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Twisted orbital integrals and irreducible
components of affine Deligne–Lusztig varieties
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We analyze the asymptotic behavior of certain twisted orbital in-
tegrals arising from the study of affine Deligne–Lusztig varieties.
The main tools include the Base Change Fundamental Lemma and
q-analogues of the Kostant partition functions. As an application
we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating
the set of irreducible components of an affine Deligne–Lusztig vari-
ety modulo the action of the σ-centralizer group to the Mirković–
Vilonen basis of a certain weight space of a representation of the
Langlands dual group.
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1. Introduction

1.1. The main result

First introduced by Rapoport [39], affine Deligne–Lusztig varieties play an
important role in arithmetic geometry and the Langlands program. One of
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the main motivations to study affine Deligne–Lusztig varieties comes from
the theory of p-adic uniformization, which was studied by various authors
including Čerednik [6], Drinfeld [7], Rapoport–Zink [42], and more recently
Howard–Pappas [21] and Kim [23]. In this theory, a p-adic formal scheme
known as the Rapoport–Zink space uniformizes a tubular neighborhood in
an integral model of a Shimura variety around a Newton stratum. The re-
duced subscheme of the Rapoport–Zink space is a special example of affine
Deligne–Lusztig varieties. Thus in many cases, understanding certain cycles
on Shimura varieties reduces to understanding the geometry of the affine
Deligne–Lusztig variety.

In this paper, we concern the problem of parameterizing the irreducible
components of affine Deligne–Lusztig varieties. We introduce some nota-
tions. Let F be a non-archimedean local field with valuation ring OF and
residue field kF = Fq. Fix a uniformizer πF ∈ F . Let L be the completion
of the maximal unramified extension of F , and let σ be the Frobenius auto-
morphism of L over F . Let G be a connected reductive group scheme over
OF . We fix T ⊂ G to be the centralizer of a maximal OF -split torus, and
fix a Borel subgroup B ⊂ G containing T . For μ ∈ X∗(T )

+ and b ∈ G(L),
the affine Deligne–Lusztig variety associated to (G,μ, b) is defined to be

Xμ(b) = {g ∈ G(L)/G(OL) | g−1bσ(g) ∈ G(OL)μ(πF )G(OL)}.

More precisely, the above set is the set of Fq-points of a scheme or a perfect
scheme, depending on whether F has equal or mixed characteristic. See [1]
and [47] for the result in mixed characteristic.

Let Σtop be the set of top-dimensional irreducible components of Xμ(b).
The group

J := Jb(F ) = {g ∈ G(L) | g−1bσ(g) = b}
naturally acts on Xμ(b). Our goal is to understand the set J\Σtop of J-orbits
in Σtop.

The motivation for studying this set is to understand cycles in the spe-
cial fiber of Shimura varieties; in particular cycles arising from the basic, or
supersingular locus. In [45], the authors used the description of J\Σtop in
some special cases to prove certain cases of the Tate conjecture for Shimura
varieties. In a different situation, a description of the components in the
supersingular locus was used to study certain arithmetic level-raising phe-
nomena in [33]. After the work of Xiao–Zhu [45], Miaofen Chen and Xinwen
Zhu formulated a general conjecture relating J\Σtop to the Mirković–Vilonen
cycles in the affine Grassmannian. To state the conjecture we introduce some
more notations.
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Let Ĝ denote the Langlands dual group of G over C, equipped with a
Borel pair T̂ ⊂ B̂, where T̂ is a maximal torus dual to T and equipped with
an algebraic action by σ. Let Ŝ be the identity component of the σ-fixed
points of T̂ . In X∗(Ŝ), there is a distinguished element λb, determined by
b. It is the “best integral approximation” of the Newton cocharacter of b,
but we omit its precise definition here (see Definition 2.6.4). The fixed μ
determines a highest weight representation Vμ of Ĝ. We write Vμ(λb)rel for

the λb-weight space in Vμ with respect to the action of Ŝ.
Conjecture 1.1.1 (Miaofen Chen, Xinwen Zhu). There exists a natural
bijection between J\Σtop and the Mirković–Vilonen basis of Vμ(λb)rel. In
particular,

∣∣J\Σtop
∣∣ = dimVμ(λb)rel.(1.1.1)

Our main result is the following

Theorem A (Corollary 6.3.5). Conjecture 1.1.1 holds.

When the group G is quasi-split but not necessarily unramified, we are
able to prove an analogous result, see Appendix A for the details.

1.2. Previous results

Previously, partial results towards Conjecture 1.1.1 have been obtained by
Xiao–Zhu [45], Hamacher–Viehmann [16], and Nie [35], based on a common
idea of reduction to the superbasic case (which goes back to [10]).

More precisely, Xiao–Zhu [45] proved the conjecture for general G, gen-
eral μ, and unramified b, meaning that Jb and G are assumed to have equal
F -rank.

Hamacher–Viehmann [16] proved the conjecture under either of the fol-
lowing two assumptions:

• The cocharacter μ is minuscule, and G is split over F .
• The cocharacter μ is minuscule, and b is superbasic in M , where M is
the largest Levi of G inside which b is basic. (In particular if b is basic
then they assume that b is superbasic).

More recently, Nie [36] proved the conjecture for arbitrary G under the
assumption that μ is a sum of dominant minuscule coweights. In particular
it holds when the Dynkin diagram of GF only involves factors of type A.
Moreover, Nie constructed a surjection from the Mirković–Vilonen basis to
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the set J\Σtop in all cases. Thus in order to prove the conjecture, it suffices
to prove the numerical relation (1.1.1) for groups besides type A.

After we finished this work, Nie uploaded online new versions of the
preprint [36], in which he proved Conjecture 1.1.1 in full generality, using
methods independent of ours. Our work only uses the weaker results of his
as stated in the above paragraph.

1.3. Some features of the method

Our proof of Conjecture 1.1.1 is based on an approach completely different
from the previous works. The key idea is to use the Lang–Weil estimate to
relate the cardinality of J\Σtop to the asymptotic behavior of the number
of points on Xμ(b) over a finite field, as the finite field grows.

We show that the number of points over a finite field, when counted
suitably, is given by a twisted orbital integral. Thus we reduce the problem
to the asymptotic behavior of twisted orbital integrals. We study the latter
using explicit methods from local harmonic analysis and representation the-
ory, including the Base Change Fundamental Lemma and the Kato–Lusztig
formula.

In our proof, polynomials that are linear combinations of the q-analogue
of Kostant partition functions appear, and the key computation is to esti-
mate their sizes. These polynomials (denoted by M0

λ(q) in the paper) can
be viewed as a non-dominant generalization of the q-analogue of Kostant
weight multiplicity. Some properties of them are noted in [37], but beyond
this there does not seem to have been a lot of study into these objects.
From our proof, it seems reasonable to expect that a more thorough study
of the combinatorial and geometric properties of these polynomials would
shed new light on the structure of affine Deligne–Lusztig varieties, as well
as the structure of twisted orbital integrals.

An interesting point in our proof is that we need to apply the Base
Change Fundamental Lemma, which is only available in general for mixed
characteristic local fields. In fact, the proofs of this result by Clozel [5] and
Labesse [31] rely on methods only available over characteristic zero, for ex-
ample the trace formula of Deligne–Kazhdan. Thus our method crucially
depends on the geometric theory of mixed characteristic affine Grassmanni-
ans as in [1] and [47]. To deduce Conjecture 1.1.1 also for equal characteristic
local fields, we apply results of He [18] to prove the following.

Theorem B (Theorem 3.1.1, Theorem 3.2.1). For any Z ∈ Σtop, the sta-
bilizer StabZJ is a parahoric subgroup of J . Moreover, these parahoric sub-
groups, as well as the quotient set J\Σtop, are independent of the local field
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F in a precise sense. In particular, the truth of Conjecture 1.1.1 transfers
between different local fields.

Our method also allows us to show that the stabilizers of the action
of J on Σtop are all hyperspecial, when b is basic and unramified. This
reproves a result of Xiao–Zhu [45], see Remark 1.4.3 below. For ramified
b, we obtain the following result, which refines Conjecture 1.1.1 in that it
provides information about the stabilizers.

Theorem C (Corollary 6.3.5 and (6.3.3)). Assume char(F ) = 0. Assume
G is F -simple and adjoint, without type A or E6 factors. Assume b is basic
and ramified. Then we have

∣∣J\Σtop
∣∣ · Lb =

∑

Z∈J\Σtop

vol(StabZ J)−1,

where the volumes vol(StabZ J) are computed with a fixed Haar measure on
J , and Lb is a constant that depends only on b and not on μ.

In a future work we shall explore the possibility of applying Theorems
A, B, C to determine the stabilizers in general.

1.4. Overview of the proof

We now explain in more detail our proof of Conjecture 1.1.1. A standard
reduction allows us to assume that b is basic, and that G is adjoint and F -
simple. Throughout we also assume that G is not of type A, which is already
sufficient by the work of Nie [36]. To simplify the exposition, we also assume
that G is split and not of type E6. Then Ŝ = T̂ , and we drop the subscript
“rel” for the weight spaces in Conjecture 1.1.1.

For any s ∈ Z>0, we let Fs be the unramified extension of F of degree
s. We denote by Hs the spherical Hecke algebra H(G(Fs)//G(OFs

)). We
may assume without loss of generality that b is s0-decent for a fixed s0 ∈ N,
meaning that b ∈ G(Fs0) and

bσ(b) · · ·σs0−1(b) = 1.

As mentioned above, our idea is to use the Lang–Weil estimate to relate
the number of irreducible components to the asymptotics of twisted orbital
integrals. Since Xμ(b) is only locally of (perfectly) finite type and we are
only counting J-orbits of irreducible components, we need a suitable inter-
pretation of the Lang–Weil estimate. The precise output is the following.



156 Rong Zhou and Yihang Zhu

Proposition 1.4.1 (Proposition 4.2.4). Let s ∈ s0N. Let fμ,s ∈ Hs be the

characteristic function of G(OFs
)μ(πF )G(OFs

), and let TOb(fμ,s) denote the

twisted orbital integral of fμ,s along b ∈ G(Fs). We have

TOb(fμ,s) =
∑

Z∈J\Σtop

vol(StabZ J)−1qsdimXµ(b) + o(qsdimXµ(b)), s � 0.

(1.4.1)

To proceed, we apply the Base Change Fundamental Lemma to compute

TOb(fμ,s). There are two problems in this step. Firstly, the Base Change

Fundamental Lemma can only be applied to stable twisted orbital integrals.

This problem is solved because one can check that TOb(fμ,s) is in fact equal

to the corresponding stable twisted orbital integral. Secondly, the general

Base Change Fundamental Lemma is only available for char(F ) = 0. The

way to circumvent this was already discussed in §1.3 above.

We define δ := (rkFJb−rkFG)/2. Up to lower order error terms, we may

combine the above-mentioned computation of TOb(fμ,s) with asymptotics

of the Kato–Lusztig formula [22] to rewrite the left hand side of (1.4.1), and

we may use the dimension formula for Xμ(b) (by Hamacher [15] and Zhu

[47]) to rewrite the right hand side of (1.4.1). The result is the following:

∑

λ∈X∗(T̂ )+,λ≤μ

dimVμ(λ) ·M0
sλ(q

−1)(1.4.2)

= ±
∑

Z∈J\Σtop

vol(StabZ J)−1qsδ + o(qsδ), s � 0,

where eachM0
sλ(q

−1) is the value at q = q−1 of a polynomialM0
sλ(q) ∈ C[q],

given explicitly in terms of the q-analogues of Kostant’s partition functions

(see Definition 5.2.7 and §5.3).
The key computation needed to further analyze (1.4.2) is summarized

in the following.

Proposition 1.4.2. Let λ+
b ∈ X∗(T̂ )+ be the dominant conjugate of λb. For

all λ ∈ X∗(T̂ )+ −
{
λ+
b

}
, we have

M
0
sλ(q

−1) = o(qsδ), s � 0.

When G is the split adjoint E6, we only prove a weaker form of Propo-

sition 1.4.2, which also turns out to be sufficient for our purpose.
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Proposition 1.4.2 tells us that on the left hand side of (1.4.2), only the
summand indexed by λ = λ+

b has the “right size”. Taking the limit, we
obtain

dimVμ(λb) · Lb =
∑

Z∈J\Σtop

vol(StabZ J)−1,(1.4.3)

where Lb is independent of μ.
In (1.4.3), we already see both the number dimVμ(λb) and the set

J\Σtop. In order to deduce the desired (1.1.1), one still needs some infor-
mation on the volume terms vol(StabZJ). It turns out that even very weak
information will suffice. In §3 we show that the right hand side of (1.4.3)
is equal to R(q), where R(T ) ∈ Q(T ) is a rational function which is inde-
pendent of F in a precise sense. Moreover we show that |R(0)| = |J\Σtop|.
Therefore, the desired (1.1.1) will follow from (1.4.3), if we can show that

Lb = S(q), for some S(T ) ∈ Q(T ) with |S(0)| = 1.(1.4.4)

A remarkable feature of the formulation (1.4.4) is that it is independent
of μ. We recall that in the works of Hamacher–Viehmann and Nie, special
assumptions on μ are made. Hence we are able to bootstrap from known
cases of Conjecture 1.1.1 (for example when μ = λ+

b ) to establish (1.4.4),
and hence to establish Conjecture 1.1.1 in general.

We end our discussion with the following remark.

Remark 1.4.3. At the moment, we are unable to directly compute the ratio-
nal functions S(T ) appearing in (1.4.4) in general. To do this would require
a much better understanding of the polynomials M0

sλ(q). We are however
able to compute S(T ) in a very special case. When b is a basic unramified
element in the sense of [45], we show directly that (1.4.4) is satisfied by
S(T ) ≡ 1, see §6.2. From this we deduce the conjecture for b, as well as the
equality vol(StabZ J) = 1 for each Z ∈ Σtop. This last equality implies (ac-
cording to our normalization) that StabZ J is a hyperspecial subgroup of J .
This gives another proof of a result in [45], avoiding their use of Littelmann
paths.

1.5. Organization of the paper

In §2, we introduce notations and state the Chen–Zhu conjecture. In §3, we
study the action of J on Σtop, proving Theorem B. In §4, we prove Proposi-
tion 1.4.1, and then apply the Base Change Fundamental Lemma to compute
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twisted orbital integrals. In §5 we review the relationship between the coef-
ficients of the Satake transform and the q-analogue of Kostant’s partition
functions, and draw some consequences. In §6 we state Proposition 6.3.2 as
a more technical version of Proposition 1.4.2. We then deduce Conjecture
1.1.1 from Proposition 6.3.2. The proof of Proposition 6.3.2 is given in §7,
§8, and §9, by analyzing the root systems case by case. In Appendix A, we
generalize our main result to quasi-split groups.

1.6. Notations and conventions

We order N by divisibility, and write s � 0 to mean “for all sufficiently
divisible s ∈ N”. The notation lims→∞ will always be understood as the
limit taken with respect to the divisibility on N. If f(s), g(s) are C-valued
functions defined for all sufficiently divisible s ∈ N, we write

f(s) = o(g(s))

to mean that lims→∞ f(s)/g(s) = 0, where the limit is understood in the
above sense. We write

f(s) = O(g(s))

to mean that

∃M > 0 ∃s0 ∈ N ∀s ∈ s0N, |f(s)/g(s)| < M.

In this case we do not require f(s)/g(s) to be bounded, or even defined, for
all s ∈ N.

For any finitely generated abelian group X, we write Xfree for the free
quotient of X. We let C[X] be the group algebra of X over C, and denote
by ex the element in C[X] corresponding to x ∈ X.

We use q, or q−1, or sometimes q−1/2, to denote the formal variable in
a polynomial or power series ring.

The following lemma is elementary and will be used repeatedly in the
paper. We omit its proof.

Lemma 1.6.1. Let Γ be a finite group. Let X be a Z[Γ]-module which is
a finite free Z-module. As usual define the norm map N : X → X, x 
→∑

γ∈Γ γ(x). Let Y ⊂ X be a Γ-stable subgroup. Then the following statements
hold.

1. The kernel of the map Y → XΓ,free is equal to {y ∈ Y | N(y) = 0} . In
particular, it is also equal to the kernel of Y → YΓ,free.



Twisted orbital integrals and irreducible components 159

2. Suppose Y has a finite Z-basis which is stable under Γ. Then the Γ-
orbits in this Z-basis define distinct elements of YΓ, which form a Z-
basis of YΓ. In particular YΓ is a finite free Z-module.

3. The map N : X → X factors through a map XΓ → XΓ. We have a
canonical isomorphism XΓ ⊗Q

∼−→ XΓ ⊗Q given by 1
|Γ| N.

2. Notations and preliminaries

2.1. Basic notations

Let F be a non-archimedean local field with valuation ring OF and residue
field kF = Fq. Let πF ∈ F be a uniformizer. Let p be the characteristic
of kF . Let L be the completion of the maximal unramified extension of F ,
with valuation ring OL and residue field k = kF . Let Γ = Gal(F/F ) be the
absolute Galois group. Let σ be the Frobenius of L over F .

Let G be a connected reductive group over OF . In particular its generic
fiber GF is an unramified reductive group over F , i.e. is quasi-split and splits
over an unramified extension of F . Then G(OF ) is a hyperspecial subgroup
of G(F ). Fix a maximal OF -split torus A of G. Let T be the centralizer of
AF in GF , and fix a Borel subgroup B ⊂ GF containing T . Then T is an
unramified maximal torus in GF . In the following we often abuse notation
and simply write G for GF .

Note that TL is a split maximal torus in GL. Let V be the apartment of
GL corresponding to TL. The hyperspecial vertex s corresponding to G(OL)
is then contained in V . We have an identification V ∼= X∗(T )⊗R sending s

to 0. Let a ⊂ V be the alcove whose closure contains s, such that the image
of a under V ∼= X∗(T )⊗R is contained in the anti-dominant chamber. The
action of σ induces an action on V , stabilizing both a and s. We let I be
the Iwahori subgroup of G(L) corresponding to a.

2.2. The Iwahori–Weyl group

The relative Weyl group W0 over L and the Iwahori–Weyl group W are
defined by

W0 = N(L)/T (L), W = N(L)/T (L) ∩ I,
where N denotes the normalizer of T in G. Note that W0 is equal to the
absolute Weyl group, as TL is split.

We have a natural exact sequence

1 −→ X∗(T ) −→ W −→ W0 −→ 1.(2.2.1)
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The canonical action of N(L) on V factors through an action of W , and we
split the above exact sequence by identifying W0 with the subgroup of W
fixing s ∈ V . See [12, Proposition 13] for more details. When considering an
element λ ∈ X∗(T ) as an element of W , we write tλ ∈ W . For any w ∈ W ,
we choose a representative ẇ ∈ N(L).

Let Wa be the associated affine Weyl group, and S be the set of simple
reflections associated to a. Since a is σ-stable, there is a natural action of σ
on S. We let S0 ⊂ S be the set of simple reflections fixing s. Then W contains
Wa as a normal subgroup, and we have a natural splitting W = Wa � Ω,
where Ω is the stabilizer of a in W and is isomorphic to π1(G). The length
function � and the Bruhat order ≤ on the Coxeter group (Wa,S) extend in
a natural way to W .

For any subset P of S, we shall writeWP for the subgroup ofW generated
by P .

For w,w′ ∈ W and s ∈ S, we write w
s−→σ w′ if w′ = swσ(s) and �(w′) ≤

�(w). We write w →σ w′ if there is a sequence w = w0, w1, . . . , wn = w′ of

elements in W such that for any i, wi−1
si−→σ wi for some si ∈ S. Note that

if moreover, �(w′) < �(w), then there exists i such that �(w) = �(wi) and
si+1wiσ(si+1) < wi.

We write w ≈σ w′ if w →σ w′ and w′ →σ w. It is easy to see that
w ≈σ w′ if w →σ w′ and �(w) = �(w′). We write w ≈̃σw

′ if there exists
τ ∈ Ω such that w ≈σ τw′σ(τ)−1.

2.3. The set B(G)

For any b ∈ G(L), we denote by [b] = {g−1bσ(g) | g ∈ G(L)} its σ-conjugacy
class. Let B(G) be the set of σ-conjugacy classes of G(L). The σ-conjugacy
classes have been classified by Kottwitz in [26] and [28], in terms of the
Newton map ν̄ and the Kottwitz map κ. The Newton map is a map

ν̄ : B(G) → (X∗(T )
+
Q)

σ,(2.3.1)

where X∗(T )
+
Q is the set of dominant elements in X∗(T )Q := X∗(T ) ⊗ Q.

The Kottwitz map is a map

κ = κG : B(G) → π1(G)Γ.

By [28, §4.13], the map

(ν̄, κ) : B(G) → (X∗(T )
+
Q)

σ × π1(G)Γ(2.3.2)
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is injective.
Let B(W,σ) denote the set of σ-conjugacy classes of W . The map W →

G(L), w 
→ ẇ induces a map

Ψ : B(W,σ) −→ B(G),

which is independent of the choice of the representatives ẇ. By [18], the map
Ψ is surjective. We again denote by (ν̄, κ) the composition of (2.3.2) with
Ψ. This composed map can be described explicitly, see [20, §1.2] for details.

The map Ψ is not injective. However, there exists a canonical lifting to
the set of straight σ-conjugacy classes. By definition, an element w ∈ W is
called σ-straight if for any n ∈ N,

�(wσ(w) · · ·σn−1(w)) = n�(w).

This is equivalent to the condition that �(w) = 〈ν̄w, 2ρ〉, where ρ is the
half sum of all positive roots. A σ-conjugacy class of W is called straight if
it contains a σ-straight element. It is easy to see that the minimal length
elements in a given straight σ-conjugacy class are exactly the σ-straight
elements.

Theorem 2.3.1 ([18, Theorem 3.7]). The restriction of Ψ : B(W,σ) →
B(G) gives a bijection from the set of straight σ-conjugacy classes of W to
B(G).

2.4. The affine Deligne–Lusztig variety XP,w(b)

Let P be a standard σ-invariant parahoric subgroup of G(L), i.e. a σ-
invariant parahoric subgroup that contains I. In the following, we will gener-
ally abuse of notation to use the same symbol to denote a parahoric subgroup
and the underlying parahoric group scheme. We denote by P ⊂ S the set of
simple reflections corresponding to P . Then σ(P ) = P . We have

G(L) =
⊔

w∈WP \W/WP

P(OL)ẇP(OL).

For any w ∈ WP \W/WP and b ∈ G(L), we set

XP,w(b)(k) := {gP(OL) ∈ G(L)/P(OL) | g−1bσ(g) ∈ P(OL)ẇP(OL)}.

If P = I (corresponding to P = ∅), we simply write Xw(b)(k) for X∅,w(b)(k).
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We freely use the standard notations concerning loop groups and partial
affine flag varieties, see [1, §9] or [47, §1.4]. When char(F ) > 0, it is known
that XP,w(b)(k) could be naturally identified with the set of k-points of
a locally closed sub-ind scheme XP,w(b) of the partial affine flag variety
GrP . When char(F ) = 0, thanks to the recent breakthrough by Bhatt–
Scholze [1, Corollary 9.6] (cf. also [47]), we can again identify XP,w(b)(k)
with the k-points of a locally closed perfect sub-ind scheme XP,w(b) of the
Witt vector partial affine flag variety GrP . In both cases, the (perfect) ind-
scheme XP,w(b) is called an affine Deligne–Lusztig variety, and one could
consider topological notions related to the Zariski topology on XP,w(b).

We are mainly interested in the case when P = GOL
. In this case the

corresponding set of simple reflections is K := S0. Recall from §2.2 that we
fixed a splitting of (2.2.1) using the hyperspecial vertex s. According to this
splitting, the subgroup W0 of W is the same as WK , the subgroup generated
by K = S0. We have identifications

WK\W/WK = W0\(X∗(T )�W0)/W0
∼= X∗(T )/W0

∼= X∗(T )
+.

For μ ∈ X∗(T )
+, we write Xμ(b) for XK,tµ(b).

We simply write GrG for GrGOL
. The relationship between the hyper-

special affine Deligne–Lusztig variety Xμ(b) ⊂ GrG and the Iwahori affine
Deligne–Lusztig varieties Xw(b) ⊂ GrI is as follows. We have a projection
π : FL → GrG which exhibits FL := GrI as an étale fibration over GrG.
Indeed the fiber of this map is isomorphic to the fpqc quotient L+G/L+I
where L+G,L+I are the positive loop groups attached to G and I. More
concretely, L+G/L+I is a finite type flag variety over k when char(F ) > 0,
and is the perfection of a finite type flag variety over k when char(F ) = 0.
We have

π−1(Xμ(b)) = X(μ, b)K :=
⋃

w∈W0tµW0

Xw(b).

