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Abstract—As a key technique for enabling artificial
intelligence, machine learning (ML) is capable of solving complex
problems without explicit programming. Motivated by its success-
ful applications to many practical tasks like image recognition,
both industry and the research community have advocated the
applications of ML in wireless communication. This paper com-
prehensively surveys the recent advances of the applications of
ML in wireless communication, which are classified as: resource
management in the MAC layer, networking and mobility man-
agement in the network layer, and localization in the application
layer. The applications in resource management further include
power control, spectrum management, backhaul management,
cache management, and beamformer design and computation
resource management, while ML-based networking focuses on
the applications in clustering, base station switching control, user
association, and routing. Moreover, literatures in each aspect is
organized according to the adopted ML techniques. In addition,
several conditions for applying ML to wireless communication
are identified to help readers decide whether to use ML and
which kind of ML techniques to use. Traditional approaches are
also summarized together with their performance comparison
with ML-based approaches, based on which the motivations of
surveyed literatures to adopt ML are clarified. Given the exten-
siveness of the research area, challenges and unresolved issues
are presented to facilitate future studies. Specifically, ML-based
network slicing, infrastructure update to support ML-based
paradigms, open data sets and platforms for researchers, the-
oretical guidance for ML implementation, and so on are
discussed.

Index Terms—Wireless network, machine learning, resource
management, networking, mobility management, localization.

I. INTRODUCTION

S INCE the rollout of the first generation wireless communi-
cation system, wireless technology has been continuously
evolving from supporting basic coverage to satisfying more
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advanced needs [1]. In particular, the fifth generation (5G)
mobile communication system is expected to achieve a con-
siderable increase in data rates, coverage and the number
of connected devices with latency and energy consumption
significantly reduced [2], [3], [4], [5]. Moreover, 5G is also
expected to provide more accurate localization, especially in
an indoor environment [6].

These goals can be potentially met by enhancing the system
from different aspects. For example, computing and caching
resources can be deployed at the network edge to fulfill
the demands for low latency and reduce energy consump-
tion [7], [8]. The cloud computing based BBU pool can
provide high data rates with the use of large-scale collabo-
rative signal processing among BSs [9], [10] and can save
much energy via statistical multiplexing [11]. Furthermore,
the co-existence of heterogenous nodes, including macro
BSs (MBSs), small base stations (SBSs) and user equip-
ments (UEs) with device-to-device (D2D) capability, can boost
the throughput and simultaneously guarantee seamless cover-
age [12]. However, the involvement of computing resource,
cache resource and heterogenous nodes cannot alone satisfy
the stringent requirements of 5G. The algorithmic design
enhancement for resource management, networking, mobil-
ity management and localization is essential as well. Faced
with the characteristics of 5G, current resource management,
networking, mobility management and localization algorithms
expose several limitations.

First, with the proliferation of smart phones, the expan-
sion of network scale and the diversification of services in
the 5G era, the amount of data, related to applications, users
and networks, will experience an explosive growth, which
can contribute to an improved system performance if prop-
erly utilized [13]. However, many of the existing algorithms
are incapable of processing and/or utilizing the data, meaning
that much valuable information or patterns are wasted. Second,
to adapt to the dynamic network environment, algorithms like
RRM algorithms are often fast but heuristic. Since the resulting
system performance can be far from optimal, these algo-
rithms can hardly meet the performance requirements of 5G.
To obtain better performance, research has been done based
on optimization theory to develop more effective algorithms
to reach optimal or suboptimal solutions. However, many
studies assume a static network environment. Considering
that 5G networks will be more complex, hence leading to
more complex mathematical formulations, the developed algo-
rithms can possess high complexity. Thus, these algorithms
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will be inapplicable in the real dynamic network, due to
their long decision-making time. Third, given the large num-
ber of nodes in future 5G networks, traditional centralized
algorithms for network management can be infeasible due to
the high computing burden and high cost to collect global
information. Therefore, it is preferred to enable network nodes
to autonomously make decisions based on local observations.

As an important enabling technology for artificial intelli-
gence, machine learning has been successfully applied in many
areas, including computer vision, medical diagnosis, search
engines and speech recognition [14]. Machine learning is a
field of study that gives computers the ability to learn without
being explicitly programmed. Machine learning techniques can
be generally classified as supervised learning, unsupervised
learning and reinforcement learning. In supervised learning,
the aim of the learning agent is to learn a general rule mapping
inputs to outputs with example inputs and their desired outputs
provided, which constitute the labeled data set. In unsuper-
vised learning, no labeled data is needed, and the agent tries
to find some structures from its input. While in reinforcement
learning, the agent continuously interacts with an environment
and tries to generate a good policy according to the immediate
reward/cost fed back by the environment. In recent years, the
development of fast and massively parallel graphical process-
ing units and the significant growth of data have contributed to
the progress in deep learning, which can achieve more power-
ful representation capabilities. For machine learning, it has the
following advantages to overcome the drawbacks of traditional
resource management, networking, mobility management and
localization algorithms.

The first advantage is that machine learning has the ability
to learn useful information from input data, which can help
improve network performance. For example, convolutional
neural networks and recurrent neural networks can extract
spatial features and sequential features from time-varying
Received Signal Strength Indicator (RSSI), which can mitigate
the ping-pong effect in mobility management [16]. By extract-
ing robust fingerprint patterns from noisy RSSI measurements
using an auto-encoder, more accurate indoor localization for
a three-dimensional space can be achieved [17]. Second,
machine learning based resource management, networking
and mobility management algorithms can well adapt to the
dynamic environment. For instance, by using the deep neu-
ral network proven to be an universal function approximator,
traditional high complexity algorithms can be closely approxi-
mated, and similar performance can be achieved but with much
lower complexity [15], which makes it possible to quickly
respond to environmental changes. In addition, reinforcement
learning can achieve fast network control based on learned
policies [18]. Third, machine learning helps to realize the goal
of network self-organization. For example, using multi-agent
reinforcement learning, each node in the network can self-
optimize its transmission power, subchannel allocation and so
on. At last, by involving transfer learning, machine learning
has the ability to quickly solve a new problem. It is known that
there exist some temporal and spatial relevancies in wireless
systems such as traffic loads between neighboring regions [18].
Hence, it is possible to transfer the knowledge acquired in
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one task to another relevant task, which can speed up the
learning process for the new task. However, in traditional
algorithm design, such prior knowledge is often not utilized.
In Section VIII, a more comprehensive discussion about the
motivations to adopt machine learning rather than traditional
approaches is made.

Driven by the recent development of the applications of
machine learning in wireless networks, some efforts have
been made to survey related research and provide useful
guidelines. In [19], the basics of some machine learning
algorithms along with their applications in future wireless
networks are introduced, such as Q-learning for the resource
allocation and interference coordination in downlink femtocell
networks and Bayesian learning for channel parameter esti-
mation in a massive, multiple-input-multiple-output network.
While in [20], the applications of machine learning in wireless
sensor networks (WSNs) are discussed, and the advantages
and disadvantages of each algorithm are evaluated with guid-
ance provided for WSN designers. In [21], different learning
techniques, which are suitable for Internet of Things (IoT),
are presented, taking into account the unique characteristics of
IoT, including resource constraints and strict quality-of-service
requirements, and studies on learning for IoT are also reviewed
in [22]. The applications of machine learning in cognitive
radio (CR) environments are investigated in [23] and [24].
Specifically, authors in [23] classify those applications into
decision-making tasks and classification tasks, while authors
in [24] mainly concentrate on model-free strategic learning.
Moreover, authors in [25] and [26] focus on the potentials
of machine learning in enabling the self-organization of cel-
lular networks with the perspectives of self-configuration,
self-healing and self-optimization. To achieve high energy effi-
ciency in wireless networks, related promising approaches
based on big data are summarized in [27]. In [28], a com-
prehensive tutorial on the applications of neural networks
(NNs) is provided, which presents the basic architectures and
training procedures of different types of NNs, and several
typical application scenarios are identified. In [29] and [30],
the applications of deep learning in the physical layer are
summarized. Specifically, authors in [29] see the whole com-
munication system as an auto-encoder, whose task is to
learn compressed representations of user messages that are
robust to channel impairments. A similar idea is presented
in [30], where a broader area is surveyed including mod-
ulation recognition, channel decoding and signal detection.
Also focusing on deep learning, literatures [31]-[33] pay
more attention to upper layers, and the surveyed applica-
tions include channel resource allocation, routing, scheduling,
and so on.

Although significant progress has been achieved toward
surveying the applications of machine learning in wireless
networks, there still exist some limitations in current works.
More concretely, literatures [19], [23], [25]-[27] are seldom
related to deep learning, deep reinforcement learning and
transfer learning, and the content in [29], [30] only focuses
on the physical layer. In addition, only a specific network sce-
nario is covered in [20]-[24], while literatures [28], [31]-33]
just pay attention to NNs or deep learning. Considering these
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shortcomings and the ongoing research activities, a more com-
prehensive survey framework, which incorporates the recent
achievements in the applications of diverse machine learn-
ing methods in different layers and network scenarios, seems
timely and significant. Specifically, this paper surveys state-of-
the-art applications of various machine learning approaches
from the MAC layer up to the application layer, covering
resource management, networking, mobility management and
localization. The principles of different learning techniques are
introduced, and useful guidelines are provided. To facilitate
future applications of machine learning, challenges and open
issues are identified. Overall, this survey aims to fill the gaps
found in the previous papers [19]-[33], and our contributions
are threefold:

1) Popular machine learning techniques utilized in wireless
networks are comprehensively summarized including
their basic principles and general applications, which are
classified into supervised learning, unsupervised learn-
ing, reinforcement learning, (deep) NNs and transfer
learning. Note that (deep) NNs and transfer learning
are separately highlighted because of their increasing
importance to wireless communication systems.

2) A comprehensive survey of the literatures applying
machine learning to resource management, networking,
mobility management and localization is presented, cov-
ering all the layers except the physical layer that has
been thoroughly investigated. Specifically, the appli-
cations in resource management are further divided
into power control, spectrum management, beamformer
design, backhaul management, cache management and
computation resource management, and the applications
in networking are divided into user association, BS
switching control, routing and clustering. Moreover, sur-
veyed papers in each application area are organized
according to their adopted machine learning techniques,
and the majority of the network scenarios that will
emerge in the 5G era are included such as vehicular
networks, small cell networks and cloud radio access
networks.

3) Several conditions for applying machine learning in
wireless networks are identified, in terms of problem
types, training data availability, time cost, and so on.
In addition, the traditional approaches, taken as base-
lines in surveyed literatures, are summarized, along
with performance comparison with machine learning
based approaches, based on which motivations to adopt
machine learning are clarified. Furthermore, future chal-
lenges and unsolved issues related to the applications
of machine learning in wireless networks are discussed
with regard to machine learning based network slicing,
standard data sets for research, theoretical guidance for
implementation, and so on.

The remainder of this paper is organized as follows:
Section II introduces the popular machine learning techniques
utilized in wireless networks, together with a brief summariza-
tion of their applications. The applications of machine learning
in resource management are summarized in Section III. In
Section IV, the applications of machine learning in networking
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Fig. 1. An illustration of a basic SVM model.

are surveyed. Sections V and VI summarize recent advances
in machine learning based mobility management and local-
ization, respectively. Several conditions for applying machine
learning are presented in Section VII to help readers decide
whether to adopt machine learning and which kind of learn-
ing techniques to use. In Section VIII, traditional approaches
and their performance compared with machine learning based
approaches are summarized, and then motivations in surveyed
literatures to use machine learning are elaborated. Challenges
and open issues are identified in Section IX, followed by the
conclusion in Section X. For convenience, all abbreviations
are listed in Table L.

II. MACHINE LEARNING PRELIMINARIES

In this section, various machine learning techniques
employed in the studies surveyed in this paper are intro-
duced, including supervised learning, unsupervised learning,
reinforcement learning, (deep) NNs and transfer learning.

A. Supervised Learning

Supervised learning is a machine learning task that aims
to learn a mapping function from the input to the output,
given a labeled data set. Specifically, supervised learning can
be further divided into regression and classification based on
the continuity of the output. In surveyed works, the following
supervised learning techniques are adopted.

1) Support Vector Machine: The basic support vector
machine (§VM) model is a linear classifier, which aims to sep-
arate data points that are p-dimensional vectors usingap — 1
hyperplane. The best hyperplane is the one that leads to the
largest separation or margin between the two given classes,
and is called the maximum-margin hyperplane. However, the
data set is often not linearly separable in the original space.
In this case, the original space can be mapped to a much
higher dimensional space by involving kernel functions, such
as polynomial or Gaussian kernels, which results in a non-
linear classifier. More details about SVM can be found in [34],
and the basic principle is illustrated in Fig. 1.

2) K Nearest Neighbors: K Nearest Neighbors (KNN) is a
non parametric lazy learning algorithm for classification and
regression, where no assumption on the data distribution is
needed. Taking the classification task as an example, which is
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TABLE I
SUMMARY OF ABBREVIATIONS

3GPP 37¢ generation partnership project NN neural network
5G 5th generation OFDMA orthogonal frequency division multiple access
AP access point OISVM online independent support vector machine
BBU baseband unit OPEX operating expense
BS base station OR outage ratio
CBR call blocking ratio ORLA online reinforcement learning approach
CDR call dropping ratio OSPF open shortest path first
CF collaborative filtering PBS pico base station
CNN convolutional neural network PCA principal components analysis
CR cognitive radio PU primary user
CRE cell range extension QoE quality of experience
CRN cognitive radio network QoS quality of service
C-RAN cloud radio access network RAN radio access network
CSI channel state information RB resource block
D2D device-to-device ReLU rectified linear unit
DRL deep reinforcement learning RF radio frequency
DNN dense neural network RL reinforcement learning
EE energy efficiency RNN recurrent neural network
ELM extreme learning machine RP reference point
ESN echo state network RRH remote radio head
FBS femto base station RRM radio resource management
FLC fuzzy logic controller RSRP reference signal receiving power
FS-KNN  feature scaling based k nearest neighbors | RSRQ reference signal receiving quality
GD gradient descent RSS received signal strength
GPS global positioning system RSSI received signal strength indicator
GPU graphics processing unit RVM relevance vector machine
Hys hysteresis margin SBS small base stations
IA interference alignment SE spectral efficiency
ICIC inter-cell interference coordination SINR signal-to-interference-plus-noise ratio
IOPSS inter operator proximal spectrum sharing | SNR signal-to-noise ratio
IoT internet of things SOM self-organizing map
KNN k nearest neighbors SON self-organizing network
KPCA kernel principal components analysis Su secondary user
KPI key performance indicators SVM support vector machine
LOS line-of-sight TDMA time division multiple access
LSTM long short-term memory TDOA time difference of arrival
LTE long term evolution TOA time of arrival
LTE-U long term evolution-unlicensed TTT time-to-trigger
MAB multi-armed bandit TXP transmit power
MAC medium access control UE user equipment
MBS macro base station UAV unmanned aerial vehicle
MEC mobile edge computing UWB ultra-wide bandwidth
ML machine learning WLAN wireless local area network
MUE macrocell user equipment WMMSE  weighted minimum mean square error
NE Nash equilibrium WSN wireless sensor network
NLOS non-line-of-sight

shown in Fig. 2, the basic principle of KNN is to decide the

class of a test point in the form of a feature vector based on the

majority voting of its K nearest neighbors. Considering that

training data belonging to very frequent classes can dominate

the prediction of test data, a weighted method can be adopted

by involving a weight for each neighbor that is proportional to

the inverse of its distance to the test point. In addition, one of

the keys to applying KNN is the tradeoff of the parameter K,

and the value selection can be referred to [35].

B. Unsupervised Learning

Unsupervised learning is a machine learning task that aims : .
Fig. 2. An illustration of the KNN model.

to learn a function to describe a hidden structure from unla-
beled data. In surveyed works, the following unsupervised
learning techniques are utilized.

1) K-Means Clustering Algorithm: In K-means clustering,
the aim is to partition n data points into K clusters, and
each data point belongs to the cluster with the nearest mean.

The most common version of K-means algorithm is based on
iterative refinement. At the beginning, K means are randomly
initialized. Then, in each iteration, each data point is assigned
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Fig. 3. An illustration of the K-means model.

to exactly one cluster, whose mean has the least Euclidean
distance to the data point, and the mean of each cluster is
updated. The algorithm continuously iterates until the mem-
bers in each cluster do not change. The basic principle is
illustrated in Fig. 3.

2) Principal Component Analysis: Principal component
analysis (PCA) is a dimension-reduction tool that can be
used to reduce a large set of variables to a small set that
still contains most of the information in the large set and is
mathematically defined as an orthogonal linear transformation
that transforms the data to a new coordinate system. More
specifications of PCA can be referred to [36].

C. Reinforcement Learning

In reinforcement learning (RL), the agent aims to optimize
a long term objective by interacting with the environment
based on a trial and error process. Specifically, the follow-
ing reinforcement learning algorithms are applied in surveyed
studies.

1) Q-Learning: One of the most commonly adopted rein-
forcement learning algorithms is Q-learning. Specifically, the
RL agent interacts with the environment to learn the Q val-
ues, based on which the agent takes an action. The Q value
is defined as the discounted accumulative reward, starting at
a tuple of a state and an action and then following a certain
policy. Once the Q values are learned after a sufficient amount
of time, the agent can make a quick decision under the cur-
rent state by taking the action with the largest Q value. More
details about Q learning can be referred to [37]. In addition,
to handle continuous state spaces, fuzzy Q learning can be
used [38]. The procedure of Q learning is shown in Fig. 4.

