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Twisted orbital integrals and irreducible
components of affine Deligne-Lusztig varieties

RONG ZHOU AND YIHANG ZHU

We analyze the asymptotic behavior of certain twisted orbital in-
tegrals arising from the study of affine Deligne—Lusztig varieties.
The main tools include the Base Change Fundamental Lemma and
g-analogues of the Kostant partition functions. As an application
we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating
the set of irreducible components of an affine Deligne-Lusztig vari-
ety modulo the action of the o-centralizer group to the Mirkovié—
Vilonen basis of a certain weight space of a representation of the
Langlands dual group.
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First introduced by Rapoport [39], affine Deligne—Lusztig varieties play an
important role in arithmetic geometry and the Langlands program. One of
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the main motivations to study affine Deligne—Lusztig varieties comes from
the theory of p-adic uniformization, which was studied by various authors
including Cerednik [6], Drinfeld [7], Rapoport-Zink [42], and more recently
Howard—Pappas [21] and Kim [23]. In this theory, a p-adic formal scheme
known as the Rapoport—Zink space uniformizes a tubular neighborhood in
an integral model of a Shimura variety around a Newton stratum. The re-
duced subscheme of the Rapoport—Zink space is a special example of affine
Deligne-Lusztig varieties. Thus in many cases, understanding certain cycles
on Shimura varieties reduces to understanding the geometry of the affine
Deligne-Lusztig variety.

In this paper, we concern the problem of parameterizing the irreducible
components of affine Deligne-Lusztig varieties. We introduce some nota-
tions. Let F' be a non-archimedean local field with valuation ring O and
residue field kr = F,. Fix a uniformizer 7 € F. Let L be the completion
of the maximal unramified extension of F', and let o be the Frobenius auto-
morphism of L over F. Let G be a connected reductive group scheme over
Op. We fix T C G to be the centralizer of a maximal Opg-split torus, and
fix a Borel subgroup B C G containing T. For p € X,.(T)" and b € G(L),
the affine Deligne—Lusztig variety associated to (G, u, b) is defined to be

Xu(b) ={g € G(L)/G(OL) | g~ "bo(g) € G(OL)u(mr)G(OL)}.

More precisely, the above set is the set of Fq—points of a scheme or a perfect
scheme, depending on whether F' has equal or mixed characteristic. See [1]
and [47] for the result in mixed characteristic.

Let 3P be the set of top-dimensional irreducible components of X, (b).
The group

J:=Jy(F)={g € G(L) | g~ 'bo(g) = b}

naturally acts on X, (b). Our goal is to understand the set J\X*P of J-orbits
in Ytop,

The motivation for studying this set is to understand cycles in the spe-
cial fiber of Shimura varieties; in particular cycles arising from the basic, or
supersingular locus. In [45], the authors used the description of J\X%P in
some special cases to prove certain cases of the Tate conjecture for Shimura
varieties. In a different situation, a description of the components in the
supersingular locus was used to study certain arithmetic level-raising phe-
nomena in [33]. After the work of Xiao—Zhu [45], Miaofen Chen and Xinwen
Zhu formulated a general conjecture relating J\X'P to the Mirkovi¢—Vilonen
cycles in the affine Grassmannian. To state the conjecture we introduce some
more notations.
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Let G denote the Langlands dual group of G over C, equipped with a
Borel pair TcC B where T is a maxnnal torus dual to T' and equipped with
an algebraic action by o. Let S be the identity component of the o-fixed
points of T.In X *(8) there is a distinguished element \p, determined by
b. It is the “best integral approximation” of the Newton cocharacter of b,
but we omit its precise definition here (see Definition 2.6.4). The fixed u
determines a highest weight representation V), of G. We write Viu(Ap)rel for
the Ap-weight space in V,, with respect to the action of S.

Conjecture 1.1.1 (Miaofen Chen, Xinwen Zhu). There exists a natural
bijection between J\X'P and the Mirkovic—Vilonen basis of V,(Ap)rel. In
particular,

(1.1.1) |J\SP| = dim Vj,(Ap)rel-

Our main result is the following
Theorem A (Corollary 6.3.5). Conjecture 1.1.1 holds.

When the group G is quasi-split but not necessarily unramified, we are
able to prove an analogous result, see Appendix A for the details.

1.2. Previous results

Previously, partial results towards Conjecture 1.1.1 have been obtained by
Xiao—Zhu [45], Hamacher—Viehmann [16], and Nie [35], based on a common
idea of reduction to the superbasic case (which goes back to [10]).

More precisely, Xiao—Zhu [45] proved the conjecture for general G, gen-
eral 1, and unramified b, meaning that J, and G are assumed to have equal
F-rank.

Hamacher—Viehmann [16] proved the conjecture under either of the fol-
lowing two assumptions:

e The cocharacter p is minuscule, and G is split over F.

e The cocharacter p is minuscule, and b is superbasic in M, where M is
the largest Levi of G inside which b is basic. (In particular if b is basic
then they assume that b is superbasic).