2.5. Basic information about Xµ(b)

For λ, λ′ ∈ X∗(T )Q, we write λ ≤ λ′ if λ′−λ is a non-negative rational linear
combination of positive coroots. Let μ ∈ X∗(T )

+. As in [41], we set

B(G,μ) = {[b] ∈ B(G) | κ([b]) = μ�, ν̄b ≤ μ
}.

Here μ� denotes the image of μ in π1(G)Γ, and μ
 ∈ X∗(T )Q denotes the
Galois average of μ.
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The following result is proved by Kottwitz [29] and Gashi [8], strengthen-

ing earlier results of Rapoport–Richartz [40], Kottwitz–Rapoport [24], and

Lucarelli [34].

Theorem 2.5.1. For b ∈ G(L), we have Xμ(b) �= ∅ if and only if [b] ∈
B(G,μ).

We now let μ ∈ X∗(T )
+ and let b ∈ G(L) such that [b] ∈ B(G,μ).

Definition 2.5.2. We define defG(b) := rkFG− rkFJb, called the defect of

b.

Theorem 2.5.3. If char(F ) > 0, then Xμ(b) is a scheme locally of finite

type over k. If char(F ) = 0, then Xμ(b) is a perfect scheme locally perfectly

of finite type over k. In both cases the Krull dimension of Xμ(b) is equal to

〈μ− ν̄b, ρ〉 −
1

2
defG(b).

Proof. The local (perfectly) finiteness is proved by Hamacher–Viehmann

[16, Lemma 1.1], cf. [17]. The dimension formula is proved by Hamacher

[15] and Xinwen Zhu [47], strengthening earlier results of Görtz–Haines–

Kottwitz–Reuman [10] and Viehmann [44].

Definition 2.5.4. For any (perfect) scheme X, we write Σ(X) for the set

of irreducible components of X. When X is of finite Krull dimension, we

write Σtop(X) for the set of top dimensional irreducible components of X.

Define the group scheme Jb over F by

Jb(R) =
{
g ∈ G(R⊗F L) | g−1bσ(g) = b

}
(2.5.1)

for any F -algebra R. Then Jb is an inner form of a Levi subgroup of G,

see [42, §1.12] or [40, §1.11]. The group Jb(F ) acts on Xμ(b) via scheme

automorphisms. In particular Jb(F ) acts on Σ(Xμ(b)) and on Σtop(Xμ(b)).

The following finiteness result is proved in [17, Theorem 1.1].

Lemma 2.5.5. The set Jb(F )\Σ(Xμ(b)) is finite.

Definition 2.5.6. We write N (μ, b) for the cardinality of Jb(F )\
Σtop(Xμ(b)).
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2.6. The Chen–Zhu conjecture

In this paper we shall utilize the usual Langlands dual group (as a reductive
group over C equipped with a pinned action by the Galois group), rather
than the Deligne–Lusztig dual group which is used in [16]. As a result, our
formulation of the Chen–Zhu conjecture below differs from [16, Conjecture
1.3, §2.1]. However it can be easily checked that the two formulations are
equivalent.

The Frobenius σ acts on X∗(T ) via a finite-order automorphism, which
we denote by θ. Let Ĝ be the usual dual group of G over C, which is a
reductive group over C equipped with a Borel pair (B̂, T̂ ) and isomorphisms
X∗(T̂ ) ∼= X∗(T ), X∗(T̂ ) ∼= X∗(T ). These last isomorphisms, which will be
regarded as equalities, identify the positive roots (resp. coroots) with the
positive coroots (resp. roots). For more details on the dual group see §5.1
below.

Definition 2.6.1. Let Ŝ be the identity component of the θ̂-fixed points of
T̂ . Equivalently, Ŝ is the sub-torus of T̂ such that the map X∗(T̂ ) → X∗(Ŝ)
is equal to the map X∗(T̂ ) −→ X∗(T̂ )θ̂,free.

Definition 2.6.2. For μ ∈ X∗(T )
+ = X∗(T̂ )+, let Vμ be the highest weight

representation of Ĝ of highest weight μ. For all λ′ ∈ X∗(T̂ ), we write Vμ(λ
′)

for the λ′-weight space in Vμ as a representation of T̂ . For all λ ∈ X∗(Ŝ),
we write Vμ(λ)rel for the λ-weight space in Vμ as a representation of Ŝ.

As in §2.5, let μ ∈ X∗(T )
+, and let [b] ∈ B(G,μ). By Lemma 1.6.1 (3)

we identify X∗(T )
θ
Q with

X∗(T )θ ⊗Q = X∗(T )θ,free ⊗Q = X∗(T̂ )θ̂,free ⊗Q = X∗(Ŝ)⊗Q,

and we shall view ν̄b (see (2.3.1)) as an element of X∗(Ŝ)⊗Q. We also have
κ(b) ∈ π1(G)Γ = π1(G)σ, which is equal to the image of μ.

Let Q̂ be the root lattice inside X∗(T̂ ). Applying Lemma 1.6.1 to X =
X∗(T̂ ) and Y = Q̂, we obtain:

• Q̂θ̂ is a free Z-module. It injects into X∗(T̂ )θ̂ and also injects into

X∗(T̂ )θ̂,free = X∗(Ŝ).
• The image of the simple roots in Q̂ in Q̂θ̂ (as a set) is a Z-basis of Q̂θ̂.

We call members of this Z-basis the relative simple roots in Q̂θ̂.

Lemma 2.6.3. There is a unique element λ̃b ∈ X∗(T̂ )θ̂ satisfying the fol-
lowing conditions:
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1. The image of λ̃b in π1(G)σ is equal to κ(b).
2. In X∗(Ŝ)⊗Q, the element (λ̃b)|Ŝ − ν̄b is equal to a linear combination

of the relative simple roots in Q̂θ̂, with coefficients in Q∩ (−1, 0]. Here

(λ̃b)|Ŝ denotes the image of λ̃b under the map X∗(T̂ )θ̂ → X∗(T̂ )θ̂,free =

X∗(Ŝ).
Proof. This is just a reformulation of [16, Lemma 2.1].

Definition 2.6.4. Let λ̃b ∈ X∗(T̂ )|θ̂ be as in Lemma 2.6.3. We write λb for

(λ̃b)|Ŝ ∈ X∗(Ŝ).
Conjecture 2.6.5 (Miaofen Chen, Xinwen Zhu). Let μ ∈ X∗(T )

+ and let
[b] ∈ B(G,μ). There exists a natural bijection between Jb(F )\Σtop(Xμ(b))
and the Mirković–Vilonen basis of Vμ(λb)rel.

Definition 2.6.6. For μ ∈ X∗(T )
+ and [b] ∈ B(G,μ), we write N (μ, b) for

the cardinality of Jb(F )\Σtop(Xμ(b)), and write M (μ, b) for dimVμ(λb)rel.

Conjecture 2.6.5 has the following numerical consequence:

Conjecture 2.6.7 (Numerical Chen–Zhu). Let μ ∈ X∗(T )
+ and let [b] ∈

B(G,μ). We have

N (μ, b) = M (μ, b).

In [35], Nie obtained the following results:

Theorem 2.6.8 (Nie).

1. In order to prove Conjecture 2.6.5, it suffices to prove it when G is
adjoint and b is basic.

2. There is a natural surjective map from the Mirković–Vilonen basis of
Vμ(λb)rel to the set Jb(F )\Σtop(Xμ(b)). Thus in order to prove Con-
jecture 2.6.5, it suffices to prove Conjecture 2.6.7.

3. Conjecture 2.6.5 holds if μ is a sum of dominant minuscule elements.
In particular, it holds if all absolute simple factors of Gad are of type
A.

Remark 2.6.9. After the present paper was finished, Nie uploaded online
new versions of the preprint [36], in which he proved Conjecture 2.6.5 in full
generality. His methods are independent of ours. The present paper depends
logically only on Nie’s results stated in Theorem 2.6.8, see Remark 6.3.4 for
more details.

A further standard argument, for example [20, §6], shows that one can
also reduce the proof of Conjecture 2.6.7 to the case where G is F -simple.
Therefore in view of Theorem 2.6.8 (1) (2), we have:
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Proposition 2.6.10. In order to prove Conjecture 2.6.5, it suffices to prove
Conjecture 2.6.7 when G is adjoint, F -simple, and b ∈ G(L) represents a
basic σ-conjugacy class.

3. The action of Jb(F )

3.1. The stabilizer of a component

In this section we study the stabilizer in Jb(F ) of an irreducible component
of Xμ(b). Here as before we let μ ∈ X∗(T )

+ and [b] ∈ B(G,μ). The first
main result is the following.

Theorem 3.1.1. The stabilizer in Jb(F ) of each Z ∈ Σ(Xμ(b)) is a para-
horic subgroup of Jb(F ).

We first reduce this statement to a question about the Iwahori affine
Deligne–Lusztig varieties Xw(b), w ∈ W0t

μW0. Note that Jb(F ) acts on each
Xw(b) via automorphisms.

Proposition 3.1.2. The projection π : FL → GrG induces a bijection
between Σ(Xμ(b)) and Σ(X(μ, b)K) compatible with the action of Jb(F ).
Moreover, this bijection maps Σtop(Xμ(b)) onto Σtop(X(μ, b)K).

Proof. This follows from the fact that the fiber of π is (the perfection of) a
flag variety.

In view of Proposition 3.1.2, the proof of Theorem 3.1.1 reduces to show-
ing that the stabilizer of each irreducible component of X(μ, b)K is a para-
horic subgroup of Jb(F ).

Now let Y ∈ Σ(X(μ, b)K). Then since each Xw(b) is locally closed in
FL, there exists w ∈ W0t

μW0 such that Y ∩Xw(b) is open dense in Y and
is an irreducible component of Xw(b). Since the action of Jb(F ) on X(μ, b)K

preserves Xw(b), it follows that j ∈ Jb(F ) stabilizes Y if and only if j
stabilizes Y ∩Xw(b). Hence we have reduced to showing that the stabilizer
in Jb(F ) of any element of Σ(Xw(b)) is a parahoric subgroup. We will show
that this is indeed the case in Proposition 3.1.4 below.

One important tool needed in our proof is the following result, which is
[11, Corollary 2.5.3].

Proposition 3.1.3. Let w ∈ W , and let s ∈ S be a simple reflection.

1. If �(swσ(s)) = �(w), then there exists a universal homeomorphism
Xw(b) → Xswσ(s)(b).
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2. If �(swσ(s)) < �(w), then there is a decomposition Xw(b) = X1 �X2,
where X1 is closed and X2 is open, and such that there exist morphisms
X1 → Xswσ(s)(b) and X2 → Xsw(b), each of which is the composition
of a Zariski-locally trivial fiber bundle with one-dimensional fibers and
a universal homeomorphism.

Moreover the universal homeomorphism in (1) and the morphisms X1 →
Xswσ(s)(b) and X2 → Xsw(b) in (2) are all equivariant for the action of
Jb(F ).

Proposition 3.1.4. Assume Xw(b) �= ∅ and let Z ∈ Σ(Xw(b)). The stabi-
lizer in Jb(F ) of Z is a parahoric subgroup of Jb(F ).

Proof. We prove this by induction on �(w). Assume first that w ∈ W is of
minimal length in its σ-conjugacy class. Then Xw(b) �= ∅ implies Ψ(w) = b,
i.e. w and b represent the same σ-conjugacy class in B(G), by [18, Theorem
3.5]. In this case, by [18, Theorem 4.8] and its proof, there is an explicit
description of the stabilizer of an irreducible component which we recall.

Let PW ⊂ W (resp. W σ(P ) ⊂ W ) denote the set of minimal representa-
tives of the cosets WP \W (resp. W/Wσ(P )). Let

PW σ(P ) be the intersection
PW ∩ W σ(P ) (cf. [18, §1.6]). By [18, Theorem 2.3], there exists P ⊂ S,
x ∈ PW σ(P ), and u ∈ WP , such that:

• WP is finite.
• x is σ-straight and x−1σ(P )x = P .

In this case, there is a Jb(F )-equivariant universal homeomorphism between
Xw(b) and Xux(b), and we have Ψ(ux) = Ψ(w), see [18, Corollary 4.4].
Hence we may assume w = ux. By [18, Lemma 3.2] we have Ψ(x) = Ψ(w),
and therefore we may assume b = ẋ. Upon replacing P , we may assume P
is minimal with respect to a fixed choice of x and u satisfying the above
properties.

Let P denote the parahoric subgroup of G(L) corresponding to P . The
proof of [18, Theroem 4.8] shows that

Xux(ẋ) ∼= Jẋ(F )×Jẋ(F )∩P XP
ux(ẋ),

where XP
ux(ẋ) is the reduced k-subscheme of the (perfectly) finite type

scheme L+P/L+I whose k-points are

XP
ux(ẋ)(k) = {g ∈ P(OL)/I(OL) | g−1ẋσ(g) ∈ I(OL)u̇ẋI(OL)}.

Thus it suffices to show the stabilizer in Jẋ(F ) ∩ P(OL) of an irreducible
component of XP

ux(ẋ) is a parahoric subgroup of Jẋ(F ).
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Let P denote the algebraic group over k, which is the reductive quotient
of the special fiber of P . Recall its Weyl group is naturally identified with
WP . Then I is the pre-image of a Borel subgroup I of P under the reduction
map P → P. Let σẋ denote the automorphism of P given by p 
→ ẋ−1σ(p)ẋ.
Then the natural map L+P/L+I → P/I induces an identification between
XP

u̇ẋ(ẋ) and (the perfection of) the finite type Deligne–Lusztig variety

X ′ = {p ∈ P/I | p−1σẋ(p) ∈ Iu̇I}.

The natural projection map P → P takes Jẋ(F ) ∩ P(OL) to Pσẋ
, and

the action of Jẋ(F ) ∩ P(OL) factors through this map. Since P is minimal
satisfying u ∈ WP and since x−1σ(P )x = P , it follows that u is not contained
in any σẋ-stable parabolic subgroup of WP . Therefore by [9, Corollary 1.2],
X ′ is irreducible. It follows that the stabilizer of the irreducible component
1 × XP

ux(ẋ) ⊂ Xux(ẋ) is Jẋ(F ) ∩ P(OL), which is a parahoric of Jẋ(F ). It
also follows that the stabilizer of any other irreducible component of Xux(ẋ)
is a conjugate parahoric.

Now we assume w is not of minimal length in its σ-conjugacy class. By
[19, Corollary 2.10], there exists w′≈̃σw and s ∈ S such that sw′σ(s) < w′.
Then by Proposition 3.1.3, there is a Jb(F )-equivariant universal homeo-
morphism between Xw(b) and Xw′(b). Thus it suffices to prove the result
for Xw′(b).

Let Z ′ ∈ Σ(Xw′(b)), and let X1 and X2 be as in Proposition 3.1.3. We
have either Z ′ ∩X1 or Z ′ ∩X2 is open dense in Z ′. Assume Z ′ ∩X1 is open
dense in Z ′; the other case is similar. Since Jb(F ) preserves X1, it suffices to
show that the stabilizer of Z ′ ∩ X1 is a parahoric. From the description of
X1, there exists an element V ∈ Σ(Xsw′σ(s)(b)) such that Z ′ ∩X1 → V is a
fibration and is Jb(F )-equivariant. Therefore by induction, the stabilizer of
V is a parahoric of Jb(F ), and hence so is the stabilizer of Z ′ ∩X1.

3.2. Independence of F and volumes of stabilizers

The second main result of this section is that the set of Jb(F )-orbits of
irreducible components of Xμ(b) and the volume of the stabilizer of an irre-
ducible component depend only on the affine root system together with the
action of the Frobenius. In particular, it is independent of F in a manner
which we will now make precise. This fact is a key observation that we will
need for later applications.

By [18, §6], the set of Jb(F )-orbits of top dimensional irreducible compo-
nents of Xw(b) depends only on the affine root system of G together with the
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action of σ. This is proved by using the Deligne–Lusztig reduction method
to relate the number of orbits to coefficients of certain class polynomials,
which can be defined purely in terms of the affine root system for G, see
loc. cit. for details. In view of the fibration

π : X(μ, b)K → Xμ(b)

it follows that the same is true for Xμ(b). In particular, the number N (μ, b)
depends only on the affine root system and hence does not depend on the
local field F .

We will need the following stronger result. To state it, we introduce some
notations. Let F ′ be another local field with residue field Fq′ . Let G′ be a
connected reductive group over OF ′ . Let T ′ ⊂ B′ ⊂ G′

F ′ be analogous to
T ⊂ B ⊂ GF as in §2.1. Define the hyperspecial vertex s′, the apartment
V ′, and the anti-dominant chamber a′ analogously to s, V, a. Assume there
is an identification V ∼= V ′ that maps X∗(T )

+ into X∗(T )
+, maps a into a′,

maps s to s′, and induces a σ-σ′ equivariant bijection between the affine root
systems. Here σ′ denotes the q′-Frobenius acting on the affine roots system of
G′. We fix such an identification once and for all. To the pair (μ, b), we attach
a corresponding pair (μ′, b′) for G′ as follows. The cocharacter μ′ ∈ X∗(T

′)+

is defined to be the image of μ under the identification X∗(T )
+ ∼= X∗(T

′)+.
To construct b′, we note that since b is basic, it is represented by a unique σ-
conjugacy class in Ω. The identification fixed above induces an identification
of Iwahori–Weyl groups W ∼= W ′, which induces a bijection on length-zero
elements. Then b′ is represented by the corresponding length-zero element
in W ′.

By our choice of b′, the affine root systems of Jb and Jb′ together with
the actions of Frobenius are identified. We thus obtain a bijection between
standard parahoric subgroups of Jb and those of Jb′ . Let J ⊂ Jb(F ) and
J ′ ⊂ Jb′(F

′) be parahoric subgroups. We say that J and J ′ are conjugate,
if the standard parahoric conjugate to J is sent to the standard parahoric
conjugate to J ′ under the above-mentioned bijection. In the following, we
write J := Jb(F ) and J ′ := Jb′(F

′).

Theorem 3.2.1. There is a bijection

J\Σtop(Xμ(b))
∼−→ J ′\Σtop(Xμ′(b′))

with the following property. If Z ∈ Σtop(Xμ(b)) and Z ′ ∈ Σtop(Xμ′(b′)) are
such that JZ is sent to J ′Z ′, then the parahoric subgroups StabZ(J) ⊂ J
and StabZ′(J ′) ⊂ J ′ are conjugate.
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The theorem will essentially follow from the next lemma.

Lemma 3.2.2. Let w′ ∈ W ′ correspond to w ∈ W under the identification
W ∼= W ′. Then there is a bijection

Θ : J\Σtop(Xw(b))
∼−→ J ′\Σtop(Xw′(b′))

with the following property. If Z ∈ Σtop(Xw(b)) and Z ′ ∈ Σtop(Xw′(b′)) are
such that Θ(JZ) = J ′Z ′, then StabZ(J) and StabZ′(J ′) are conjugate.

Proof. We induct on �(w). First assume w is minimal length in its σ-conju-
gacy class. Then by [18], Xw(b) �= ∅ if and only if Ψ(w) = b, which holds
if and only if Ψ(w′) = b′, if and only if Xw′(b′) �= ∅. If this holds, then by
[18] the group J acts transitively on Σtop(Xw(b)), and similarly the group
J ′ acts transitively on Σtop(Xw′(b′)). Hence the two sets J\Σtop(Xw(b)) and
J ′\Σtop(Xw′(b′)) are both singletons. Let Θ be the unique map between
them. The desired conjugacy of the stabilizers follows from the computation
of StabZ(J) in Proposition 3.1.4.

Now assume w is not of minimal length in its σ-conjugacy class. Let
Z ∈ Σtop(Xw(b)). Then as in the proof of Proposition 3.1.4, there ex-
ists w1≈̃σw and s ∈ S such that sw1σ(s) < w1. Then Xw(b) is univer-
sally homeomorphic to Xw1

(b). We fix such a universal homeomorphism
and we obtain a corresponding element Z1 ∈ Σtop(Xw1

(b)). By Proposi-
tion 3.1.3, there exists U ∈ Σtop(Xsw1σ(s)(b)) or U ∈ Σtop(Xsw1

(b)) such
that Z1 is universally homeomorphic to a fiber bundle over U . We assume
U ∈ Σtop(Xsw1σ(s)(b)); the other case is similar. Then StabZ(J) = StabU (J).
Note that the choice of U depends on the choice of w1 and a universal home-
omorphism Xw(b) ∼= Xw1

. However upon fixing these choices, the J-orbit of
U is canonically associated to the J-orbit of Z.

By the induction hypothesis, we have a bijection

Θ1 : J\Σtop(Xsw1σ(s)(b))
∼−→ J ′\Σtop(Xs′w′

1σ
′(s′)(b

′)),

where s′, w′
1 ∈ W ′ correspond to s, w1 respectively. Choose

U ′ ∈ Σtop(Xs′w′
1σ

′(s′)(b
′))

such that J ′U ′ = Θ1(JU). By the induction hypothesis, StabU (J) is
conjugate to StabU ′(J ′). Reversing the above process we obtain Z ′ ∈
Σtop(Xw′(b′))) such that StabU ′(J ′) = StabZ′(J ′). Again the J ′-orbit of
Z ′ is canonically associated to U ′ upon fixing the universal homeomorphism
Xw′(b′)

∼= Xw′
1
(b′).

We define the map Θ to send JZ to J ′Z ′. Switching the roles of G and
G′, we obtain the inverse map of Θ, and so Θ is a bijection as desired.
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Proof of Theorem 3.2.1. For each w ∈ W , fix a bijection

Θ : J\Σtop(Xw(b))
∼−→ J ′\Σtop(Xw′(b′))

as in Lemma 3.2.2. Let Z ∈ Σtop(Xμ(b)). Then the pre-image π−1(Z) un-
der the projection π : X(μ, b)K → Xμ(b) is a top dimensional irreducible
component of X(μ, b)K . Hence there exists a unique w ∈ W such that
Xw(b) ∩ π−1(Z) is open dense in Z. Moreover we have Xw(b) ∩ π−1(Z) ∈
Σtop(Xw(b)). Write Y for Xw(b) ∩ π−1(Z), and choose Y ′ ∈ Σtop(Xw′(b′))
such that Θ(JY ) = J ′Y ′. Then since dimX(μ, b)K = dimX(μ′, b′)K

′

, the
closure of Y ′ in X(μ′, b′)K

′

gives an element of Σtop(X(μ′, b′)K
′

), whose
J ′-orbit is independent of the choice of Y ′. Taking the image of the last
element under the projection X(μ′, b′)K

′ → Xμ′(b′) we obtain an element
Z ′ ∈ Σtop(Xμ′(b′)) by dimension reasons, and the orbit J ′Z ′ is indepen-
dent of the choice of Y ′. Moreover StabZ(J) is conjugate to StabZ′(J ′) since
StabY (J) is conjugate to StabY ′(J ′). The association JZ 
→ J ′Z ′ gives a
well-defined map

J\Σtop(Xμ(b)) −→ J ′\Σtop(Xμ′(b′))

which satisfies the condition in the proposition. Switching the roles of G and
G′ we obtain the inverse map.

For later applications we need some information on the sizes of the stabi-
lizers appearing in Theorem 3.2.1. We now assume that b is basic, so that G
and Jb are inner forms. Since b is basic we may choose a representative τ̇ for
b where τ ∈ Ω ⊂ W . Using this one may identify the Iwahori–Weyl groups
for Jb and G respecting the base alcoves. However the Frobenius action on
W (or S), defined by Jb, is given by τσ, where τ acts via left multiplication.
See for example [20, §5] for more details. Since G and Jb are inner forms,
the choice of a Haar measure on G(F ) determines a Haar measure on Jb(F ),
and vice versa, see for example [27, §1].
Definition 3.2.3. We fix the Haar measure on Jb(F ) such that the volume
of G(OF ) is 1. For each Z ∈ Σtop(Xμ(b)), we denote by vol(Z) the volume
of the compact open subgroup StabZ(Jb(F )) of Jb(F ) (see Theorem 3.1.1)
under this Haar measure.