2) Multi-Armed Bandit Learning: In a multi-armed bandit
(MAB) model with a single agent, the agent sequentially takes
an action and then receives a random reward generated by a
corresponding distribution, aiming at maximizing an aggre-
gate reward. In this model, there exists a tradeoff between
taking the current, best action (exploitation) and gathering
information to achieve a larger reward in the future (explo-
ration). While in the MAB model with multiple agents, the
reward an agent receives after playing an action is not only
dependent on this action but also on the agents taking the
same action. In this case, the model is expected to achieve
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some steady states or equilibrium [39]. More details about
MAB can be referred to [40]. The process of MAB learning
is illustrated in Fig. 5.

3) Actor-Critic Learning: The actor-critic learning algo-
rithm is composed of an actor, a critic and an environment
with which the actor interacts. In this algorithm, the actor first
selects an action according to the current strategy and receives
an immediate cost. Then, the critic updates the state value
function based on a time difference error, and next, the actor
will update the policy. As for the strategy, it can be updated
based on learned policy using Boltzmann distribution. When
each action is revisited infinitely for each state, the algorithm
will converge to the optimal state values [41]. The process of
actor-critic learning is shown in Fig. 6.

4) Joint Utility and Strategy Estimation Based Learning: In
this algorithm shown in Fig. 7, each agent holds an estimation
of the expected utility, whose update is based on the imme-
diate reward. The probability to select each action, named as
strategy, is updated in the same iteration based on the util-
ity estimation [42]. The main benefit of this algorithm lies
in that it is fully distributed when the reward can be directly
calculated locally, as, for example, the data rate between a
transmitter and its paired receiver. Based on this algorithm,
one can further estimate the regret of each action based on
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Fig. 7. The process of joint utility and strategy estimation based learning.

utility estimations and the received immediate reward, and
then update strategy using regret estimations. In surveyed
works, this algorithm is often connected with some equilibrium
concepts in game theory like Logit equilibrium and coarse
correlated equilibrium.

5) Deep Reinforcement Learning: In [43], authors propose
to use a deep NN, called deep Q network (DQN), to approxi-
mate optimal Q values, which allows the agent to learn from
the high-dimensional sensory data directly, and reinforcement
learning based on DQN is known as deep reinforcement learn-
ing (DRL). Specifically, state transition samples generated
by interacting with the environment are stored in the replay
memory and sampled to train the DQN, and a target DQN is
adopted to generate target values, which both help stabilize
the training procedure of DRL. Recently, some enhancements
to DRL have come out, and readers can refer to the litera-
ture [44] for more details. The main components and working
process of the basic DRL are shown in Fig. 8.

D. (Deep) Neural Network

1) Dense Neural Network: As shown in Fig. 9, the basic
component of a dense neural network (DNN) is a neuron corre-
sponding with weights for the input and an activation function
for the output. Common activation functions include tanh,
Relu, and so on. The input is transformed through the network
layer by layer, and there is no direct connection between
two non-consecutive layers. To optimize network parameters,
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Fig. 10. The architecture of an RNN.

backpropagation together with various GD methods can be
employed, which include Momentum, Adam, and so on [45].

2) Recurrent Neural Network: As demonstrated in Fig. 10,
there exist connections in the same hidden layer in the recur-
rent neural network (RNN) architecture. After unfolding the
architecture along the time line, it can be clearly seen that
the output at a certain time step is dependent on both the
current input and former inputs, hence RNN is capable of
remembering. RNNs include echo state networks, LSTM, and
SO on.

3) Convolutional Neural Network: As shown in Fig. 11,
two main components of convolutional neural networks
(CNNs) are layers for convolutional operations and pooling
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operations like maximum pooling. By stacking convolu-
tional layers and pooling layers alternately, the CNN can
learn rather complex models based on progressive levels of
abstraction. Different from dense layers in DNNs that learn
global patterns of the input, convolutional layers can learn
local patterns. Meanwhile, CNNs can learn spatial hierarchies
of patterns.

4) Auto-Encoder: An auto-encoder is an unsupervised neu-
ral network with the target output the same as the input,
and it has different variations like denoising auto-encoder
and sparse auto-encoder. With the limited number of neurons,
an auto-encoder can learn a compressed but robust repre-
sentation of the input in order to construct the input at the
output. Generally, after an auto-encoder is trained, the decoder
is removed with the encoder kept as the feature extractor.
The structure of an auto-encoder is demonstrated in Fig. 12.
Note that auto-encoders have some disadvantages. First, a pre-
condition for a trained auto-encoder to work well is that the
distribution of the input data had better be identical to that
of training data. Second, its working mechanism is often seen
as a black box that can not be clearly explained. Third, the
hyper-parameter setting, which is a complex task, has a great
influence on its performance, such as the number of neurons
in the hidden layer.

5) Extreme Learning Machine: The extreme learning
machine (ELM) is a feed-forward NN with a single or multiple
hidden-layers whose parameters are randomly generated using
a distribution. The weights between the hidden layer and
output layer are computed by minimizing the error between
the computed output value and the true output value. More
specifications on ELM can be referred to [46].
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E. Transfer Learning

Transfer learning is a concept with the goal of utilizing the
knowledge from a specific domain to assist learning in a target
domain. By applying transfer learning, which can avoid learn-
ing from scratch, the new learning process can be sped up. In
deep learning and reinforcement learning, knowledge can be
represented by weights and Q values, respectively. Specifically,
when deep learning is adopted for image recognition, one
can use the weights that have been well trained for another
image recognition task as the initial weights, which can help
achieve a satisfactory performance with a small training set.
For reinforcement learning, QQ values learned by an agent in
a former environment can be involved in the Q value update
in a new but similar environment to make a wiser decision
at the initial stage of learning. Specifications on integrating
transfer learning with reinforcement learning can be referred
to [47]. However, when transfer learning is utilized, the neg-
ative impact of former knowledge on the performance should
be carefully handled, since there still exist some differences
between tasks or environments.

E Some Implicit Assumptions

For SVM and neural network based supervised learning
methods adopted in surveyed works, they actually aim at learn-
ing a mapping rule from the input to the output based on
training data. Hence, to apply the trained supervised learning
model to make effective predictions, an implicit assump-
tion in surveyed literatures is that the learned mapping rule
still works in future environments. In addition, there are
also some implicit assumptions in surveyed literatures apply-
ing reinforcement learning. For reinforcement learning with
a single agent, the dynamics in the studied communication
system, such as cache state transition probabilities, should be
unchanged. This is intuitive, because the learning agent will
face a new environment once the dynamics change, which
invalidates the learned policy. As for reinforcement learning
with multiple agents whose policies or strategies are coupled,
an assumption to use it is that the set of agents should be kept
fixed, since the variation of the agent set will also make the
environment different from the perspective of each agent.

At last, to intuitively show the applications of each machine
learning method, Table II is drawn with all the surveyed works
listed.

I11. MACHINE LEARNING BASED
RESOURCE MANAGEMENT

In wireless networks, resource management aims to achieve
proper utilization of limited physical resources to meet various
traffic demands and improve system performance. Academic
resource management methods are often designed for static
networks and highly dependent on formulated mathematical
problems. However, the states of practical wireless networks
are dynamic, which will lead to the frequent re-execution of
algorithms that can possess high complexity. Meanwhile, the
ideal assumptions facilitating the formulation of a tractable
mathematical problem can result in large performance loss
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when algorithms are applied to real situations. In addition, tra-
ditional resource management can be enhanced by extracting
useful information related to users and networks, and dis-
tributed resource management schemes are preferred when the
number of nodes is large.

Faced with the above issues, machine learning techniques
including model-free reinforcement learning and NNs can
be employed. Specifically, reinforcement learning can learn
a good resource management policy based on only the
reward/cost fed back by the environment, and quick deci-
sions can be made for a dynamic network once a policy
is learned. In addition, owing to the superior approximation
capabilities of deep NNs, some high complexity resource man-
agement algorithms can be approximated, and similar network
performance can be achieved but with much lower complexity.
Moreover, NNs can be utilized to learn the content popular-
ity, which helps fully make use of limited cache resource, and
distributed Q-learning can endow each node with autonomous
decision capability for resource allocation. In the following,
the applications of machine learning in power control, spec-
trum management, backhaul management, beamformer design,
computation resource management and cache management
will be introduced.

A. Machine Learning Based Power Control

In the spectrum sharing scenario, effective power control
can reduce inter-user interference, and hence increase system
throughput. In the following, reinforcement, supervised, and
transfer learning-based power control are elaborated.

1) Reinforcement Learning Based Approaches: In [48],
authors focus on inter-cell interference coordination (ICIC)
based on Q learning with Pico BSs (PBSs) and a macro BS
(MBS) as the learning agents. In the case of time-domain ICIC,
the action performed by each PBS is to select the bias value
for cell range expansion and transmit power on each resource
block (RB), and the action of the MBS is only to choose the
transmit power. The state of each agent is defined by a tuple
of variables, each of which is related to the SINR condition of
each UE, while the received cost of each agent is defined to
meet the total transmit power constraint and make the SINR
of each served UE approach a target value. In each iteration of
the algorithm, each PBS first selects an action leading to the
smallest Q value for the current state, and then the MBS selects
its action in the same way. While in the case of frequency-
domain ICIC, the only difference lies in the action definition
of Q learning. Utilizing Q learning, the Pico and Macro tiers
can autonomously optimize system performance with a little
coordination. In [49], authors use Q learning to optimize the
transmit power of SBSs in order to reduce the interference on
each RB. With learning capabilities, each SBS does not need
to acquire the strategies of other players explicitly. In con-
trast, the experience is preserved in the Q values during the
interaction with other SBSs. To apply Q learning, the state
of each SBS is represented as a binary variable that indicates
whether the QoS requirement is violated, and the action is the
selection of power levels. When the QoS requirement is met,
the reward is defined as the achieved, instantaneous rate, which
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equals to zero otherwise. The simulation result demonstrates
that Q-learning can increase the long-term expected data rate
of SBSs.

Another important scenario requiring power control is the
CR scenario. In [50], distributed Q learning is conducted to
manage aggregated interference generated by multiple CRs at
the receivers of primary (licensed) users, and the secondary
BSs are taken as learning agents. The state set defined for
each agent is composed of a binary variable indicating whether
the secondary system generates excess interference to primary
receivers, the approximate distance between the secondary
user (SU) and protection contour, and the transmission power
corresponding to the current SU. The action set of the sec-
ondary BS is the set of power levels that can be adopted
with the cost function designed to limit the interference at
the primary receivers. Taking into account that the agent can-
not always obtain an accurate observation of the interference
indicator, authors then discuss two cases, namely complete
information and partial information, and handle the latter by
involving belief states in Q learning. Moreover, two different
ways of Q value representation are discussed utilizing look-
up tables and neural networks, and the memory, as well as,
computation overheads are also examined. Simulations show
that the proposed scheme can allow agents to learn a series of
optimization policies that will keep the aggregated interference
under a desired value.

In addition, some research utilizes reinforcement learning
to achieve the equilibrium state of wireless networks, where
power control problems are modeled as non-cooperative games
among multiple nodes. In [51], the power control of femto BSs
(FBSs) is conducted to mitigate the cross-tier interference to
macrocell UEs (MUESs). Specifically, the power control and
carrier selection is modeled as a normal form game among
FBSs in mixed strategies, and a reinforcement learning algo-
rithm based on joint utility and strategy estimation is proposed
to help FBSs reach Logit equilibrium. In each iteration of the
algorithm, each FBS first selects an action according to its
current strategy, and then receives a reward which equals its
data rate if the QoS of the MUE is met and equals to zero
otherwise. Based on the received reward, each FBS updates its
utility estimation and strategy by the process proposed in [42].
By numerical simulations, it is demonstrated that the proposed
algorithm can achieve a satisfactory performance while each
FBS does not need to know any information of the game but
its own reward. It is also shown that taking identical utilities
for FBSs benefits the whole system performance.

In [52], authors model the channel and power level selec-
tion of D2D pairs in a heterogeneous cellular network as a
stochastic non-cooperative game. The utility of each pair is
defined by considering the SINR constraint and the difference
between its achieved data rate and the cost of power con-
sumption. To avoid the considerable amount of information
exchange among pairs incurred by conventional multi-agent
Q learning, an autonomous Q learning algorithm is developed
based on the estimation of pairs’ beliefs about the strategies
of all the other pairs. Finally, simulation results indicate that
the proposal possesses a relatively fast convergence rate and
can achieve near-optimal performance.
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2) Supervised Learning Based Approaches: Considering
the high complexity of traditional optimization based resource
allocation algorithms, authors in [15], [55] propose to utilize
deep NNs to develop power allocation algorithms that can
achieve real-time processing. Specifically, different from the
traditional ways of approximating iterative algorithms where
each iteration is approximated by a single layer of the NN,
authors in [15] adopts a generic dense neural network to
approximate the classic WWMSE algorithm for power con-
trol in a scenario with multiple transceiver pairs. Notably, the
number of layers and the number of ReLUs and binary units
that are needed for achieving a given approximation error are
rigourously analyzed, from which it can be concluded that
the approximation error just has a little impact on the size
of the deep NN. As for NN training, the training data set
is generated by running the WMMSE algorithm under vary-
ing channel realizations, and channel realizations together with
corresponding power allocation results output by the WMMSE
algorithm constitute labeled data. Via simulations, it is demon-
strated that the adopted fully connected NN can achieve similar
performance but with much lower computation time compared
with the WMMSE algorithm.

While in [55], a CNN based power control scheme is
developed for the same scenario considered in [15], where
the full channel gain information is normalized and taken as
the input of the CNN, while the output is the power allocation
vector. Similar to [15], the CNN is firstly trained to approx-
imate traditional WMMSE to guarantee a basic performance,
and then the loss function is further set as a function of spec-
tral efficiency (SE) or energy efficiency (EE). Simulation result
shows that the proposal can achieve almost the same or even
higher SE and EE than WMMSE at a faster computing speed.
Also using NNs for power allocation, authors in [56] adopt an
NN architecture formed by stacking multiple encoders from
pre-trained auto-encoders and a pre-trained softmax layer. The
architecture takes the CSI and the location indicators as the
input with each indicator representing whether a user is a cell-
edge user, and the output is the resource allocation result.
The training data set is generated by solving a sum rate
maximization problem under different CSI realizations via the
genetic algorithm.

3) Transfer Learning Based Approaches: In heterogenous
networks, when femtocells share the same radio resources
with macrocells, power control is needed to limit the inter-tier
interference to MUEs. However, facing with dynamic environ-
ment, it is difficult for femtocells to meet the QoS constraints
of MUESs during the entire operation time. In [57], distributed
Q-learning is utilized for inter-tier interference management,
where the femtocells, as learning agents, aim at optimizing
their own capacity while satisfying the data rate requirement
of MUEs. Due to the frequent changes in RB scheduling, i.e.,
the RB allocated to each UE is different from time-to-time, and
the backhaul latency, the power control policy learned by fem-
tocells will be no longer useful and can cause the violation of
the data rate constraints of MUEs. To deal with this problem,
authors propose to let the MBS inform femtocells about the
future RB scheduling, which facilitates the power control
knowledge transfer between different environments. Hence,

femtocells can still avoid interference to the MUE, even if
its RB allocation is changed. In this study, the power control
knowledge is represented by the complete Q-table learned for a
given RB. System level simulations demonstrate this scheme
can normally work in a multi-user OFDMA network and is
superior to the traditional power control algorithm in terms of
the average capacity of cells.

4) Lessons Learned: It can be learned from [48]-[52], [57]
that distributed Q learning and learning based on joint util-
ity and strategy estimation can both help to develop self-
organizing and autonomous power control schemes for CRNs
and heterogenous networks. Moreover, according to [50],
Q values can be represented in a tabular form or by a neuron
network that have different memory and computation over-
heads. In addition, as indicated by [57], Q learning can be
enhanced to make agents better adapt to a dynamic envi-
ronment by involving transfer learning for a heterogenous
network. Following [51], better system performance can be
achieved by making the utility of agents identical to the
system’s goal. At last, according to [15], [55], [56], using
NNs to approximate traditional high-complexity power allo-
cation algorithms is a potential way to realize real-time power
allocation.

B. Machine Learning Based Spectrum Management

With the explosive increase of data traffic, spectrum short-
ages have drawn big concerns in the wireless communication
community, and efficient spectrum management is desired
to improve spectrum utilization. In the following, reinforce-
ment learning and unsupervised learning based spectrum
management are introduced.

1) Reinforcement Learning Based Approaches: In [58],
spectrum management in millimeter-wave, ultra-dense
networks is investigatedéii and temporal-spatial reuse is
considered as a method to improve spectrum utilization.
The spectrum management problem is formulated as a
non-cooperative game among devices, which is proved to
be an ordinary potential game guaranteeing the existence of
Nash equilibrium (NE). To help devices achieve NE without
global information, a novel, distributed Q learning algorithm
is designed, which facilitates devices to learn environments
from the individual reward. The action and reward of each
device are channel selection and channel capacity, respec-
tively. Different from traditional Q learning where the Q value
is defined over state-action pairs, the Q value in the proposal
is defined over actions, and that is each action corresponds to
a Q value. In each time slot, the Q value of the played action
is updated as a weighted sum of the current Q value and
the immediate reward, while the Q values of other actions
remain the same. In addition, based on rigorous analysis, a
key conclusion is drawn that less coupling in learning agents
can help speed up the convergence of learning. Simulations
demonstrate that the proposal can converge faster and is
more stable than several baselines, and also leads to a small
latency.

