effect.

Figure 2 illustrates the locality differences in data caused by

non-structured sparsity model and structured sparsity model on

a real computing platform. The dark gray blocks in the figure

represent non-zero data, and the dotted blocks represent data

with a value of zero. Due to the limited on-chip cache area,

the feature maps and/or weights required for the calculation

are stored in off-chip main memory. Before each calculation

starts, the cache line where the data required for the current

computation is located needs to be moved from the off-chip

main memory to the on-chip cache. In the non-structural sparse

model, as shown in Fig. 2(a), a large amount of ineffectual

data (i.e., zeros) movement occurs due to the non-structured

sparsity. The latency and energy consumption of off-chip data

access is usually two to three orders of magnitude higher than

the computation itself. It can be seen that the non-structural

sparse model does not make good use of data locality, which

will seriously extend the execution time.

…
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Fig. 2. An illustration of the data locality induced by non-structural and struc-
tural sparsity models and the corresponding impact on hardware execution.

We propose structured sparsity learning method which pro-

duce clustered non-zero data as shown in Figure 2(b). In this

case, the effectual data can be fetched together into the cache,

while ineffectual data is easily skipped. This results in less

data movement between the computing unit (i.e., CPU/GPU)

and off-chip memory, effectively reducing computation time

and power consumption. It can be seen that this method can

improve the cache locality and accelerate the calculation. We

also compares SSL with previous model compression schemes

as shown in Table I.

III. LEARNING STRUCTURED SPARSITY IN DNNS

In this section, we present our study of Structured Sparsity
Learning (SSL) to regularize the structure of DNNs. We first

introduce a generic method which directly learns a compact

DNN model with hardware-friendly structured sparsity. Based

on this approach, We further discuss methods for adaptively

learning DNN structure at a finer level of granularity, such

as filter-wise, channel-wise, shape-wise and depth-wise. At the

end, we preset the experimental evaluation of SSL on general-

purpose CPU and GPU platforms.

Generic method. We use W (l) ∈ R
Nl×Cl×Ml×Kl to

represent the 4-D weight tensor of the l-th convolutional

layer in a DNN, where Nl, Cl, Ml and Kl are the size of

weight tensor along the axes of filter, channel, height and

width, respectively. We denote the collection of all weights

in the total L convolutional layers as W . Then the proposed

generic optimization target of a DNN with structured sparsity

regularization can be represented as:

E(W ) = ED(W ) + λ ·R(W ) + λg ·
L∑

l=1

Rg

(
W (l)

)
(1)

The first two items on the right side of the formula, ED(W )
and R(·), are commonly used in normal DNN training, rep-
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Fig. 3. The proposed Structured Sparsity Learning (SSL) for DNNs [28].

resenting the loss on data and non-structured regularization
(e.g., �2-norm) applying on every weight respectively. The key

of SSL is we adopted group Lasso [19], [30] to effectively zero

out all values on a set of weights w, denoted in the third item

on the right side of the formula as Rg(w) =
∑G

g=1 ||w(g)||g
, where w(g) is a group of partial weights in w and G is the

total number of groups. Different groups may overlap. Here

|| · ||g is the group Lasso, or ||w(g)||g =

√∑|w(g)|
i=1

(
w

(g)
i

)2

,

where |w(g)| is the number of weights in w(g).

Adaptive SSL with a finer level of granularity. By

exploring the way of splitting weight groups w(g), SSL is

able to adaptively provide the filer-wise, channel-wise, shape-
wise, and depth-wise structured sparsity as shownn in Figure 3.

For simplicity, we omit the first two items in Eq. 1 and only

formulate the Rg(w) term in the following expressions.

1) Suppose W
(l)
nl,:,:,: is the nl-th filter and W

(l)
:,cl,:,: is the

cl-th channel of all filters in the l-th layer. The regularization

of group Lasso to penalize unimportant filters and channels
can be formulated as:

λn ·
L∑

l=1

⎛
⎝

Nl∑
nl=1

||W (l)
nl,:,:,:||g

⎞
⎠+ λc ·

L∑
l=1

⎛
⎝

Cl∑
cl=1

||W (l)
:,cl,:,:||g

⎞
⎠ (2)

Note that zeroing out a filter in the l-th layer results in a

dummy zero output feature map, which in turn makes a cor-

responding channel in the (l+ 1)-th layer useless. Hence, we

combine the filter-wise and channel-wise structured sparsity

in the learning simultaneously.

2) Assume W
(l)
:,cl,ml,kl

denotes the vector of all correspond-

ing weights located at spatial position of (ml, kl) in the 2D

filters across the cl-th channel. We define W
(l)
:,cl,ml,kl

as the

shape fiber related to learning arbitrary filter shape because a

homogeneous non-cubic filter shape can be learned by zeroing

out some shape fibers. The regularization of group Lasso in

learning shapes of filers becomes:

λs ·
L∑

l=1

⎛
⎝

Cl∑
cl=1

Ml∑
ml=1

Kl∑
kl=1

||W (l)
:,cl,ml,kl

||g
⎞
⎠ (3)

3) We also explore the depth-wise sparsity to regularize

the depth of DNNs in order to improve accuracy and reduce

computation cost. The corresponding regularization of group

Lasso is λd·
∑L

l=1 ||W (l)||g . Note that zeroing out all the filters

in a layer will cut off the message propagation in a DNN so

that the output neurons cannot perform any classification, we

propose to to leverage the shortcuts across layers to solve this

issue which is similar as the idea proposed by the structure

of highway networks [26] and deep residual networks [12].