Corollary 3.2.4. For each Z ∈ Σtop(Xμ(b)), there exists a rational function
R(t) ∈ Q(t) such that

vol(Z) = R(q).
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Moreover this rational function satisfies R(0) = e(Jb) and is independent
of the local field F . Here e(Jb) is the Kottwitz sign (−1)rkFJb−rkFG. More
precisely, in the notation of Theorem 3.2.1, if J ′Z ′ corresponds to JZ, then
vol(Z ′) = R(q′).

Proof. Since Jb splits over an unramified extension, the volume of a standard
parahoric of Jb(F ) corresponding to any τσ-stable subset KJ ⊂ S can be
calculated in terms of the affine root system. More precisely, let KJ be the
corresponding parahoric subgroup of Jb(F ) and IJ be the standard Iwahori
subgroup of Jb(F ). Then we have

vol(KJ(OF )) =
vol(KJ(OF ))

vol(IJ(OF ))
. vol(I(OF )).

vol(IJ(OF ))

vol(I(OF ))

=
[KJ(OF ) : IJ(OF )]

[G(OF ) : I(OF )]
.
vol(IJ(OF ))

vol(I(OF ))
,

where I is the standard Iwahori subgroup of G(F ) (whereas previously we
denoted by I the standard Iwahori subgroup of G(L)). The term [KJ(OF ) :
IJ(OF )] (resp. [G(OF ) : I(OF )]) is just the number of Fq-points in the finite
type full flag variety associated to the reductive quotient of the special fiber
of KJ (resp. G).

For any connected reductive group H over Fq and B a Borel subgroup,
let WH denote the absolute Weyl group. Then we have the Bruhat decom-
position

H/B(Fq) =
⊔

w∈WH

Sw.

We have Sw(Fq) �= ∅ if and only if σ(w) = w, in which case Sw is an affine
space of dimension �(w) defined over Fq. In particular

H/B(Fq) =
∑

w∈Wσ

H

q�(w).

It follows that [KJ(OF ) : IJ(OF )] and [G(OF ) : I(OF )] are both poly-
nomials in q with coefficients in Z and constant coefficient 1, and the poly-
nomials depend only on the root systems of the corresponding reductive
quotients of the special fiber.

Similarly the ratio vol(IJ(OF ))
vol(I(OF )) can be computed as the ratio

det(1− q−1ςJ | V )

det(1− q−1ς | V )
=

det(q − ςJ | V )

det(q − ς | V )
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where ς denotes the linear action of the Frobenius on V = X∗(T )R, and

similarly for ςJ , see [27, §1]. This is also a ratio of polynomials in q with

coefficients in Z, and the ratio at q = 0 is equal to

det(ςJ)/ det(ς) = (−1)rkFJb−rkFG = e(Jb).

Moreover the polynomials depend only on the affine root system of G and

the element b. The result follows.

Finally we record the following immediate consequence of Theorem 3.2.1.

Corollary 3.2.5. If Conjecture 2.6.7 is true for all p-adic fields F , then it

is true for all local fields F .

From now on we will assume that F is a p-adic field.

4. Counting points

4.1. The decent case

For each s ∈ N, let Fs be the degree s unramified extension of F in L. Let Os

be the valuation ring of Fs, and let ks be residue field. The number N (μ, b)

depends on b only via its σ-conjugacy class [b] ∈ B(G). Recall that given

b ∈ G(L), one can associate a slope cocharacter νb ∈ HomL(D, G), where D

is the pro-torus with character group Q.

Definition 4.1.1. Let s ∈ N. We say that an element b ∈ G(L) is s-

decent, if sνb is an integral cocharacter Gm → G (as opposed to a fractional

cocharacter), and

bσ(b) · · ·σs−1(b) = (sνb)(πF ).(4.1.1)

Lemma 4.1.2. Assume b ∈ G(L) is s-decent. Then sνb is defined over Fs,

and b belongs to G(Fs).

Proof. The proof is identical to the proof of [42, Corollary 1.9].

By [26, §4.3], any class in B(G) contains an element which is s-decent

for some s ∈ N. In the following, we hence assume without loss of generality

that b is s0-decent, for some fixed s0 ∈ N. We may and shall also assume

that s0 is divisible enough so that T is split over Fs0 .
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Definition 4.1.3. Let s ∈ s0N. Let Gs := ResFs/F G, so that b ∈ Gs(F ).
Let Θ be the F -automorphism of Gs corresponding to the Frobenius σ ∈
Gal(Fs/F ). Let Gs,bΘ be the centralizer of bΘ in Gs, which is a subgroup of
Gs defined over F . Define

G(Fs)bσ :=
{
g ∈ G(Fs) | g−1bσ(g) = b

}
.

Thus G(Fs)bσ is naturally identified with Gs,bΘ(F ).

Lemma 4.1.4. For s ∈ s0N, there is a natural isomorphism of F -groups
Jb ∼= Gs,bΘ. Moreover, Jb(F ) = G(Fs)bσ as subgroups of G(L).

Proof. Let R be an F -algebra. Recall from (2.5.1) that

Jb(R) =
{
g ∈ G(R⊗F L) | g−1bσ(g) = b

}
.

It suffices to prove that for any g ∈ Jb(R) we have g ∈ G(R ⊗F Fs0). Now
such a g commutes with b�σ, and so it commutes with (b�σ)s0 . By (4.1.1),
we have (b�σ)s0 = (s0νb)(πf )�σs0 . On the other hand, by the functoriality
of the association b 
→ νb, we know that g commutes with νb. It follows that
g commutes with σs0 , and so g ∈ G(R⊗F Fs0) as desired.

4.1.5. We keep assuming that F is p-adic. In §2.4, we discussed the geo-
metric structure on Xμ(b), as a locally closed subscheme of the Witt vector
Grassmannian over k = kF . In the current setting, Xμ(b) is naturally “de-
fined over ks0”. More precisely, we can work with the version of the Witt
vector affine Grassmannian as an ind-scheme over ks0 rather than over k,
see [1, Corollary 9.6] and cf. [47, §1.4]. Then the affine Deligne–Lusztig va-
riety can be defined as a locally closed ks0-subscheme of the Witt vector
affine Grassmannian, as in [47, §3.1.1]. The key point here is that since T
is split over Fs0 , all the Schubert cells in the Witt vector affine Grassman-
nian are already defined over ks0 , see [47, §1.4.3]. We denote respectively by
GrG and Xμ(b) the Witt vector affine Grassmannian and the affine Deligne–
Lusztig variety over ks0 , and we continue to use GrG and Xμ(b) to denote
the corresponding objects over k.

Let us recall the moduli interpretations of GrG and Xμ(b). For any per-
fect ks0-algebra R, write Ws0(R) for W (R)⊗W (ks0 )

Os0 . Then GrG(R) is the
set of pairs (E , β), where E is a GWs0(R)-torsor on Ws0(R), and β is a trivi-
alization of E on Ws0(R)[1/p], (see [47, Lemma 1.3]). We also have (see [47,
(3.1.2)])

Xμ(b)(R) =
{
(E , β) ∈ GrG(R) | Invx(β−1bσ(β)) = μ, ∀x ∈ specR

}
.
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Lemma 4.1.6. For any s ∈ s0N, we have

Xμ(b)(ks) =
{
g ∈ G(Fs)/G(Os) | g−1bσ(g) ∈ G(Os)μ(πF )G(Os)

}
.

Proof. We only need to show that GrG(ks) = G(Fs)/G(Os). For this it
suffices to show that any GOs

-torsor over Os is trivial (cf. the proof of [47,
Lemma 1.3]). By smoothness this reduces to the Lang–Steinberg theorem,
namely that any Gks

-torsor over the finite field ks is trivial.

Lemma 4.1.7. The action of Jb(F ) on Xμ(b) descends to a natural action
on Xμ(b) via ks0-automorphisms.

Proof. By Lemma 4.1.4, Jb(F ) = G(Fs0)bσ. The group G(Fs0)bσ naturally
acts on Xμ(b)(R) by acting on the trivializations β, for each perfect ks0-
algebra R.

Lemma 4.1.8. Up to enlarging s0, all the irreducible components of Xμ(b)
are defined over ks0, i.e., they come from base change of irreducible compo-
nents of Xμ(b).

Proof. This follows from Lemma 2.5.5 and Lemma 4.1.7.

4.2. Twisted orbital integrals and point counting

We fix s0 ∈ N to be divisible enough so as to satisfy all the conclusions in
§4.1. In particular G is split over Fs0 and the conclusion of Lemma 4.1.8
holds. Let s ∈ s0N.

For any C-valued function f ∈ C∞
c (G(Fs)), define the twisted orbital

integral

TOb(f) :=

∫

G(Fs)bσ\G(Fs)
f(g−1bσ(g))dg,(4.2.1)

where G(Fs)bσ is equipped with an arbitrary Haar measure, and G(Fs) is
equipped with the Haar measure giving volume 1 to G(Os). The general
convergence of TOb(f) follows from the result of Ranga Rao [38]. However,
in our specific case the convergence could be proved more easily. In fact,
the decency equation (4.1.1) implies that bΘ is a semi-simple element of
Gs � 〈Θ〉, from which it follows that the twisted orbit is closed in G(Fs).
The convergence of TOb(f) then follows from the closedness of the twisted
orbit, cf. [5, p. 266].

Definition 4.2.1. Let fμ,s ∈ C∞
c (G(Fs)) be the characteristic function of

G(Os)μ(πF )G(Os).
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In the following we study the relationship between TOb(fμ,s) and point
counting on Xμ(b).

Lemma 4.2.2. Each irreducible component Z of Xμ(b) is quasi-compact,
and is isomorphic to the perfection of a quasi-projective variety over k. More-
over, Z has non-empty intersection only with finitely many other irreducible
components of Xμ(b).

Proof. Since Xμ(b) is a perfect scheme by Theorem 2.5.3, the generic point
η of Z and its residue field k(η) make sense. Moreover k(η) is a perfect field
containing k. Let (E , β) ∈ Xμ(b)(k(η)) ⊂ GrG(k(η)) correspond to η, and
define λ := Inv(β) ∈ X∗(T )

+. Since {η} is dense in Z, it follows from [47,
Lemma 1.22] that Z is contained in GrG,≤λ, the Schubert variety inside GrG
associated to λ. On the other hand, it follows from [47, §1.4.1, Lemma 1.22]
and [1, Theorem 8.3] that GrG,≤λ is the perfection of a projective variety
over k. Since Z is closed in Xμ(b) and Xμ(b) is locally closed in GrG, we
conclude that Z is locally closed in GrG,≤λ, and hence Z is quasi-compact
and isomorphic to the perfection of a quasi-projective variety over k.

Since Xμ(b) is locally perfectly of finite type (Theorem 2.5.3), each point
in Xμ(b) has an open neighborhood that intersects with only finitely many
irreducible components of Xμ(b). Since Z is quasi-compact, it also intersects
with only finitely many irreducible components of Xμ(b).

For each x ∈ Jb(F )\Xμ(b)(ks), we pick a representative x̃ ∈ Xμ(b)(ks)
and consider the volume of Stabx̃ Jb(F ), with respect to the chosen Haar
measure on Jb(F ) = G(Fs)bσ (cf. Lemma 4.1.4). This volume is independent
of the choice of x̃, and we shall denote it by volx.

Lemma 4.2.3. The set Jb(F )\Xμ(b)(ks) is finite. For all x̃ ∈ Xμ(b)(ks),
the stabilizer Stabx̃ Jb(F ) in Jb(F ) is a compact open subgroup of Jb(F ).
We have

TOb(fμ,s) =
∑

x∈Jb(F )\Xµ(b)(ks)

vol−1
x .

Proof. Let C =
{
g ∈ G(Fs)bσ\G(Fs) | g−1bσ(g) ∈ G(Os)μ(πF )G(Os)

}
. By

the discussion below (4.2.1), we know that C is a compact subset of
G(Fs)bσ\G(Fs), as C is homeomorphic to the intersection of the compact
set G(Os)μ(πF )G(Os) with the closed twisted orbit of bσ. The group G(Os)
acts on C by right multiplication, and all the orbits under this action are
open. Since C is compact, the number of orbits is finite. On the other hand,
by Lemma 4.1.6 and Lemma 4.1.7, these orbits are in one-to-one correspon-
dence with Jb(F )\Xμ(b)(ks). In particular Jb(F )\Xμ(b)(ks) is finite.
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Now for each x ∈ Jb(F )\Xμ(b)(ks), we denote the corresponding G(Os)-

orbit in C by Cx. Let x̃ ∈ Xμ(b)(ks) be a representative for x, and fix

r ∈ G(Fs) lifting x̃ in the sense of Lemma 4.1.6. It follows from the definition

of quotient measure that the volume of Cx is the inverse of the volume of the

compact open subgroup G(Fs)bσ∩rG(Os)r
−1 of G(Fs)bσ. Since TOb(fμ,s) is

nothing but the volume of C, we are left to check thatG(Fs)bσ∩rG(Os)r
−1 =

Stabx̃ Jb(F ). But this follows from Lemma 4.1.4.

Proposition 4.2.4. Let d = dimXμ(b). For s ∈ N divisible by s0, we have

TOb(fμ,s) =
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(Z)−1 |ks|d + o(|ks|d), s � 0.

Here Z runs through a set of representatives of the Jb(F )-orbits in

Σtop(Xμ(b)).

Proof. In view of Lemma 2.5.5, we let {Z1, · · · , ZM} be a set of representa-

tives of the Jb(F )-orbits in Σ(Xμ(b)). For each 1 ≤ i ≤ M , we write Ji for

StabZi
(Jb(F )). For each y ∈ Xμ(b)(ks), we write Jy for Staby(Jb(F )).

For each 1 ≤ i ≤ M , we set

Ui := Zi −
⋃

1≤j<i,γ∈Jb(F )

γZj −
⋃

γ∈Jb(F ),γZi �=Zi

γZi.

By Lemma 4.2.2, Ui is open dense in Zi. By Lemma 4.1.8, we know that

Ui, Vi are the base change of locally closed ks0-subschemes Zi,Ui of Xμ(b)

respectively, where Zi,Ui are perfections of quasi-projective varieties over

ks0 . Moreover, Zi and Ui are irreducible.

We denote the natural maps

∐

1≤i≤M

Zi(ks) −→ Jb(F )\Xμ(b)(ks)

and

∐

1≤i≤M

Ui(ks) −→ Jb(F )\Xμ(b)(ks)

by Π and π, respectively. Here we take the disjoint union of the Zi(ks) for

1 ≤ i ≤ M even though they may have non-trivial intersections in Xμ(b)(ks).

Then Π is a surjection (between finite sets).
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Fix an element y ∈ Zi(ks), and let x = Π(y). We have

volx ·
∣∣Π−1(x)

∣∣ ≥ volx · |Jiy| = vol(Jy) · |Jiy|
≥ vol(Staby(Ji)) · |Jiy| = vol(Ji),(4.2.2)

where the last equality follows from the orbit-stabilizer relation.
Now fix y ∈ Ui(ks) and let x = π(y). We observe that π−1(x) = Jiy, and

that Jy = Staby(Ji). We then have

volx ·
∣∣π−1(x)

∣∣ = vol(Jy) · |Jiy| = vol(Staby(Ji)) · |Jiy| = vol(Ji).(4.2.3)

We now apply (4.2.2) and (4.2.3) to estimate TOb(fμ,s). We have

TOb(fμ,s) =
∑

x∈Jb(F )\Xµ(b)(ks)

vol−1
x (by Lemma 4.2.3)

=

M∑

i=1

∑

y∈Zi(ks)

vol−1
Π(y) ·

∣∣Π−1(Π(y))
∣∣−1

(by the surjectivity of Π)

≤
M∑

i=1

vol(Ji)
−1 |Zi(ks)| (by (4.2.2)).(4.2.4)

Similarly, we have

TOb(fμ,s) =
∑

x∈Jb(F )\Xµ(b)(ks)

vol−1
x

≥
∑

x∈ image of π

vol−1
x

=

M∑

i=1

∑

y∈Ui(ks)

vol−1
π(y) ·
∣∣π−1(π(y))

∣∣−1

=

M∑

i=1

vol(Ji)
−1 |Ui(ks)| (by (4.2.3)).(4.2.5)

Now let Ui be a quasi-projective variety whose perfection is Ui. Then
Ui is irreducible, and Ui(ks) = Ui(ks). By the Lang–Weil bound (see [32])
applied to Ui, we know that

|Ui(ks)| = |ks|dimZi + o(|ks|dimZi), s � 0.(4.2.6)
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Similarly we have

|Zi(ks)| = |ks|dimZi + o(|ks|dimZi), s � 0.(4.2.7)

The proposition follows from (4.2.4) (4.2.5) (4.2.6) (4.2.7).

4.3. Applying the Base Change Fundamental Lemma in the basic
case

Recall that we assumed that [b] ∈ B(G,μ) and b is s0-decent. We now assume
in addition that b is basic.

For s ∈ N, recall from [25, §5] that the s-th norm map is a map

Ns : {σ-conjugacy classes in G(Fs)}
−→ {stable conjugacy classes in G(F )} .

By [25, Proposition 5.7], two σ-conjugacy classes in G(Fs) are in the same
fiber of Ns precisely when they are stably σ-conjugate, a notion that is
defined in [25, §5].
Lemma 4.3.1. Let s ∈ s0N. Then Ns(b), as a stable conjugacy class in
G(F ), consists of the single element (sνb)(πF ). Moreover, the cocharacter
sνb : Gm → G is defined over F .

Proof. By [25, Corollary 5.3], any element in Ns(b) is G(F )-conjugate to

bσ(b) · · ·σs−1(b) ∈ G(Fs),

which is equal to (sνb)(πF ) since b is s-decent. Now since (sνb)(πF ) is central,
we know that Ns(b) = {(sνb)(πF )} and that (sνb)(πF ) ∈ G(F ). It follows
from the last statement that sνb is defined over F .

Lemma 4.3.2. Let s ∈ s0N. Let b′ ∈ G(Fs) be an element in the stable
σ-conjugacy class of b. Then νb′ = νb, and b′ is s-decent. In particular b′ is
basic. Moreover, if [b′] ∈ B(G,μ), then b′ is σ-conjugate to b in G(Fs).

Proof. By hypothesis we have Ns(b) = Ns(b
′). By Lemma 4.3.1 applied to

b, we know that the Ns(b) consists of the single central element (sνb)(πF ) ∈
G(F ). On the other hand any element of Ns(b

′) should be G(F )-conjugate
to b′σ(b′) · · · σs−1(b′) (by [25, Corollary 5.3]). Therefore

b′σ(b′) · · · σs−1(b′) = (sνb)(πF ).
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By the characterization of νb′ (see [26, §4.3]), the above equality implies that
νb′ = νb and that b′ is s-decent. The first part of the lemma is proved.

Now we assume [b′] ∈ B(G,μ). Since B(G,μ) contains a unique basic
class, we have [b′] = [b]. Finally, by [42, Corollary 1.10], we know that b and
b′ must be σ-conjugate in G(Fs), since they are both s-decent and represent
the same class in B(G).

Let s ∈ s0N. We now consider stable twisted orbital integrals along b.
By our assumption that b is s-decent and basic, we know that

bσ(b) · · ·σs−1(b) = (sνb)(πF )

is a central element of G(Fs), and is in fact an element of G(F ) by Lemma
4.3.1. In particular, this element is semi-simple, and the centralizer of this
element (namely G) is connected. Therefore, with the terminology of [25],
an element b′ ∈ G(Fs) is stably σ-conjugate to b if and only if it is F -σ-
conjugate to b. This observation justifies our definition of the stable twisted
orbital integral in the following, cf. [13, §5.1].

For any C-valued function f ∈ C∞
c (G(Fs)), we let STOb(f) be the stable

twisted orbital integral

STOb(f) :=
∑

b′

e(Gs,b′Θ)TOb′(f),

where the summation is over the set of σ-conjugacy classes b′ in G(Fs) that
are stably σ-conjugate to b, and e(·) denotes the Kottwitz sign. Here each
TOb′ is defined using the Haar measure on G(Fs) giving volume 1 to G(Os),
and the Haar measure on G(Fs)b′σ = Gs,b′Θ(F ) that is transferred from the
fixed Haar measure on G(Fs)bσ = Gs,bΘ(F ).

Definition 4.3.3. We denote byHs the unramified Hecke algebra consisting
of G(Os)-bi-invariant functions in C∞

c (G(Fs), and denote by BCs the base
change map Hs → H1.

Definition 4.3.4. For s ∈ s0N, we write γs for (sνb)(πF ), and write γ0 for

γs0 . Thus γ0 belongs to G(F ) (see Lemma 4.3.1) and γs = γ
s/s0
0 .

Proposition 4.3.5. Assume s ∈ s0N. For any f ∈ Hs, we have

STOb(f) = vol(G(OF ))
−1(BCs f)(γs),

where vol(G(OF )) is defined in terms of the Haar measure on G(F ) trans-
ferred from the fixed Haar measure on Gs,bΘ(F ), for the inner form Gs,bΘ

of G.
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Proof. By Lemma 4.3.1, Ns(b) consists of the single central semi-simple
element γs ∈ G(F ). By the Base Change Fundamental Lemma proved by
Clozel [5, Theorem 7.1] and Labesse [31], we know that STOb(f) is equal to
the stable orbital integral of BCs f at Ns(b). The latter degenerates to

e(Gγs
) · μ1

μ2
· (BCs f)(γsg)

since γs is central. Here μ1 denotes the Haar measure on G(F ) giving vol-
ume 1 to G(OF ), and μ2 denotes the Haar measure on Gγs

(F ) = G(F )
transferred from Gs,bΘ(F ). The notation μ1

μ2
denotes the ratio between these

two Haar measures on the same group G(F ). Obviously this ratio is equal
to vol(G(OF ))

−1 as in the proposition. Finally, since Gγs
= G is quasi-split,

we have e(Gγs
) = 1.

Lemma 4.3.6. For s divisible by s0, we have

STOb(fμ,s) = e(Jb)TOb(fμ,s).

Proof. Firstly, by Lemma 4.1.4 we have Gs,bΘ = Jb. We need to check that
TOb′(fμ,s) = 0, for any b′ ∈ G(Fs) that is stably σ-conjugate to b but not
σ-conjugate to b in G(Fs). Assume the contrary. Then there exists g ∈ G(Fs)
such that fμ,s(g

−1b′σ(g)) �= 0, from which g−1b′σ(g) ∈ G(Os)μ(πF )G(Os).
Hence κ([b′]) = μ� by Theorem 2.5.1. But this contradicts Lemma 4.3.2.

Corollary 4.3.7. Keep the notation in Proposition 4.2.4. For s � 0, we
have

e(Jb) vol(G(OF ))
−1(BCs fμ,s)(γs)

=
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(Z)−1 |ks|d + o(|ks|d).

Proof. This follows from Proposition 4.2.4, Proposition 4.3.5, and Lemma
4.3.6.

5. Matrix coefficients for the Satake transform

5.1. General definitions and facts

In this subsection we expose general facts concerning the Satake isomor-
phism, for unramified reductive groups over F . The aim is to give an inter-
pretation of the coefficients for the matrix of the inverse Satake isomorphism
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in terms of a q-analogue of Kostant’s partition function. This is well known
by the work of Kato [22] in the case when G is split; we will need the case
of non-split G. Our main reference is [4, §1].

Let G be an unramified reductive group over F . At this moment it is
not necessary to fix a reductive model over OF of G. Inside G we fix a Borel
pair, namely a Borel subgroup B and a maximal torus T ⊂ B, both defined
over F . In particular, T is a minimal Levi, and is split over F un.

We denote by

BRD(B, T ) = (X∗(T ),Φ ⊃ Δ, X∗(T ),Φ
∨ ⊃ Δ∨)

the based root datum associated to (B, T ). This based root datum has an
automorphism θ induced by the Frobenius σ ∈ Gal(F un/F ). Let d = dθ < ∞
be the order of θ.

Fix an F -pinning (B, T,X+) of G. Since the Galois action on BRD(B, T )
factors through the cyclic group generated by θ, we know that θ is a Galois-
equivariant automorphism of BRD(B, T ), and so it lifts uniquely to an F -
automorphism of G preserving (B, T,X+). We denote this F -automorphism
of G still by θ.

Let A be the maximal split sub-torus of T . We have1

X∗(A) = X∗(T )
θ, X∗(A) = [X∗(T )/(1− θ)X∗(T )]free.