Similar to [58], authors in [59] focus on temporal-spatial
spectrum reuse but with the use of MAB theory. In order to
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TABLE III
MACHINE LEARNING BASED POWER CONTROL

Literature  Scenario Objective Machine learning  Main conclusion
technique
[48] A heterogenous net-  Achieve a target SINR for each UE un-  Two-level Q leam-  The algorithm makes the average throughput improve sig-
work with picocells  der total transmission power constraints  ing nificantly
underlaying macro-
cells
[49] A small cell net- Optimize the data rate of each SBS Distributed Q learn-  The long-term expected data rates of SBSs are increased
work ing
[50] A cognitive radic  Keep the interference at the primary  Distributed QQ leam-  The proposals outperform comparison schemes in terms of
network receivers below a threshold ing outage probability
[51] A heterogenous net-  Optimize the throughput of FUEs under  Reinforcement The algorithm can converge to the Logit equilibrium, and
work comprised of  the QoS constraints of MUEs learning with joint  the spectral efficiency is higher when FBSs take the system
FBSs and MBSs utility and strategy  performance as their utility
estimation
[52] A D2D enabled cel-  Optimize the reward of each D2D  Distributed Q learn-  The algorithm is proved to converge to the optimal Q values
lular network pair defined as the difference between  ing and improves the average throughput significantly
achieved data rate and transmit power
cost under QoS constraints
[53] A cognitive radio  Optimize transmit power level selection  SVM The proposed algorithm not only achieves a tradeoff between
network to reduce interference energy efficiency and satisfaction index, but also satisfies the
probabilistic interference constraint
[54] A cellular network Minimize the total transmit power of SVM The scheme can balance between the chosen transmit power
devices in the network and the user SINR
[57] A heterogenous net-  Optimize the capacity of femtocells un-  Knowledge transfer  The proposed scheme works properly in multi-user OFDMA
work with femto-  der the transmit power constraints and  based Q learning networks and outperforms conventional power control algo-
cells and macrocells QoS constraints of MUEs rithms
[15] A sceparic with  Optimize system throughput Densely connected  The proposal can achieve almost the same performance
multiple transceiver neural networks compared to WMMSE at a faster computing speed
pairs coexisting
[55] A scenario with  Optimize the SE and EE of the system  Convolutional neu-  The proposal can achieve almost the same or even higher
multiple transceiver ral networks SE and EE than WMMSE at a faster computing speed
pairs coexisting
[56] A downlink cellular  Optimize system throughput A multi-layer new-  The proposal can successfully predict the solution of the

network with multi-
ple cells

ral network based
on auto-encoders

genetic algorithm in most of the cases

overcome the high computation cost brought by the central-
ized channel allocation policy, a distributed three-stage policy
is proposed. The goal of the first two stages is to help SU find
the optimal channel access rank, while the third stage, based
on MAB, is for the optimal channel allocation. Specifically,
with probability 1-£, each SU chooses a channel based on
the channel access rank and empirical idle probability esti-
mates, and uniformly chooses a channel at random otherwise.
Then, the SU senses the selected channel and will receive
a reward equal to 1 if neither the primary user nor other
SUs transmit over this channel. By simulations, it is shown
that the proposal can achieve significantly smaller regrets
than the baselines in the spectrum temporal-spatial reuse sce-
nario. The regret is defined as the difference between the
total reward of a genie-aided rule and the expected reward
of all SUs.

In [60], authors study a multi-objective, spectrum access
problem in a heterogenous network. Specifically, the con-
cerned problem aims at minimizing the received intra/ inter-
tier interference at the femtocells and the inter-tier interference
from femtocells to eNBs simultaneously under QoS con-
straints. Considering the lack of global and complete channel
information, unknown number of nodes, and so on, the for-
mulated problem is very challenging. To handle this issue,
a reinforcement learning approach based on joint utility and

strategy estimation is proposed, which contains two sequential
levels. The purpose of the first level is to identify available
spectrum resource for femtocells, while the second level is
responsible for the optimization of resource selection. Two dif-
ferent utilities are designed for each level, namely the spectrum
modeling and spectrum selection utilities. In addition, three
different learning algorithms, including the gradient follower,
the modified RothErev, and the modified Bush and Mosteller
learning algorithms, are available for each femtocell. To deter-
mine the action selection probabilities based on the propensity
of each action output by the learning process, logistic functions
are utilized, which are commonly used in machine learning to
transform the full-range variables into the limited range of a
probability. Using the proposed approach, higher cell through-
put is achieved owing to the significant reduction in intra-tier
and inter-tier interference. In [61], the joint communication
mode selection and subchannel allocation of D2D pairs is
solved by joint utility and strategy estimation based reinforce-
ment learning for a D2D enabled C-RAN shown in Fig. 13. In
the proposal, each action of a D2D pair is a tuple of a commu-
nication mode and a subchannel. Once each pair has selected
its action, distributed RRH association and power control are
executed, and then each pair receives the system SE as the
instantaneous utility, based on which the utility estimation for
each action is updated. Via simulation, it is demonstrated that
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BBU Pool

A DZD pair

Fig. 13. The considered uplink D2D enabled C-RAN scenario.

a near optimal performance can be achieved by properly set-
ting the parameter controlling the balance between exploration
and exploitation.

To overcome the challenges existing in current solutions to
spectrum sharing between operators, an inter-operator proxi-
mal spectrum sharing (IOPSS) scheme is presented in [62],
in which a BS is able to intelligently offload users to its
neighboring BSs based on spectral proximity. To achieve this
goal, a Q learning framework is proposed, resulting in a self-
organizing, spectrally efficient network. The state of a BS
is the experienced load whose value is discretized, while an
action of a BS is a tuple of spectral sharing parameters related
to each neighboring BS. These parameters include the num-
ber of RBs requiring each neighboring BS to be reserved, the
probability of each user served by the neighboring BS with the
strongest SINR, and the reservation proportion of the requested
RBs. The cost function of each BS is related to both the QoE
of its users and the change in the number of RBs it requests.
Through extensive simulations with different loads, the dis-
tributed, dynamic IOPSS based Q learning can help mobile
network operators provide users with a high QoE and reduce
operational costs.

In addition to adopting classical reinforcement learning
methods, a novel reinforcement learning approach involving
recurrent neural networks is utilized in [63] to handle the
management of both licensed and unlicensed frequency bands
in LTE-U systems. Specifically, the problem is formulated as
a non-cooperative game with SBSs and an MBS as game
players. Solving the game is a challenging task since each
SBS may know only a little information about the network,
especially in a dense deployment scenario. To achieve a mixed-
strategy NE, multi-agent reinforcement learning based on echo
state networks is proposed, which are easy to train and can
track the state of a network over time. Each BS is an ESN
agent using two ESNs, namely ESN a and ESN §, to approx-
imate the immediate and the expected utilities, respectively.
The input of the first ESN comprises the action profile of all
the other BSs, while the input of the latter is the user associ-
ation of the BS. Compared to traditional RL approaches, the
proposal can quickly learn to allocate resources with not much
training data. During the algorithm execution, each BS needs
to broadcast only the action currently taken and its optimal
action. The simulation result shows that the proposed approach

improves the sum rate of the 50th percentile of users by up
to 167% compared to Q learning. A similar idea that com-
bines RNNs with reinforcement learning has been adopted
by [64] in a wireless network supporting virtual reality (VR)
services. Specifically, a complete VR service consists of two
communication stages. In the uplink, BSs collect tracking
information from users, while BSs transmit three-dimensional
images together with audio to VR users in the downlink. Thus,
it is essential for resource block allocation to jointly consider
both the uplink and downlink. To address this problem, each
BS is taken as an ESN agent whose actions are its resource
block allocation plans for both uplink and downlink. The input
of the ESN maintained by each BS is a vector containing the
indexes of the probability distribution that all the BSs currently
use, while the output is a vector of utility values associated
with each action, based on which the BS selects its action.
Simulation results show that the proposed algorithm yields
significant gains, in terms of VR QoS utility.

2) Lessons Learned: First, it is learned from [58] that less
coupling in learning agents can help speed up the convergence
of distributed reinforcement learning for a spatial-temporal
spectrum reuse scenario. Second, following [61], near-optimal
system SE can be achieved for a D2D enabled C-RAN by joint
utility and strategy estimation based reinforcement learning, if
the parameter balancing exploration and exploitation becomes
larger with time going by. Third, as indicated by [63], [64],
when each BS is allowed to manage its own spectrum resource,
RNN can be used by each BS to predict its utility, which can
help the system reach a stable resource allocation outcome.

C. Machine Learning Based Backhaul Management

In wireless networks, in addition to the management of radio
resources like power and spectrum, the management of back-
haul links connecting SBSs and MBSs or connecting BSs and
the core network is essential as well to achieve better system
performance. This subsection will introduce literatures related
to backhaul management based on reinforcement learning.

1) Reinforcement Learning Based Approaches: In [65],
Jaber et al. propose a backhaul-aware, cell range extension
(CRE) method based on RL to adaptively set the CRE off-
set value. In this method, the observed state for each small
cell is defined as a value reflecting the violation of its back-
haul capacity, and the action to be taken is the CRE bias
of a cell considering whether the backhaul is available or
not. The definition of the cost for each small cell intends
to maximize the utilization of total backhaul capacity while
keeping the backhaul capacity constraint of each cell satis-
fied. Q learning is adopted to minimize this cost through an
iterative process, and simulation results show that the proposal
relieves the backhaul congestion in macrocells and improves
the QoE of users. In [66], authors concentrate on load bal-
ancing to improve backhaul resource utilization by learning
system bias values via a distributed Q learning algorithm. In
this algorithm, Xu ef al. take the backhaul utilization quanti-
fied to several levels as the environment state based on which
each SBS determines an action, that is, the bias value. Then,
with the reward function defined as the weighted difference
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TABLE IV
MACHINE LEARNING BASED SPECTRUM MANAGEMENT

Literature  Scenario Objective Machine learning Main conclusion
methods
[58] An ultra~dense  Improve spectrum utilization with  Distributed Q leamn-  Less coupling in learning agents can help speed up the
network with  temporal-spatial spectrum reuse ing convergence of learning
millimeter-wave
[59] A cognitive radio Improve spectrum utilization with  Multi-armed Bandit  The scheme has less regret than other methods when
network temporal-spatial spectrum reuse temporal-spatial spectrum reuse is allowed
[60] A heterogenous net-  Reduce inter-tier and intra-tier interfer-  Reinforcement Higher cell throughput is achieved owing to the significant
work ence leaming reduction in intra-tier and inter-tier interference
[61] A D2D enabled C-  Optimize system spectral efficiency Joint utility and  The proposal can achieve near optimal performance in a
RAN strategy estimation  distributed manner
based learning
[62] Spectrum  sharing  Fully reap the benefits of multi-operator  Q learning By the proposal, mobile network operators can serve users
among multi-  spectrum sharing with high QoE even when all operators’ BSs are equally
operators loaded
[63] A wireless network  Optimize network throughput by user  Multi-agent The proposed approach improves the system performance
with LTE-U association, spectrum allocation and  reinforcement significantly, in terms of the sum-rate of the 50th percentile
load balancing learning based on  of users, compared with a Q leamning algorithm
ESNs
[64] A wireless network  Maximize the users’ QoS Multi-agent The proposed algorithm can achieve significant gains, in
supporting  virtual reinforcement terms of VR QoS
reality learning based on
ESNs

between the backhaul resource utilization and the outage prob-
ability for each SBS, Q learning is utilized to learn the bias
value selection strategy, achieving a balance between system-
centric performance and user-centric performance. Numerical
results show that this algorithm is able to optimize the utiliza-
tion of backhaul resources under the promise of guaranteeing
user QoS.

Unlike those in [65] and [66], authors in [67] and [68]
model backhaul management from a game-theoretic perspec-
tive. Problems are solved employing an RL approach based
on joint utility and strategy estimation. Specifically, the back-
haul management problem is formulated as a minority game
in [67], where SBSs are the players and have to decide whether
to download files for predicted requests while serving the
urgent demands. In order to approximate the mixed NE, an
RL-based algorithm, which enables each SBS to update its
strategy based on only the received utility, is proposed. In
contrast to previous, similar RL algorithms, this scheme is
mathematically proved to converge to a unique equilibrium
point for the formulated game. In [68], MUEs can communi-
cate with the MBS with the help of SBSs serving as relays. The
backhaul links between SBSs and the MBS are heterogenous
including both wired and wireless backhaul. The competi-
tion among MUEs is modeled as a non-cooperative game,
where their actions are the selections of transmission power,
the assisting SBSs, and rate splitting parameters. Using the
proposed RL approach, coarse correlated equilibrium of the
game is reached. In addition, it is demonstrated that the pro-
posal achieves better average throughput and delay for the
MUE:s than existing benchmarks do.

2) Lessons Learned: It can be leamed from [65] that
Q learning can help with alleviating backhaul congestion
and improving the QoE of users by autonomously adjust-
ing CRE parameters. Following [66], when one intends to
balance between system-centric performance and user-centric

performance, the reward fed back to the Q learning agent
can be defined as a weighted difference between them. As
indicated by [67], joint utility and strategy estimation based
learning can help achieve a balance between downloading
files potentially requested in the future and serving current
traffic. According to [68], distributed reinforcement learning
facilitates UEs to select heterogenous backhaul links for a het-
erogenous network scenario with SBSs acting as relays for
MUES, which results in an improved rate and delay.

D. Machine Learning Based Cache Management

Due to the proliferation of smart devices and intelligent
applications, such as augmented reality, virtual reality, ubig-
uitous social networking, and IoT, wireless communication
systems have experienced a tremendous data traffic increase
over the past couple of years. Additionally, it has been envi-
sioned that the cellular network will produce about 30.6
exabytes data per month by 2020 [72]. Faced with the explo-
sion of data demands, the caching paradigm is introduced for
the future wireless network to shorten latency and alleviate the
transmission burden on backhaul [73]. Recently, many excel-
lent research studies have adopted ML techniques to manage
cache resource with great success.

1) Reinforcement Learning Based Approaches:
Considering the various spatial and temporal content demands
among different small cells, authors in [74] develop a decen-
tralized caching update scheme based on joint utility-and-
strategy-estimation RL. With this approach, each SBS can
optimize a caching probability distribution over content classes
using only the received instantaneous utility feedback. In addi-
tion, by doing weighted sum of the caching strategies of each
SBS and the cloud, a tradeoff between local content popu-
larity and global popularity can be achieved. In [75], authors
also focus on distributed caching design. Different from [74],
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TABLE V
MACHINE LEARNING BASED BACKHAUL MANAGEMENT

Literature  Scenario Objective Machine learning Main conclusion
methods
[69] A cellular network Minimize energy consumption in low  Q learning The total energy consumption can be reduced by up to 35%
traffic scenarios based on backhaul link with marginal QoS compromises
selection
[70] A cellular network Optimize joint access and in-band back-  Joint utility and  The proposed approach improves system performance by
haul strategy estimation  40% under completely autonomous operating conditions
based RL when compared to benchmark approaches
[66] A cellular network Maximize the backhaul resource utiliza-  Q learning The proposed approach effectively utilizes the backhaul
tion of SBSs and minimize the outage resource for load balancing
probability of users
[68] A cellular network Improve the throughput and delay of  Joint wtility and  The proposed scheme can significantly improve the overall
MUEs under heterogeneous backhaul strategy estimation  performance
based RL
[71] A cellular network Maximize system-centric and user-  Q learning The proposed scheme shows considerable improvement in
ceniric performance indicators users’ QoE when compared to state-of-the-art user-cell as-
sociation schemes
[65] A cellular network Optimize cell range extension with  Q learning The proposed approach alleviates the backhaul congestion
backhaul awareness of the macrocell and improves user QOE
[67] A cellular network Minimize the traffic conflict in the back-  Joint utility and  The proposed scheme is proved to converge to an approxi-

haul

strategy estimation
based RL

mate version of Nash equilibrium

BSs are allowed to cooperate with each other in the sense
that each BS can get the locally missing content from other
BSs via backhaul, which can be a more cost-efficient solution.
Meanwhile, D2D offloading is also considered to improve the
cache utilization. Then, to minimize system transmission cost,
a distributed Q learning algorithm is utilized. For each BS,
the content placement is taken as the observed state, and the
adjustment of cached contents is taken as the action. The con-
vergence of the proposal is proved by utilizing the sequential
stage game model, and its superior performance is verified via
simulations.

Instead of adopting traditional RL approaches, in [76],
authors propose a novel framework based on DRL for
a connected vehicular network to orchestrate computing,
networking, and cache resource. Particularly, the DRL agent
decides which BS is assigned to the vehicle and whether
to cache the requested content at the BS. Simulation results
reveal that, by utilizing DRL, the system gains much bet-
ter performance compared to approaches in existing works.
In addition, authors in [77] investigates a cache update algo-
rithm based on Wolpertinger DRL architecture for a single BS.
Concretely, the request frequencies of each file over different
time durations and the current file requests from users consti-
tute the input state, and the action decides whether to cache the
requested content. The proposed scheme is compared with sev-
eral traditional cache update schemes including Least Recently
Used and Least Frequently Used, and it is shown that the pro-
posal can raise both short-term cache hit rate and long-term
cache hit rate.