Detailed illustration can be found in [28].

Evaluation on CPU/GPU. Experimental results show that

SSL achieves on average 5.1× and 3.1× speedups of con-

volutional layer computation of AlexNet against CPU and

GPU, respectively, with off-the-shelf libraries. These speedups

are about twice speedups of non-structured sparsity. Mean-

while, the regularized DNN structure significantly improves

classification accuracy. The results show that for CIFAR-10,

regularization on layer depth reduces a 20-layer Deep Residual

Network (ResNet) to 18 layers while improves the accuracy

from 91.25% to 92.60%, which is still higher than that of

original ResNet with 32 layers. For AlexNet, SSL reduces the

error rate by ∼1%.

IV. SSL-BASED HARDWARE IMPLEMENTATION AND

PROGRAM OPTIMIZATION

A. CASE I: Hardware Accelerator for Compressed DNNs [16]

Motivation. With the rise of machine learning algorithms

and their widespread use, specific hardware accelerators de-

signed for machine learning have become a hot research

topic in the computing community. The core computation in

DNNs can be summarized as pairwise multiplications between

the input feature map and the weight matrix, followed by

additions to produce the elements in the output feature map.

The key stimulus observations of the sparse DNN accelerator

are that most of the computations performed by the DNN are

essentially ineffectual because of the multiplication involving

a large number of zero operands These calculations do not

contribute to the final result and thus can be skipped. Cn-

vlutin [1] uses zero activation as an indicator to eliminate

the relevant computation, but does not exploit zero weights

to further reduce the amount of calculation. The work in [18]

eliminates the computation involved in both zero weight and

zero activation, however, its performance is compromised by

its lower parallelism.

To overcome the shortcomings of previous work, we provide

a algorithm and hardware co-designed solution to support

efficient sparse DNN processing. We conclude the comparison

between our work and previous works in Table II. Specifically,

the DNN weights are first structurally compressed to eliminate

zero parameters by leveraging SSL. Based on this hardware-

friendly DNN model, we consider both zero DNN activa-

tion and zero weights at the same time. Two technologies,

Structurally-compressed Weight Oriented Fetching (SWOF)

and In-layer Pipeline for Memory and Computation (IPMC),

are particularly proposed to further increase system perfor-

mance.

Design Methodology. Figure 4 illustrates the overview of

the proposed sparse DNN accelerator. It mainly consists of
TABLE II

COMPARISON WITH PREVIOUS SPARSE DNN ACCLERATORS.

Zero Act. Zero W. Parallelism

Convlutin [1] � � medium
[18] � � low

Our Work [16] � � extreme high
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Fig. 4. The top-level of the proposed architecture [16].

a global SRAM on-chip buffer, 16 processing engines (PE)

connected in a mesh and an addressing unit. Each PE consists

of a number of input buffers (IB), a position vector (PV)

for the index, and serveral calculation units (CUs). Note

that here CUs leverage the emerging resistive random access

memory (ReRAM) with computation capability to perform in-

situ DNN execution. In addition, some auxiliary circuitry such

as ADCs, DACs, and peripheral components (e.g., buffers and

rectification linear unit (ReLU) modules, etc.) are included.

In order to overcome the negative impact of the afore-

mentioned non-structured sparsity, we first adopt SSL-based

method to zero out weights during the training process. More

specifically, we apply regularization to the filter and channel

dimensions simultaneously due to the correlation that all-zero

filter renders the corresponding channel useless in the next

layer of the neural network. In practice, filter-wise regular-

ization can be considered as row reduction; while channel-

wise and shape-wise regularization are column reductions in

the weight matrix. In this way, we obtain a hardware-friendly

DNN model.

Next, we eliminate the ineffectual computation caused by

zero activation by Structurally-compressed Weight Oriented
Fetching (SWOF). Instead of naı̈vely fetch data from off-

chip memory, SWOF locates non-zero activation associates

with non-zero weights in two steps, namely, Row-SWOF and

Column-SWOF. The sparsity of the rows and columns of a

layer are recorded in Row sparsity vector (RSV) and column

sparsity vector (CSV), respectively. Row-SWOF is based on

the observation that data fetch for the activation in the j-th

channel of the (i + 1)-th layer can be terminated if SSL has

eliminated the j-th filter of the i-th layer. The indexes of non-

zero value in RSV are delivered to the addressing unit. We

call the refined activation tiles as Channel Reduced Activation

(CRA) in SRAM buffers. The valid activation data is first

reshaped to match the original filter size before loaded into

the input buffer. Then the Column-SWOF looks into each

channel tiles. Only non-zero activation stay and their positions

in filter are recorded in position vector (PV). Fetching unit

(FU) compares the indexes of the remaining columns in CSV

with those in PV. FU only delivers the activation with mutual

indexes to CU.