Let FΦ ⊂ X∗(A) be the image of Φ ⊂ X∗(T ). The triple

(X∗(A), FΦ, X∗(A))

naturally extends to a (possibly non-reduced) root datum

(X∗(A), FΦ, X∗(A), FΦ
∨),

see for instance [43, Theorem 15.3.8]. Elements of FΦ are by definition θ-
orbits in Φ. For α ∈ Φ, we write [α] for its θ-orbit. The θ-orbits in Δ give
rise to a set of simple roots in FΦ, which we denote by FΔ. As usual, we
denote the structural bijection FΦ

∼−→ FΦ
∨ by [α] 
→ [α]∨.

We let Φ1 ⊂ FΦ be the subset of indivisible elements, namely, those [α] ∈
FΦ such that 1

2 [α] /∈ FΦ. The image of Φ1 under the bijection FΦ
∼−→ FΦ

∨ is
denoted by Φ1,∨. The tuple (X∗(A),Φ1, X∗(A),Φ1,∨) has the structure of a

1In [4, §1.1], it is stated that X∗(A) = X∗(T )/(1 − θ)X∗(T ), which is not true
in general.
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reduced root datum. We note that FΔ is also a set of simple roots in Φ1. We

henceforth also write Δ1 for FΔ. For the sets Φ, FΦ,Φ
1,Φ∨, FΦ

∨,Φ1,∨, we

put a superscript + to denote their respective subsets of positive elements.

As before we denote by W0 the absolute Weyl group of G. We let W 1 ⊂
W0 be the subgroup of elements that commute with θ. Then W 1 is a Coxeter

group (see [4, §1.1]), and we denote by �1 the length function on W 1.

The complex dual group Ĝ of G is a connected reductive group over

C, equipped with a Borel pair (B̂, T̂ ) and an isomorphism BRD(B̂, T̂ )
∼−→

BRD(B, T )∨. In particular, we have canonical identifications X∗(T̂ ) ∼=
X∗(T ), X∗(T̂ ) ∼= X∗(T ), which we think of as equalities. We fix a pin-

ning (B̂, T̂ , X̂+). The action of θ on BRD(B, T ) translates to an action on

BRD(B̂, T̂ ), and the latter lifts to a unique automorphism θ̂ of Ĝ that pre-

serves (B̂, T̂ , X̂+). The L-group LG is defined as the semi-direct product

Ĝ� 〈θ̂〉, where 〈θ̂〉 denotes the cyclic group of order d generated by θ̂.

We denote the group X∗(T̂ )θ̂ = X∗(T )
θ by Y ∗. Let Â be the quotient

torus of T̂ corresponding to Y ∗. Then Â is also identified with the dual torus

of A. Define

P+ := {λ ∈ Y ∗ | 〈λ, α〉 ≥ 0, ∀α ∈ Δ} =
{
λ ∈ Y ∗ | 〈λ, [α]〉 ≥ 0, ∀[α] ∈ Δ1

}
,

R+ := the Z≥0-span of FΦ
∨,+ ⊂ Y ∗.

The C-vector space C[Y ∗]W
1

has a basis {mμ}μ∈P+ , where

mμ :=
∑

λ∈W 1μ

eλ.(5.1.1)

Here W 1μ denotes the orbit of μ under W 1.

Definition 5.1.1. Let n̂ be the Lie algebra of the unipotent radical of B̂,

equipped with the adjoint action by LG (see [4, §1.3.2]). For each μ ∈ X∗(T̂ ),

let n̂(μ) denote the μ-weight space in n̂ for the action of T̂ . Let w ∈ W 1 and

ε ∈ {±1}. We define a C[X∗(T̂ )]-linear operator Eεw on n̂ ⊗C C[X∗(T̂ )] by

letting Eεw act on n̂(μ) via the scalar eεwμ ∈ C[X∗(T̂ )], for each μ ∈ X∗(T̂ ).

We define

D(Eεw,q) := det(1− q · θ̂ · Eεw, n̂) ∈ C[X∗(T̂ )][q],

P (Eεw,q) := D(Eεw,q)−1 ∈ Frac

(
C[X∗(T̂ )][q]

)
.
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Definition 5.1.2. Let [α] ∈ Φ1 ⊂ FΦ. We say that [α] is of type I, if
2[α] /∈ FΦ. Otherwise we say that [α] is of type II. For [α] ∈ Φ1, we define

b([α]) :=

{
#[α], if [α] is of type I,
1
2#[α] if [α] is of type II,

where #[α] denotes the size of [α] viewed as a θ-orbit in Φ. Then b([α]) ∈
Z≥1, see [4, §1.1].
Definition 5.1.3. For any element β = [α]∨ ∈ Φ1,∨ (with [α] ∈ Φ1), we
define b(β) to be b([α]), and we say that β is of type I or II if [α] is of type I
or II. For any β′ ∈ FΦ

∨, we define b(β′) to be b(β), where β is the element
in Φ1,∨ that is homothetic to β′.

Definition 5.1.4. For β ∈ Φ1,∨, we define dβ(q) ∈ C[Y ∗][q] as follows:

dβ(q) :=

{
1− qb(β)eβ, if β is of type I,

(1− q2b(β)eβ/2)(1 + qb(β)eβ/2), if β is of type II.

Here, when β is of type II, β/2 is always an element of FΦ
∨ and in particular

an element of Y ∗, see [4, §1.1] or [30, §1.3].
Lemma 5.1.5. For ε ∈ {±1}, we have

D(Eε,q) =
∏

εβ∈Φ1,∨,+

dβ(q), P (Eε,q) =
∏

εβ∈Φ1,∨,+

dβ(q)
−1.

Proof. The case ε = 1 is [4, Lemma 1.3.7]. The case ε = −1 is proved in the
same way, by switching the roles of positive elements and negative elements
in Φ1,∨.

Definition 5.1.6. For each λ ∈ Y ∗, we define P(λ,q) ∈ C[q] as follows. In
view of Definition 5.1.4 and Lemma 5.1.5, we have an expansion

P (E−1,q) =
∑

λ∈R+

P(λ,q)e−λ,(5.1.2)

with each P(λ,q) ∈ C[q]. We set P(λ,q) := 0 for all λ ∈ Y ∗ −R+.

Corollary 5.1.7. For λ ∈ R+ − {0}, the constant term P(λ, 0) of P(λ,q)
is 0.

Proof. This immediately follows from Lemma 5.1.5 and Definition 5.1.6.
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Definition 5.1.8. Let ρ∨ ∈ X∗(T ) ⊗Z
1
2Z be the half sum of elements in

Φ∨,+, and let ρ ∈ X∗(T )⊗Z
1
2Z be the half sum of elements in Φ+. Then ρ∨

in fact lies in Y ∗ ⊗Z
1
2Z, and is equal to the half sum of elements in Φ1,∨,+,

see [4, §1.2]. For w ∈ W 1 and μ ∈ Y ∗, we let

w • μ := w(μ+ ρ∨)− ρ∨ ∈ Y ∗.

We also write w•(·) for the induced action of w on C[Y ∗]. Define the operator

J : C[Y ∗] −→ C[Y ∗], f 
−→
∑

w∈W 1

(−1)�1(w)w • f.

Definition 5.1.9. For λ ∈ P+ and for a formal variable q, we define

τλ(q) := J(eλ)P (E−1,q) =
∑

μ∈R+

J(eλ)P(μ,q)e−μ ∈ C[Y ∗][[q]].(5.1.3)

Definition 5.1.10. For any λ ∈ P+ ⊂ Y ∗ = X∗(T̂ )θ̂, we define Vλ to be

the irreducible representation of Ĝ of highest weight λ.

Theorem 5.1.11 (Weyl character formula, [4, Theorem 1.4.1]). Let λ ∈ P+.

Then τλ(1) ∈ C[Y ∗]W
1

. The character of Vλ, as a function on T̂ , descends

to the function on Â given by τλ(1).

Definition 5.1.12. For any λ ∈ P+, we simply write τλ for the element

τλ(1) ∈ C[Y ∗]W
1

.

5.2. Matrix coefficients

We now fix a reductive model of G over OF as in §2.1. As before we denote

by H1 the spherical Hecke algebra H(G(F )//G(OF )). For each μ ∈ X∗(A),

we let fμ ∈ H1 be the characteristic function of G(OF )μ(πF )G(OF ). Then

the C-vector space H1 has a basis given by fμ, for μ ∈ P+ ⊂ X∗(A).

Recall that the Satake isomorphism is a canonical C-algebra isomor-

phism

Sat : H1
∼−→ C[Y ∗]W

1

,

see for instance [4, §1.5]. In the following, we simply write fμ for Sat(fμ),

which shall cause no confusion. At this point we have introduced three bases

of the C-vector space C[Y ∗]W
1

, namely {mμ} , {τμ} , {fμ}, all indexed by
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μ ∈ P+ (see (5.1.1) and Definition 5.1.12 for mμ and τμ). We denote some
of the transition matrices between these bases as follows:

mμ =
∑

λ

nλ
μτλ, τμ =

∑

λ

tλμfλ, mμ =
∑

λ

M
λ
μfλ.

In the following we deduce a formula for Mλ
μ from known formulas for nλ

μ

and tλμ.

Definition 5.2.1. As in [4, §1.7], we have a partition of Y ∗ into the following
subsets:

Y ∗
0 :=

{
λ ∈ Y ∗ | ∃w ∈ W 1, w is a reflection, w • λ = λ

}
,

Y ∗
w :=

{
λ ∈ Y ∗ | w • λ ∈ P+

}
, w ∈ W 1.

For each x ∈ W 1�{0} we let ex : Y ∗ → {0, 1} be the characteristic function
of Y ∗

x .

Theorem 5.2.2 (van Leeuwen’s formula, [4, Lemma 1.7.4]). For μ, λ ∈ P+,
we have

nλ
μ =

∑

w′∈W 1/W 1
µ

∑

w∈W 1

(−1)�1(w)ew(w
′μ)δ(w • (w′μ), λ).

Here δ(·, ·) is the Kronecker delta, and W 1
μ is the subgroup of W 1 generated

by the reflections attached to those [α] ∈ Δ1 such that 〈μ, [α]〉 = 0.

Definition 5.2.3. For λ, λ′ ∈ P+, we define

Kλ′,λ(q) :=
∑

w∈W 1

(−1)�1(w) P(w • λ′ − λ,q).(5.2.1)

Remark 5.2.4. The notation Kλ′,λ in Definition 5.2.3 is compatible with [22]
when G is split.

Theorem 5.2.5 (Kato–Lusztig formula, [4, Theorem 1.9.1]). For μ, λ ∈ P+,
we have

tλμ = Kμ,λ(|kF |−1) |kF |−〈λ,ρ〉 .

Corollary 5.2.6. Write q for |kF |. For μ, λ ∈ P+, we have

M
λ
μ = q−〈λ,ρ〉

∑

w′∈W 1/W 1
µ

∑

w∈W 1

(−1)�1(w)
(
1− e0(w

′μ)
)
P
(
w • (w′μ)− λ, q−1

)
.
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Proof. We compute

M
λ
μ =

∑

λ′∈P+

nλ′

μ tλλ′

=
∑

λ′∈P+

w′∈W 1/W 1
µ

w′′∈W 1

(−1)�1(w
′′)ew′′(w′μ)δ(w′′ • (w′μ), λ′)Kλ′,λ(q

−1)q−〈λ,ρ〉

=
∑

w′∈W 1/W 1
µ

w′′∈W 1

w∈W 1

(−1)�1(w
′′)ew′′(w′μ)q−〈λ,ρ〉(−1)�1(w) P

(
(ww′′) • (w′μ)− λ, q−1

)
.

where the second equality is by Theorems 5.2.2, 5.2.5, and the third equality
is by (5.2.1). Under the substitution ww′′ 
→ w, the above is equal to

q−〈λ,ρ〉
∑

w′∈W 1/W 1
µ

∑

w′′∈W 1

∑

w∈W 1

(−1)�1(w)ew′′(w′μ)P
(
w • (w′μ)− λ, q−1

)
.

Since
∑

w′′∈W 1 ew′′(·) = 1− e0(·), the proof is finished.

Motivated from Corollary 5.2.6, we make the following definition.

Definition 5.2.7. For μ, λ ∈ P+ and a formal variable q−1/2, we define

M
λ
μ(q

−1) :=q−〈λ,ρ〉
∑

w′∈W 1/W 1
µ

∑

w∈W 1

(−1)�1(w)
(
1− e0(w

′μ)
)
·

· P
(
w • (w′μ)− λ,q−1

)
∈ C[Y ∗][q−1/2].

As a special case, we define

M
0
μ(q

−1) :=
∑

w′∈W 1/W 1
µ

∑

w∈W 1

(−1)�1(w)
(
1− e0(w

′μ)
)
·(5.2.2)

· P
(
w • (w′μ),q−1

)
∈ C[Y ∗][q−1].

Lemma 5.2.8. Let μ, λ ∈ P+. Let ν ∈ X∗(A ∩ ZG). Then Mλ
μ(q

−1) =

M
λ−ν
μ−ν(q

−1).

Proof. In fact, we have 〈λ, ρ〉 = 〈λ−ν, ρ〉, W 1
μ = W 1

μ−ν , e0(w
′μ) = e0(w

′(μ−
ν)), and w • (w′μ)− λ = w • (w′(μ− ν))− (λ− ν), for all w′ ∈ W 1/W 1

μ and
w ∈ W 1.
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5.3. Interpretation in terms of Kostant partitions

In certain cases the polynomial P(λ,q) ∈ C[q] in Definition 5.1.6 has a

concrete description as a q-analogue of Kostant’s partition function, which

we now explain. Let P be the set of all functions FΦ
∨,+ → Z≥0. We shall

typically denote an element of P bym, and denote its value at any β ∈ FΦ
∨,+

by m(β). For m ∈ P, we define

Σ(m) :=
∑

β∈FΦ∨,+

m(β)β ∈ R+ ⊂ Y ∗,

|m| :=
∑

β∈FΦ∨,+

m(β)b(β) ∈ Z≥0.

Here b(β) is as in Definition 5.1.3.

For all λ ∈ Y ∗, we define P(λ) to be the set ofm ∈ P such that Σ(m) = λ.

Thus P(λ) is empty unless λ ∈ R+. Elements of P(λ) are called Kostant

partitions of λ. For any L ∈ Z≥0, we define P(λ)L to be the set of m ∈ P(λ)

such that |m| = L. For λ ∈ Y ∗, we define

PKos(λ,q) :=
∑

m∈P(λ)

q|m| ∈ C[q].

This is known in the literature as the q-analogue of Kostant’s partition

function, at least when G is split.

Proposition 5.3.1. The following statements hold.

1. Assume FΦ = Φ1. For all λ ∈ Y ∗ we have P(λ,q) = PKos(λ,q).

2. In general, to each m ∈ P, we can attach a polynomial Q(m,q) ∈ C[q],

with the following properties:

(a) For all 0 < x < 1, we have |Q(m,x)| ≤ 1.

(b) For any λ ∈ Y ∗ we have

P(λ,q) =
∑

m∈P(λ)

Q(m,q)q|m|.

Proof. Part (1) immediately follows from Definitions 5.1.4, 5.1.6. For part

(2), we note that if β ∈ Φ1,∨ is of type II, then β′ := β/2 is an element of
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FΦ
∨, and we have

dβ(q)
−1 =

[
∞∑

i=0

(q2b(β)eβ/2)i

][
∞∑

i=0

(−qb(β)eβ/2)i

]

=

[
∞∑

i=0

(q2b(β′)eβ
′

)i

][
∞∑

i=0

(−qb(β
′)eβ

′

)i

]

=

∞∑

n=0

Rβ,n(q)(q
b(β′)eβ

′

)n,

with

Rβ,n(q) =

n∑

i=0

(−1)n−iqib(β′) ∈ C[q], ∀n ∈ Z≥0.

We observe that for all 0 < x < 1 we have

|Rβ,n(x)| ≤ 1.(5.3.1)

Now for each β′ ∈ FΦ
∨ and each n ≥ 0, define

Qβ′,n(q) :=

{
R2β′,n(q), if 2β′ ∈ Φ1,∨,

1, if 2β′ /∈ Φ1,∨.

We take

Q(m,q) :=
∏

β′∈FΦ∨

Qβ′,m(β′)(q).

Then condition (a) follows from the construction and the observation (5.3.1).
Condition (b) follows from Lemma 5.1.5 and Definition 5.1.6.

5.4. Computation with the base change

We keep the setting of §4.3 and §5.1. We assume that s0 is divisible by the
order d of θ, and consider s ∈ s0N.

The Satake isomorphism for Hs is

Sat : Hs
∼−→ C[X∗(T̂ )]W0 .

For each μ ∈ X∗(T̂ )+, let τ ′μ be the character of the highest weight repre-

sentation Vμ of Ĝ of highest weight μ. Then

{
τ ′μ
}
μ∈X∗(T̂ )+
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is a basis of C[X∗(T̂ )]W0 . This basis is the absolute analogue of the basis

{τμ}μ∈P+ of C[Y ∗]W
1

(i.e., they are the same if θ = 1).

Recall from §2.6 and §5.1 that we have

Y ∗ = X∗(A) = X∗(T̂ )θ̂, X∗(Ŝ) = X∗(T̂ )θ̂,free.

By Lemma 1.6.1 (3), the composition

Y ∗ ⊗Q → X∗(T̂ )⊗Q → X∗(Ŝ)⊗Q

is invertible. We denote its inverse map by λ 
→ λ(1). For all λ ∈ X∗(Ŝ), we
define λ(s) to be sλ(1), which lies in Y ∗ since s is divisible by d. Thus we

have a map

X∗(Ŝ) −→ Y ∗, λ 
−→ λ(s),(5.4.1)

which is an isomorphism after ⊗Q. In the case θ = 1, this is none other

than the multiplication-by-s map from Y ∗ to itself. In general, we denote by

X∗(Ŝ)+ ⊂ X∗(Ŝ) the natural image of X∗(T̂ )+. Then (5.4.1) maps X∗(Ŝ)+
into P+ ⊂ Y ∗. Moreover, the action of W 1 on X∗(T̂ ) induces an action of

W 1 on X∗(Ŝ), and the map (5.4.1) is W 1-equivariant.

Proposition 5.4.1. Under the Satake isomorphisms, the base change map

BCs : Hs → H1 becomes

BCs : C[X
∗(T̂ )]W0 −→ C[Y ∗]W

1

∀μ ∈ X∗(T̂ )+, τ ′μ 
−→
∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel ·mλ(s) .

Proof. To simplify notation we write X∗ for X∗(T̂ ). To compute BCs as a

map C[X∗]W0 → C[Y ∗]W
1

, it suffices to compose the map with the natural

inclusion C[Y ∗]W
1 ⊂ C[X∗]. For each μ ∈ X∗,+, let

m′
μ :=

∑

λ∈W0(μ)

eλ.

Then
{
m′

μ

}
μ∈X∗,+ is a basis of C[X∗]W0 . This basis is just the absolute

analogue of the basis {mμ}μ∈P+ of C[Y ∗]W
1

. It easily follows from definitions

(see for example [2]) that BCs as a map C[X∗]W0 → C[X∗] sends each m′
μ
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to ∑

λ∈W0(μ)

eλ+θ̂λ+···+θ̂s−1λ.

It follows that for all μ ∈ X∗,+, we have

BCs τ
′
μ =
∑

λ∈X∗

dimVμ(λ)e
λ+θ̂λ+···+θ̂s−1λ.(5.4.2)

Here the summation is over X∗ and not over X∗,+. For each λ ∈ X∗, the

element

λ+ θ̂λ+ · · ·+ θ̂s−1λ ∈ X∗

lies in Y ∗ ⊂ X∗, and its image under the natural map

Y ∗ = (X∗)θ̂ −→ X∗(Ŝ) = (X∗)θ̂,free

is equal to the image of sλ ∈ X∗ under the natural map X∗ → X∗(Ŝ). In
other words, we have

λ+ θ̂λ+ · · ·+ θ̂s−1λ = (λ|Ŝ)
(s),

where λ|Ŝ ∈ X∗(Ŝ) denotes the image of λ under X∗ → X∗(Ŝ). Hence by

(5.4.2) we have

BCs τ
′
μ =
∑

λ∈X∗

dimVμ(λ)e
(λ|Ŝ)

(s)

,

which is easily seen to be equal to

∑

λ∈X∗(Ŝ)

dimVμ(λ)rel e
λ(s)

=
∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel mλ(s) .

Since b is basic and s0-decent, and since s is divisible by s0, by Lemma

4.3.1 the cocharacter sνb : Gm → G is a cocharacter of ZG defined over F .

In particular we may view sνb ∈ X∗(A) = Y ∗.

Corollary 5.4.2. For μ ∈ X∗(T̂ )+, we have

(BCs τ
′
μ)(γs) =

∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel M
0
λ(s)−sνb

(|kF |−1).
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Proof. By Proposition 5.4.1 we have

(BCs τ
′
μ)(γs) =

∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel mλ(s)(γs).

Recall from Lemma 4.3.1 that sνb is a central cocharacter of G defined
over F . By Corollary 5.2.6 and Definition 5.2.7, each mλ(s)(γs) is equal to
M

sνb

λ(s)(|kF |−1), which by Lemma 5.2.8 is equal to M0
λ(s)−sνb

(|kF |−1).

5.5. Some inductive relations

We keep the setting and notation of §2.6 and §5.1. We assume in addition
that G is adjoint, and that G is F -simple. To emphasize the group G we
write M0

λ,G(q
−1) for the polynomial M0

λ(q
−1) in Definition 5.2.7. In the

following we discuss how to reduce the understanding of these polynomials
to the case where G is absolutely simple.

We write DynkG for the Dynkin diagram of (G,B, T ). By our assumption
that G is adjoint and F -simple, the action of 〈θ〉 on DynkG is transitive on
the connected components. Let d0 be the number of connected components
of DynkG. Fix one connected component Dynk+G of DynkG once and for all.
The connected Dynkin diagram Dynk+G, together with the automorphism
θd0 , determines an unramified, adjoint, absolutely simple group G′ over F ,
equipped with an F -pinning (B′, T ′,X′

+). We apply the constructions in §5.1
to G′. We shall add an apostrophe in the notation when we denote an object
associated to G′, e.g., A′, (Y ∗)′.

We have natural identifications

(X∗(A), FΦ, X∗(A), FΦ
∨) ∼= (X∗(A′), (FΦ)

′, X∗(A
′), (FΦ

∨)′),

Φ1 ∼= (Φ1)′, Φ1,∨ ∼= (Φ1,∨)′,

Y ∗ ∼= (Y ∗)′, W 1 ∼= (W 1)′.

To be more precise, all the above identifications are derived from an
identification

X∗(T ) ∼=
d0−1⊕

i=0

X∗(T
′),(5.5.1)

under which the automorphism θ on the left hand side translates to the
following automorphism on the right hand side:

(χ0, χ1, · · · , χd0−1) 
−→ (θ′χd0−1, χ0, χ1, · · · , χd0−2).
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In particular, the identification (Y ∗)′ ∼= Y ∗, when composed with Y ∗ =
X∗(A) ⊂ X∗(T ) and with (5.5.1), is the diagonal map

(Y ∗)′ −→
d0−1⊕

i=0

X∗(T
′), χ′ 
−→ (χ′, · · · , χ′).(5.5.2)

Proposition 5.5.1. For λ ∈ Y ∗ and λ′ ∈ (Y ∗)′ that correspond to each
other, we have

M
0
λ,G(q

−1) = M
0
λ′,G′(q−d0),

as an element of C[Y ∗][q−1] ∼= C[(Y ∗)′][q−1].

Proof. When β ∈ Φ1,∨ corresponds to β′ ∈ (Φ1,∨)′, we know that β is of
the same type (I or II) as β′, and we have b(β) = d0b

′(β′). It follows from
Lemma 5.1.5 and Definition 5.1.6 that P(λ,q) = P ′(λ′,qd0) for all λ ∈ Y ∗

and λ′ ∈ (Y ∗)′ that correspond to each other. The proposition then follows
from Definition 5.2.7.

Next we deduce a relation between the construction of λb in §2.6 for G
and for G′. Denote by Ŝ ′ the counterpart of Ŝ for G′. Since G (resp. G′) is
adjoint, we know that X∗(T̂ ) (resp. X∗(T̂ ′)) has a Z-basis consisting of the
fundamental weights. It then easily follows from Lemma 1.6.1 (2) that we
have

X∗(T̂ )θ̂ = X∗(T̂ )θ̂,free = X∗(Ŝ),
X∗(T̂ ′)θ̂′ = X∗(T̂ ′)θ̂′,free = X∗(Ŝ ′),

and we have natural identifications

X∗(Ŝ) ∼= X∗(Ŝ ′), Q̂θ̂
∼= Q̂′

θ̂′
, π1(G)σ ∼= π1(G

′)σ.