2) Supervised Learning Based Approaches: In order to
develop an adaptive caching scheme, extreme learning
machine (ELM) [78] has been employed to estimate con-
tent popularity. Hereafter, mixed-integer linear programming
is used to compute the content placement. Moreover, a
simultaneous perturbation stochastic approximation method

Baseband units

@ @ Conteni serve

A RRH cluster m z : ]

AUAV with |y
a cache

Fig. 14. The considered UAV enabled C-RAN scenario.

is proposed to reduce the number of neurons for ELM,
while guaranteeing a certain level of prediction accu-
racy. Based on real-world data, it is shown that the pro-
posal can improve both the QoE of users and network
performance.

In [79], the joint optimization of content placement, user
association, and unmanned aerial vehicles’ positions is stud-
ied, aiming at minimizing the total transmit power of UAVs
while satisfying the requirement of user quality of experi-
ence. The studied scenario is illustrated in Fig. 14. To solve
the formulated problem that focuses on a whole time dura-
tion, it is essential to predict user content request distribution.
To this end, an echo state network (ESN), a kind of recur-
rent neural networks, is employed, which can quickly learn
the distribution based on not much training data. Specifically,
the input of the ESN is an vector consisting of the user con-
text information like gender and device type, while the output
is the vector of user content request probabilities. An idea
similar to that in [79] is adopted in [80] to optimize the con-
tents cached at RRHs and the BBU pool for a cloud radio
access network. First, an ESN based algorithm is introduced
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to enable the BBU pool to learn each users content request dis-
tribution and mobility pattern, and then a sublinear algorithm
is proposed to determine which content to cache. Moreover,
authors have derived the ESN memory capacity for a periodic
input. By simulation, it is indicated that the proposal improves
sum effective capacity by 27.8% and 30.7%, respectively, com-
pared to random caching with clustering and random caching
without clustering.

Different from [78]-[80] predicting the content popular-
ity using neural networks directly, authors in [81] propose a
scheme integrating 3D CNN for video generic feature extrac-
tion, SVM for generating representation vectors of videos, and
then a regression model for predicting the video popularity by
taking the corresponding representation vector as input. After
the popularity of each video is obtained, the optimal portion of
each video cached at the BS is derived to minimize the back-
haul load in each time period. The advantage of the proposal
lies in the ability to predict the popularity of new uploaded
videos with no statistical information required.

3) Transfer Learning Based Approaches: Generally, con-
tent popularity profile plays key roles in deriving efficient
caching policies, but its estimation with high accuracy suffers
from a long time incurred by collecting user file request sam-
ples. To overcome this issue, authors in [82] involve the idea of
transfer learning by integrating the file request samples from
the social network domain into the file popularity estimation
formula. By theoretical analysis, the training time is expressed
as a function of the “distance” between the probability distri-
bution of the requested files and that of the source domain
samples. In addition, transfer learning based approaches are
also adopted in [83] and [B4]. Specifically, although col-
laborative filtering (CF) can be utilized to estimate the file
popularity matrix, it faces the problem of data sparseness.
Hence, authors in [83] propose a transfer learning based CF
approach to extract collaborative social behavior information
from the interaction of D2D users within a social community
(source domain), which improves the estimation of the (large-
scale) file popularity matrix in the target domain. In [84], a
transfer learning based caching scheme is developed, which
is executed at each SBS. Particularly, by using the contextual
information like users’ social ties that are acquired from D2D
interactions (source domain), cache placement at each small
cell is carried out, taking estimated content popularity, traf-
fic load and backhaul capacity into account. Via simulation,
it is demonstrated that the proposal can well deal with data
sparsity and cold-start problems, which results in significant
enhancement in users’ QoE.

4) Lessons Learned: It can learned from [78]-[80] that con-
tent popularity profile can be accurately predicted or estimated
by supervised learning like recurrent neural networks and
extreme learning machine, which is useful for the cache man-
agement problem formulation. Second, based on [82]-[84],
involving the content request information from other domains,
such as the social network domain, can help reduce the time
needed for popularity estimation. At last, when the file popu-
larity profile is difficult to acquire, reinforcement learning is
an effective way to directly optimize the caching policy, as
indicated by [74], [75], [77].
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E. Machine Learning Based Computation Resource
Management

In [85], authors investigate a wireless network that pro-
vides MEC services, and a computation offloading decision
problem is formulated for a representative mobile terminal,
where multiple BSs are available for computation offloading.
More specifically, the problem takes environmental dynam-
ics into account including time-varying channel quality and
the task arrival and energy status at the mobile device. To
develop the optimal offloading decision policy, a double DQN
based learning approach is proposed, which does not need the
complete information about network dynamics and can handle
state spaces with high dimension. Simulation results show that
the proposal can improve computation offloading performance
significantly compared with several baseline policies.

1) Lessons Learned: From [85], it is learned that DRL
based on double DQN can be used to optimize the computa-
tion offloading policy without knowing the information about
network dynamics, such as channel quality dynamics, and
meanwhile can handle the issue of state space explosion for a
wireless network providing MEC services. However, authors
in [85] only consider a single user. Hence, in the future, it
is interesting to study the computation offloading for the sce-
nario with multiple users based on DRL, whose offloading
decisions can be coupled due to interference and constrained
MEC resources.

FE. Machine Learning Based Beamforming

Considering the ever-increasing QoS requirements and the
need for real-time processing in practical systems, authors
in [86] propose a supervised learning based resource allo-
cation framework to quickly output the optimal or a near
optimal resource allocation solution for the current scenario.
Specifically, the data related to historical scenarios is collected
and the feature vector is extracted for each scenario. Then,
the optimal or near optimal resource allocation plan can be
searched off-line by taking the advantage of cloud computing.
After that, those feature vectors with the same resource allo-
cation solution are labeled with the same class index. Up to
now, the remaining task to determine resource allocation for
a new scenario is to identify the class of its corresponding
feature vector, and that is the resource allocation problem is
transformed into a multi-class classification problem, which
can be handled by supervised learning.

To make the application of the proposal more intuitive, an
example using KNN to optimize beam allocation in a single
cell with multiple users is presented, and simulation results
show an improvement in sum rate compared to a state-of-
the-art method. However, it should be noted that there exists
delay caused by KNN to compare the similarities between
the current scenario and past scenarios. When such similar-
ities can only be calculated one-by-one and the number of
past scenarios is large, it is possible that the environment has
changed before KNN outputs a beam allocation result, which
can lead to poor performance. Therefore, a low-complexity
classifier with small response delay is essential for machine
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TABLE VI
MACHINE LEARNING BASED CACHE MANAGEMENT

Literature  Scenario Optimization objective Machine learning  Main conclusion
methods
[74] A small cell net- Minimize lalency Joint  utility and  The proposal can achieve 15% and 40% gains compared to
work strategy estimation  various baselines
based RL
[75] A D2D enabled cel-  Minimize system transmission cost Distributed Q learn-  The proposal outperforms traditional caching strategies in-
lular network ing cluding LRU and LFU
[76] A vehicular  Enhance network efficiency and traffic  Deep reinforcement  The proposed scheme can significantly improve the network
network control learning performance
[771 A scenario with a  Maximize the long-term cache hit rate Deep reinforcement  The proposal can achieve improved short-term cache hit rate
single BS learning and long-term cache hit rate
[82] A small cell net- Minimize the latency caused by the un-  Transfer learning The training time for popularity distribution estimation can
work availability of the requested file be reduced by transfer learning
[78] A cellular network Improve the users’ quality of experience  Extreme  learning  The QoE of users and network performance can be improved
and reduce network traffic machine compared with industry standard caching schemes
[79] A cloud radio ac-  Minimize the transmit power of UAVs  Echo state networks  The proposal achieves significant gains compared to base-
cess network with  and meanwhile satisfy the QoE of users lines without cache and UAVs
UAVs
[80] A cloud radio ac-  Maximize the long-term sum effective  Echo state networks  The proposed approach can considerably improves the sum
cess network capacity effective capacity
[81] A cellular network Minimize the average backhaul load 3D CNN, SVM and Content-aware based proactive caching is cost-effective for
regressive model dealing with the botileneck of backhaul
TABLE VII
MACHINE LEARNING BASED COMPUTATION RESOURCE MANAGEMENT
Literature  Scenario Optimization objective Machine learning Main conclusion
methods
[85] An MEC scenario  Optimize a long-term utility that is re= DRL The proposal can improve computation offloading perfor-

with a representa-
tive user and multi-
ple BSs

lated to task execution delay, task queu-
ing delay, and so on

mance significantly compared with several baseline policies

learning based beamforming to well adapt to the time-varying
user phase information and channel state information.

1) Lessons Learned: As indicated by [86], resource man-
agement in wireless networks can be transformed into a
supervised, classification task, where the labeled data set is
composed of feature vectors representing different scenarios
and their corresponding classes. The feature vectors belonging
to the same class correspond to the same resource allocation
solution. Then, various machine learning techniques for classi-
fication can be applied to determine the resource allocation for
a new scenario. When the classification algorithm is with low-
complexity, it is possible to achieve near real-time resource
allocation. At last, it should be highlighted that the key to
the success of this framework lies in the proper feature vector
construction for the communication scenario and the design
of low-complexity multi-class classifiers.

IV. MACHINE LEARNING BASED NETWORKING

With the rapid growth of data traffic and the expansion of
the network, networking in future wireless communications
requires more efficient solutions. In particular, the imbal-
ance of traffic loads among heterogenous BSs needs to be
addressed, and meanwhile, wireless channel dynamics and
newly emerging vehicle networks both incur a big challenge
for traditional networking algorithms that are mainly designed
for static networks. To overcome these issues, research on

ML based user association, BS switching control, routing, and
clustering has been conducted.

A. Machine Learning Based BS Association

1) Reinforcement Learning Based Approaches: In the vehi-
cle network, the introduction of economical SBSs greatly
reduces the network operation cost. However, proper associ-
ation schemes between vehicles and BSs are needed for load
balancing among SBSs and MBSs. Most previous algorithms
often assume static channel quality, which is not feasible
in the real world. Fortunately, the traffic flow in vehicular
networks possesses spatial-temporal regularity. Based on this
observation, Li ef al. in [87] propose an online reinforcement
learning approach (ORLA) for a vehicular network shown in
Fig. 15. The proposal is divided into two learning phases:
initial reinforcement learning and history-based reinforcement
learning. In the initial learning model, the vehicle-BS associa-
tion problem is seen as a multi-armed bandit problem. The
action of each BS is the decision on the association with
vehicles and the reward is defined to minimize the devia-
tion of the data rates of the vehicles from the average rate
of all the vehicles. In the second learning phase, consider-
ing the spatial-temporal regularities of vehicle networks, the
association patterns obtained in the initial RL stage enable
the load balancing of BSs through history-based RL when the
environment dynamically changes. Specifically, each BS will
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TABLE VIII
MACHINE LEARNING BASED BEAMFORMING DESIGN

Literature  Scenario Optimization objective

Machine learning
methods

Main conclusion

[86] A scenario with a
single cell and mul-
tiple users

Optimize system sum rate

KNN

The proposal can further raise system performance compared
to a state-of-the-art approach

S

Fig. 15.

The considered vehicular network scenario.

calculate the similarity between the current environment and
each historical pattern, and the association matrix is output
based on the historical association pattern. Compared with
the max-SINR scheme and distributed dual decomposition
optimization, the proposed ORLA reaches the minimum load
variance of multiple cells.

Besides the information related to SINR, backhaul capac-
ity constraints and diverse attributes related to the QoE of
users should also be taken into account for user association.
In [88], authors propose a distributed, user-centric, backhaul-
aware user association scheme based on fuzzy Q learning to
enable each cell to autonomously maximize its throughput
under backhaul capacity constraints and user QoE constraints.
More concretely, each cell broadcasts a set of bias values to
guide users to associate with preferred cells, and each bias
value reflects the capability to satisfy a kind of performance
metrics like throughput and resilience. Using fuzzy Q learning,
each cell tries to learn the optimal bias values for each of the
fuzzy rules through iterative interaction with the environment.
The proposal is shown to outperform the traditional Q learning
solutions in both computational efficiency and system capacity.

In [39], an uplink user association problem for energy har-
vesting devices in an ultra-dense small cell network is studied.
Faced with the uncertainty of channel gains, interference,
and/or user traffic, which directly affects the probability to
receive a positive reward, the association problem is formu-
lated as an MAB problem, where each device selects an SBS
for transmission in each transmission round.

Considering the trend to integrate cellular-connected UAVs
in future wireless networks, authors in [91] study a joint
optimization of optimal paths, transmission power levels, and
cell associations for cellular-connected UAVs to minimize the
wireless latency of UAVs and their interference to the ground
network. The problem is modeled as a dynamic game with
UAVs as game players, and an ESN based deep reinforcement
learning approach is proposed to solve the game. Specifically,

the deep ESN after training enables each UAV to decide an
action based on the observation of the network state. Once
the approach converges, a subgame perfect Nash equilibrium
is reached.

2) Collaborative Filtering Based Approaches: Historical
network information is beneficial for obtaining the service
capabilities of BSs, from which the similarities between
the preferences of users selecting the cooperating BSs will
also be derived. Meng ef al. in [90] propose an association
scheme considering both the historical QoS information of
BSs and user social interactions in heterogeneous networks.
This scheme contains a recommendation system composed of
the rating matrix, UEs, BSs, and operators, which is based on
CF. The rating matrix formed by the measurement information
received by UEs from their connecting BSs is the core of the
system. The voice over Internet protocol service is used as
an example to describe the network recommendation system
in this scheme. The E-model proposed by ITU-T is used to
map the SNR, delay, and packet loss rate measured by UEs
in real time to an objective mean opinion score of QoS as
a rating, thus generating the rating matrix. With the ratings
from UEs, the recommendation system guides the user asso-
ciation through the user-oriented neighborhood-based CFs.
Simulation shows that this scheme needs to set a moderate
expectation value for the recommendation system to con-
verge within a minimum number of iterations. In addition,
this scheme outperforms selecting the BS with the strongest
RSSI or QoS.

3) Lessons Learned: First, based on [87], utilizing the
spatial-temporal regularity of traffic flow in vehicular networks
helps develop an online association scheme that contributes
to a small load variance of multiple cells. Second, it can
be learned from [88] that fuzzy Q learning can outperform
Q learning when the state space of the communication system
is continuous. Third, according to [39], the tradeoff between
the exploitation of learned association knowledge and the
exploration of unknown situations should be carefully made
for MAB based association.

B. Machine Learning Based BS Switching

Deploying a number of BSs is seen as an effective way
to meet the explosive growth of traffic demand. However,
much energy can be consumed to maintain the operations
of BSs. To lower energy consumption, BS switching is
considered a promising solution by switching off the unnec-
essary BSs [93]. Nevertheless, there exist some drawbacks
in traditional switching strategies. For example, some do
not consider the cost led by the on-off state transition,
while some others assume the traffic loads are constant,
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TABLE IX

MACHINE LEARNING BASED USER ASSOCIATION

Literature  Scenario Optimization objective Machine learning  Main conclusion
methods
[87] A vehicular ~ Optimize the user association strategy  Reinforcement The proposed scheme can well balance
network through learning the temporal dimension  learning the traffic load
regularities in the network
[90] A heterogeneous  Optimize association between UEs and  Collaborative filter-  The proposed scheme achieves satisfac-

network

BSs considering multiple factors affect-
ing QoS

ing

tion equilibrium between the profits and
cosls

[88]

A heterogeneous
network

Optimize user-cell association in a user-
centric and backhaul-aware manner

Fuzzy Q learning

The proposed scheme improves the
users’ performance by 12% at the cost
of 33.3% additional storage memory

[89] A heterogeneous  Optimize user-cell association through  Q learning The proposed scheme minimizes the
network learning the cell range expansion number of UE outages and improves the

system throughput
[39] A small cell net- Guarantee the minimum data rate of MAB The proposal is applicable in hyper-

work with energy
harvesting devices

each device

dense networks

91]

A cellular network
with UAV-UEs

Minimize the wireless latency of UAVs
and their interference to the ground net-

ESN based DRL

The altitude of the UAVs greatly affects
the optimization of the obejective

work

which is very impractical. In addition, those methods highly
rely on precise, prior knowledge about the environment
which is hard to collect. Facing these challenges, some
researchers have revisited BS switching problems from the
perspective of ML.