In-layer Pipeline for Memory and Computation (IPMC) is

TABLE III
WEIGHT MATRIX SPARSITY OF COMPRESSED MODELS [16].

Network Conv1 Conv2 Conv3 Conv4 Conv5

R
o
w

LeNet 0.00% 0.00% – – –
AlexNet 9.29% 12.11% 39.78% 46.32% 0.00%
CaffeNet 0.00% 0.00% 1.57% 2.86% 0.00%

C
o

lu
m

n LeNet 20.00% 94.80% – – –
AlexNet 0.00% 61.21% 77.11% 85.03% 81.17%
CaffeNet 0.00% 23.50% 39.00% 38.50% 24.50%

TABLE IV
PERFORMANCE IMPROVEMENT AND ENERGY SAVING.

Scheme LeNet AlexNet CaffeNet

Perf. Speedup
SWOF-only 3.32× 2.81× 1.39×

SWOF+IPMC 4.81× 4.40× 2.25×
Eng. Saving

SWOF-only 3.25× 2.77× 1.23×
SWOF+IPMC 3.70× 3.07× 1.59×

further proposed to decouple the computation and memory ac-

cess to speed up the DNN execution process. Unlike previous

ReRAM-based DNN accelerators [2]–[4], [24], where data ac-

cess and computation are performed in the same logical cycle,

IPMC provides the flexibility to skip the computation stage

when input activation in the buffer are all zero. In addition,

IPMC also brings the benefits of throughput improvement. For

instance, assuming two consecutive activation vectors (v1, v2)

are non-zeros (i.e., need to be computed), the buffer holds

fetched vector v1 in one cycle, but in the next cycle, this

buffer can be used to hold v2 while v1 is in computation.

Evaluation. We evaluate the proposed design using LeNet

[22] on MNIST and AlexNet [20]/CaffeNet [17] on LSVRC

2012 (i.e., a subset of ImageNet with approximately 1000

categories and 1000 images in each category). All the training

data are reshaped to 256×256 pixels. We summarize the ratio

of zeros in each layer in Table III.

Row sparsity indicates a reduction in the filter, and column

sparsity indicates a decrease in filter shapes and channels.

We can see that SSL can effectively compress the model.

Table IV summarizes the normalized hardware performance

and power savings achieved by using the proposed sparse

DNN accelerator compared to the baseline accelerator in [24].

In general, our design achieves GeoMean speedups of 2.16×
and 3.37× when applying SWOF-only and SWOF+IPMC,

respectively. The increment illustrates our accelerator gains

extra speedup with IPMC. In addition, our experimental results

have also shown that the reduction in filters brings more

acceleration on hardware platforms than the reduction in filter

shapes and channels.

B. CASE II: An SSL Framework for Speech Recognition [31]

Motivation. We further extend SSL to the more challenging

Recurrent Neural Networks (RNNs) where the basic recurrent

unit is shared across in time series. Therefore, compressing

(or even removing) the unit can aggressively affect all the

time steps. We proposed Efficient Sparse Structures (ESS)

learning method for acoustic modeling in speech recognition.

ESS simultaneously reduce the sizes of input updates, gates,

hidden states, cell states and outputs within the sophisticated

RNN structure.
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Fig. 5. The visualization of weight matrices learned by ESS [31].

Design Methodology. ESS is a three-step training pipeline.

We first train RNN from scratch with structured-sparsity

learning method. At the end of this step, a sparse model

at the desired sparsity level will be generated. However, the

accuracy of the model is relatively low and will be recovered

in the following two steps. In the second step, we fix the zero

parameters learned in the previous step to prevent the structural

sparsity from updating in the next step. At the end, the sparse

model will be used as an initial input model and be trained for

additional epochs. Here, the extra group Lasso regularization

term in the first step is disabled while the model is retrained to

recover the accuracy. Because all the zero parameters are fixed

in the second step, only nonzero elements can be updated. In

this way, the learned sparsity is maintained while the accuracy

gradually increases. Due to the page limit, we omit the details

and refer interested readers to [31].

Evaluation. We use the open-source Kaldi toolkit to con-

duct experiments. As visualized in Figure 5, the learned

structures show significant sparsity with different group sizes

(e.g., 8, 16). Although matrices (i.e., columns in Figure 5)

demonstrate difference among each other, the learning process

makes it converge to an optimal configuration across all the

matrices.

V. CONCLUSION

In this work, we summarize our recent research on cross-

layer optimization to accelerate DNNs. Structured Sparsity
Learning (SSL) can adaptively adjusts multiple structures

(e.g., filter, channels, filter shapes, network depths) in a DNN

to obtain a compact and light model. Through two design

cases, we show that SSL-based hardware implementation

and program optimization can provide further improvements.

Our conclusion is that only interactive design practices that

span algorithm and hardware levels can maximize system

performance.
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