Fix an arbitrary μ ∈ X∗(T ). Choose μ′ ∈ X∗(T
′), such that the image

of μ′ in X∗(Ŝ ′) corresponds to the image of μ in X∗(Ŝ). Such μ′ always
exists because the map X∗(T

′) = X∗(T̂ ′) → X∗(Ŝ ′) is surjective. It then
follows that the image μ� ∈ π1(G)σ of μ and the image (μ′)� ∈ π1(G

′)σ of μ′

correspond to each other. Let [b] (resp. [b′]) be the unique basic element of
B(G,μ) (resp. B(G′, μ′)).

Proposition 5.5.2. In the above setting, the elements λb ∈ X∗(Ŝ) and λb′ ∈
X∗(Ŝ ′) correspond to each other, under the identification X∗(Ŝ) ∼= X∗(Ŝ ′).

Proof. This immediately follows from the uniqueness in Lemma 2.6.3.
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6. The main result

6.1. The number of irreducible components in terms of

combinatorial data

We keep the setting of §2.6 and §4.1. Thus we fix a reductive group scheme
G over OF , an element μ ∈ X∗(T )

+, and a basic class [b] ∈ B(G,μ). In this
section, we relate the number of irreducible components N (μ, b) to some

combinatorial data.

As in §4.1, we fix s0 ∈ N such that b is s0-decent. As in §5.4 we assume
s0 is divisible by the order d of θ, and various natural numbers s ∈ N that

are divisible by s0. In particular, G will always be split over the extension
Fs of F . We shall write

qs := |ks| = |kF |s .

By Corollary 4.3.7, we have

e(Jb) vol(G(OF ))
−1(BCs fμ,s)(γs)(6.1.1)

=
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(Z)−1qdimXµ(b)
s + o(qdimXµ(b)

s ).

By the dimension formula in Theorem 2.5.3, we have

dimXμ(b) = 〈μ, ρ〉 − 1

2
defG(b)(6.1.2)

(since ν̄b is central). In particular, from (6.1.1) we get

(BCs fμ,s)(γs) = O(q
〈μ,ρ〉− 1

2
defG(b)

s ).(6.1.3)

Proposition 6.1.1. With the notation in §5.4, we have

BCs(τ
′
μ)(γs) = q−〈μ,ρ〉

s (BCs fμ,s)(γs) + o(q
− 1

2
defG(b)

s ).

Proof. For λ running over X∗(T̂ )+, the Satake transforms of fλ,s, which we

still denote by fλ,s, form a basis of C[X∗(T̂ )]W0 . By the split case of Theorem

5.2.5, we have

τ ′μ =
∑

λ∈X∗(T̂ )+

K ′
μ,λ(q

−1
s )q−〈λ,ρ〉

s fλ,s,
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where K ′
μ,λ(·) is the absolute analogue of (5.2.1), i.e., it is defined by (5.2.1)

with θ replaced by 1. By Definition 5.1.6, Corollary 5.1.7, and (5.2.1), we
have

K ′
μ,λ(q

−1
s ) =

⎧
⎪⎨
⎪⎩

1 +O(q−1
s ), λ = μ,

O(q−1
s ), λ < μ,

0, otherwise.

Therefore

τ ′μ = q−〈μ,ρ〉
s fμ,s +

∑

λ∈X∗(T̂ )+, λ≤μ

O(q−1−〈λ,ρ〉
s )fλ,s(6.1.4)

Note that (6.1.3) is valid with μ replaced by each λ ∈ X∗(T̂ )+, λ ≤ μ,
because we still have [b] ∈ B(G,λ). The proposition then follows from (6.1.4)
and the above-mentioned bounds provided by (6.1.3) with μ replaced by each
λ ≤ μ.

Corollary 6.1.2. We have

BCs(τ
′
μ)(γs) = e(Jb)

∑

Z∈Jb(F )\Σtop(X)

vol(Z)−1q
− 1

2
defG(b)

s + o(q
− 1

2
defG(b)

s ).

(6.1.5)

Proof. This follows by combining (6.1.1), (6.1.2), and Proposition 6.1.1.

Theorem 6.1.3. Assume the Haar measures are normalized such that
G(OF ) has volume 1. There exists a rational function Sμ,b(t) ∈ Q(t) that is
independent of the local field F (in the same sense as Corollary 3.2.4), such
that

(6.1.6) Sμ,b(0) = N (μ, b),

Sμ,b(q1) = e(Jb)
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(Z)−1,(6.1.7)

and such that

Sμ,b(q1)q
− 1

2
defG(b)

s =
∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel M
0
λ(s)−sνb

(q−1
1 ) + o(q

− 1

2
defG(b)

s ).

(6.1.8)
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In particular

Sμ,b(q1) = lim
s→∞

q
1

2
defG(b)

s

∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel M
0
λ(s)−sνb

(q−1
1 ).(6.1.9)

Proof. Fix a set of representatives {Zi | 1 ≤ i ≤ N (μ, b)} for the Jb(F )-

orbits in Σtop(Xμ(b)). For each Zi, let RZi
(t) ∈ Q(t) be the rational function

associated to Zi as in Corollary 3.2.4. Let

Sμ,b(t) := e(Jb)

N (μ,b)∑

i=1

RZi
(t)−1.

Then Sμ,b(t) belongs to Q(t) and it satisfies (6.1.6), (6.1.7). It follows from

Corollary 3.2.4 and (6.1.5) that

BCs(τ
′
μ)(γs) = Sμ,b(q1)q

− 1

2
defG(b)

s + o(q
− 1

2
defG(b)

s ).

Comparing this with Corollary 5.4.2, we obtain (6.1.8).

The upshot of this theorem is that the right hand side of (6.1.9) is

purely combinatorial and can be computed (at least in certain instances)

using Kostant’s partition function PKos(λ,q). Moreover the fact that Sμ,b(t)

is a rational function independent of the local field F , means that it is in

principle determined by its values Sμ,b(q1) for infinitely many choices of q1.

Once Sμ,b(t) is determined, the number N (μ, b) can be read off from (6.1.6).

6.2. The case of unramified elements

In this subsection we apply Theorem 6.1.3 to prove Conjecture 2.6.5 for

unramified and basic b. This is a new proof of the result [45, Theorem

4.4.14].

We keep the setting of §6.1. Assume in addition that b is unramified, in

the sense of [45, §4.2]. Then we have Jb ∼= G, and hence defG(b) = 0, e(Jb) =

1. In view of Theorem 6.1.3, we would like to compute

lim
s→∞

∑

λ∈X∗(Ŝ)+

dimVμ(λ)rel M
0
λ(s)−sνb

(q−1
1 ).
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Proposition 6.2.1. Let λ ∈ X∗(Ŝ)+ and s ∈ s0N. We have

M
0
λ(s)−sνb

(q−1
1 ) =

{
1, if λ = λb,

O(q−as
1 ) for some a ∈ R>0, otherwise.

Proof. Firstly, by [45, Lemma 4.2.3], λb ∈ X∗(Ŝ) is the unique element such

that λ
(s)
b = sνb for one (and hence all) s ∈ s0N. (In particular, λb ∈ X∗(Ŝ)+

as νb is central.) Thus for λ ∈ X∗(Ŝ)+, we have λ = λb if and only if

λ(s) − sνb = 0 for one (and hence all) s ∈ s0N.

Let w ∈ W 1. Since wρ∨ − ρ∨ is not in R+ for w �= 1, it follows from

Definition 5.1.6 and Definition 5.2.7 that M0
0(q

−1) = 1 ∈ C[q−1]. This proves

the case λ(s) = sνb.

Now assume λ(s) �= sνb (for all s). Fix w,w′ ∈ W 1. We write μs :=

λ(s) − sνb and ψs := w • (w′μs). By the formula (5.2.2), it suffices to show

that

∃a > 0, P(ψs, q
−1
1 ) = O(q−as

1 ).(6.2.1)

If ψs /∈ R+ for some value of s, then by definition P(ψs, q
−1) = 0 ∈

C[q−1]. Hence we may ignore these values of s. On the other hand, if ψs ∈ R+

for some s ∈ s0N, then it is easy to see that ψns ∈ R+ for all n ∈ N. We

thus assume that ψs ∈ R+ for all sufficiently divisible s. Then for such s we

have

ww′μs ∈ spanQ(FΦ
∨)− {0} ⊂ Y ∗ ⊗Q.

Hence there exists a non-zero Q-linear functional f0 on spanQ(FΦ
∨), and a

constant c0 ∈ Q− {0}, such that

f0(ww
′μs) = s · c0, ∀s � 0.(6.2.2)

We define

A :=
∣∣f0(wρ∨ − ρ∨)

∣∣ ∈ R≥0, B := max
β∈FΦ∨,+

|f0(β)|+ 1 ∈ R>0.

Then for s � 0 we have

min
m∈P(ψs)

|m| ≥ B−1 · |f0(ψs)| ≥ B−1(
∣∣f0(ww′μs)

∣∣−A) = B−1(s |c0| −A),
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where the last equality follows from (6.2.2). Since B−1 and c0 are both non-
zero, there is a constant N0 > 0 such that

min
m∈P(ψs)

|m| > N0 · s, ∀s � 0.(6.2.3)

Combining (6.2.3) and Proposition 5.3.1 (2), we have

∣∣P(ψs, q
−1
1 )
∣∣ ≤ #P(ψs) · q−N0s

1 .(6.2.4)

On the other hand, note that for any Q-linear functional f on spanQ(FΦ
∨),

the function s 
→ f(ψs) is an affine function in s. Hence there exists a
constant L > 0 such that

∀s � 0, ∀m ∈ P(ψs), |m| ≤ Ls.

It follows that

#P(ψs) =

Ls∑

l=1

#P(ψs)l ≤
Ls∑

l=1

l#(FΦ∨,+) ≤ (Ls)M(6.2.5)

for some constant M > 0. The desired estimate (6.2.1) then follows from
(6.2.4) and (6.2.5).

Theorem 6.2.2. Keep the setting of §6.1. Assume in addition that b is
unramified. Then N (μ, b) = M (μ, b). Moreover, for any Z ∈ Σtop(Xμ(b)),
the group StabZ(Jb(F )) is a hyperspecial subgroup of Jb(F ) = G(F ).

Proof. Let Sμ,b(t) ∈ Z(t) be as in Theorem 6.1.3. By (6.1.9) and Proposition
6.2.1, we have

Sμ,b(q1) = dimVμ(λ)rel,

where λ is the unique element of X∗(Ŝ)+ such that λ(s0) = s0νb. By varying
the local field F , we see that Sμ,b(t) is the constant dimVμ(λb)rel = M (μ, b).
In particular

N (μ, b) = Sμ,b(0) = M (μ, b).

For the second part, by our normalization we have vol(Z) ≤ 1 for each
element Z ∈ Σtop(Xμ(b)), where equality holds if and only if StabZ(Jb(F ))
is hyperspecial. On the other hand, combining (6.1.6) and (6.1.7) and the
fact that Sμ,b(t) is constant, we have

N (μ, b) =
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(Z)−1.
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It follows that each vol(Z) must be 1, and that StabZ(Jb(F )) is hyperspecial.

6.3. The general case

We now prove the general case of Conjecture 2.6.5. By Proposition 2.6.10,

there is no loss of generality in assuming that G is adjoint and F -simple,

and that [b] ∈ B(G) is basic. In particular ν̄b = 0. In the following, we fix

such G and [b], and freely use the notation from §6.1. Note that we only fix

[b] and do not fix a prescribed μ ∈ X∗(T )
+ such that [b] ∈ B(G,μ).

As in Definition 2.6.4, we have λb ∈ X∗(Ŝ). Denote by λ+
b the unique ele-

ment in the W 1-orbit of λb that lies in X∗(Ŝ)+. We define (cf. the discussion

above Lemma 2.6.3)

Λ(b) :=
{
λ ∈ X∗(Ŝ)+ | λ �= λ+

b , λ− λb ∈ Q̂θ̂

}
.

The following lemma is the motivation for introducing Λ(b).

Lemma 6.3.1. Let λ ∈ X∗(Ŝ)+ and let μ ∈ X∗(T )
+. Assume that [b] ∈

B(G,μ). If Vμ(λ)rel �= 0, then λ ∈ Λ(b) �
{
λ+
b

}
.

Proof. Assume that Vμ(λ)rel �= 0. Then there exists λ′ ∈ X∗(T̂ ) lifting λ,

such that Vμ(λ
′) �= 0. It follows that μ and λ′ have the same image in π1(G),

and hence the same image in π1(G)σ. Let λ
′′ be the image of λ′ in X∗(T̂ )θ̂.

Then the image of λ′′ in π1(G)σ is equal to that of μ, namely κ(b). Hence

λ′′ and λ̃b have the same image in π1(G)σ. By the exact sequence

Q̂θ̂ → X∗(T̂ )θ̂ → π1(G)σ

we know that λ̃b−λ′′ lies in Q̂θ̂. Now recall from the discussion above Lemma

2.6.3 that Q̂θ̂ injects into both X∗(T̂ )θ̂ and X∗(Ŝ). Hence λb − λ belongs to

Q̂θ̂ viewed as a subgroup of X∗(Ŝ). This shows that λ ∈ Λ(b) �
{
λ+
b

}
.

Since G is F -simple, all the simple factors of GF have the same Dynkin

type. We shall call this type the type of G. The following proposition is the

key result towards the proof of Conjecture 2.6.7.

Proposition 6.3.2 (Key estimate). Assume G is adjoint, F -simple, and

not of type A. Let [b] ∈ B(G) be a basic class. Assume [b] is not unramified.
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1. Assume G is not a Weil restriction of the split adjoint E6. For all

λ ∈ Λ(b), there exists a > 0, such that

M
0
λ(s)(q

−1
1 ) = O(q

−s( 1

2
defG(b)+a)

1 ).(6.3.1)

Moreover, there exists μ1 ∈ X∗(T̂ )+ that is minuscule, such that [b] ∈
B(G,μ1) and M (μ1, b) := dimVμ1

(λb)rel = 1.

2. Assume G is a Weil restriction of the split adjoint E6 (necessarily

along an unramified extension of F ). Then there is an element λbad ∈
Λ(b) with the following properties:

• For all λ ∈ Λ(b)− {λbad}, there exists a > 0, such that

M
0
λ(s)(q

−1
1 ) = O(q

−s( 1

2
defG(b)+a)

1 ).(6.3.2)

• There exist μ1, μ2 ∈ X∗(T̂ )+, such that μ1 is minuscule and μ2 is

a sum of dominant minuscule elements, such that b ∈ B(G,μ1)∩
B(G,μ2), and such that

M (μ1, b) := dimVμ1
(λb)rel = 1,

and

Vμ1
(λbad)rel = 0, Vμ2

(λbad)rel �= 0.

The proof of Proposition 6.3.2 will occupy §7, §8, §9 below. We now

admit this proposition.

Theorem 6.3.3. Conjecture 2.6.7 holds for G adjoint, F -simple, not of

type A, and for [b] ∈ B(G) basic.

Remark 6.3.4. Here is the logical dependence of our proof of Theorem 6.3.3

on the previous work of other authors:

• If [b] is unramified, then our proof is logically independent of the ap-

proaches in [45], [16], or [36].

• If [b] is not unramified, and if we are in the situation of Proposition

6.3.2 (1), then our proof depends on results from [16].

• If [b] is not unramified, and if we are in the situation of Proposition

6.3.2 (2), then our proof depends on Nie’s result Theorem 2.6.8 (3)

applied to G and μ1, μ2.
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Proof of Theorem 6.3.3. If [b] is unramified, then the present theorem is just
Theorem 6.2.2 (which is also valid for type A). From now on we assume [b]
is not unramified. To simplify notation, we write def for defG(b).

Assume we are in the situation of Proposition 6.3.2 (1). By Theorem
6.1.3, Lemma 6.3.1, and Proposition 6.3.2 (1), for all μ ∈ X∗(T )

+ such that
[b] ∈ B(G,μ), we have

Sμ,b(q1) = M (μ, b) lim
s→∞

q
1

2
def

s M
0
λ
+,(s)
b

(q−1
1 ).(6.3.3)

In particular, we have

Sμ,b(q1) =
M (μ, b)

M (μ1, b)
Sμ1,b(q1) = M (μ, b)Sμ1,b(q1).

By varying the local field F (whilst preserving the affine root system of G)
we conclude that

Sμ,b(t) = M (μ, b)Sμ1,b(t) ∈ Q(t).(6.3.4)

Evaluating at 0, we have

N (μ, b) = Sμ,b(0) = M (μ, b)Sμ1,b(0) = M (μ, b)N (μ1, b).

On the other hand, as μ1 is minuscule, it is shown in [16, Theorem 1.4]
that N (μ1, b) ≤ M (μ1, b). Since N (μ1, b) is a positive natural number and
M (μ1, b) = 1, we have N (μ1, b) = 1. Thus N (μ, b) = M (μ, b), as desired.

Now assume we are in the situation of Proposition 6.3.2 (2). For each
μ ∈ X∗(T )

+, we write dμ for dimVμ(λbad)rel. By Theorem 6.1.3, Lemma
6.3.1, and Proposition 6.3.2 (2), for all μ ∈ X∗(T )

+ such that [b] ∈ B(G,μ),
we have

Sμ,b(q1) = lim
s→∞

[
M (μ, b)q

1

2
def

s M
0
λ+,(s)
b

(q−1
1 ) + dμq

1

2
def

s M
0
λ(s)
bad

(q−1
1 )

]
.(6.3.5)

In particular, taking μ to be μ1 and μ2 respectively, we obtain

Sμ1,b(q1) = lim
s→∞

q
1

2
def

s M
0
λ
+,(s)
b

(q−1
1 ),

(6.3.6)

Sμ2,b(q1) = lim
s→∞

[
M (μ2, b)q

1

2
def

s M
0
λ
+,(s)
b

(q−1
1 ) + dμ2

q
1

2
defG(b)

s M
0
λ
(s)
bad

(q−1
1 )

]
.

(6.3.7)
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Comparing (6.3.5) (6.3.6) (6.3.7) and using dμ2
�= 0, we obtain

Sμ,b(q1) = M (μ, b)Sμ1,b(q1) +
dμ
dμ2

(Sμ2,b(q1)− M (μ2, b)Sμ1,b(q1)).

By varying F , we obtain

Sμ,b(t) = M (μ, b)Sμ1,b(t) +
dμ
dμ2

(Sμ2,b(t)− M (μ2, b)Sμ1,b(t)),(6.3.8)

as an equality in Q(t). Since μ1, μ2 are sums of dominant minuscule elements,
Theorem 2.6.8 (3) implies that

N (μ1, b) = M (μ1, b) = 1, and N (μ2, b) = M (μ2, b).

Consequently we have Sμ1,b(0) = 1 and Sμ2,b(0) = M (μ2, b). Evaluating
(6.3.8) at t = 0, we obtain

N (μ, b) = Sμ,b(0) = M (μ, b) +
dμ
dμ2

(M (μ2, b)− M (μ2, b)) = M (μ, b)

as desired.

Corollary 6.3.5. Conjecture 2.6.7 is true in full generality.

Proof. By Proposition 2.6.10, we reduce to the case where G is adjoint and
F -simple, and [b] is basic. If G is not of type A, the conjecture is proved in
Theorem 6.3.3. If G is of type A, the conjecture follows from Theorem 2.6.8
(3).

The rest of the paper is devoted to the proof of Proposition
6.3.2.

6.4. Reduction to the absolutely simple case

Lemma 6.4.1. Proposition 6.3.2 holds true if it holds for all G that are
absolutely simple and adjoint, not of type A.

Proof. Let G be as in Proposition 6.3.2, not necessarily absolutely simple.
Fix a basic [b] ∈ B(G) as in Proposition 6.3.2. Let G′ be the auxiliary
absolutely simple and adjoint group over F , constructed in §5.5. We keep the
notation established there. Note that [b] is completely determined by κG(b) ∈
π1(G)σ. We construct a basic [b′] ∈ B(G′) as in §5.5, such that κG(b) and
κG′(b′) correspond to each other under the identification π1(G)σ ∼= π1(G

′)σ.
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We write EDynkG for the extended Dynkin diagram of G and write
Aut(EDynkG) for its automorphism group. We write |EDynkG| for the set
of nodes in EDynkG. Similarly for G′.

We claim that

defG(b) = defG′(b′).(6.4.1)

In fact, there is a natural embedding π1(G)� 〈θ〉 ↪→ Aut(EDynkG) given by
the identification of π1(G) with the stabilizer Ω in W of the base alcove, and
the natural faithful action of Ω on EDynkG. The number defG(b) is computed
as the number of θ-orbits minus the number of [μ] � θ-orbits in |EDynkG|,
where [μ] ∈ π1(G) is any lift of κG(b) ∈ π1(G)σ. Similarly, choosing a lift
[μ′] ∈ π1(G

′) of κG′(b′), we compute defG′(b′) as the number of θ′-orbits
minus the number of [μ′] � θ′-orbits in |EDynkG′ |. Now by construction,
EDynkG′ is identified with a particular connected component of EDynkG.
We may thus embed Aut(EDynkG′) into Aut(EDynkG) by extending the
action trivially to other connected components. Then inside Aut(EDynkG)
we have the following relations:

θ′ = θd0 , π1(G) =

d0−1⊕

i=0

θiπ1(G
′)θ−i.

In particular, we have an embedding π1(G
′) = θ0π1(G

′)θ0 ↪→ π1(G). We
may arrange that [μ] is the image of [μ′] under this embedding. Then we
have

# {θ-orbits in |EDynkG|} = #
{
θ′-orbits in |EDynkG′ |

}
,

# {[μ]� θ-orbits in |EDynkG|} = #
{
[μ′]� θ′-orbits in |EDynkG′ |

}
.

The claim follows.
Next, we naturally identify X∗(Ŝ) with X∗(Ŝ ′). Then it is easy to see

that λb corresponds to λb′ under this identification. For clarity, we denote
the analogue of the map (5.4.1) for G′ as:

X∗(Ŝ ′) −→ (Y ∗)′, λ 
−→ λ((s)).

The target of the above map is identified with Y ∗. Then since the identifi-
cation Y ∗ ∼= (Y ∗)′ amounts to the diagonal map (5.5.2), we see that

λ(d0s) = λ((s)), ∀λ ∈ X∗(Ŝ).(6.4.2)
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Combining (6.4.1), (6.4.2) with Propositions 5.5.1, 5.5.2, we see that the
bounds (6.3.1) and (6.3.2) in Proposition 6.3.2 for (G, b, s := d0s

′) reduce
to the corresponding bounds for (G′, b′, s′). In the situation of Proposition
6.3.2 (2), we define λbad for (G, b) to be equal to that for (G′, b′), under the
identification Λ(b) ∼= Λ(b′).

Finally, by hypothesis the desired μ′
1 or {μ′

1, μ
′
2} are already defined for

(G′, b′), as in Proposition 6.3.2. Under the identification (5.5.1) we define
μi ∈ X∗(T )

+ to be (μ′
i, 0, · · · , 0) for i = 1, 2.

6.5. Strategy of proving Proposition 6.3.2 in the absolutely
simple case

In Lemma 6.4.1, we already reduced the proof of Proposition 6.3.2 to the
absolutely simple case. From now on until the end of the paper, we
assume that G is an absolutely simple adjoint group over F which
is not of type A.

As in the proof of Lemma 6.4.1, we denote by EDynkG the extended
Dynkin diagram of G, denote by Aut(EDynkG) its automorphism group, and
denote by |EDynkG| the set of nodes. To prove Proposition 6.3.2, consider
a basic class [b] ∈ B(G) which is not unramified. Since b is not unramified,
we have κG(b) �= 0, and in particular the groups π1(G) and Aut(EDynkG)
are non-trivial. By our assumptions on G, we see that the following are the
only possibilities for DynkG and θ (viewed as an automorphism of DynkG):

1. Type Bn, n ≥ 2, θ = id.
2. Type Cn, n ≥ 3, θ = id.
3. Type Dn, n ≥ 4, θ = id.
4. Type Dn, n ≥ 5, θ has order 2.
5. Type D4, θ has order 2.

6. Type D4, θ has order 3.

7. Type E6, θ = id.

8. Type E6, θ has order 2.

9. Type E7, θ = id.

In fact, the above are the only cases (apart from type A) where EDynkG
has non-trivial automorphisms. Our proof of Proposition 6.3.2 will be based
on this classification.