1) Reinforcement Learning Based Approaches: In [94], an
actor-critic learning based method is proposed, which avoids
the need for prior environmental knowledge. In this scheme,
BS switching on-off operations are defined as the actions of the
controller with the traffic load as the state, aiming at minimiz-
ing overall energy consumption. At a given traffic load state,
the controller chooses a BS switching action in a stochastic
way based on policy values. After executing a switching oper-
ation, the system will transform into a new state and the energy
cost of the former state is calculated. When the energy cost of
the executed action is smaller than those of other actions, the
controller will update the policy value to enable this action to
be more likely to be selected, and vice versa. By gradually
communicating with the environment, an optimal switching
strategy is obtained when policy values converge. Simulation
results show that the energy consumption of the proposal is
slightly higher than that of the state of the art scheme in
which the prior knowledge of the environment is assumed to be
known but difficult to acquire in practice. Similarly, authors
in [95] propose a Q learning method to reduce the overall
energy consumption, which defines BS switching operations
as actions and the state as a tuple of the user number and the
number of active SBSs. After a switching action is chosen at a
given state, the reward, which takes into account both energy
consumption and transmission gains, can be obtained. After
that, with the calculated reward, the system updates the corre-
sponding Q value. This iterative process goes on until all the
Q values converge.

Although the above works have achieved good performance,
the power cost incurred by the on-off state transition of BSs is
not taken into account. To make results more rigorous, authors
in [96] include the transition power in the cost function, and

g

Centralized Cloud

Fig. 16. The considered downlink C-RAN scenario.

propose a Q learning method with the action defined as a pair
of thresholds named as the upper user threshold and the lower
user threshold. When the number of users in a small cell is
higher than the upper threshold, the small cell will be switched
on, while the cell will be switched off once the number of users
is less than the lower threshold. Simulation results show that
this method can avoid frequent BS on-off state transitions,
thus saving energy consumption. In [97], a more advanced
power consumption optimization framework based on DRL is
proposed for a downlink cloud radio access network shown in
Fig. 16, where the power consumption caused by the on-off
state transition of RRHs is also considered. Simulation results
reveal that the proposed framework can achieve much power
saving with the satisfaction of user demands and adaptation to
dynamic environments.

Moreover, fuzzy Q learning is utilized in [98] to find the
optimal sensing probability of the SBS, which directly impacts
its on-off operations. Specifically, an SBS operates in sleep
mode when there is no active users to serve, and then it wakes
up randomly to sense MUE activity. Once the activity of an
MUE is detected, the SBS goes back to active mode. By simu-
lation, it is demonstrated that the proposal can well handle user
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density fluctuations and can improve energy efficiency while
guaranteeing network capacity and coverage probability.

2) Transfer Learning Based Approaches: Although the
discussed studies based on RL show favorable results, the
performance and convergence time can be further improved by
fully utilizing prior knowledge. In [18], which is an enhanced
study of [94], authors integrate transfer learning (TL) into
actor-critic reinforcement learning and propose a novel BS
switching control algorithm. The core idea of the proposal is
that the controller can utilize the knowledge learned in histori-
cal periods or neighboring regions to help find the optimal BS
switching operations. More specifically, the knowledge refers
to the policy values in actor-critic reinforcement learning. The
simulation result shows that combining RL with transfer learn-
ing outperforms the method only using RL, in terms of both
energy saving and convergence speed.

Though some TL based methods have been employed to
develop BS sleeping strategies, WiFi network scenarios have
not been covered. Under the context of WiFi networks, the
knowledge of the real time data, gathered from the APs related
to the present environment, is utilized for developing switching
on-off policy in [101], where the actor-critic algorithm is used.
These works have indicated that TL can offer much help in
finding optimal BS switching strategies, but it should be noted
that TL may lead to a negative influence in the network, since
there are still differences between the source task and the target
task. To resolve this problem, authors in [18] propose to dimin-
ish the impact of the prior knowledge on decision making with
time going by.

3) Unsupervised Learning Based Approaches: K-means,
which is a kind of unsupervised learning algorithm, can help
enhance BS switching on-off strategies. In [102], based on
the similarity of the location and traffic load of BSs, K-means
clustering is used to group BSs into different clusters. In each
cluster, the interference is mitigated by allocating orthogo-
nal resources among communication links, and the traffic of
off-BSs can be offloaded to on-BSs. Simulation shows that
involving K-means results in a lower average cost per BS when
the number of users is large. In [103], by applying K-means,
different values of RSRQ are grouped into different clusters.
Consequently, the users will be grouped into clusters, which
depends on their corresponding RSRQ values. After that, the
cluster information is considered as a part of the system
state in Q learning to find the optimal BS switching strat-
egy. With the help of K-means, the proposed method achieves
lower average energy consumption than the method without
K-means.

4) Lessons Learned: First, according to [94], the actor-
critic learning based method enables BSs to make wise switch-
ing decisions without the need for knowledge about the traffic
loads within the BSs. Second, following [96], [97], the power
cost incurred by BS switching should be involved in the cost
fed back to the reinforcement learning agent, which makes the
energy consumption optimization more reasonable. Third, as
indicated by [18], integrating transfer learning into actor-critic
learning based BS switching can achieve better performance
at the beginning as well as faster convergence compared to the
traditional actor-critic learning. At last, based on [102], [103],
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by properly clustering BSs and users by K-means before
optimizing BS on-off states, better performance can be gained.

C. Machine Learning Based Routing

To fulfill stringent traffic demands in the future, many new
RAN technologies continuously come into being, including
C-RANSs, CR networks (CRNs) and ultra-dense networks. To
realize effective networking in these scenarios, routing strate-
gies play key roles. Specifically, by deriving proper paths
for data transmission, transmission delay and other types of
performance can be optimized. Recently, machine learning has
emerged as a breakthrough for providing efficient routing pro-
tocols to enhance the overall network performance [33]. In
this vein, we provide a vivid summarization on novel machine
learning based routing schemes.

1) Reinforcement Learning Based Approaches: To over-
come the challenge incurred by dynamic channel availability
in CRNSs, authors in [105] propose a clustering and reinforce-
ment learning based multi-hop routing scheme, which provides
high stability and scalability. Using Q learning, the availability
of the bottleneck channel along the route can be well esti-
mated, which guides the routing node selection. Specifically,
the source node maintains a Q table, where each Q value cor-
responds to a pair composed of a destination node and the
next-hop node. After Q values are learned and given the des-
tination, the source node chooses the next-hop node with the
largest Q value.

Also focusing on multi-hop routing in CRNs, two differ-
ent routing schemes based on reinforcement learning, namely
traditional RL. scheme and RL-based scheme with average
Q value, are investigated in [106]. In both schemes, the defini-
tions of the action and state are the same as those in [105], and
the reward is defined as the channel available time of the bot-
tleneck link. Compared to traditional RL. scheme, RI.-based
scheme with average Q value can help with selecting more
stable routes. The superior performance of these two schemes
is verified by implementing a test bed and comparing with a
highest-channel route selection scheme.

In [107], authors study the influences of several network
characteristics, such as network size, on the performance of
Q learning based routing for a cognitive radio ad hoc network.
It is found that network characteristics have slight impacts on
the end-to-end delay and packet loss rate of SUs. In addition,
reinforcement learning is also a promising paradigm for devel-
oping routing protocols for the unmanned robotic network.
Specifically, to save network overhead in high-mobility sce-
narios, a Q learning based geographic routing strategy is
introduced in [108], where each state represents a mobile node
and each action defines a routing decision. A characteristic of
the Q learning adopted in this paper is the novel design of the
reward that incorporates packet travel speed. Simulation using
NS-3 confirms a better packet delivery ratio but with a lower
network overhead compared to existing methods.

2) Supervised Learning Based Approaches: In [109], a
routing scheme based on DNNs is developed, which enables
each router in heterogenous networks to predict the whole path
to the destination. More concretely, each router trains a DNN
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TABLE X
MACHINE LEARNING BASED BS SWITCHING

Literature  Scenario Optimization objective Machine learning Main conclusion
methods
[96] A Hetnet Minimize the network energy consump- @ learning The proposal can avoid the frequent on-off state transinons
tion of SBSs
[94] A cellular network Improve energy efficiency Actor-critic The proposed method achieves similar energy consumption
reinforcement under dynamic traffic loads compared with the method
learning which has a full traffic load knowledge
[18] A cellular network Improve energy efficiency Transfer  learning  Transfer learning based RL outperforms classic RL method
based actor-critic in energy saving
[100] A Hetnet Optimize the trade-off between total de-  Transfer  learning  Transfer learning based RL outperforms classic RL method
lay experienced by users and energy  based actor-critic in energy saving
savings
[101] A WiFi network Improve energy efficiency Transfer learning  Transfer learning based RL can achieve higher energy effi-
based actor-critic clency
[95] A Hetnet Improve energy efficiency Q learning Q learning based approach outperforms the traditional static
policy
[104] A Hetnet Improve drop rate, throughput, and en-  Q learning The proposed multi-agent Q learning method outperforms
ergy efficiency the traditional greedy method
[99] A green wireless  Maximize energy saving Q learning Different learning rates and discount factors of Q learning
network will significantly influence the energy consumption
[97] A cloud radio ac-  Minimize system power consumption Deep reinforcement  The proposed framework can achieve much power saving
cess network learning with the satisfaction of user demands and can adapt to
dynamic environment
[98] A Hetnet Improve energy efficiency Q learning The proposed method improves energy efficiency while
maintaining network capacity and coverage probability
[102] A small cell net- Reduce energy consumption K-means Proposed clustering method reduces the overall energy con-
work sumption
[103] An  opportunistic = Optimize the spectrum allocation, load Q  learning, k-  The proposed method achieves lower average energy con-
mobile broadband  balancing, and energy saving means, and transfer  sumption than the method without K-means
network learning

to predict the next proper router for each potential destination
using the training data generated by following Open Shortest
Path First (OSPF) protocol. The input and output of the DNN
is the traffic patterns of all the routers and the index of the
next router, respectively. Moreover, instead of training all the
weights of the DNN at the same time, a greedy layer-wise
training method is adopted. By simulations, lower signaling
overhead and higher throughput is observed compared with
OSPF routing strategy.

To improve the routing performance for the wireless back-
bone, deep CNNs are exploited in [110], which can learn
from the experienced congestion. Specifically, a CNN is
constructed for each routing strategy, and the CNN takes
traffic pattern information collected from routers, such as
traffic generation rate, as input to predict whether the cor-
responding routing strategy can cause congestion. If yes,
the next routing strategy will be evaluated until it is pre-
dicted that there will be no congestion. Meanwhile, it
should be noted that these constructed CNNs are trained
in an on-line manner with the training data set continu-
ously updated, and hence the routing decision becomes more
accurate.

3) Lessons Learned: First, according to [105], [106], when
one applies Q learning to route selection in CRNs, the reward
feedback can be set as a metric representing the quality of the
bottleneck link along the route, such as the channel available
time of the bottleneck link. Second, following [107], network
characteristics, such as network size, have limited impacts

on the performance of Q learning based routing for a cog-
nitive radio ad hoc network, in terms of end-to-end delay and
packet loss rate of secondary users. Third, from [109], it can
be learned that DNNs can be trained using the data gener-
ated by OSPF routing protocol, and the resulting DNN model
based routing can achieve lower signaling overhead and higher
throughput. At last, as discussed in [110], OSPF can be sub-
stituted by CNN based routing, which is trained in an online
fashion and can avoid past, fault routing decisions compared
to OSPF.

D. Machine Learning Based Clustering

In wireless networking, it is common to divide nodes or
users into different clusters to conduct some cooperation or
coordination within each cluster, which can further improve
network performance. Based on the introduction on ML, it
can be seen that the clustering problem can be naturally dealt
with the K-means algorithm, as some papers do. Moreover,
supervised learning and reinforcement learning can be utilized
as well.

1) Supervised Learning Based Approaches: To reduce con-
tent delivery latency in a cache enabled small cell network, a
user clustering based TDMA transmission scheme is proposed
in [111] under pre-determined user association and content
placement. The user cluster formation and the time duration
to serve each cluster need to be optimized. Since the num-
ber of potential clusters grows exponentially with respect to
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TABLE XI
MACHINE LEARNING BASED ROUTING STRATEGY

Literature  Scenario Objective Machine learning Main conclusion
methods
[109] A HetNet Improve network performance by de-  Dense neural net-  Lower signaling overhead and higher throughput is observed
signing a novel routing strategy works compared to OSPF routing strategy
[105] A CRN Overcome the challenges faced by  Q learning The SUs" interference to PUs is minimized, and more stable
multi-hop routing in CRNs routes are selected
[106] A CRN Choose routes with high QoS Q learning RL based approaches can achieve a higher throughput and
packet delivery ratio compared to highest-channel route
selection approach
[108] An unmanned  Mitigate the network overhead require-  Q learning A better packet delivery ratio is achieved by the proposal
robotic network ment of route selection but with a lower network overhead
[110] Wireless backbone Realize real-time intelligent traffic con- Deep convolution  The proposal can significantly improve the average delay
trol neural networks and packet loss rate compared to existing approaches
[107] A cognitive radio ad ~ Minimize interference and operating  Q learning The proposed method can improve the routing efficiency and

hoc network cost

help minimize interference and operating cost

the number of users served by an SBS, a DNN is constructed
to predict whether each user is in a cluster, which takes the
user channel gains and user demands as input. In this manner,
users joining clusters can be quickly identified, reducing the
searching space to get the optimal user cluster formation.

2) Unsupervised Learning Based Approaches: In [112],
K-means clustering is considered for clustering hotspots in
densely populated ares with the goal of maximizing spec-
trum utilization. In this scheme, the mobile device accessing
cellular networks can act as a hotspot to provide broadband
access to nearby users called slaves. The fundamental problem
to be solved is to identify which devices play the role of
hotspots and the set of users associated with each hotspot.
To this end, authors first adopt a modified version of the con-
strained K-means clustering algorithm to group the set of users
into different clusters based on their locations, and both the
maximum number and minimum number of users in a cluster
are set. Then, the user with the minimum average distance to
both the center of the cluster and the BS is selected as the
hotspot in each cluster. After that, a graph-coloring approach
is utilized to assign spectrum resource to each cluster, and
power and spectrum resource allocation to all slaves and
hotspots are performed later on. The simulation result shows
that the proposal can significantly increase the total number
of users that can be served in the system with lower cost
and complexity.

In [102], authors use clustering of SBSs to realize the coor-
dination between them. The similarity between two SBSs
considers both their distance and the heterogeneity between
their traffic loads, so that two BSs with shorter distance and
higher load difference have more chances to cooperate. Since
the similarity matrix possesses the properties of Gaussian sim-
ilarity matrix, the SBS clustering problem can be handled
by K-means clustering with each SBS corresponding to an
attribute vector composed of its coordinates and traffic load.
By intra-cluster coordination, the number of switched-OFF
BSs can be increased by offloading UEs from SBSs that are
switched OFF to active SBSs, compared to the case without
clustering and coordination.

3) Reinforcement Learning Based Approaches: In [113],
to mitigate the interference in a downlink wireless network

containing multiple transceiver pairs operating in the same
frequency band, a cache-enabled opportunistic interference
alignment (IA) scheme is adopted. Facing dynamic channel
state information and content availability at each transmitter,
a deep reinforcement learning based approach is developed to
determine communication link scheduling at each time slot,
and those scheduled transceiver pairs then perform IA. To
efficiently handle the raw collected data like channel state
information, the deep Q network in DRL is built using a con-
volutional neural network. Simulation results demonstrate the
improved performance of the proposal, in terms of system sum
rate and energy efficiency, compared to an existing scheme.

4) Lessons Learned: First, based on [111], DNNs can help
identify those users or BSs that are not necessary to join
clusters, which facilitates the searching of optimal cluster for-
mation due to the reduction of the searching space. Second,
following [102], [112], clustering problem can be naturally
solved using K-means clustering. Third, as indicated by [113],
deep reinforcement learning can be used to directly select the
members forming a cluster in a dynamic network environment
with time-varying CSI and cache states.

V. MACHINE LEARNING BASED MOBILITY MANAGEMENT

In wireless networks, mobility management is a key com-
ponent to guarantee successful service delivery. Recently,
machine learning has shown its significant advantages in
user mobility prediction, handover parameter optimization,
and so on. In this section, machine learning based mobility
management schemes are comprehensively surveyed.

A. Reinforcement Learning Based Approaches

In [114], authors focus on a two-tier network composed of
macro cells and small cells, and propose a dynamic fuzzy
Q learning algorithm for mobility management. To apply
Q learning, the call drop rate together with the signaling
load caused by handover constitutes the system state, while
the action space is defined as the set of possible values for
the adjustment of handover margin. The aim is to achieve a
tradeoff between the signaling cost incurred by handover and
the user experience affected by call dropping ratio (CDR).
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TABLE XII
MACHINE LEARNING BASED CLUSTERING

Literature  Scenario Objective Machine learning  Main conclusion
technigue

[111] A cache-enabled  Optimize energy consumption for con- Deep neural net- By using the designed DNN, the solution quality can reach
small cell network tent delivery works around 90% of the optimum

[112] A cellular network  Study the performance gain obtained  Constrained K- Under fixed network resources, the proposed algorithm can
with devices serv- by making some devices provide broad-  means clustering significantly improve the overall performance of network
ing as (APs) band access to other devices in a densely users

populated area

[102] A small cell net- Minimize the network cost K-means clustering  Significant gains can be achieved, in terms of energy ex-

work penditure and load reduction, compared to conventional
transmission techniques

[113] A cache-enabled Maximize system sum rate Deep reinforcement  The proposal can achieve improved sum rate and energy
opportunistic  [A learning efficiency compared to an existing scheme
network

Simulation results show that the proposed scheme is effec-
tive in minimizing the number of handovers while keeping
the CDR at a desired level. In addition, Klein ef al. in [115]
also apply the framework based on fuzzy Q learning to jointly
optimize TTT and Hys. Specifically, the framework includes
three key components, namely a fuzzy inference system (FIS),
heuristic exploration/exploitation policy (EEP) and Q learning.
The FIS input consists of the magnitude of hysteresis mar-
gin and the errors of several KPIs like CDR, and c-greedy
EEP is adopted for each rule in the rule set. To show the
superior performance of the proposal, a trend-based handover
optimization scheme and a TTT assignment scheme based on
velocity estimation are taken as baselines. It is observed that
the fuzzy Q learning based approach greatly reduces handover
failures compared to the two schemes.

