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ABSTRACT

In many signal recovery applications, measurement data is comprised of multiple signals observed concurrently.
For instance, in multiplexed imaging, several scene subimages are sensed simultaneously using a single detector.
This technique allows for a wider field-of-view without requiring a larger focal plane array. However, the resulting
measurement is a superposition of multiple images that must be separated into distinct components. In this paper,
we explore deep neural network architectures for this image disambiguation process. In particular, we investigate
how existing training data can be leveraged and improve performance. We demonstrate the effectiveness of our
proposed methods on numerical experiments using the MNIST dataset.
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1. INTRODUCTION

Applications such as blind source separation' and multiplexed imaging? involve measurement data that are
composed of multiple signals that have been observed simultaneously and combined at the detector stage. For
example, in blind source separation settings, a microphone might pick up several conversations concurrently, or
perhaps there might be one predominant signal mixed with ambient or latent sounds. In multiplexed imaging,
optical systems might utilize beam splitters and mirrors to superimpose different scene components onto a single
focal plane array (FPA). This type of architecture is particularly useful in settings where a wide field-of-view
is needed but the FPA size is limited. The main challenge in these applications is to separate the combined
measurements into distinct signals or perhaps simply isolate a particular signal. These problems are highly
underdetermined and ill-posed, and, as such, they require sophisticated numerical methods. The methods we
propose in this paper use machine learning techniques based on autoencoders.

Related methods. The blind source separation problem has been well studied' and has been analyzed from
a statistical perspective.>* Algorithms include leveraging sparse decomposition® and on-line learning.® Multi-
plexed optical systems have been physically implemented,” '° and algorithms for multiplexed imaging include
those that use nonnegative matrix factorization'! and those that exploit a priori knowledge about the multi-
plexed images, such as sparse representation.'? '3 In contrast, the approaches proposed in this paper incorporate
existing datasets to train deep neural networks for disambiguating the superimposed images.

2. METHODOLOGY
2.1 Neural Network Architecture

We propose the following neural network configuration for the purpose of recovering two images from a mixed
signal measurement. The architecture is based on the deep learning building block known as an autoencoder.'*
In its simplest form, an autoencoder is composed of two parts. The first is the encoder whose objective is
to reduce the dimensionality of the input by providing a latent space representation of the most pertinent
information. The second element, referred to as a decoder, is tasked with interpreting the resultant latent space
variable and ultimately recovering the original input.'® In practice, more complex evolutions of the autoencoder
such as the variational autoencoder and stacked denoising autoencoders are typically implemented.'% 1" Beyond
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Figure 1. Image disambiguation setup. Two 28 x 28 pixel images (a) and (b) are randomly chosen from the MNIST
dataset. Images (a) and (b) are superimposed to yield measurement image (c). Image (d) is the result of superimposing
images (a) and (b) with image (b) at 25% intensity.

modifications of the overall structure of the autoencoder, there is also a choice between the commonly used fully
connected layer and the convolutional layer as the basis of the encoder and decoder substructures.'®'® The
method presented in this paper utilizes stacked denoising autoencoders composed of fully connected layers. The
motivation for this implementation is two fold. Stacked denoising autoencoders (SDAs) have been successfully
implemented in a variety of other image processing tasks.'® 23 As an extension to their autoencoder ancestor,
SDAs continually encode and decode the information until the intended output is obtained. The intuition is that
as they are forced to compress and decompress the input, they become impervious to noise during the process
(see Fig. 2). Our intent was to take advantage of this property during the image extracting process, resulting
in smoother, noiseless reconstructions. Fully connected layers were chosen based on the configuration of the
problem. Because the goal of the application is multiple image extraction from a single source, the architecture
needs to be accommodating to an output of two images. Initially, convolutional layers were tested with a single
channel input image and a dual channel output tensor. The network often returned the same image for both
channels. As an alternative, the images were vectorized necessitating the use of fully connected layers. This
allowed the network to produce a single vector containing both reconstructions.

2.2 Network Parameters

The network used in this work begins by reshaping the single channel n x n combined images into the vector

p = [p1 P2 P3 ... Pnz| where p; represents the pixel intensity at a given location (see Fig. 2). The input layer
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Figure 2. Deep neural network for image disambiguation. The network processes the n? input p through six fully connected
layers z(1y — 2(6)- The output layer o doubles the size of the input to allow for the extraction of the two images.



is followed by 3 stacked autoencoders where the input from the previous layer is either compressed to length m
or decompressed to the size n?. The dimension of compression (m) is a hyperparameter which requires tuning,
but the dimension n is constrained to the size of the image being processed. The final layer produces the
vector 0 = [01 02 03 ... 0g,2] containing the separated images. The two images are recovered by dissociating
the output vector into the components p; = [01 ... 0,2] and po = [0p241 ... 02,2] and reshaping each vector
into the original n x n dimensions. After all but the final layer, the rectified linear unit (ReLU) activation
function was applied to the output before being passed as the input of the next layer. After the output layer
the, sigmoidal activiation function is applied to ensure that the output pixel intensities are within the range 0
to 1. The network was implemented using two different cost functions which will be discussed in a later section.
In either case the network was trained using the backpropagation algorithm.