In §7 below, we prove many cases of the estimates (6.3.1) and (6.3.2). To
be precise, we define an explicit subset Λ(b)good of Λ(b), and prove (6.3.1)
or (6.3.2) for all λ ∈ Λ(b)good. These shall be done in a case-by-case manner
according to the previous classification of (DynkG, θ).

In §8, we finish the proof of (6.3.1) for all λ ∈ Λ(b). We also define λbad in
Proposition 6.3.2 (2), and finish the proof of (6.3.2) for all λ ∈ Λ(b)−{λbad}.
In view of what we have done in §7, we only need to analyze elements
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λ ∈ Λ(b)−Λ(b)good. If we are in the situation of Proposition 6.3.2 (1), then
we show (6.3.1) for all λ ∈ Λ(b) − Λ(b)good. If we are in the situation of
Proposition 6.3.2 (2), then we define a distinguished element λbad ∈ Λ(b)
and show (6.3.2) for all λ ∈ Λ(b)− Λ(b)good ∪ {λbad}.

In §9, we construct the element μ1 in Proposition 6.3.2 (1), and the
elements μ1, μ2 in Proposition 6.3.2 (2). We then check that they satisfy the
desired properties. The proof of Proposition 6.3.2 is then finished.

7. Proof of the key estimate, Part I

The goal of this section is to define an explicit subset Λ(b)good of Λ(b), and
to prove (6.3.1) or (6.3.2) for all λ ∈ Λ(b)good.

7.1. Types B,C,D, θ = id

7.1.1. The norm method. We follow [3, Chapitre VI §4] for the presen-
tation of the root systems of types Bn, Cn, Dn, and for the choice of simple
roots. The root systems will be embedded in a vector space E = Rn, with
standard basis e1, · · · , en, and standard inner product 〈ei, ej〉 = δij so that
we may identify the coroots and coweights with subsets of the same vector
space. Following loc. cit., we define the following lattices in E:

L0 := {(ξ1, · · · , ξn) ∈ E | ξi ∈ Z} ,

L1 :=

{
(ξ1, · · · , ξn) ∈ L0 |

n∑

i=1

ξi ∈ 2Z

}
,

L2 := L0 + Z(
1

2

n∑

i=1

ei).

We assume θ = id, so that T = A and Ŝ = T̂ = Â. The cocharacter
lattice X∗(T ) is identified with the coweight lattice in E. Moreover π1(G)
is equal to the quotient of the coweight lattice modulo the coroot lattice
in E.

Since [b] ∈ B(G) is basic, it is uniquely determined by κG(b) ∈ π1(G)σ =
π1(G). The defect defG(b) of b is computed in the way indicated in the proof
of Lemma 6.4.1.

For any v = (ξ1, · · · , ξn) ∈ E, we write

|v| := |ξ1|+ · · ·+ |ξn|.(7.1.1)
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It is easy to verify the following three facts.

1. |·| is a norm on E.
2. |wv| = |v| for any w ∈ W0 and v ∈ E.
3. For any coroot α∨ ∈ Φ∨, we have |α∨| ≤ δ, where δ = 2.

Now given any subset S of Λ(b), we define D(S) := minλ∈S |λ| . (The
minimum obviously exists.) In the following, we will specify a subset Λ(b)good
of Λ(b), satisfying

D(Λ(b)good) > δ · defG(b)/2.(7.1.2)

We show how to get the bound (6.3.1) for all λ ∈ Λ(b)good, from (7.1.2).
Let λ ∈ Λ(b)good. Fix w,w′ ∈ W 1. We write ψs := w • (w′λ(s)). By the

formula (5.2.2), it suffices to show that

P(ψs, q
−1
1 ) = O(q

−s( 1

2
defG(b)+a)

1 )(7.1.3)

for some a > 0.
By Proposition 5.3.1 (2), we have the bound

∣∣P(ψs, q
−1
1 )
∣∣ ≤ #P(ψs) · q−Ns

1 , Ns := min
m∈P(ψs)

|m| .(7.1.4)

Suppose m ∈ P(ψs). Then

δ
∑

β∈FΦ∨,+

m(β) ≥

∣∣∣∣∣∣

∑

β∈FΦ∨,+

m(β)β

∣∣∣∣∣∣
= |ψs|

≥
∣∣∣ww′λ(s)

∣∣∣−
∣∣wρ∨ − ρ∨

∣∣ = s |λ| − C ≥ s · D(Λ(b)good)− C,

where C is a constant independent of s, and |·| is the norm defined in (7.1.1).
Since θ = id, we have FΦ

∨,+ = Φ∨,+, and b(β) = 1 for all β ∈ Φ∨,+. Hence
the leftmost term in the above inequalities is none other than δ |m|. It follows
that

Ns ≥ (sD(Λ(b)good)− C)δ−1.

By the above estimate and (7.1.2), we have

q−Ns

1 = O(q
−s( 1

2
defG(b)+a′)

1 )(7.1.5)

for some a′ > 0.
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On the other hand, by the same argument as in the proof of Proposition
6.2.1, we have

#P(ψs) ≤ (Ls)M(7.1.6)

for some constants L,M > 0. The desired estimate (7.1.3) then follows from
(7.1.4) (7.1.5) (7.1.6).

In the following we specify the definition of Λ(b)good satisfying (7.1.2),
for types B,C,D with θ = id.

7.1.2. Type Bn, n ≥ 2, θ = id. The simple roots are αi = ei − ei+1

for 1 ≤ i ≤ n − 1, and αn = en. The simple coroots are α∨
i = αi for

1 ≤ i ≤ n−1, and α∨
n = 2en. The fundamental weights are �i = e1+ · · ·+ei

for 1 ≤ i ≤ n− 1, and �n = 1
2(e1 + · · ·+ en). The coroot lattice is L1, and

the coweight lattice is L0. We have

P+ = {(ξ1, · · · , ξn) | ξi ∈ Z, ξ1 ≥ ξ2 ≥ · · · ≥ ξn ≥ 0} .

We have π1(G) ∼= Z/2Z, and the non-trivial element is represented by e1 ∈
L0. Recall that we assumed that κG(b) is non-trivial, so there is only one
choice of κG(b) (and hence only one choice of the basic b ∈ B(G,μ)). We
have λb = −en, and λ+

b = e1. Since κG(b) acts on EDynkG via its unique
non-trivial automorphism, we easily see (both for n = 2 and for n ≥ 3)
that defG(b) = 1. We take Λ(b)good := Λ(b), and we have D(Λ(b)) = 2. The
inequality (7.1.2) is satisfied.

7.1.3. Type Cn, n ≥ 3, θ = id. The simple roots are αi = ei − ei+1

for 1 ≤ i ≤ n − 1, and αn = 2en. The simple coroots are α∨
i = αi for

1 ≤ i ≤ n− 1, and α∨
n = en. The fundamental weights are �i = e1 + · · ·+ ei

for 1 ≤ i ≤ n. The coroot lattice is L0, the coweight lattice is L2. We have

P+ = {(ξ1, · · · , ξn) ∈ L2 | ξ1 ≥ ξ2 ≥ · · · ≥ ξn ≥ 0} .

We have π1(G) ∼= Z/2Z, and the non-trivial element is represented by
(12 , · · · , 12) ∈ L2. Since κG(b) is non-trivial, we have

λb = (−1

2
,
1

2
,−1

2
, · · · , (−1)n

1

2
), λ+

b = (
1

2
, · · · , 1

2
).

Since κG(b) acts on the EDynkG via its unique non-trivial automorphism,
we easily see that defG(b) = �n2 � (i.e. the smallest integer ≥ n/2). We take
Λ(b)good := Λ(b), and we have D(Λ(b)) = (n + 2)/2. The inequality (7.1.2)
is satisfied.
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7.1.4. Type Dn, n ≥ 4, θ = id. The simple roots are αi = ei − ei+1 for
1 ≤ i ≤ n − 2, and αn−1 = en−1 − en, αn = en−1 + en. The simple coroots
are α∨

i = αi. The fundamental weights are

�i = e1 + · · ·+ ei, 1 ≤ i ≤ n− 2,

�n−1 =
1

2
(e1 + e2 + · · ·+ en−1 − en),

�n =
1

2
(e1 + e2 + · · ·+ en).

The coroot lattice is L1, the coweight lattice is L2. We have

P+ = {(ξ1, · · · , ξn) ∈ L2 | ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ |ξn|} .

Case: n is odd. We have π1(G) ∼= Z/4Z, and a generator is represented
by (12 , · · · , 12) ∈ L2. For i = 1, 2, 3, we let bi ∈ B(G) correspond to the image
of i(12 , · · · , 12) in π1(G). Then

λb1 =

n−2∑

i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)(n+1)/2

2
en, λ+

b1
= (

1

2
, · · · , 1

2
),

λb2 = −en−1, λ+
b2

= e1,

λb3 =

n−2∑

i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)(n−1)/2

2
en, λ+

b3
= (

1

2
, · · · , 1

2
,−1

2
).

Since up to automorphisms of Z/4Z, there is only one way that Z/4Z
could act on EDynkG, we easily see that

defG(b1) = defG(b3) =
n+ 3

2
, defG(b2) = 2.

Let

λ1,bad := (
3

2
,
1

2
, · · · , 1

2
,−1

2
), λ3,bad := (

3

2
,
1

2
, · · · , 1

2
,
1

2
).

For i = 1, 3, we obviously have λi,bad ∈ Λ(bi). We take

Λ(bi)good := Λ(bi)− {λi,bad} .(7.1.7)

Then D(Λ(bi)good) =
n+4
2 and the inequality (7.1.2) is satisfied.
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For i = 2, we take Λ(b2)good := Λ(b2), and we have D(Λ(b2)) = 3. The
inequality (7.1.2) is satisfied.

Case: n is even. We have π1(G) ∼= Z/2Z×Z/2Z. The three non-trivial
elements are represented by

(
1

2
, · · · , 1

2
), e1, (

1

2
, · · · , 1

2
) + e1 ∈ L2.

Correspondingly we have

λb1 =

n−2∑

i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)n/2

2
en, λ+

b1
= (

1

2
, · · · , 1

2
),

λb2 = −en−1, λ+
b2

= e1,

λb3 =

n−2∑

i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)n/2+1

2
en, λ+

b3
= (

1

2
, · · · , 1

2
,−1

2
).

Since κG(b1) and κG(b3) are related to each other by the automorphism of
the based root system en 
→ −en, it is clear that they correspond to the
two horizontal symmetries of order two of EDynkG. On the other hand,
the action of κG(b2) on EDynkG is of order two, is distinct from the two
horizontal symmetries, and commutes with the two horizontal symmetries.
Hence this must correspond to the vertical symmetry of EDynkG that has
precisely two orbits of size two and fixes all the other nodes. Thus we have

defG(b1) = defG(b3) =
n

2
, defG(b2) = 2.

For i = 1, 2, 3 we take Λ(bi)good := Λ(bi). Then we have D(Λ(b1)) =
D(Λ(b3)) = (n + 2)/2, and D(Λ(b2)) = 3. The inequality (7.1.2) is satis-
fied.

7.2. Type Dn, n ≥ 5, θ has order 2

The simple (absolute) roots and coroots are the same as in §7.1.4, embedded
in E = Rn. We identify E with X∗(T )⊗Z R. Then θ acts on E by

(ξ1, · · · , ξn) 
→ (ξ1, · · · , ξn−1,−ξn).

The subgroup X∗(A) ⊂ X∗(T ) = L2 is given by {(ξ1, · · · , ξn) ∈ L2 | ξn = 0}.
Let L′

2 ⊂ Qn−1 be the analogue of L2, namely L′
2 = Zn−1 + Z(12 , · · · , 12).
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The quotient X∗(T ) = L2 → X∗(Ŝ) is the same as

L2 −→ L′
2, (ξ1, · · · , ξn) 
→ (ξ1, · · · , ξn−1).

The map

(s) : X∗(Ŝ) −→ X∗(A), λ 
−→ λ(s)

(for s ∈ 2Z≥1) is given by

L′
2 −→ X∗(A), (ξ1, · · · , ξn−1) 
−→ (sξ1, · · · , sξn−1, 0).(7.2.1)

The set FΦ
∨,+, as a subset of X∗(A), is equal to

{ei ± ej | 1 ≤ i < j ≤ n− 1} ∪ {2ei | 1 ≤ i ≤ n− 1} .

We have

b(ei ± ej) = 1, 1 ≤ i < j ≤ n− 1; b(2ei) = 2, 1 ≤ i ≤ n− 1.

Moreover FΦ
∨ is reduced. We have

P+ = {(ξ1, · · · , ξn) ∈ L2 | ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ ξn = 0} ,

X∗(Ŝ)+ =
{
(ξ1, · · · , ξn−1) ∈ X∗(Ŝ) = L′

2 | ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ 0
}
.

We again write e1, · · · , en−1 for the standard basis of X∗(Ŝ)⊗Q = Qn−1.

The relative simple roots in Q̂θ̂ ⊂ X∗(Ŝ) are:

e1 − e2, e2 − e3, · · · , en−2 − en−1, en−1

(i.e., the same as type Bn−1.)

Case: n is odd. We have π1(G) ∼= Z/4Z, and σ acts on π1(G) by the

unique non-trivial automorphism of π1(G). Hence π1(G)σ ∼= Z/2Z, and the

non-trivial element is represented by

−1

2
(e1 − e2)−

1

2
(e3 − e4) · · · −

1

2
(en−2 − en−1) +

1

2
en ∈ L2 = X∗(T ).

The image of the above element in X∗(Ŝ)⊗Q = Qn−1 is obviously equal to

a linear combination of the relative simple roots in Q̂θ̂ with coefficients in
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Q ∩ (−1, 0]. Hence this image is λb, and so

λb = (−1

2
,
1

2
, · · · ,−1

2
,
1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q,

λ+
b = (

1

2
, · · · , 1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q.

If γ is any generator of π1(G) ∼= Z/4Z, then the number of orbits of γ�θ
in |EDynkG| is 2 + n−3

2 , while the number of orbits of θ in |EDynkG| is n.
Hence

defG(b) =
n− 1

2
.(7.2.2)

We have

Λ(b) =

{
(ξ1 +

1

2
, · · · , ξn−1 +

1

2
) ∈ L′

2 | ξ1 > 0, ∀i, ξi ∈ Z, ξi ≥ ξi+1

}
.

(7.2.3)

We take Λ(b)good := Λ(b). In the following we show (6.3.1) for all λ ∈ Λ(b).
The proof will be similar to the arguments in §7.1.1.

Fix w,w′ ∈ W 1. We write ψs := w • (w′λ(s)). By the formula (5.2.2), to
show (6.3.1) it suffices to show that

∃a > 0, P(ψs, q
−1
1 ) = O(q

−s( 1

2
defG(b)+a)

1 ).(7.2.4)

Again we have the bounds (7.1.4) and (7.1.6), so it suffices to find a suitable
lower bound of |m|, for m ∈ P(ψs). We keep the definition (7.1.1) of the
norm |·| on E = Rn. For m ∈ P(ψs), we have

2 |m| := 2
∑

β

m(β)b(β) ≥ 2
∑

β

m(β) ≥

∣∣∣∣∣∣

∑

β

m(β)β

∣∣∣∣∣∣

= |ψs| ≥
∣∣∣ww′λ(s)

∣∣∣−
∣∣wρ∨ − ρ∨

∣∣ =
∣∣∣λ(s)
∣∣∣− C,

where the sums are over β ∈ FΦ
∨,+, and C is a constant independent of s.

On the other hand, by (7.2.1) and (7.2.3), we have
∣∣λ(s)
∣∣ ≥ s(n + 1)/2. In

conclusion we have

2 |m| ≥ s · n+ 1

2
+ C.(7.2.5)



212 Rong Zhou and Yihang Zhu

Combining (7.2.2) (7.2.5) with (7.1.4) (7.1.6), we obtain the desired (7.2.4).
Note that in the above proof, we only used the fact that (n+1)/2 > defG(b).

Case: n is even. We have π1(G) ∼= Z/2Z × Z/2Z. The action of σ on
π1(G) swaps the classes represented by (12 , · · · , 12) and (12 , · · · , 12)+ e1 ∈ L2,
and fixes the class represented by e1. Hence π1(G)σ ∼= Z/2Z, and the non-
trivial element is represented by

−1

2
(e1 − e2)−

1

2
(e3 − e4) · · · −

1

2
(en−1 − en) ∈ L2 = X∗(T ).

The image of the above element in X∗(Ŝ)⊗Q = Qn−1 is obviously equal to
a linear combination of the relative simple roots in Q̂θ̂ with coefficients in
Q ∩ (−1, 0]. Hence this image is λb, and so

λb = (−1

2
,
1

2
, · · · ,−1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q,

λ+
b = (

1

2
, · · · , 1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q.

Let γ ∈ π1(G) be the class of (12 , · · · , 12) ∈ L2. We have seen in §7.1.4
that γ acts on EDynkG via one of the two order-two horizontal symmetries
of EDynkG. Hence γ � σ acts on EDynkG via one of the two order-four
horizontal symmetries of EDynkG, and the number of orbits is 1 + n−2

2 =
n
2 . On the other hand the number of orbits of θ in |EDynkG| is n. Hence
defG(b) = n/2. The set Λ(b) is again given by (7.2.3). We take Λ(b)good :=
Λ(b). The proof of (6.3.1) for all λ ∈ Λ(b) is exactly the same as in the odd
case, using the fact that (n+ 1)/2 > defG(b).

7.3. Type D4, θ has order 2

The difference between this case and §7.2 is that the D4 Dynkin diagram has
three (rather than one) automorphisms of order two. However we explain
why the proof of (6.3.1) for all λ ∈ Λ(b)good := Λ(b) is the same. In fact,
there exists a permutation τ of {1, 3, 4}, such that the root system can be
embedded into R4 with simple roots:

ατ(1) = e1 − e2, α2 = e2 − e3, ατ(3) = e3 − e4, ατ(4) = e3 + e4,

and such that θ acts on R4 by e4 
→ −e4.
If τ = 1, then the extra node in EDynkG is given by α0 = −e1 − e2, and

the proof is exactly the same as §7.2. For general τ , we still have π1(G)σ ∼=
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Z/2Z and hence a unique choice of b, and the only place in the proof in

§7.2 that could change is the computation of defG(b), as the extra node

in EDynkG is no longer given by −e1 − e2. However, it is still true that

as long as κG(b) is the non-trivial element in π1(G)σ ∼= Z/2Z, we have

defG(b) = 2, which is n/2 for n = 4. In fact, for any order-two element

γ ∈ π1(G) ∼= Z/2 × Z/2 which is not fixed by σ, the action of γ � θ on

|EDynkG| must be of order four and have two orbits. The computation of

defG(b) easily follows.

7.4. Type D4, θ has order 3

In this case π1(G) = Z/2Z × Z/2Z. We know that θ acts on π1(G) by an

order-three permutation of the three non-trivial elements. Thus π1(G)σ = 0

and any basic b is unramified.

7.5. Type E6, θ = id

We consider the root system E6 embedded in R9, which we will consider

as R3 ⊕ R3 ⊕ R3. The set of roots is given by the 18 elements consisting of

permutations of

(1,−1, 0; 0, 0, 0; 0, 0, 0), (0, 0, 0; 1,−1, 0; 0, 0, 0), (0, 0, 0; 0, 0, 0; 1,−1, 0)

under the group S3 × S3 × S3, together with the 54 elements given by the

permutations of

(
2

3
,−1

3
,−1

3
;
2

3
,−1

3
,−1

3
:
2

3
,−1

3
,−1

3
), (−2

3
,
1

3
,
1

3
;−2

3
,
1

3
,
1

3
: −2

3
,
1

3
,
1

3
)

under the same group. We will call the first set of roots type A roots, and

the second set type B roots. A type A root is positive if and only if the

coordinate 1 appears to the left of the −1. A type B root is positive if and

only if the first coordinate is positive.

A choice of simple roots is given by

α1 = (0, 0, 0; 0, 1,−1; 0, 0, 0), α2 = (0, 0, 0; 1,−1, 0; 0, 0, 0),

α3 = (
1

3
,−2

3
,
1

3
;−2

3
,
1

3
,
1

3
;−2

3
,
1

3
,
1

3
), α4 = (0, 1,−1; 0, 0, 0; 0, 0, 0),

α5 = (0, 0, 0; 0, 0, 0; 1,−1, 0), α6 = (0, 0, 0; 0, 0, 0; 0, 1,−1).
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The corresponding Dynkin diagram is

1◦ 2◦ 3◦ 5◦ 6◦

◦
4

Under the standard pairing of R9 with itself, each root is equal to its own

corresponding coroots. We therefore identify R9 with its dual and do not

distinguish between roots and coroots. The subspace of R9 generated by the

roots is given by the equations

x1 + x2 + x3 = x4 + x5 + x6 = x7 + x8 + x9 = 0(7.5.1)

where xi are the standard coordinates. The fundamental weights are given

by

�1 = (
2

3
,−1

3
,−1

3
;
1

3
,
1

3
,−2

3
; 0, 0, 0), �2 = (

4

3
,−2

3
,−2

3
;
2

3
,−1

3
,−1

3
; 0, 0, 0),

�3 = (2,−1,−1; 0, 0, 0; 0, 0, 0), �4 = (1, 0,−1; 0, 0, 0; 0, 0, 0),

�5 = (
4

3
,−2

3
,−2

3
; 0, 0, 0;

2

3
,−1

3
,−1

3
), �6 = (

2

3
,−1

3
,−1

3
; 0, 0, 0;

1

3
,
1

3
,−2

3
).

For an element λ =
∑6

i=1 ai�i with ai ∈ Z, we have λ lies in the root

lattice if and only

(7.5.2) a5 − a6 − a2 + a1 ≡ 0 mod 3.

We have π1(G) ∼= Z/3Z, with the isomorphism being given by

λ =

6∑

i=1

ai�i 
−→ a5 − a6 − a2 + a1 mod 3.

Moreover λ is dominant if and only ai ≥ 0 for i = 1, . . . , 6.

We let bi, i = 1, 2 denote the non-trivial elements in π1(G). We have

λ+
b1

= �1 and λ+
b2

= �6. We set

Λ(b1)good := Λ(b1)− {�5, �4 +�1, �2 +�6, 2�6},
Λ(b2)good := Λ(b2)− {�2, �4 +�6, �5 +�1, 2�1}.
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We let |·| be the standard Euclidean norm on R9. Then |·| isW0-invariant,
and we have |α∨| ≤ δ :=

√
2, for all α∨ ∈ Φ∨. Given any subset S of Λ(bi),

we define D(S) := minλ∈S |λ| . We claim that

D(Λ(b1)good) >
√
8, D(Λ(b2)good) >

√
8.

Since defG(b) = 4 (which we know by counting orbits of the unique non-
trivial symmetry of EDynkG) and δ =

√
2, the claim will imply the inequality

(7.1.2), and by exactly the same argument as in §7.1.1, we conclude that
(6.3.1) holds for all λ ∈ Λ(bi)good.

We now prove the claim. By the obvious symmetry (16)(25)(3)(4) of the
Dynkin diagram, it suffices to only discuss Λ(b1)good.

Let λ =
∑6

i=1 ai�i ∈ Λ(b1), with ai ∈ Z≥0, and suppose |λ| ≤
√
8. We

will show

|λ| ∈ {�5, �4 +�1, �2 +�6, 2�6}.
Since λ ∈ Λ(b1), we have by (7.5.2) that

a5 − a6 − a2 + a1 ≡ 1 mod 3.(7.5.3)

By looking at the first three coordinates of λ and using the triangle inequal-
ity, we easily obtain the inequalities

a1 ≤ 3, a2 ≤ 1, a3 ≤ 1, a4 ≤ 3, a5 ≤ 1, a6 ≤ 3.

If a3 = 1, then we have ai > 0 for some i �= 3 since λ ∈ Λ(b1), hence
a3 = 0.

If a2 = 1, we have a5 = 0 and a1, a4, a6 ≤ 1 (by looking at the first 3
coordinates). We check each case and see that only λ = �2+�6 is possible.

If a5 = 1, we similarly obtain that λ = �5 is the only possibility using
(7.5.3).

The only cases left are when the only non-zero coefficients are a1, a4, a6.
Again by looking at the first three coordinates, we see that a1+a4+a6 ≤ 3.
We check each case and see that the only possibilities are λ = �1 +�4 and
λ = 2�6.