Moreover, achieving load balancing during the handover
process is an essential part. In [116], a fuzzy-rule based RL
system is proposed for small cell networks, which aims to bal-
ance traffic load by selecting transmit power (TXP) and Hys
of BSs. Considering that the CBR and the OR will change sig-
nificantly when the load in a cell is heavy, the two parameters
jointly comprise the observation state. The adjustments of Hys
and TXP are system actions, and the reward is defined such
that user satisfaction is optimized. As a result, the optimal
adjustment strategy for Hys and TXP is generated by the
Q learning system based on fuzzy rules, which can minimize
the localized congestion of small cell networks.

For the LTE network with multiple SON functions, it is
inevitable that optimization conflict exists. In [117], authors
propose a comprehensive solution for SON functions includ-
ing handover optimization and load balancing. In this scheme,
the fuzzy Q Learning controller is utilized to adjust the Hys
and TTT parameters simultaneously, while the heuristic Diff-
Load algorithm optimizes the handover offset according to
load measurements in the cell. To apply fuzzy Q learning,
radio link failure, handover failure and handover ping-pong,
which are key performance indicators (KPIs) in the handover
process, are defined as the input to the fuzzy system. By LTE-
Sim simulation, results show that the proposal enables the joint
optimization of the KPIs above.

In addition to Q learning, authors in [16] and [118] uti-
lize deep reinforcement learning for mobility management.

In [16], to overcome the challenge of intelligent wireless
network management when a large number of RANs and
devices are deployed, Cao ef al. propose an artificial intel-
ligence framework based on DRL. The framework is divided
into four parts: real environment, environment capsule, fea-
ture extractor, and policy network. Wireless facilities in a real
environment upload information such as the RSSI to the envi-
ronment capsule. Then, the capsule transmits the stacked data
to the wireless signal feature extraction part consisting of a
CNN and an RNN. After that, these extracted feature vectors
will be input to the policy network that is based on a deep
Q network to select the best action for real network manage-
ment. Finally, this novel framework is applied to a seamless
handover scenario with one user and multiple APs. Using the
measurement of RSSI as input, the user is guided to select the
best AP, which maximizes network throughput.

In [118], authors propose a two-layer framework to optimize
the handover process and reach a balance between the han-
dover rate and system throughput. The first step is to apply
a centralized control method to classify the UEs according
to their mobility patterns with unsupervised learning. Then,
the multi-user handover process in each cluster is optimized
in a distributed manner using DRL. Specifically, the RSRQ
received by the user from the candidate BS and the current
serving BS index make up the state vector, and the weighted
sum between the average handover rate and throughput is
defined as the system reward. In addition, considering that new
state exploration in DRL may start from some unexpected ini-
tial points, the performance of UEs will greatly fluctuate. In
this framework, Wang ef al. apply the output of the traditional
3GPP handover scheme as training data to initialize the deep
Q network through supervised learning, which can compensate
the negative effects caused by exploration at the early stage
of learning.

B. Supervised Learning Based Approaches

Except for the current location of the mobile equipment,
learning an individual’s next location enables novel mobile
applications and a seamless handover process. In general,
location prediction utilizes the user’s historical trajectory
information to infer the next position of a user. In order to
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overcome the lack of historical information issue, Yu ef al. pro-
pose a supervised learning based prediction method based on
user activity patterns [119]. The core idea is to first predict
the user’s next activity and then predict its next location.
Simulation results demonstrate the robust performance of the

proposal.

C. Unsupervised Learning Based Approaches

Considering the impact of RF conditions at cell edge on
the setting of handover parameters, authors in [120] propose
an unsupervised-shapelets based method to help BSs be auto-
matically aware of the RF conditions at their cell edge by
finding useful patterns from RSRP information reported by
users. In addition, RSRP information can be employed to
derive the position at the point of a handover trigger. In [121],
authors propose a modified self-organizing map (SOM) based
method to determine whether indoor users should be switched
to another external BS based on their location information.
SOM is a type of unsupervised NN that allows generating a
low dimensional output space from the high dimensional dis-
crete input. The input data in this scheme is RSRP together
with the angle of the arrival of the mobile terminal, based on
which the real physical location of a user can be determined
by the SOM algorithm. After that, the handover decision can
be made for the user according to pre-defined prohibited and
permitted areas. Through evaluation using the network simu-
lator, it is shown that the proposal decreases the number of
unnecessary handovers by 70%.

D. Lessons Learned

First, based on [114]-[117], fuzzy Q learning is a com-
mon approach to handover parameter optimization, and KPIs,
such as radio link failure, handover failure and CDR, are
suitable candidates for the observation state because of their
close relationship with the handover process. Second, accord-
ing to [16], [118], deep reinforcement learning can be used to
directly make handover decisions on the user-BS association
taking only the measurements from users like RSSI and RSRQ
as the input. Third, following [119], the lack of user history
trajectory information can be overcome by first predicting the
user’s next activity and then predicting its next location. At
last, as indicated by [120], unsupervised-shapelets can help
find useful patterns from RSRP information reported by users
and further make BSs aware of the RF conditions at their cell
edge, which is critical to handover parameter setting.

VI. MACHINE LEARNING BASED LOCALIZATION

In recent years, we have witnessed an explosive prolif-
eration of location based services, whose service quality is
highly dependent on the accuracy of localization. The mature
technique Global Positioning System (GPS) has been widely
used for outdoor localization. However, when it comes to
indoor localization, GPS signals from a satellite will be
heavily attenuated, which makes GPS incapable of use in
indoor localization. Furthermore, indoor environments are
more complex as there are lots of obstacles such as tables,
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wardrobes, and so on, thus causing the difficulty of localiza-
tion. In this situation, to locate indoor mobile users precisely,
many wireless technologies can be utilized such as WLAN,
ultra-wide bandwidth (UWB) and Bluetooth. Moreover, com-
mon measurements used in indoor localization include time
of arrival (TOA), TDOA, channel state information (CSI)
and received signal strength (RSS). To solve various prob-
lems associated with indoor localization, research has been
conducted by adopting machine learning in scenarios with
different wireless technologies.

1) Supervised Learning Based Approaches: Instead of
assuming that equal signal differences account for equal geo-
metrical distances as in traditional KNN based localization
approaches do, authors in [122] propose a feature scaling
based KNN (FS-KNN) localization algorithm. This algorithm
is inspired by the fact that the relation between signal dif-
ferences and geometrical distances is actually dependent on
the measured RSS. Specifically, in the signal distance calcu-
lation between the fingerprint of each RP and the RSS vector
reported by the user, the square of each element-wise dif-
ference is multiplied by a weight that is a function of the
corresponding RSS value measured by the user. To identify
the parameters involved in the weight function, an iterative
training procedure is used, and performance evaluation on a
test set is made, whose metric is taken as the objective function
of a simulated annealing algorithm to tune those parameters.
After the model is well trained, the distance between a newly
received RSS vector and each fingerprint is calculated, and
then the location of the user is determined by calculating a
weighted mean of the locations of the k nearest RPs.

To deal with the high energy consumption incurred by fre-
quent AP scanning via WiFi interfaces, an energy-efficient
indoor localization system is developed in [123], where
ZigBee interfaces are used to collect WiFi signals. To
improve localization accuracy, three KNN based localization
approaches adopting different distance metrics are evaluated,
including weighted Euclidian distance, weighted Manhattan
distance and relative entropy. The principle for weight setting
is that the AP with more redundant information is assigned
with a lower weight. In [124], authors theoretically analyze the
optimal number of nearest RPs used to identify the user loca-
tion in a KNN based localization algorithm, and it is shown
that k = 1 and k = 2 outperform the other settings for static
localization.

To avoid regularly training localization models from scratch,
authors in [125] propose an online independent support vector
machine (OISVM) based localization system that employs the
RSS of Wi-Fi signals. Compared to traditional SVM, OISVM
is capable of learning in an online fashion and allows to make a
balance between accuracy and model size, facilitating its adop-
tion on mobile devices. The constructed system includes two
phases, i.e., the offline phase and the online phase. The offline
phase further includes kernel parameter selection, data under
sampling to deal with the imbalanced data problem, and offline
training using pre-collected RSS data set with RSS samples
appended with corresponding RP labels. In the online phase,
location estimation is conducted for new RSS samples, and
meanwhile online learning is performed as new training data
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TABLE XIII
MACHINE LEARNING BASED MOBILITY MANAGEMENT

Literature  Scenario Ohjective Machine learning Main conclusion
methods
[114] A small cell net-  Achieve a tradeoff between the signal-  Fuzzy Q leamning The proposal can minimize the number of handovers while
work ing cost led by handover and the user keeping the CDR at a desired level
experience influenced by CDR
[115] A cellular network Minimize the weighted difference be-  Fuzzy Q learning The proposal outperforms existing methods, in terms of HO
tween the target KPIs and achieved KPIs failures and ping-pong HOs
[116] A small cell net-  Achieve load balancing Fuzzy Q learning The proposal can minimize the localized congestion of
work small-cell networks
[117] An LTE network Realize the coordination among multiple  Fuzzy Q learning The proposal can enable the joint optimization of different
SON functions KPIs
[16] A WLAN Optimize system throughput Deep reinforcement  The proposal can improve system throughput and reduce the
learning number of handovers
[118] A cellular network Minimize handover rate and ensure sys-  Deep reinforcement  The proposal outperforms the state-of-art on-line schemes
tem throughput learning in terms of HO rate
[119] A wireless network  Predict users’ next location Supervised learning ~ The proposed approach can predict more accurately and
perform robustly
[120] A heterogenecous  Classify the user trajectories Unsupervised The proposed approach provides clustering results with an
network shapelets average accuracy of 95%
[121] An LTE network Identify whether an indoor user should  Self-organizing The proposed approach can reduce unnecessary handovers
be switched to an external BS map by up to 70%

arrives, which can be collected via crowdsourcing. The simu-
lation result shows that the proposal can reduce the location
estimation error by 0.8m, while the prediction time and train-
ing time are decreased significantly compared to traditional
methods.

Given that non-line-of-sight (NLOS) radio blockage can
lower the localization accuracy, it is beneficial to identify
NLOS signals. To this end, authors in [126] develop a rel-
evance vector machine (RVM) based method for ultrawide
bandwidth TOA localization. Specifically, an RVM based clas-
sifier is used to identify the LOS and NLOS signals received
by the agent with unknown position from the anchor whose
position is already known, while an RVM regressor is adopted
for ranging error prediction. Both of the two models take a
feature vector as input data, which consists of received energy,
maximum amplitude, and so on. The advantage of RVM over
SVM is that RVM uses a smaller number of relevance vec-
tors than the number of support vectors in the SVM case,
hence reducing the computational complexity. On the contrary,
authors in [127] propose an SVM based method, where a map-
ping between features extracted from the received waveform
and the ranging error is directly learned. Hence, explicit LOS
and NLOS signal identification is not needed anymore.

In addition to KNN and SVM, some researchers have
applied NN to localization. In order to reduce the time cost of
the training procedure, authors in [128] utilize ELM. The RSS
fingerprints and their corresponding physical coordinates are
used to train the output weights. After the model is trained, it
can predict the physical coordinate for a new RSS vector. Also
adopting a single layer NN, in [129], an NN based method
is proposed for an LTE downlink system, aiming at estimat-
ing the UE position. The employed NN contains three layers,
namely an input layer, a hidden layer and an output layer, with
the input and the output being channel parameters and the
corresponding coordinates, respectively. Levenberg Marquardt

algorithm is applied to iteratively adjust the weights of the NN
based on the Mean Squared Error. When the NN is trained,
it can predict the location given the new data. Preliminary
experimental results show that the proposed method yields a
median positioning error distance of 6 meters for the indoor
scenario.

In a WiFi network with RSS based measurement, a deep
NN is utilized in [130] for indoor localization without using
the pathloss model or comparing with the fingerprint database.
The training set contains the RSS vectors appended with
the central coordinates and indexes of the corresponding
grid areas. The implementation procedure of the NN can
be divided into three parts that are transforming, denoising
and localization. Particularly, this method pre-trains the trans-
forming section and denoising section by using auto-encoder
block. Experiments show that the proposed method can realize
higher localization accuracy compared with maximum likeli-
hood estimation, the generalised regression neural network and
fingerprinting methods.

2) Unsupervised Learning Based Approaches: To reduce
computation complexity and save storage space for fingerprint-
ing based localization systems, authors in [131] first divide
the radio map into multiple sub radio maps. Then, Kernel
Principal Components Analysis (KPCA) is used to extract fea-
tures of each sub radio map to get a low dimensional version.
Result shows that the size of the radio map can be reduced
by 72% with 2m localization error. In [132], PCA is also
employed together with linear discriminant analysis to extract
lower dimensional features from raw RSS measurement.

Considering the drawbacks of adopting RSS measurement
as fingerprints like its high randomness and loose correlation
with propagation distance, authors in [133] propose to utilize
the calibrated CSI phase information for indoor fingerprint-
ing. Specifically, in the off-line phase, a deep autoencoder
network is constructed for each position to reconstruct the
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collected calibrated CSI phase information, and the weights
are recorded as the fingerprints. In the online phase, a new
location is obtained by a probabilistic method that performs
a weighted average of all the reference locations. Simulation
results show that the proposal outperforms traditional CSI or
RSS based methods in two representative scenarios. The whole
process of the proposal is summarized in Fig. 17.

Moreover, ideas similar to [133] are adopted
in [134] and [135]. In [134], CSI amplitude responses
are taken as the input of the deep NN, which is trained
by a greedy learmning algorithm layer by layer to reduce
complexity. After the deep NN is trained, the weights
in the deep network are stored as fingerprints to facilitate
localization in the online test. Instead of using only CSI phase
information or amplitude information, Wang et al. in [135]
propose to use a deep autoencoder network to extract channel
features from bi-modal CSI data. The data contains average
amplitudes and estimated angle of arrivings, and the weights
of the deep autoencoder network are seen as the extracted
features (i.e., fingerprints). Owing to bi-modal CSI data, the
proposed approach achieves higher localization precision
than several representative schemes in literatures. In [17],
authors introduce a denoising autoencoder for bluetooth,
low-energy, indoor localization to provide high performance
3-D localization in large indoor places. Here, useful finger-
print patterns hidden in the received signal strength indicator
measurements are extracted by the autoencoder. This helps
the construction of the fingerprint database where the ref-
erence locations are in 3-D space. By field experiments, it
is shown that 3-D space fingerprinting contributes to higher
positioning accuracy, and the proposal outperforms compar-
ison schemes, in terms of horizontal accuracy and vertical
accuracy.
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3) Lessons Learned: First, from [122], [123], it can be
learned that the most intuitive approach to indoor localization
is to use KNN that depends on the similarity between the
RSS vector measured by the user and pre-collected fingerprints
at different RPs. Second, as indicated by [122], the relation
between signal differences and geometrical distances relies on
the measured RSS. Third, following [124], for a KNN based
localization algorithm applied to static localization, £k = 1 and
k = 2 are better choices than other settings of the number
of the nearest RPs used to identify the user location. Fourth,
based on [126], the RVM classifier is preferred for the iden-
tification of LOS and NLOS signals compared to the SVM
classifier, since the former has lower computation complexity
owing to less number of relevance vectors. Moreover, accord-
ing to [131], the size of the radio map can be effectively
reduced by KPCA, saving the storage capacity of user ter-
minals. At last, as revealed in [17], [133]-[135], autoencoder
is able to extract useful and robust information from RSS data
or CSI data, which contributes to higher localization accuracy.

VII. CONDITIONS FOR THE APPLICATION
OF MACHINE LEARNING

In this section, several conditions for the application of ML
are elaborated, in terms of the type of the problem to be
solved, training data, time cost, implementation complexity
and differences between machine learning techniques in the
same category. These conditions should be checked one-by-
one before making the final decision about whether to adopt
ML techniques and which kind of ML techniques to use.