3. NUMERICAL EXPERIMENTS

The architecture was developed using the open source machine learning library for Python, PyTorch. Training
and testing were done using an NVIDIA Tesla P100 PCI-E GPU on the MERCED cluster. The loss functions
were minimized using the PyTorch implementation of the Adam optimizer.2*

3.1 MNIST Dataset

The dataset used to test and train the proposed architecture is a modified form of the original MNIST data set.2°
The data set consists of 70,000 28 x 28 images of handwritten numbers from 0-9. The data is then partitioned into
60,000 training examples and 10,000 testing examples. For the purposes of this paper, classification is not the
intended objective and therefore all of the labels were disregarded. Each training and testing sample were created
by first randomly selecting two images from the dataset without replacement. The images were normalized to
assure that the pixel intensities ranged from 0 to 1 and then converted to a single channel tensor. The two
tensors were then added together and the result was normalized and paired with the original images creating a
triplet consisting of a combined image and its two sources (see Fig. 1). Because of the nature of the previously
described image selection, the new training set consisted of 30,000 training instances and 5,000 testing images
where both the combinations and the individual images are unique. Multiple datasets were created following a
similar protocol, the difference being the intensity of one of the two target images was reduced to 75%, 50% or
25%. When describing these data sets the image with the full intensity is noted as Image A and the image with
the reduced intensity will be known as Image B.

3.2 Performance

The proposed architecture was tested for a variety of configurations. In what will be referred to as the Single
Image Recovery experiment, the intent was to recover only one of the two images. The image target was chosen
randomly from the two potential candidates and the output layer in Fig. 2 was removed so that z) would provide
an extraction of the appropriate size. The ReLU activation function implemented in z(5) was also substituted
for the sigmoidal activation function. The Dual Image Recovery Experiment seeks to extract both images using
the architecture described in Sec. 2. In both experiments, the dimension of the latent space was chosen to be
m = 256 after hyperparameter tuning revealed this to be the optimal setting. All test images were compared to
their targets using the Mean Squared Error (MSE) after the model was trained.

The normalization of the pixel intensities within a range of 0 to 1 allows us to use the Binary Cross Entropy
(BCE) function as a loss function during training. Experiments were performed to determine if there was an
advantage in the choice of using either the BCE or the MSE in a learning capacity. The performance of the two
loss functions are comparable when using the MSE as a metric of validation on the test set (see Fig. 3). The
reconstructions using the BCE had a slightly sharper appearance. This is to be expected as the MSE tends to
average the pixel intensities resulting in a smoother image. For the remainder of this paper we present only the
results using the BCE loss function. The Dual Image Recovery experiment indicates that image extraction of
both images are comparable when they are at full intensity. As the image intensity of Image B decreases, the
architecture improves on its ability to extract Image A at the cost of an accurate reconstruction of Image B
(see Fig. 3). This is to be expected as the intensity of Image B is weaker. The Single Image Recovery approach
underperforms in comparison to Dual Image Recovery approach when both images have the same intensity. The
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Figure 3. Boxplots of the Mean Squared Error (MSE) for 5,000 MNIST test images using the Dual Image Recovery method
with the Binary Cross Entropy (BCE) [in blue] and the MSE [in red] loss functions. The MSEs are reported for both
Images A and B under varying intensities of Image B in the measurements. As the intensity of Image B weakens, the
accuracy of its recovery naturally worsens while the accuracy of Image A’s recovery improves.

B single Image BCE Image A
Dual Image BCE Image A

0.2

=}
-
4]

o
o

Mean Squared Error

1L L e

Image B intensity (%)

100

Figure 4. Boxplots comparing the Dual and Single Image Recovery methods to recover Image A using the Binary Cross
Entropy (BCE) loss function. The MSE is reported for the recovered Image A from measurements with varying intensities
of Image B.

Single Image Recovery approach is prone to recovering more elements from Image B. As the intensity of Image
B decreases, the extraction of Image A improves, ultimately outperforming the Dual Image Recovery method
(see Fig. 4). Tt is under the previously stated conditions that the Single Image Recovery approach views Image
B as noise and performs its intended task as that of denoising.
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Figure 5. The first row contains the superimposed images which are composed of the primary and secondary images. They
vary in that the intensity of the secondary image was altered to the percentage noted above. Given these input images,
we present the reconstructions for the dual image recovery experiments and the single image recovery experiments.

4. CONCLUSION

In this paper we implemented a deep neural network in order to solve the ill-posed image separation problem.
By relying on the denoising properties of the stacked autoencoder structure, we have shown that these types
of networks can be effective in the recovery of two superimposed images. While the choice of the loss function
between the mean squared error and the binary cross entropy function is negligible in terms of MSE validation,
the binary cross entropy function provides a slightly sharper advantage. The results show that when the objective
is the recovery of both images, the reconstruction of the secondary image with a weaker intensity (Image B)
slightly suffers while the recovery of the primary image (Image A) improves. By shifting the focus to a single
image extraction the quality of the reconstruction of the primary image improves on the dual image extraction
method. For future work we look forward to extending these methods to more complex images by improving the
structure of the architecture. Furthermore, we look forward to extending this work to other modalities.
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