7.6. Type E6, θ has order 2

We keep the notation §7.5. Then θ acts on the root system via the action
on R9 given by

(x1, x2, x3;x4, x5, x6;x7, x8, x9) 
−→ (x1, x2, x3;x7, x8, x9;x4, x5, x6).
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It therefore acts on π1(G) by switching the two non-trivial elements. Hence

π1(G)σ = 0 and all basic elements are unramified.

7.7. Type E7, θ = id

We consider the root system E7 as a subset of R8. The set of roots is given

by the 56 permutations of (1,−1, 0, 0, 0, 0, 0, 0) and the
(
8
4

)
permutations of

(12 ,
1
2 ,

1
2 ,

1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2). A set of simple roots is given by

α1 = (0, 0, 0, 0, 0, 0,−1, 1), α2 = (0, 0, 0, 0, 0,−1, 1, 0),

α3 = (0, 0, 0, 0,−1, 1, 0, 0), α4 = (0, 0, 0,−1, 1, 0, 0, 0),

α5 = (
1

2
,
1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2
), α6 = (0, 0,−1, 1, 0, 0, 0, 0),

α7 = (0,−1, 1, 0, 0, 0, 0, 0).

The corresponding Dynkin diagram is

1◦ 2◦ 3◦ 4◦ 6◦ 7◦

◦
5

Under the standard pairing of R8 with itself, roots correspond to coroots

and we therefore do not distinguish between them. The subspace of R8

generated by the roots is the hyperplane given by the equation
∑8

i=1 xi = 0.

The corresponding fundamental weights are given by

�1 = (
3

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,
3

4
),

�2 = (
3

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,
1

2
),

�3 = (
9

4
,−3

4
,−3

4
,−3

4
,−3

4
,
1

4
,
1

4
,
1

4
),

�4 = (3,−1,−1,−1, 0, 0, 0, 0),

�5 = (
7

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
),

�6 = (2,−1,−1, 0, 0, 0, 0, 0),

�7 = (1,−1, 0, 0, 0, 0, 0, 0).
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For an element λ =
∑7

i=1 ai�i, ai ∈ Z, we know λ lies in the root lattice if
and only if a1+a3+a5 ≡ 0 mod 2. We have π1(G) ∼= Z/2Z. By assumption
κG(b) ∈ π1(G) is the non-trivial element. Then we have λ+

b = �1. We set
Λ(b)good := Λ(b)− {�5}.

We let |·| be the standard Euclidean norm on R8. Then |·| isW0-invariant,
and we have |α∨| ≤ δ :=

√
2, for all α∨ ∈ Φ∨. Given any subset S of Λ(b),

we define D(S) := minλ∈S |λ| . We claim that

D(Λ(b)good) ≥
√
22

2
.

Since defG(b) = 3 and δ =
√
2, the claim will imply the inequality (7.1.2),

and by exactly the same argument as in §7.1.1, we conclude that (6.3.1)
holds for all λ ∈ Λ(b)good.

We now prove the claim. Suppose λ =
∑7

i=1 aiλi ∈ Λ(b) with ai ∈ Z≥0,
and |λ| ≤

√
22/2. We will show that λ = �5. By looking at the first four

coordinates, we obtain the trivial (in)equalities:

�1 ≤ 2, �2 ≤ 1, �3 = 0, �4 = 0, �5 ≤ 1, �6 ≤ 1, �7 ≤ 1.

We also obtain
∑7

i=1 ai ≤ 2. It is not hard to see that λ = �5 is the only
possibility.

8. Proof of the key estimate, Part II

The goals of this section include:

• to finish the proof of (6.3.1) in Proposition 6.3.2 (1);
• to define λbad and to prove (6.3.2) in Proposition 6.3.2 (2).

In §7, we already proved (6.3.1) and (6.3.2) for all λ ∈ Λ(b)good. Moreover
the subset Λ(b)good ⊂ Λ(b) is proper only in the following three cases:

Proper-I Type Dn, n ≥ 5, n is odd, θ = id, b = b1 or b3. See §7.1.4.
Proper-II Type E6, θ = id, b = b1 or b2. See §7.5.
Proper-III Type E7, θ = id. See §7.7.

8.1. Combinatorics for Dn

In order to treat the case Proper-I, we need some combinatorics for the
type Dn root system. The material in this subsection is only needed in the
proof of Proposition 8.2.1 below.
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Let n be an integer ≥ 5. We keep the presentation of the type Dn root
system in a vector space Rn, as in §7.1.4. In particular we keep the choice
of positive roots. We do not distinguish between roots and coroots. Let ΦDn

be the set of roots and let Φ+
Dn

be the set of positive roots. Thus

Φ+
Dn

= {ei ± ej | 1 ≤ i < j ≤ n} .

If m > n is another integer, we embed Rn into Rm via the inclusion of
the standard bases {e1, · · · , en} ↪→ {e1, · · · , em}. In this way we view ΦDn

(resp. Φ+
Dn

) as a natural subset of ΦDm
(resp. Φ+

Dm
).

In the following we fix an odd integer n ≥ 5. We keep the notation in
§5.3, with respect to FΦ

∨,+ = Φ+
Dn

and b ≡ 1. The goal of this subsection
is to prove the following:

Proposition 8.1.1. Let (ν2, · · · , νn) ∈ {±1}n−1. For t ∈ N, let

λt := (6t, 2tν2, 2tν3 · · · , 2tνn).

When t ∈ N is sufficiently large, for any integer L in the interval [0, (n +
3.5)t], we have

∑

S⊂Φ+
Dn

(−1)|S|#P(λt −
∑

β∈S

β)L = 0.(8.1.1)

In order to prove Proposition 8.1.1, we shall use some graph theory
to facilitate the computation of the left hand side of (8.1.1). We first recall
some standard terminology from graph theory. Recall that a graph consists of
vertices and edges, such that each edge links two distinct vertices. A path on
a graph is a sequence (v1, E1, · · · , vk, Ek, vk+1), where vi and vi+1 are the two
distinct vertices linked by the edge Ei, for each i, and such that E1, · · · , Ek

are all distinct. A tree is a graph, in which any two vertices are connected
by exactly one path. In particular, on a tree we may represent each path
(v1, E1, · · · , vk, Ek, vk+1) unambiguously by the sequence (v1, v2, · · · , vk+1),
and we know that v1, · · · , vk+1 are all distinct. A rooted tree is a pair (T , O),
where T is a tree and O is a distinguished vertex of T , called the root.

In a rooted tree (T , O), every vertex v �= O has a unique parent, that
is, the vertex w such that the unique path from O to v passes through
w immediately before reaching v. In this situation we call v a child of w.
A vertex of (T , O) that does not have children is called an end vertex. We
denote by |T | the set of vertices, and denote by |T |end the set of end vertices.
By a complete family line on (T , O), we shall mean a path (v0, v1, · · · , vk)
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such that v0 = O and vk ∈ |T |end. Note that in this case each vi is the
parent of vi+1.

In the following, we fix an abelian group E, and fix subsets U, V of
E, such that U is finite and 0 /∈ V . In applications, we shall take E = Rn,
U = {e1 + νjej | 2 ≤ j ≤ n} for some (ν2, · · · , νn) ∈ {±1}n−1, and V = Φ+

Dn
.

Definition 8.1.2. By a (U, V )-tree, we mean a tuple (T , O, φ, ψ), where
(T , O) is a finite rooted tree, and φ, ψ are maps

φ : |T | − {O} −→ U,

ψ : |T | − |T |end −→ V.

We shall graphically represent a (U, V )-tree (T , O, φ, ψ) by marking

φ(v) ‖ ψ(v)

at each vertex v. If φ(v) or ψ(v) is not defined, we leave it as blank. (Thus
O could be recognized as the unique vertex where φ(v) is left as blank.)

Definition 8.1.3. We say that a (U, V )-tree (T , O, φ, ψ) is admissible, if
the following conditions are satisfied:

1. Each w ∈ |T | − |T |end has precisely two children v, v̄. Moreover, we
have φ(v)− φ(v̄) ∈ {ψ(w),−ψ(w)}.

2. Every complete family line (v0, v1, · · · , vk) on (T , O) satisfies k =
|U | − 1. Moreover, φ(vi) are distinct from each other for 1 ≤ i ≤ k,
and ψ(vi) are distinct from each other for 0 ≤ i ≤ k − 1.

Definition 8.1.4. Let (T , O, φ, ψ) be an admissible (U, V )-tree. Let w ∈
|T | − |T |end. Since ψ(w) �= 0, there is a unique ordering of the two children
v, v̄ of w, such that φ(v)− φ(v̄) = ψ(w). We call v a positive vertex and call
v̄ a negative vertex.

Proposition 8.1.5. For each odd integer n ≥ 5 and each (ν2, · · · , νn) ∈
{±1}n−1, we let E := Rn, U := {e1 + νjej | 2 ≤ j ≤ n}, and V := Φ+

Dn
.

Then there exists an admissible (U, V )-tree.

Proof. We prove this by induction on n. To simplify notation, when n and
(ν2, · · · , νn) are fixed, we define

gj := e1 + νjej , hi,j := ei − νiνjej ,

for i, j ∈ {2, · · · , n}.
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The base chase is n = 5. One checks that the (U, V )-tree represented by

the following diagram is admissible:

‖ h2,3

g2 ‖ h3,4

g3 ‖ h4,5

g4 ‖ g5 ‖

g4 ‖ h3,5

g3 ‖ g5 ‖

g3 ‖ h2,4

g2 ‖ h4,5

g4 ‖ g5 ‖

g4 ‖ h2,5

g2 ‖ g5 ‖

Now assuming the proposition is proved for n − 2, we prove it for n

(with n ≥ 7). Let (ν2, · · · , νn), U , and V be as in the proposition. Let U ′ :=

{gj | 2 ≤ j ≤ n− 2}, and V ′ := Φ+
Dn−2

. By induction hypothesis there exists

an admissible (U ′, V ′)-tree (T ′, O, φ′, ψ′). We shall construct an admissible

(U, V )-tree based on this.

First, to each end vertex v of T ′, we associate a (U, V )-tree

(Tv, Ov, φv, ψv) as follows. Let (O, v1, · · · , vk = v) be the complete family

line on T ′ from O to v. Since (T ′, O, φ′, ψ′) is admissible, we have k = n−4,

and there is a unique index jv ∈ {2, · · · , n− 2} such that

{
φ′(vi) | 1 ≤ i ≤ k

}
= {gj | 2 ≤ j ≤ n− 2, j �= jv} .

We define (Tv, Ov, φv, ψv) to be:

‖ hjv,n

gjv ‖ hn−1,n

gn−1 ‖ gn ‖

gn ‖ hjv,n−1

gjv ‖ gn−1 ‖

Now for each end vertex v of T ′, we glue Tv to T ′ by identifying the

root Ov of Tv with v. We also combine the marking φ′(v) ‖ at v with the

marking ‖ ψv(Ov) at Ov to get the new marking φ′(v) ‖ ψv(Ov) . In this

way we obtain a larger tree T containing T ′, and a (U, V )-tree (T , O, φ, ψ).



Twisted orbital integrals and irreducible components 221

It is then an elementary exercise to check that the (U, V )-tree (T , O, φ, ψ)

thus obtained is admissible. As an example, we check that for each com-

plete family line (v0, v1, · · · , vk) on (T , O), the elements ψ(vi) are distinct

for 0 ≤ i ≤ k − 1. The other desired conditions can all be checked simi-

larly. Note that (v0, v1, · · · , vk−2) is a complete family line on (T ′, O). For

0 ≤ i ≤ k−3, we have ψ(vi) = ψ′(vi), and these are distinct from each other

by induction hypothesis. Now writing v for vk−2, we have ψ(vk−2) = ψv(Ov),

and ψ(vk−1) = ψv(vk−1). By the definition of ψv, we see that the set formed

by ψ(vk−2) and ψ(vk−1) is either {hjv,n, hn−1,n} or {hjv,n, hjv,n−1}. Thus
these two elements are distinct from each other, and being in V − V ′, they

are distinct from ψ(vi) for 0 ≤ i ≤ k− 3, since the latter elements are in V ′.

Thus we have shown that ψ(vi) are distinct for 0 ≤ i ≤ k − 1.

Fix an odd integer n ≥ 5, and fix (ν2, · · · , νn) ∈ {±1}n−1. Let U, V be

as in Proposition 8.1.5, and fix an admissible (U, V )-tree (T , O, φ, ψ) as in

that proposition. Let 2V denote the power set of V .

For each v ∈ |T | − {O}, we define a subset Cv ⊂ 2V as follows. Let w

be the parent of v. We define

Cv :=

{{
S ∈ 2V | ψ(w) /∈ S

}
, if v is a positive vertex,{

S ∈ 2V | ψ(w) ∈ S
}
, if v is a negative vertex.

Now let (O, v1, · · · , vk = v) be the unique path on T from O to v. We define

Dv :=

k⋂

i=1

Cvi
⊂ 2V .

We also define DO := 2V . It is easy to see that if v, v̄ are the two children

of any vertex w, with v positive, then

Dv = {S ∈ Dw | ψ(w) /∈ S} , Dv̄ = {S ∈ Dw | ψ(w) ∈ S} ,
Dw = Dv �Dv̄.

(8.1.2)

In this situation, there is a bijection

Dv
∼−→ Dv̄, S 
−→ S ∪ {ψ(w)} .(8.1.3)

Next, for any λ in the root lattice spanZ(ΦDn
), any L ∈ Z≥0, and any

v ∈ |T |, we define a subset P(λ)vL of P(λ)L. (See §5.3 for the definition of
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P(λ)L.) If v �= O, let (O, v1, · · · , vk = v) be the unique path from O to v.
We define

P(λ)vL := {m ∈ P(λ)L | m(φ(vi)) = 0, ∀1 ≤ i ≤ k} .

If v = O, we define

P(λ)OL := P(λ)L.

For any two v1, v2 ∈ |T |, we define

P(λ)v1−v2

L := P(λ)v1

L − P(λ)v2

L .

Lemma 8.1.6. Let λ be an element in the root lattice spanZ(ΦDn
). For each

subset S ⊂ Φ+
Dn

, let λS := λ −∑β∈S β. Let w ∈ |T | − |T |end, and let v, v̄
be its two children. Then

∑

S∈Dw

(−1)|S|#P(λS)
w
L =

∑

S∈Dv

(−1)|S|#P(λS)
v
L +
∑

S∈Dv̄

(−1)|S|#P(λS)
v̄
L.

Proof. We may assume v is positive. In view of (8.1.2) and the bijection
(8.1.3), it suffices to show that for each S ∈ Dv we have

#P(λS)
w−v
L = #P(λS − ψ(w))w−v̄

L .(8.1.4)

To show this we consider the map

f : P(λS)
w−v
L −→ P(λS − ψ(w))w−v̄

L

defined by

f(m)(β) :=

⎧
⎪⎨
⎪⎩

m(β)− 1, if β = φ(v),

m(β) + 1, if β = φ(v̄),

m(β), else.

One easily checks that f is well-defined and bijective, using the admissibility
of (T , O, φ, ψ). This proves (8.1.4), and hence the lemma.

Lemma 8.1.7. Let |·| be the norm on Rn as in (7.1.1). Fix a real number
M > n/2. Let (ν2, · · · , νn) ∈ {±1}n−1, and t ∈ N. Let λ ∈ spanZ(ΦDn

),
such that

|λ− (6t, 2tν2, 2tν3 · · · , 2tνn)| < t/M.(8.1.5)



Twisted orbital integrals and irreducible components 223

Let m ∈ P(λ). Assume there is a subset I ⊂ {2, · · · , n} of cardinality n− 2,

such that m(e1 + νiei) = 0 for all i ∈ I. Then

|m| ≥ (n+ 4− n

2M
)t.

Proof. Assume the contrary. Let j0 be the unique element of {2, · · · , n}− I.

Define m′ ∈ P by:

∀β ∈ Φ+
Dn

, m′(β) :=

{
0, if β ∈ {e1 ± ei | 2 ≤ i ≤ n} ,
m(β), else.

Write λ = λ1e1 +
∑n

i=2 λiνiei, with λ1, · · · , λn ∈ R. From our assumption

(8.1.5), it easily follows that each λi > 0. We have

Σ(m′) =
∑

i∈I

(λi +m(e1 − νiei))νiei + λ′
j0νj0ej0 ,

with some λ′
j0
∈ R. Obviously |m′| = |m| − λ1, so we have

2
∣∣m′
∣∣ = 2 |m| − 2λ1 ≥

∣∣Σ(m′)
∣∣ ≥
∑

i∈I

λi +m(e1 − νiei),

from which we get:

0 ≤
∑

i∈I

m(e1 − νiei) ≤ 2 |m| − 2λ1 −
∑

i∈I

λi

< 2(n+ 4− n

2M
)t− 2(6t− t/M)− |I| (2t− t/M) = 0,

a contradiction.

We are now ready to prove Proposition 8.1.1.

Proof of Proposition 8.1.1. As in the proposition, we fix (ν2, · · · , νn). We let

λS := λt−
∑

β∈S β, for any subset S ⊂ Φ+
Dn

. Let U := {e1 + νjej | 2 ≤ j ≤ n},
and let V := Φ+

Dn
. Fix an admissible (U, V )-tree (T , O, φ, ψ) as in Proposi-

tion 8.1.5. By repeatedly applying Lemma 8.1.6 (with respect to λ := λt),
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we obtain

∑

S⊂Φ+
Dn

(−1)|S|#P(λS)L =
∑

S∈DO

(−1)|S|#P(λS)
O
L

=
∑

v∈|T |
end

∑

S∈Dv

(−1)|S|#P(λS)
v
L.

Hence the proposition is proved once we show the following claim:

Claim. When t is sufficiently large, for each L ∈ Z ∩ [0, 3.5t] and for
each v ∈ |T |end, we have

∑

S∈Dv

(−1)|S|#P(λS)
v
L = 0.

To prove the claim, we fix a real number M > n. Let |·| be the norm on
Rn as in (7.1.1). When t is sufficiently large, we have

max
S⊂Φ+

Dn

∣∣∣∣∣∣

∑

β∈S

β

∣∣∣∣∣∣
< t/M.

Thus we can apply Lemma 8.1.7 to λ := λS for each S ⊂ Φ+
Dn

. Using the
admissibility of (T , O, φ, ψ), we know that any m ∈ P(λS)

v
L satisfies the

hypothesis in Lemma 8.1.7 about the vanishing of m(e1 + νiei). Thus by
that lemma, P(λS)

v
L is non-empty only if

L ≥ (n+ 4− n

2M
)t > (n+ 3.5)t.

This proves the claim. The proof of the proposition is complete.

8.2. The case Proper-I

We treat type Dn with n ≥ 5 odd, and θ = id, b = b1 or b3. See §7.1.4.
By symmetry we only need to consider b = b1. Recall in this case Λ(b1) −
Λ(b1)good = {λ1,bad}, where

λ1,bad = (
3

2
,
1

2
, · · · , 1

2
,−1

2
),

and we have defG(b1) =
n+3
2 .
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Proposition 8.2.1. The bound (6.3.1) holds for λ = λ1,bad.

Proof. The proof uses the results from §8.1. By the formula (5.2.2), it suffices

to show for each w′′ ∈ W 1 = W0, that

∑

w∈W 1=W0

(−1)�1(w)P(w′′λ
(s)
1,bad + wρ∨ − ρ∨, q−1

1 ) = O(q
−s( 1

2
defG(b)+a)

1 )

(8.2.1)

for some a > 0. Here we have made the change of variable ww′ 
→ w′′ in

(5.2.2), and have used the fact that e0(w
′λ

(s)
1,bad) ≡ 0 for all w′ ∈ W 1, as long

as s � 0.

Fix w′′, and write ζs := w′′λ
(s)
1,bad. Let |·| be the norm on Rn defined in

(7.1.1). Since W0 ⊂ {±1}n � Sn, there exist 1 ≤ j ≤ n, ε ∈ {±1}, and
ν = (ν2, · · · , νn) ∈ {±1}n−1 , such that

ζs = (
1

2
sν2,

1

2
sν3, · · · ,

1

2
sνj ,

3

2
sε,

1

2
sνj+1, · · · ,

1

2
sνn),

where 3
2sε is at the j-th place.

Assume either j �= 1 or ε = −1. Then for s � 0 and all w ∈ W0, we

have ζs + wρ∨ − ρ∨ /∈ R+, and so P(ζs + wρ∨ − ρ∨, q−1
1 ) = 0. We are done

in this case.

Hence we assume j = 1 and ε = 1. Assume without loss of generality

that s = 4t for t ∈ N. As an easy application of the Weyl character formula,

we know that any function P from Y ∗ to any abelian group satisfies

∑

w∈W0

(−1)�1(w)
P(wρ∨ − ρ∨) =

∑

S⊂Φ∨,+

(−1)|S|P(−
∑

β∈S

β).

In particular, the left hand side of (8.2.1) is equal to

∑

S⊂Φ∨,+

(−1)|S|P(ζs −
∑

β∈S

β, q−1
1 ).

By Proposition 5.3.1 (1) and Proposition 8.1.1, the above is equal to

∑

L∈Z, L>(n+3.5)t

q−L
1

∑

S⊂Φ∨,+

(−1)|S|#P(ζs −
∑

β∈S

β)L.(8.2.2)
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By the same argument as in the proof of Proposition 6.2.1, the expression

∣∣∣∣∣∣

∑

L∈Z≥0

∑

S⊂Φ∨,+

(−1)|S|#P(ζs −
∑

β⊂S

β)L

∣∣∣∣∣∣

is of polynomial growth in s (or in t). Hence (8.2.2) is bounded by

O(q
−(n+3.4)t
1 ). Since s · defG(b)/2 = (n + 3)t, the desired bound (8.2.1) fol-

lows.

8.3. The case Proper-II

We now treat type E6, θ = id, b = b1 or b2. See §7.5. By symmetry, it suffices
to treat the case of b1. Recall in this case

Λ(b1)− Λ(b1)good = {�5, �4 +�1, �2 +�6, 2�6},

and we have defG(b1) = 4.

Proposition 8.3.1. The bound (6.3.2) holds for all λ ∈ {�4 + �1, �2 +
�6, 2�6}. In other words, in Proposition 6.3.2 (2) (for b = b1) we may take
λbad to be �5.

Proof. We define a function |·|′ : R9 → R≥0 in the following way. For any
v =
∑9

i=1 xiei ∈ R9, we define

|v|′ := max
i,j∈{0,1,2},i �=j;

k,l∈{1,2,3}

|x3i+k − x3j+l|.

In other words, we think of R9 as (R3)3, and we take the largest difference
between a coordinate in one factor of R3 and a coordinate in a different fac-
tor. Then |·|′ is a semi-norm, i.e., it is compatible with scalar multiplication
by R and satisfies the triangle inequality. Note that |·|′ is not W0-invariant.
By the explicit description of the roots, we have |α|′ = 1 for all positive
roots α.

Claim. |μ|′ ≥ 7/3 for all μ ∈ W0λ.

We prove the claim. We first record explicitly the W0-orbit of λ. To state
it we need some notation. Let C3 be the cyclic group of order 3 with a fixed
generator c. We let C3 act on S3 × S3 × S3 via

c : (σ1, σ2, σ3) 
−→ (σ2, σ3, σ1).
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Let H denote the semi-direct product (S3 × S3 × S3) � C3. Then we have
an action of H on R9, where S3 × S3 × S3 acts naturally on the coordinate
indices, and c ∈ C3 acts via

c : (x1, x2, x3;x4, x5, x6;x7, x8, x9) 
−→ (x4, x5, x6;x7, x8, x9;x1, x2, x3).

For λ = �2 +�6, its W0-orbit is given by the union of the H-orbits of
the following 7 vectors:

(2,−1,−1;
2

3
,−1

3
,−1

3
;
1

3
,
1

3
,−2

3
), (

2

3
,−1

3
,−1

3
;
1

3
,
1

3
,−2

3
; 3, 3,−6),

(
4

3
,
1

3
,−5

3
; 1, 0,−1;

2

3
,−1

3
,−1

3
), (

1

3
,
1

3
,
2

3
; 1, 0,−1;

5

3
,−1

3
,−4

3
),

(
4

3
,
1

3
,−5

3
; 0, 0, 0;

2

3
,
2

3
,−4

3
), (

4

3
,−2

3
,−2

3
; 0, 0, 0;

5

3
,−1

3
,−4

3
),

(
4

3
,−2

3
,−2

3
; 1, 0,−1;

2

3
,
2

3
,−4

3
).