A. The Type of the Problem

The first condition to be considered is the type of the con-
cerned wireless communication problem. Generally speaking,
problems addressed by machine learning can be categorized
into regression problems, classification problems, clustering
problems and Markov decision making problems. In regression
problems, the task of machine learning is to predict con-
tinuous values for the current input, while machine learning
should identify the class to which the current input belongs
in classification problems. As for Markov decision making
problems, machine learning needs to output a policy that
guides the action selection under each possible system state.
In addition, all these kind of problems may involve a pro-
cedure of feature extraction that can be done manually or
in an algorithmic way. If the studied problem lies in one of
these categories, one can take machine learning as a possible
solution. For example, content caching may need to acquire
content request probabilities of each user. This problem can
be seen as a regression problem that takes the user profile as
input and the content request probabilities as output. For BS
clustering, it can be naturally handled by K-means clustering
algorithms, while many resource management and mobility
management problems introduced in this paper are modeled
as a Markov decision making problem that can be efficiently
solved by reinforcement learning. In [86], the beam allocation
problem is transformed into a classification problem that can
be easily addressed by KNN. In summary, the first condition
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TABLE XIV
MACHINE LEARNING BASED LOCALIZATION

Literature  Scenario

Objective

Machine learning
methods

Main conclusion

[122] WLAN Improve localization accuracy by con-  FS5-KNN Simulation shows that FS-KNN can achieve an average
sidering a more reasonable similarity distance error of 1.93m
metric for RSS vectors
[123] WLAN Improve the energy efficiency of indoor  KNN The proposal can achieve high localization accuracy with the
localization average energy consumption significantly reduced compared
with WiFi interface based methods
[124] WLAN Find the optimal number of nearest RPs ~ KNN The accuracy performance can not be improved by further
for KNN based localization increasing the optimal parameter k
[125] WLAN Reduce training and prediction time Online independent  The proposal can improve localization accuracy and mean-
support vector ma-  while decrease the prediction time and training time
chine
[126] UWB Identify NLOS signal Relevance  wvector  The simulation result shows that the proposal can improve
machine the range estimates of NLOS signals
[127] UWB Mitigate ranging error without NLOS  SVM The proposal can achieve considerable performance im-
signal identification provements in various practical localization scenarios
[131] WLAN Reduce the size of radio map KPCA The proposal can reach high localization accuracy while
reducing 74% size of the radio map
[132] WLAN Extract low dimensional features of RSS PCA and LCA The combination method outperforms the LCA-based
data method in terms of the accuracy of floor classification
[128] WLAN Reduce localization model training time  Extreme learning  The consensus-based parallel ELM performs competitively
machine compared to centralized ELM, in terms of localization ac-
curacy, with more robustness and no additional computation
cost
[129] An LTE network Reduce calculation time Dense neural net- By using only one LTE eNodeB, the proposal can achieve
work an error distance of 6 meters in indoor environments
[130] WLAN Achieve high localization accuracy  Auto-encoder The proposal outperforms maximum likelihood estimation,
without using the radio pathloss model the generalised regression neural network and fingerprinting
or comparing with the radio map methods
[133] WLAN Achieve higher localization accuracy by  Deep autoencoder  The proposal outperforms three benchmark schemes based
utilizing CSI phase information for fin-  network on CSI or RSS in two typical indoor scenarios
gerprinting
[134] WLAN Overcome the drawbacks of RSS based  Deep autoencoder  Experimental results show that the proposal can localize the
localization methods by utilizing CSI  network target effectively
information for fingerprinting
[135] WLAN Achieve higher localization accuracy by  Deep autoencoder  The proposal has superior performance compared to several
utilizing CSI amplitudes and estimated network baseline schemes like FIFS in [136]
angle of arrivals for fingerprinting
[17] WLAN Achieve high performance 3-D localiza- Deep autoencoder  Positioning accuracy can be effectively improved by 3-D

tion in large indoor places

network

space fingerprinting

for applying machine learning is that the considered wireless
communication problem can be abstracted into tasks that are
suitable for machine learning to handle.

B. Training Data Availability

In surveyed works, training data for supervised and unsu-
pervised learning is generated or collected in different ways
depending on specific problems. Specifically, for power allo-
cation, the aim of authors in [15], [55], [56] is to utility
neural networks to approximate high complexity power allo-
cation algorithms, such as the genetic algorithm and WMMSE
algorithm. At this time, the training data is generated by run
these algorithms under different network scenarios for multiple
times. In [63], [64], since spectrum allocation among BSs is
modeled as a non-cooperative game, the data to train the RNN
model at each BS is generated by the continuous interactions
of BSs. For cache management, authors in [81] utilize a mix-
ture of data set YUPENN [137] and UFC101 [137] as their
own data set, while authors in [78] collect their data set by

using the YouTube Application Programming Interface, which
consists of 12500 YouTube videos. In [79], [80], the content
request data that the RNN uses to train and predict content
request distribution is obtained from Youku of China network
video index.

In [86] studying KNN based beamformer design, a feature
vector in the training data set under a specific resource alloca-
tion scenario is composed of time-variant parameters, such as
the number of users and CSI, and these parameters can be col-
lected and stored by the cloud. In [109], DNN based routing is
investigated, and the training data set is obtained by recording
the traffic patterns and paths while running traditional routing
strategies such as OSPF. In [110], the training data set is gen-
erated in an online fashion, which is collected by each router
in the network. In literatures [17], [122]-[125], [128]-[130],
[133]-{135] focusing on machine learning based localization,
training data is based on CSI data, RSSI data or some chan-
nel parameters. The data comes from practical measurement
in a real scenario using a certain device like a cell phone.
To obtain these wireless data, different ways can be adopted.
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For example, authors in [133] uses one mobile device equipped
with an TWL 5300 NIC that can read CSI data from the
slight modified device driver, while authors in [122] develop
a client program for the mobile device to facilitate RSS
measurement.

As for other surveyed works, they mainly adopt reinforce-
ment learning to solve resource management, networking and
mobility management problems. In reinforcement learning, the
reward/cost, which is fed back by the environment after the
learning agent takes an action, can be seen as training data.
The environment is often an virtual environment created by
using certain softwares like MATLAB, and the reward func-
tion is defined to reflect the objective of the studied problem.
For example, authors in [61] aim at optimizing system spectral
efficiency, which is hence taken as the reward fed back to each
D2D pair. In [97], the reward for the DRL agent is defined
as the difference between the maximum possible total power
consumption and the actual total power consumption, which
helps minimize system power cost. In summary, the second
condition for the application of ML is that essential training
data can be acquired.

C. Time Cost

Another important aspect, which can prevent the application
of machine learning, is the time cost. Here, it is necessary to
distinguish between two different time metrics, namely train-
ing time and response time as per [26]. The former represents
the amount of time that ensures a machine learning algorithm
is fully trained. This is important for supervised and unsuper-
vised learning to make accurate predictions for future inputs
and also important for reinforcement learning to learn a good
strategy or policy. As for response time, for a trained super-
vised or unsupervised learning algorithm, response time refers
to the time needed to output a prediction given an input, while
it refers to the time needed to output an action for a trained
reinforcement learning model.

In some applications, there can be a stringent require-
ment about response time. For example, resource management
decisions should be made on a timescale of milliseconds.
To figure out the feasibility of machine learning in these
applications, we first make a discussion from the perspective
of response time. In our surveyed papers, machine learning
techniques applied in resource management can be coarsely
divided into neural network based approaches and other
approaches.

1) Neural Network Based Approaches: For the response
time of neural networks after trained, it has been reported that
Graphics Processing Unit (GPU)-based parallel computing can
enable them to make predictions within milliseconds [139].
Note that even without GPUs, a trained DNN can make a
power control decision for a network with 30 users using
0.0149 ms on average (see [15, Table I]). Hence, it is pos-
sible for the proposed neural network based power allocation
approaches in [15], [55], [56] to make resource management
decisions in time. Similarly, since deep reinforcement learning
selects the resource allocation action based on the Q-values
output by the deep Q network, which is actually a neural
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network, a trained deep reinforcement learning model can also
be suitable for resource management in wireless networks.

2) Other Approaches: First, traditional reinforcement learn-
ing, which includes Q learning and joint utility and strategy
estimation based learning, aims at deriving a strategy or pol-
icy for the learning agent under a dynamic environment. Once
reinforcement learning algorithms converge after being trained
for sufficient time, the strategy or policy becomes fixed. In
Q learning, the policy is represented by a set of Q values,
each of which associates with a pair of a system state and
an action. The learning agent chooses the resource allocation
action with the maximal Q value under the current system
state. As for the joint utility and strategy estimation based
learning, the agent’s strategy is composed of probabilities to
select each action. The agent only needs to generate a ran-
dom number between 0-1 to identify which action to play.
Therefore, a well-trained agent using these two learning tech-
niques can make quick decisions within milliseconds. Second,
for the KNN based resource management adopted in [86], it
relies on the calculation of similarity between the feature vec-
tor of the new network scenario and that of each past network
scenario. However, owing to cloud computing, the similari-
ties can be calculated in parallel. Hence, the most similar K
past scenarios can be identified within very short time, and
the resource management decision can be made very quickly
by directly taking the resource configuration adopted by the
majority of the K past scenarios.

Next, the discussion is made from the perspective of train-
ing time, and note that the KNN based approach does not
have a training procedure. Specifically, for a deep NN model,
its training may take a long time. Therefore, it is possi-
ble that the patterns of the communication environment has
changed before the model learns a mapping rule. Moreover,
training a reinforcement learning model in a complex envi-
ronment can also cost much time. Hence, it is possible that
the elements of the communication environment, such as the
environmental dynamics and the set of agents, have been dif-
ferent before training is completed. Such a mismatch between
training time and the timescale on which the characteristics
of communication environments change can do harm to the
actual performance of a trained model. Nevertheless, train-
ing time can be reduced for neural network based approaches
with the help of GPUs and transfer learning, while the training
of traditional reinforcement learning can be accelerated using
transfer learning as well, as shown in [18]. In summary, the
third condition for the application of machine learning is that
time cost, including response time and training time, should
meet the requirements of applications and match with the time
scale on which the communication environment varies.

D. Implementation Complexity

In this subsection, the implementation complexity of
machine learning algorithms is discussed by taking the algo-
rithms for mobility management as examples. Related sur-
veyed works can be categorized into directly optimizing
handover parameters using fuzzy Q learning [114]-[117],
handing over users to proper BSs using deep reinforcement

Authorized licensed use limited to: Aubum University. Downloaded on August 01,2020 at 03:53:03 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: APPLICATION OF ML IN WIRELESS NETWORKS: KEY TECHNIQUES AND OPEN ISSUES

learning [16], [118], helping improve handover performance
by predicting user’s next location using a probabilistic
model [119], analyzing RSRP patterns using unsupervised
shapelets [120] and identifying the area where handover is
prohibited using self-organizing map [121].

First, to implement fuzzy Q learning, a table needs to be
maintained to store q values, each of which corresponds to a
pair of a rule and one of its actions. In addition, only simple
mathematical operations are involved in the learning process,
and the inputs are common network KPIs like call dropping
ratio or the value of the parameter to be adjusted, which
can all be easily acquired by the current network. Hence, it
can be claimed that fuzzy Q learning possesses low imple-
mentation complexity. Second, deep reinforcement learning is
based on neural networks, and it can be conveniently imple-
mented by utilizing rich frameworks for deep learning, such as
TensorFlow and Keras. Its inputs are Received Signal Strength
Indicator (RSSI) in [16] and Reference Signal Received
Quality (RSRQ) in [118], which can both be collected by the
current system. However, to accelerate the training process, it
is preferred to run deep reinforcement learning programs on
GPUs, and this may incur high cost for the implementation.
Third, the approach in [119] is based on a simple probabilistic
model, while the approaches in [120], [121] only utilize the
information reported by user terminals in current networks.
Hence, the proposals in [119]-[121] can be not that complex
for practical implementation.

Although only the implementation complexity of machine
learning methods for mobility management is discussed,
other surveyed methods can be analyzed in a similar way.
Specifically, the implementation complexity should consider
the complexity of data storage, the mathematical operations
involved in the algorithms, the complexity of collecting the
necessary information and the requirement on softwares and
hardwares. In summary, the fourth condition for the applica-
tion of machine learning is that implementation complexity
should be acceptable.

E. Comparison Between Machine Learning Techniques

Problems in surveyed works can be generally categorized
into regression, classification, clustering and decision making.
However, for each kind of problem, different machine learn-
ing techniques can be available. In this section, comparison
between machine learning methods that can handle problems
of the same type is conducted, which reveals the reason for
surveyed works to adopt a certain machine learning technique
instead of others. Most importantly, readers can be guided to
select the suitable machine learning technique.

1) Machine Learning Techniques for Regression and
Classification: Machine learning models applied to regres-
sion and classification tasks in surveyed works mainly include
SVM, KNN and neural networks. KNN is a basic classifica-
tion algorithm that is known to be very simple to implement.
Generally, KNN is used as multi-class classifiers whereas stan-
dard SVM has been regarded as one of the most robust and
successful algorithms to design low-complexity binary classi-
fiers [86]. When data is not linearly separable, KNN can be

a good choice compared to SVM. This is because the regu-
larization term and the kernel parameters should be selected
for SVM, while one needs to choose only the k parameter and
the distance metric for KNN. Compared with SVM and KNN,
deep neural networks are powerful in feature extraction and
the performance can be improved more significantly with the
increase of training data size. However, due to the optimization
of a large number of parameters, their training can be time con-
suming. Hence, when enough training data and GPU resource
are available, deep neural networks are preferred. In addi-
tion, common neural networks further include DNN, CNN,
RNN and extreme learning machine. Compared with DNN,
the number of weights can be reduced by CNN, which makes
the training and inference procedures faster with lower over-
heads. In addition, CNN is good at learning spatial features,
such as the features of a channel gain matrix. RNN is suitable
for processing time series to learn features in time domain,
while the advantage of extreme learning machine lies in good
generalization performance at an extremely fast learning speed
without iteratively tuning on the hidden layer parameters.

2) Machine Learning Techniques for Decision Making:
Machine learning algorithms applied to decision making in
dynamic environments in surveyed works mainly include
actor-critic learning, Q learning, joint utility and strategy
estimation based learning (JUSEL) and deep reinforcement
learning. Compared with Q learning, actor-critic learning is
able to learn an explicit stochastic policy that may be useful
in non-Markov environments [140]. In addition, since value
function and policy are updated separately, policy knowledge
transfer is easier to achieve [141]. For JUSEL, it is very
suitable in multi-agent scenarios and is able to achieve sta-
ble systems where the gain obtained is bounded when an
agent unilaterally deviates from its mixed strategy. Compared
with Q learning and actor-critic learning, one of the advan-
tages of deep reinforcement learning lies in its ability to
learn from high dimensional input states, owing to the deep
Q network [142]-[145]. On the contrary, since both Q learn-
ing and actor-critic learning need to store an evaluation for
each state-action pair, they are not suitable for communica-
tion systems with states of large dimension. Another advantage
of deep reinforcement learning is its ability to infer a good
action under an unfamiliar state [146]. Nevertheless, train-
ing deep reinforcement learning can incur high computing
burden. Finally, in addition to deep reinforcement learning,
fuzzy Q learning, as a variant of Q learning, can also address
the situation of continuous states but with lower computation
cost. However, setting membership functions requires prior
experience, and the number of rules in the rule base can
exponentially increase when the state dimension is high.

In summary, the fifth condition for the application of
machine learning is that the advantages of the adopted machine
learning technique well fit into the studied problem, and
meanwhile its disadvantages are tolerable.

VIII. ALTERNATIVES TO MACHINE
LEARNING AND MOTIVATIONS

In this section, we review and elaborate traditional
approaches that are taken as baselines in the surveyed works
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and are not based on machine learning. By comparing with
these alternatives, the motivations to adopt machine learning
are carefully summarized.

A. Alternatives for Power Allocation

Basic alternatives are some simple heuristic schemes, such
as uniform power allocation among resource blocks [48],
transmitting with full power [49] and smart power con-
trol [57]. However, considering the sophisticated radio envi-
ronment faced by each BS, where the power allocation
decisions are coupled among BSs, these heuristic schemes
can have poor performance. Specifically, in [48], it is reported
that the proposed Q learning based scheme achieves 125%
performance improvement compared to uniform power allo-
cation, while the average femtocell capacity is enhanced by
50.79% using Q learning compared with smart power con-
trol in [57]. When power levels are discrete, numerical search
can be adopted, including exhaustive search and genetic algo-
rithm that is a heuristic searching algorithm inspired by the
theory of natural evolution [147]. In [52], it is shown that
multi-agent Q learning can reach near optimal performance
but with a huge reduction in control signalling compared to
centralized exhaustive search. In [56], the trained deep learning
model based on auto-encoder is capable of outputting the same
resource allocation solution got by genetic algorithm 86.3%
of time with less computation complexity. Another classical
approach to power allocation is the WMMSE algorithm uti-
lized to generate the training data in [15], [55]. The WMMSE
algorithm is originally designed to optimize beamformer vec-
tors, which transforms the weighted sum-rate maximization
problem into a higher dimensional space to make the problem
more tractable [148]. In [15], for a network with 20 users,
the DNN based power control algorithm is demonstrated to
achieve over 90% sum rate got by WMMSE algorithm, but its
CPU time only accounts for 4.8% of the latter’s CPU time.

B. Alternatives for Spectrum Management

In [60], the proposed reinforcement learning based spectrum
management scheme is compared with a centralized dynamic
spectrum sharing (CDSS) scheme developed in [149]. The
simulation result reveals that reinforcement learning can reach
nearly the same average cell throughput as the CDSS approach
without information sharing between BSs. In [61], the adopted
distributed reinforcement learning is shown to achieve simi-
lar system spectral efficiency got by exhaustive search that
can bring a huge computing burden on the cloud. Moreover,
a simple way of resource block allocation is the proportional
fair algorithm [150] that is utilized as a baseline in [64], where
the proposed RNN based resource allocation approach signif-
icantly outperforms the proportional fair algorithm, in terms
of user delay.

C. Alternatives for Backhaul Management

In [65], Q learning based cell range extension offset (CREQ)
adjustment greatly reduces the number of users in cells
with congested backhaul compared to a static CREO setting.
In [66], a branch-and-bound based centralized approach is
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developed as the benchmark, aiming at maximizing the total
backhaul resource utilization. Compared to the benchmark,
the proposed distributed Q learning can achieve a competi-
tive performance, in terms of the average throughput per user.
Authors in [67] use a centralized greedy backhaul manage-
ment strategy as a comparison. The idea is to identify some
BSs to download a fixed number of predicted files based
on a fairness rule. According to the simulation, reinforce-
ment learning based backhaul management can reach much
higher performance than centralized greedy approach, in terms
of remaining backhaul capacity, at a lower signalling cost.
In [68], to verify the effectiveness of the reinforcement learn-
ing based method, a simple baseline is that the messages of
MUE:s are not transmitted via backhaul links between SBSs
and the MBS, which leads to poor MUE rates.

D. Alternatives for Cache Management

In [74], random caching and caching based on time-
averaged content popularity are taken as baselines.
Reinforcement learning based cache management can
achieve 13% and 56% higher per-BS utility than these two
heuristic schemes for a dense network scenario. Also com-
pared with the two schemes, the extreme learning machine
based caching scheme in [78] decreases downloading delay
significantly. Moreover, the transfer learning based caching
in [84] outperforms random caching and achieves close
performance to caching the most popular contents with
popularity perfectly known, in terms of backhaul load and
user satisfaction ratio. Another two well-known heuristic
cache management strategies are least recently used (LRU)
strategy [151] and least frequently used (LFU) strategy [152].
Under LRU strategy, the cached content, which is least
requested recently, will be replaced by the new content when
the cache storage is full, while the cached content, which is
requested the least many times, will be replaced under LFU
strategy. In [75], Q learning is shown to greatly outperform
LRU and LFU strategies in reducing transmission cost.
In [77], the deep reinforcement learning approach in [77]
achieves higher cache hit rate compared with these two
strategies.

E. Alternatives for Beamforming

In [86], authors use KNN to address a beam allocation
problem. The alternatives include exhaustive search and a
low complexity beam allocation (LBA) algorithm proposed
in [153]. The latter is based on submodular optimization theory
that is a powerful tool for solving combinatorial optimization
problems. Via simulation, it is observed that the KNN based
allocation algorithm can approach optimal average sum rate
and outperforms LBA algorithm with the increase of training
data size.

FE Alternatives for Computation Resource Management

In [85], three heuristic computation offloading mechanisms
are taken as baselines, namely mobile execution, server exe-
cution and greedy execution. In the first and second schemes,
the mobile user processes computation tasks locally and
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offloads computation tasks to the MEC server, respectively.
For the greedy execution, the mobile user makes the offload-
ing decision to minimize the immediate task execution delay.
Numerical results reveal that much better long-term utility
performance can be achieved by deep reinforcement learning
based approach compared with these baselines. Meanwhile,
the proposal does not need to know the information of network
dynamics.

G. Alternatives for User Association

In [39], it is observed that multi-armed bandits learning
based association can achieve similar performance to exhaus-
tive search but with lower complexity and lower overhead
caused by information acquisition. In [87], reinforcement
learning based user association is compared with two com-
mon association schemes. One is max-SINR based association,
which means each user chooses the BS with the maximal SINR
to associate, and the other one is based on optimization theory,
which adopts gradient descent and dual decomposition [154].
By simulation, it can be seen that reinforcement learning can
make user experience more uniform and meanwhile deliver
higher rates for vehicles. The max-SINR based association
is also used as a baseline in [90], which leads to poor QoS
of UEs.

H. Alternatives for BS Switching Control

Assuming a full knowledge of traffic loads, authors in [155]
greedily turn off as many as BSs to get the optimal BS switch-
ing solution, which is taken by [18] as a comparison scheme to
verify the effectiveness of transfer learning based BS switch-
ing. In [94], it is observed that actor-critic based BS switching
consumes only a little more energy than an exhaustive search
based scheme. However, the learning based approach does not
need the knowledge of traffic loads in advance. In [97], two
alternative schemes to control BS on-off states are consid-
ered, namely single-BS association (SA) and full coordinated
association (FA). In SA scheme, each user associates with a
BS randomly and BSs without serving any users are turned
off, while all the BSs are active in FA scheme. Compared to
the heuristic approaches, deep reinforcement learning based
method can achieve lower energy consumption while meeting
users’ demands.

L. Alternatives for Network Routing

In [105], authors utilize spectrum-aware ad hoc on-demand
distance vector routing (SA-AODV) approach as a baseline
to demonstrate the superiority of their reinforcement learning
based routing. Specifically, their proposal leads to lower route
discovery frequency. In [107], two intuitive routing strate-
gies are presented for performance comparison, which are
shortest path (SP) routing and optimal primary user (PU)
aware shortest path (PASP) routing. The first scheme aims
at minimizing the number of hops in the route, while the sec-
ond scheme intends to minimize the accumulated amount of
PUs’ activities. It has been shown that the proposed learning
based routing can cause lower end-to-end delay than the two
schemes. According to [109, Fig. 4], the deep learning based
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routing algorithm reduces average per-hop delay by around
93% compared with open shortest path first (OSPF) routing.
In [110], OSPF is also taken as a baseline that always leads
to high delay and packet loss rate. Instead, the proposed deep
convolutional neural network based routing strategy can reduce
them significantly.

J. Alternatives for Clustering

In [113], deep reinforcement learning is used to select
transmitter-receiver pairs to form a cluster, within which
cooperative interference alignment is performed. By com-
paring with two existing user selection schemes proposed
in [156] and [157] that are designed for static environ-
ments, deep reinforcement learning is shown to be capable
of greatly improving user sum rate in the environment with
time-varying CSL

K. Alternatives for Mobility Management

In [16], authors compare their deep reinforcement learning
approach with a handover policy in [158] that compares the
RSSI values from the current AP and other APs. Simulation
result indicates that deep reinforcement learning can miti-
gate ping-pong effect with high data rate. In [115], a fuzzy
Q learning algorithm is developed to adjust hysteresis and
time-to-trigger values. To verify the effectiveness of the
algorithm, two baseline schemes are considered, namely trend-
based handover optimization proposed in [159] and a scheme
setting time-to-trigger values based on velocity estimates. As
for performance comparison, it is observed that fuzzy Q learn-
ing based hysteresis adjustment significantly outperforms the
two baselines, in terms of the number of early handover.
Another alternative for mobility management is using fuzzy
logic controller (FLC). In [114] and [116], numeric simula-
tion has demonstrated the advantages of fuzzy Q learning over
FLC whose performance is limited by available prior knowl-
edge. Specifically, it is reported in [114] that fuzzy Q learning
can still achieve competitive performance even without enough
prior knowledge, while it is shown to reach better long-term
performance in [116] compared with the FLC based method.

L. Alternatives for Localization

Surveyed works mainly utilize localization methods that
are based on probability theory for performance comparison.
These methods include FIFS [136] and Horus [160]. In [122],
the simulation result shows that the mean of error distance
achieved by the proposed feature scaling based KINN localiza-
tion algorithm is 1.82 times better than that achieved by Horus.
In [134], the deep auto-encoder based approach improves the
mean of the location errors by 20% and 31% compared to
FIFS and Horus, respectively. The superiority of deep learning
in enhancing localization performance has also been verified
in [133], [135] [161]. In [127], authors propose to use machine
learning to estimate the ranging error for UWB localization.
They make comparisons with two schemes purely based on
norm optimization without ranging error mitigation, which
leads to poor localization performance. The other surveyed
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papers like [128] and [130] mainly compare their proposals
with approaches that are also based on machine learning.

M. Motivations to Apply Machine Learning

After summarizing traditional schemes, the motivations of
authors in surveyed literatures to adopt machine learning based
approaches are clarified as follows.

o Developing Low-complexity Algorithms for Wireless
Problems: This is a main reason for researchers to use
deep neural networks to approximate high complexity
resource allocation algorithms. Particularly, it has been
shown in [15] that a well trained deep neural network can
greatly reduce the time for power allocation with a satis-
fying performance loss compared to WMMSE approach.
In addition, this is also a reason for some researchers to
use reinforcement learning. For example, authors in [96]
use distributed Q learning that leads to a low-complexity
sleep mode control algorithm for small cells. In summary,
this motivation applies to literatures [15], [48], [52], [55],
[56], [58], [61], [66], [86], [88], [96], [111].

e Overcoming the Lack of Network
Information/Knowledge: Although centralized
optimization  approaches can achieve superior
performance, they often needs to know global network
information, which can be difficult to acquire. For
example, the baseline scheme for BS switching in [18]
requires a full knowledge of traffic loads in prior,
which is challenging to be precisely known in advance.
However, with transfer learning, the past experience in
BS switching can be utilized to guide current switching
control even without the knowledge of traffic loads.
To adjust handover parameters, fuzzy logic controller
based approaches can be used. The controller is based
on a set of pre-defined rules, each of which specifies
a deterministic action under a certain system state.
However, the setting of the action is highly dependent
on expert knowledge about the network that can be
unavailable for a new communication system or envi-
ronment. In addition, knowing content popularity of
users is the key to properly manage cache resource,
and this popularity can be accurately learned by RNN
and extreme learning machine. Moreover, model free
reinforcement learning can help network nodes make
optimized decisions without knowing the information
about network dynamics. Overall, this motivation is a
basic reason for adopting machine learning that applies
to all the surveyed literatures.

e Facilitating Self-organization Capabilities: To reduce
CAPEX and OPEX, and to simplify the coordination,
optimization and configuration procedures of the network,
self-organizing networks have been widely studied [162].
In particular, some researchers consider machine learn-
ing techniques as potential enablers to realize self-
organization capabilities. By involving machine learning,
especially reinforcement learning, each BS can self-
optimize its resource allocation, handover parameter con-
figuration, and so on. In summary, this motivation applies

to [48], [51], [57], [60], [62]-67], [70], [71], [74], [96],
[98], [114]-{116].

Reducing Signalling Overhead: When distributed rein-
forcement learning is used, each learning agent only
needs to acquire partial network information to make
a decision, which helps avoid large signalling overhead.
On the contrary, traditional approaches may require many
information exchanges and hence lead to huge signalling
cost. For example, as pointed out in [105], ad hoc on-
demand distance vector routing will cause the constant
flooding of routing messages in a CRN. In [58], the cen-
tralized approach taken as the baseline allocates spectrum
resource based on the complete information about SUs.
This motivation has been highlighted in [39], [52], [58],
[60], [66]-[68], [70], [75], [102], [105], [109], [110].

e Avoiding Past Faults: For some heuristic and classical

approaches that are based on fixed rules, they are inca-
pable of avoiding unsatisfying results that have occurred
previously, which means they are incapable of learning.
Such approaches include the OSPF routing strategy taken
as the baseline in [110], the handover strategy based on
the comparison of RSSI values that is taken as the base-
line by [16], the heuristic BS switching control strategies
for comparison in [97], max-SINR based user associa-
tion, and so on. In [110], authors present an intuitive
example, where OSPF routing leads to congestion at a
router under a certain situation. Then, when this situation
recurs, the OSPF routing protocol will make the same
routing decision that causes congestion again. However,
with deep learning being trained by using history network
data, it can be predicted that whether a routing strategy
will lead to congestion under the current ftraffic pattern.
Other approaches listed face the same kind of problems.
This issue can be overcome by reinforcement learning
approaches in [16], [87], [97], which evaluate each action
based on its past performance. Hence, actions with bad
performance can be avoided in the future. For surveyed
literatures, this motivation applies to [16], [48], [49], [57],
[64], [65], [67], [68], [74], [75], [77], [85], [87], [97],
[107], [110], [115].

Learning Robust Patterns: With the help of neural
networks, useful patterns related to networks and users
can be extracted. These patterns are useful in resource
management, localization, and so on. Specifically, authors
in [55] use a CNN to learn the spatial features of the chan-
nel gain matrix to make wiser power control decisions
than WMMSE. For fingerprints based localization, tradi-
tional approaches, such as Horus, directly relies on the
received signal strength data that can be easily affected by
the complex indoor propagation environment. This fact
has motivated researchers to improve localization accu-
racy by learning more robust fingerprint patterns using
neural networks. For surveyed literatures, this motiva-
tion applies to [15]-[17], [55], [56], [63], [64]. [76]-[81],
[85], [91], [97], [109], [110], [113], [118], [128]-[130],
[133]-[135].

e Achieving Better Performance than Traditional

Optimization: Traditional optimization methods include
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submodular optimization theory, dual decomposition,
and so on. In [86], authors have demonstrated that their
designed KNN based beam allocation algorithm can
outperform a beam allocation algorithm based on sub-
modular optimization theory with the increase of training
data size. In [87], it is shown that reinforcement learning
based user association achieves better performance than
the approach based on dual decomposition. Hence, it
can be inferred that machine learning has the potential
in reaching better system performance compared to tra-
ditional optimization approaches. In surveyed literatures,
this motivation applies to [55], [86], [87].

IX. CHALLENGES AND OPEN ISSUES

Although many studies have been conducted on the appli-
cations of ML in wireless communications, several challenges
and open issues are identified in this section to facilitate further
research in this area.

A. Machine Learning Based Heterogenous
Backhaul/Fronthaul Management

In future wireless networks, various backhaul/fronthaul
solutions will coexist [163], including wired back-
haul/fronthaul like fiber and cable as well as wireless
backhaul/fronthaul like the sub-6 GHz band. Each solution
has a different amount of energy consumption and different
bandwidth, and hence the management of backhaul/fronthaul
is important to the whole system performance. In this case,
ML based techniques can be utilized to select suitable
backhaul/fronthaul solutions based on the extracted traffic
patterns and performance requirements of users.

B. Infrastructure Update

To make preparations for the deployment of ML based
communication systems, current wireless network infrastruc-
tures should be evolved. For example, servers equipped with
GPUs can be deployed at the network edge to implement deep
learning based signal processing, resource management and
localization. Storage devices are needed at the network edge as
well to achieve in-time data analysis. Moreover, network func-
tion virtualization (NFV) should be involved in the wireless
network, which decouples the network functions and hardware,
and then network functions can be implemented as softwares.
On the basis of NFV, machine learning can be adopted to
realize flexible network control and configuration.

C. Machine Learning Based Network Slicing

As a cost-efficient way to support diverse use cases, network
slicing has been advocated by both academia and indus-
try [164], [165]. The core of network slicing is to allocate
appropriate resources including computing, caching, back-
haul/fronthaul and radio resources on demand to guarantee
the performance requirements of different slices under slice
isolation constraints. Generally speaking, network slicing can
benefit from ML in the following aspects. First, ML can be
used to learn the mapping from service demands to resource
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allocation plans, and hence a new network slice can be quickly
constructed. Second, by employing transfer learning, knowl-
edge about resource allocation plans for different use cases in
one environment can act as useful knowledge in another envi-
ronment, which can speed up the learning process. Recently,
authors in [166] and [167] have applied DRL to network
slicing, and the advantages of DRL are demonstrated via
simulations.

D. Standard Datasets and Environments for Research

To make researchers pay full attention to the learning algo-
rithm design and conduct fair comparisons between different
ML based approaches, it is essential to identify some com-
mon problems in wireless networks. These problems should
be together with corresponding labeled/unlabeled data for
supervised/unsupervised learning based approaches, similar
to the open dataset MNIST that is often used in computer
vision. For reinforcement learning based approaches, standard
network control problems together with well defined environ-
ments should be built, similar to the standard environment
MountainCar-v0.

E. Theoretical Guidance for Algorithm Implementation

It is known that the performance of ML algorithms is
affected by the selection of hyperparameters like learning rate,
loss functions, and so on. Trying different hyperparameters
directly is a time-consuming task, especially when the training
time for the model under a fixed set of hyperparameters is long.
Moreover, the theoretical analysis of the dataset size needed
for training, the performance bound of deep learning archi-
tectures, and the ability of generalization of different learning
models are still open questions. Since stability is one of the
main features of communication systems, rigorous theoretical
studies are essential to ensure ML based approaches always
work well in practical systems.

FE Transfer Learning Based Approaches

Transfer learning promises transferring the knowledge
learned from one task to another similar task. By avoiding
training learning models from scratch, the learning process
in new environments can be speeded up, and the ML algo-
rithm can have a good performance even with a small amount
of training data. Therefore, transfer learning is critical for
the practical implementation of learning models considering
the cost for training without prior knowledge. Using transfer
learning, network operators can solve new but similar prob-
lems in a cost-efficient manner. However, negative effects of
prior knowledge on system performance should be addressed
as pointed out in [18], and need further investigation.

X. CONCLUSION

This paper surveys the state-of-the-art applications of ML in
wireless communication and outlines several unresolved prob-
lems. Faced with the intricacies of these applications, we have
broadly divided the body of knowledge into resource manage-
ment in the MAC layer, networking and mobility management
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in the network layer, and localization in the application layer.
Within each of these topics, we have surveyed the diverse
ML based approaches that have been proposed for enabling
wireless networks to run intelligently. Nevertheless, consider-
ing that the applications of ML in wireless communications
are still at the initial stage, there are quite a number of
problems that need further investigation. For example, infras-
tructure update is required for the implementation of ML based
paradigms, and open data sets and environments are expected
to facilitate future research on the ML applications in a wide
range.
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