For λ = �1+�4, itsW0-orbit is the union of theH-orbits of the following
4 vectors:

(
4

3
,−1

3
,−5

3
; 0, 0, 0;

2

3
,−1

3
,−1

3
), (

1

3
,
1

3
,−2

3
; 0, 0, 0;

5

3
,−1

3
,−4

3
),

(
4

3
,−2

3
,−2

3
; 1, 0,−1;

2

3
,−1

3
,−1

3
), (

1

3
,
1

3
,−2

3
; 1, 0,−1;

2

3
,
2

3
,−4

3
).

For λ = 2�6, its W0-orbit is the H-orbit of

(
4

3
,−2

3
,−2

3
; 0, 0, 0;

2

3
,
2

3
,−4

3
).

One sees easily that |·|′ of all the above vectors are ≥ 7/3. Since |·|′
is invariant under the action of H, it follows that |μ|′ ≥ 7/3 holds for all
μ ∈ W0λ. The claim is proved.

Based on the claim, we prove (6.3.2) for λ ∈ {�4 +�1, �2 +�6, 2�6},
using an argument similar to §7.1.1. By the formula (5.2.2), it suffices to
show for each w,w′ ∈ W0 that

P(ψs, q
−1
1 ) = O(q

−s( 1

2
defG(b1)+a)

1 )

for some a > 0, where ψs := w•(w′λ(s)). By the same argument as in §7.1.1,
we easily reduce to proving: For some constant a > 0,

min {|m| : m ∈ P(ψs)} ≥ s(
1

2
defG(b1) + a) = s(2 + a),(8.3.1)
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for all s � 0. By the previous claim, for all m ∈ P(ψs) we have

1 ·
∑

β∈Φ∨,+

m(β) ≥

∣∣∣∣∣∣

∑

β∈Φ∨,+

m(β)β

∣∣∣∣∣∣

′

= |ψs|′ ≥
∣∣∣ww′λ(s)

∣∣∣
′
−
∣∣wρ∨ − ρ∨

∣∣′

= s
∣∣ww′λ

∣∣′ − C ≥ s · 7
3
− C,

where C is a constant independent of s. Here the number 1 appearing in the
leftmost term is equal to minβ∈Φ∨,+ |β|′. Since θ = id, the leftmost term in
the above inequalities is none other than |m|. The desired (8.3.1) follows.

8.4. The case Proper-III

We now treat type E7, θ = id, and [b] ∈ B(G) being the unique basic class
such that κG(b) is the non-trivial element of π1(G) = Z/2Z. See §7.7. Recall
in this case Λ(b)− Λ(b)good = {�5}, and defG(b) = 3.

Proposition 8.4.1. The bound (6.3.1) holds for λ = �5.

Proof. Firstly, the W0-orbit of λ is given by all permutations under S8 of
the following vectors:

λ1 = (
7

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
),

λ2 = (
5

4
,−3

4
,−3

4
,−3

4
,
1

4
,
1

4
,
1

4
,
1

4
),

λ3 = (−7

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
),

λ4 = (−5

4
,
3

4
,
3

4
,
3

4
,−1

4
,−1

4
,−1

4
,−1

4
).

Indeed it is easy to see that all these elements lie in W0λ (using the fact
that the W0 contains the copy of S8), and one easily computes the size of
W0λ to prove that these are all the elements of W0λ.

For 1 ≤ i ≤ 8 and τ ∈ S8, we define functions

|·|i : R8 → R≥0, |·|τ : R8 → R≥0

in the following way. For any v =
∑8

i=1 xiei ∈ R8, we define

|v|i := |xi| , |v|τ :=
∣∣xτ(1)

∣∣+
∣∣xτ(2)

∣∣+
∣∣xτ(3)

∣∣+
∣∣xτ(4)

∣∣ .
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Then |·|i , |·|τ are all semi-norms on R8.
Note that in the proof of Proposition 8.3.1, we reduced to proving (8.3.1)

for each fixed pair (w,w′) ∈ W0 ×W0. During the proof of (8.3.1) for the
fixed (w,w′), we only needed to apply the semi-norm |·|′ to ww′λ, and not
to any other element of W0λ. Hence for each element in W0λ, we could use
a semi-norm, which is specifically designed for that element, to finish the
proof. In the current case, we reduce to proving that each μ ∈ W0λ satisfies
at least one of the following inequalities:

|μ|i >
defG(b)

2
min

β∈Φ∨,+
|β|i =

3

2
min

β∈Φ∨,+
|β|i ,(8.4.1)

|μ|τ >
defG(b)

2
min

β∈Φ∨,+
|β|τ =

3

2
min

β∈Φ∨,+
|β|τ(8.4.2)

for some 1 ≤ i ≤ 8 or for some τ ∈ S8.
When μ is an S8-permutation of λ1 or λ3, assume the i0-th coordinate

of μ is ±7/4. Then μ satisfies the inequality (8.4.1) indexed by i0. In fact,
any β ∈ Φ∨,+ satisfies |β|i0 ≤ 1, and we have |μ|i0 = 7/4.

When μ is an S8-permutation of λ2 or λ4, there exists τ ∈ S8 such that

|μ|τ =
5

4
+

3

4
+

3

4
+

3

4
=

7

2
.

On the other hand |β|τ ≤ 2 for all β ∈ Φ∨,+ and all τ ∈ S8. Therefore (8.4.2)
holds for some τ .

9. Proof of the key estimate, Part III

We have proved all the statements in Proposition 6.3.2, except the existence
of μ1 in Proposition 6.3.2 (1), and the existence of μ1, μ2 in Proposition 6.3.2
(2). In this section we construct them.

First assume that G is not of type E6, and that θ = id. We easily
examine all such cases in §7 and see that λ+

b ∈ X∗(T̂ )+ is always minuscule.
Hence we may take μ1 := λ+

b . Since G is adjoint and θ = id, the condition
that b ∈ B(G,μ1) is equivalent to the condition that b and μ1 have the
same image in π1(G)σ = π1(G), which is true by construction. Moreover,
we have dimVμ1

(λb)rel = dimVλ+
b
(λ+

b ) = 1. The proof of Proposition 6.3.2
is complete in these cases.

The only remaining cases are the following:

Nonsplit-I Type Dn, n ≥ 5, θ has order 2. See §7.2.
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Nonsplit-II Type D4, θ has order 2. See §7.3.
Split-E6 Type E6, θ = id. See §7.5
In fact, in all the other cases listed in §6.5 where θ is non-trivial, namely
cases (6) and (8), we have shown in §7.4 and §7.6 that any basic [b] ∈ B(G)
is unramified, so we do not need to consider these cases.

9.1. The case Nonsplit-I

As we showed in §7.2, we have π1(G)σ ∼= Z/2Z, and there is a unique choice
of basic [b] ∈ B(G) corresponding to the non-trivial element in π1(G)σ.
Moreover we have

λ+
b = (

1

2
, · · · , 1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q.

Recall that X∗(T ) = X∗(T̂ ) = L2 ⊂ Rn. We take

μ1 := (
1

2
, · · · , 1

2
) ∈ L2 = X∗(T ) = X∗(T̂ ).

Then μ1 is in X∗(T̂ )+ and is minuscule. From the description of the action
of σ on π1(G) in §7.2, the image of μ1 in π1(G)σ is the non-trivial element,
and hence [b] ∈ B(G,μ1). Finally, the only weights in X∗(T̂ ) of Vμ1

are
the elements of W0μ1. Among all these weights, there is precisely one that
restricts to λ+

b ∈ X∗(Ŝ), namely μ1. Hence we have

dimVμ1
(λb)rel = dimVμ1

(λ+
b )rel = dimVμ1

(μ1) = 1.

9.2. The case Nonsplit-II

We keep the notation of §7.3. Note that what τ is does not affect the subset
{α1, α2, α3, α4} of R4. Nor does it affect the coroot lattice and the coweight
lattice. Moreover, no matter what τ is, the quotient map X∗(T ) → X∗(Ŝ)
is always the same as

L2 −→ L′
2

(ξ1, ξ2, ξ3, ξ4) 
−→ (ξ1, ξ2, ξ3),

where L2 = Z4+Z(12 ,
1
2 ,

1
2 ,

1
2) and L′

2 = Z4+Z(12 ,
1
2 ,

1
2). Hence the situation is

precisely the same as the case Nonsplit-I discussed in §9.1. More precisely,
for the unique basic [b] ∈ B(G) that maps to the non-trivial element in
π1(G)σ ∼= Z/2Z, we have λb = (−1

2 ,
1
2 ,−1

2), λ
+
b = (12 ,

1
2 ,

1
2), and we take

μ1 := (12 ,
1
2 ,

1
2 ,

1
2).
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9.3. The case Split-E6

We keep the notation of §7.5. To finish the proof of Proposition 6.3.2 (2),
we need to construct μ1 and μ2. By symmetry we only need to consider b1,
among b1, b2. Recall from §7.5 that λ+

b1
= �1. Recall from Proposition 8.3.1

that the distinguished element λbad in Λ(b1) is �5. Since θ = id, we have
Ŝ = T̂ .

Note that λ+
b1

= �1 is minuscule. We take μ1 := �1. Then the only

weight of Vμ1
in X∗(Ŝ)+ = X∗(T̂ )+ is μ1 = λ+

b1
, and dimVμ1

(λb1)rel =

dimVμ1
(μ1) = 1. We have b1 ∈ B(G,μ1), because the image of μ1 = λ+

b1
in

π1(G)σ = π1(G) is the same as that of λb1 , which is the same as κ(b1).
Note that �6 is also minuscule. We take μ2 := 2�1 +�6. Then μ2 is a

sum of dominant minuscule coweights. By (7.5.2) we know that μ2−�1 is in
the coroot lattice. Hence μ2 represents the same element in π1(G)σ = π1(G)
as�1, and in particular b1 ∈ B(G,μ2). We are left to check that Vμ2

(λbad)rel,
which is Vμ2

(�5), is non-zero. One computes that dimVμ2
(�5) = 14, (see

for example LiE online service, http://young.sp2mi.univ-poitiers.fr/
cgi-bin/form-prep/marc/dom char.act?x1=2&x2=0&x3=0&x4=0&x5=0&x6

=1&rank=6&group=E6).2 The proof of Proposition 6.3.2 is complete.

Appendix A. Irreducible components for quasi-split groups

We explain in this appendix how we can use our results combined with
[18] to obtain a description of the number of Jb(F )-orbits of irreducible
components of affine Deligne–Lusztig varieties associated to a group which
is quasi-split but not necessarily unramified. The main result Theorem A.3.1
is a generalization of Conjecture 2.6.7.

A.1. Basic definitions

We extend the notations introduced in §2. We let F , L, kF , k, σ, Γ be as
in §2. However now we only assume that G is a quasi-split reductive group
over F . Let T ⊂ G be the centralizer of a maximal F -split torus in G. Then
T is a maximal torus in G since G is quasi-split. We fix B to be a Borel
subgroup of G (over F ) containing T . Let Ă ⊂ TL be the maximal L-split
sub-torus of TL. Note that TL is a minimal Levi subgroup of GL, so Ă is a
maximal L-split torus in GL. Let N ⊂ GL denote the normalizer of Ă. Let
V be the apartment of GL corresponding to Ă. Let a be a σ-stable alcove in

2Note that in LiE, our α2, α3, α4 are indexed by 3, 4, 2 respectively.
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V , and let s be a σ-stable special vertex lying in the closure of a. Denote by

I the Iwahori group scheme over OF associated to a, and denote by K the

special parahoric group scheme over OF associated to s. Let Γ0 ⊂ Γ denote

the inertia subgroup, which is also identified with Gal(L/L). The choice of

s gives an identification V ∼= X∗(T )Γ0
⊗Z R, sending s to 0. In the following

we freely use the identification in Lemma 1.6.1 (3). We assume that under

the identification

V ∼= X∗(T )Γ0
⊗Z R ∼= X∗(T )

Γ0

R ,(A.1.1)

the image of a is contained in the anti-dominant chamber −X∗(T )
+
R .

The Iwahori–Weyl group is defined to be W := N(L)/(T (L) ∩ I(OL)).

For any w ∈ W we choose a representative ẇ ∈ N(L). We write W0 :=

N(L)/T (L) for the relative Weyl group of G over L. Then we have a natural

exact sequence:

1 −→ X∗(T )Γ0
−→ W −→ W0 −→ 1.

Similar to §2.2, the canonical action of N(L) on V factors through an action

of W , and we split the above exact sequence by identifying W0 with the sub-

group of W fixing s ∈ V . For μ ∈ X∗(T )Γ0
we write tμ for the corresponding

element in W . The Frobenius σ induces an action on W which stabilizes the

set S of simple reflections. See [12] for more details.

Let B(G) (resp. B(W,σ)) denote the set of σ-conjugacy classes of G(L)

(resp. W ). Let X∗(T )
+
Γ0,Q

denote the intersection of X∗(T )Γ0
⊗Q ∼= X∗(T )

Γ0

Q

with X∗(T )
+
Q . Similar to §2.3, we have a commutative diagram

B(W,σ)
Ψ

(ν̄,κ)

B(G)
(ν̄,κ)

(X∗(T )
+
Γ0,Q

)σ × π1(G)Γ

,(A.1.2)

where Ψ is a surjection, and the map (ν̄, κ) on B(W,σ) can be described

explicitly. These statements are proved in [18], see [20, §1.2] for an exposition.

Let w ∈ W and b ∈ G(L). We define the affine Deligne–Lusztig variety

Xw(b) as follows:

Xw(b) := {gI(OL) ∈ G(L)/I(OL) | g−1bσ(g) ∈ I(OL)ẇI(OL)}.
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Now let μ ∈ X∗(T )Γ0
be the image of an element μ ∈ X∗(T )

+. Similarly we
define the affine Deligne–Lusztig variety Xμ,K(b) as follows:

Xμ,K(b) := {gK(OL) ∈ G(L)/K(OL) | g−1bσ(g) ∈ K(OL)ṫ
μK(OL)}.

When F is of equal (resp. mixed) characteristic, Xw(b) and Xμ,K(b) are
schemes (resp. perfect schemes) locally of finite type (resp. locally perfectly
of finite type) over k, see [17].

We define the set

B(G,μ) := {[b] ∈ B(G) | κ([b]) = μ�, ν̄b ≤ μ
}.

Here μ� denotes the image of μ in π1(G)Γ, and μ
 ∈ (X∗(T )
+
Γ0,Q

)σ denotes

the average over the σ-orbit of μ ∈ X∗(T )Γ0
. Note that both μ� and μ


depend only on μ, which justifies the notation B(G,μ). The set B(G,μ)
controls the non-emptiness pattern of Xμ,K(b).

Theorem A.1.1. We have Xμ,K(b) �= ∅ if and only if [b] ∈ B(G,μ).

Proof. This is proved in [18, Theorem 7.1] assuming char(F ) > 0. The same
proof extends to the case char(F ) = 0.

For b ∈ G(L), the group Jb(F ) acts on Xμ,K(b) via scheme automor-
phisms. Our goal is to understand the cardinality

N (μ, b) := #

(
Jb(F )\Σtop(Xμ,K(b))

)
.(A.1.3)

For simplicity, from now on we assume that G is adjoint. The general
case reduces to this case by a standard argument.

A.2. A dual group construction

The desired formula for (A.1.3) will be expressed in terms of a canonical
reductive subgroup of the dual group Ĝ. We keep the assumption that G is
adjoint.

As in §5.1, we let

BRD(B, T ) = (X∗(T ),Φ ⊃ Δ, X∗(T ),Φ
∨ ⊃ Δ∨)

be the based root datum associated to (B, T ), equipped with an action by
Γ. Let Ĝ be the dual group of G over C, which is equipped with a Borel
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pair (B̂, T̂ ) and an isomorphism BRD(B̂, T̂ )
∼−→ BRD(B, T )∨. We fix a

pinning (B̂, T̂ , X̂+). The action of Γ on BRD(B, T ) translates to an action

on BRD(B̂, T̂ ), and the latter lifts to a unique action of Γ on Ĝ via algebraic

automorphisms that preserve (B̂, T̂ , X̂+).

We define

Ĥ := ĜΓ0,0,(A.2.1)

namely the identity component of the Γ0-fixed points of Ĝ. This construction

was also considered by Zhu [46] and Haines [14]. By [14, Proposition 5.1], Ĥ is

a reductive subgroup of Ĝ, and it has a pinning of the form (B̂Γ0,0, T̂Γ0,0, X̂′
+).

Moreover, the induced action of the Frobenius σ ∈ Γ/Γ0 on Ĥ preserves

this pinning. We write B̂H := B̂Γ0,0 and T̂H := T̂Γ0,0. Let θ̂ denote the

automorphism of Ĥ given by σ. We define

Ŝ := (T̂H)θ̂,0.

Note that since G is adjoint, the fundamental coweights of G form a Γ-

stable Z-basis of X∗(T ). It then follows from Lemma 1.6.1 (2) that X∗(T )Γ0

and X∗(T )Γ are both free. Hence we in fact have T̂H = T̂Γ0 and Ŝ = T̂Γ.

This observation will simplify our exposition.

Lemma A.2.1. Let b ∈ G(L). There is a unique element λb ∈ X∗(Ŝ)
satisfying the following conditions:

1. The image of λb under X∗(Ŝ) = X∗(T )Γ → π1(G)Γ is equal to κ(b).

2. In X∗(Ŝ)Q = X∗(T̂ )Γ ⊗ Q = (X∗(T )Γ0
)σ ⊗ Q ∼= (X∗(T )Γ0,Q)

σ, the

element λb − ν̄b is equal to a linear combination of the restrictions to

Ŝ of the simple roots in Φ∨ ⊂ X∗(T̂ ), with coefficients in Q ∩ (−1, 0].

Proof. The proof is the same as Lemma 2.6.3.

A.3. The main result

Assume that G is adjoint and quasi-split over F . Let μ ∈ X∗(T )Γ0
be the

image of an element μ ∈ X∗(T )
+. Let b ∈ G(L). Define Ĥ as in (A.2.1).

Let V Ĥ
μ denote the highest weight representation of Ĥ of highest weight

μ ∈ X∗(T̂H)+. Let λb ∈ X∗(Ŝ) be as in Lemma A.2.1, and let V Ĥ
μ (λb)rel be

the λb-weight space in V Ĥ
μ , for the action of Ŝ.
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Theorem A.3.1. Assume that [b] ∈ B(G,μ). Then

N (μ, b) = dimV Ĥ
μ (λb)rel.

Remark A.3.2. The appearance of the representation V Ĥ
μ of the subgroup

Ĥ of Ĝ in Theorem A.3.1 is compatible with the ramified geometric Satake
in [46].

Proof of Theorem A.3.1. The idea of the proof is to reduce to the unramified
case. For this we first construct an auxiliary unramified reductive group over
F .

From Ĥ and its pinned automorphism θ̂, we obtain an unramified reduc-
tive group H over F , whose dual group is Ĥ. By definition H is equipped
with a Borel pair (BH , TH), and a σ-equivariant isomorphism of based root
data BDR(BH , TH)

∼−→ BDR(B̂H , T̂H)∨. We write

BDR(BH , TH) = (X∗(TH),ΦH , X∗(TH),Φ∨
H).

Then we have canonical σ-equivariant identifications

X∗(TH) ∼= X∗(T̂H) ∼= X∗(T̂ )
Γ0 ∼= X∗(T )Γ0

and

X∗(TH) ∼= X∗(T̂H) ∼= X∗(T̂ )Γ0
∼= X∗(T )Γ0

,

which we shall treat as identities. Here X∗(T )Γ0
is free, as we have noted

before.
Note that TH,L is a maximal split torus in HL. Let VH be the corre-

sponding apartment, and fix a hyperspecial vertex sH in VH (coming from
the apartment of H corresponding to the maximal F -split sub-torus of TH).
We fix a σ-stable alcove aH ⊂ VH whose closure contains sH . We identify

VH
∼= X∗(TH)⊗ R,(A.3.1)

sending sH to 0, such that the image of aH is in the anti-dominant chamber.
Since X∗(TH) = X∗(T )Γ0

, the two identifications (A.1.1) and (A.3.1)
give rise to a σ-equivariant identification V ∼= VH which maps a onto aH ,
and maps s to sH .

By [14, Corollary 5.3], the set of coroots Φ∨
H ⊂ X∗(TH) = X∗(T )Γ0

is

given by Σ̆∨, where Σ̆ is the échelonnage root system of Bruhat–Tits, see
[14, §4.3]. In particular, the coroot lattice in X∗(TH) is isomorphic to the
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Γ0-coinvariants of the coroot lattice in X∗(T ). Moreover from Φ∨
H = Σ̆∨

we know that the affine Weyl group of G and the affine Weyl group of H
are equal, under the identification V ∼= VH . See [12] for more details. Since
the translation groups X∗(TH) and X∗(T )Γ0

are also identified, we have an
identification between the Iwahori–Weyl group W of G and the Iwahori–
Weyl group WH of H. This identification is σ-equivariant.

Note that the bottom group in the diagram (A.1.2) and its analogue for
H are identified. Using the identification ofW andWH , and using the surjec-
tivity of the map Ψ : B(W,σ) → B(G) and its analogue ΨH : B(WH , σ) →
B(H), we construct [bH ] ∈ B(H) whose invariants are the same as those
of [b]. Since the set B(G,μ) is defined in terms of the invariants (ν̄, κ) and
ditto for B(H,μ), we see that [b] ∈ B(G,μ) if and only if [bH ] ∈ B(H,μ).
Here in writing B(H,μ) we view μ as an element of X∗(TH)+.

To relate the geometry of Xμ,K(b) with the geometry of Xμ(bH), we use
the class polynomials in [18]. For each w ∈ W and each σ-conjugacy class
O in W , we let

fw,O ∈ Z[v − v−1]

denote the class polynomial defined in [18, §2.3].
Using the fibration

⋃

w∈W0t
µW0

Xw(b) −→ Xμ,K(b),

we have an identification

Jb(F )\Σtop

(
⋃

w∈W0t
µW0

Xw(b)

)
∼= Jb(F )\Σtop(Xμ,K(b)).(A.3.2)

By [18, Theorem 6.1], we have the formula

dimXw(b) = max
O

1

2
(�(w) + �(O) + deg fw,O))− 〈νb, 2ρ〉.

where O runs through σ-conjugacy classes in W such that (ν, κ)(O) =
(ν, κ)(b) and where �(O) denotes the length of a minimal length element in
O. Moreover the proof of [18, Theorem 6.1] also shows that the cardinality of
Jb(F )\Σtop(Xw(b)) is equal to the leading coefficient of

∑
O v�(w)+�(O)fw,O.

Since each Xw(b) is locally closed in the union
⋃

w∈W0t
µW0

Xw(b), any top
dimensional irreducible component in the union is the closure of a top di-
mensional irreducible component in Xw(b) for a unique w. It follows that
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the cardinality of

Jb(F )\Σtop

(
⋃

w∈W0t
µW0

Xw(b)

)

is equal to the leading coefficient of

(A.3.3)
∑

w∈W0t
µW0

∑

O

vl(w)+l(O)fw,O.

By (A.3.2), this number is just N (μ, b). Since the term (A.3.3) only depends
on the quadruple (W,σ, μ, (ν, κ)(b)), the same is true for N (μ, b).

Applying the same argument to H, we see that N (μ, bH) only de-
pends on the quadruple (WH , σ, μ, (ν, κ)(bH)). Now since the quadruples
(W,σ, μ, (ν, κ)(b)) and (WH , σ, μ, (ν, κ)(bH)) are identified, we have
N (μ, b) = N (μ, bH). It thus remains to check

N (μ, bH) = dimV Ĥ
μ (λb)rel.(A.3.4)

By assumption [b] ∈ B(G,μ), and so [bH ] ∈ B(H,μ). The right hand side of
(A.3.4) is easily seen to be equal to M (μ, bH) in Conjecture 2.6.7, for the
group H. Hence the desired (A.3.4) follows from the main result Corollary
6.3.5 of the paper.
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Sci. Éc. Norm. Supér. (4) 43 1017–1038. MR2778454
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319 289–305. Birkhäuser/Springer, Cham. MR3618054

[38] R. Ranga Rao (1972). Orbital integrals in reductive groups. Ann. of
Math. (2) 96 505–510. MR0320232

[39] M. Rapoport (2005). A guide to the reduction modulo p of Shimura
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