More recently, Nie [36] proved the conjecture for arbitrary G under the
assumption that y is a sum of dominant minuscule coweights. In particular
it holds when the Dynkin diagram of Gz only involves factors of type A.
Moreover, Nie constructed a surjection from the Mirkovi¢—Vilonen basis to
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the set J\X'P in all cases. Thus in order to prove the conjecture, it suffices
to prove the numerical relation (1.1.1) for groups besides type A.

After we finished this work, Nie uploaded online new versions of the
preprint [36], in which he proved Conjecture 1.1.1 in full generality, using
methods independent of ours. Our work only uses the weaker results of his
as stated in the above paragraph.

1.3. Some features of the method

Our proof of Conjecture 1.1.1 is based on an approach completely different
from the previous works. The key idea is to use the Lang—Weil estimate to
relate the cardinality of J\X'°P to the asymptotic behavior of the number
of points on X,(b) over a finite field, as the finite field grows.

We show that the number of points over a finite field, when counted
suitably, is given by a twisted orbital integral. Thus we reduce the problem
to the asymptotic behavior of twisted orbital integrals. We study the latter
using explicit methods from local harmonic analysis and representation the-
ory, including the Base Change Fundamental Lemma and the Kato—Lusztig
formula.

In our proof, polynomials that are linear combinations of the g-analogue
of Kostant partition functions appear, and the key computation is to esti-
mate their sizes. These polynomials (denoted by 9 (q) in the paper) can
be viewed as a non-dominant generalization of the g-analogue of Kostant
weight multiplicity. Some properties of them are noted in [37], but beyond
this there does not seem to have been a lot of study into these objects.
From our proof, it seems reasonable to expect that a more thorough study
of the combinatorial and geometric properties of these polynomials would
shed new light on the structure of affine Deligne-Lusztig varieties, as well
as the structure of twisted orbital integrals.

An interesting point in our proof is that we need to apply the Base
Change Fundamental Lemma, which is only available in general for mixed
characteristic local fields. In fact, the proofs of this result by Clozel [5] and
Labesse [31] rely on methods only available over characteristic zero, for ex-
ample the trace formula of Deligne-Kazhdan. Thus our method crucially
depends on the geometric theory of mixed characteristic affine Grassmanni-
ans as in [1] and [47]. To deduce Conjecture 1.1.1 also for equal characteristic
local fields, we apply results of He [18] to prove the following.

Theorem B (Theorem 3.1.1, Theorem 3.2.1). For any Z € X'°P, the sta-
bilizer StabyzJ is a parahoric subgroup of J. Moreover, these parahoric sub-
groups, as well as the quotient set J\X'P, are independent of the local field
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F in a precise sense. In particular, the truth of Conjecture 1.1.1 transfers
between different local fields.

Our method also allows us to show that the stabilizers of the action
of J on X'P are all hyperspecial, when b is basic and unramified. This
reproves a result of Xiao—Zhu [45], see Remark 1.4.3 below. For ramified
b, we obtain the following result, which refines Conjecture 1.1.1 in that it
provides information about the stabilizers.

Theorem C (Corollary 6.3.5 and (6.3.3)). Assume char(F) = 0. Assume
G is F-simple and adjoint, without type A or Fg factors. Assume b is basic
and ramified. Then we have

[\ = > vol(Staby J) !,
ZeJ\xtor

where the volumes vol(Staby J) are computed with a fized Haar measure on
J, and £, is a constant that depends only on b and not on u.

In a future work we shall explore the possibility of applying Theorems
A, B, C to determine the stabilizers in general.

1.4. Overview of the proof

We now explain in more detail our proof of Conjecture 1.1.1. A standard
reduction allows us to assume that b is basic, and that G is adjoint and F'-
simple. Throughout we also assume that G is not of type A, which is already
sufficient by the work of Nie [36]. To simplify the exposition, we also assume
that G is split and not of type Fg. Then & = T, and we drop the subscript
“rel” for the weight spaces in Conjecture 1.1.1.

For any s € Z~g, we let Fs be the unramified extension of F' of degree
s. We denote by Hs the spherical Hecke algebra H(G(Fs)//G(OF,)). We
may assume without loss of generality that b is sg-decent for a fixed sy € N,
meaning that b € G(F;,) and

bo(b)---o%71(b) = 1.

As mentioned above, our idea is to use the Lang—Weil estimate to relate
the number of irreducible components to the asymptotics of twisted orbital
integrals. Since X, (b) is only locally of (perfectly) finite type and we are
only counting J-orbits of irreducible components, we need a suitable inter-
pretation of the Lang—Weil estimate. The precise output is the following.
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Proposition 1.4.1 (Proposition 4.2.4). Let s € soN. Let f,, s € H, be the
characteristic function of G(Op, )u(7r)G(OF,), and let TOy(fy,s) denote the
twisted orbital integral of f, s along b € G(Fy). We have

(1.4.1)

Tob(f,u,s) — Z VOl(StabZ J)—lqsdimXu(b) + 0(qsdian”(b))’ s> 0.
ZeJ\xtor

To proceed, we apply the Base Change Fundamental Lemma to compute
TOy(fu,s)- There are two problems in this step. Firstly, the Base Change
Fundamental Lemma can only be applied to stable twisted orbital integrals.
This problem is solved because one can check that TOy(f, s) is in fact equal
to the corresponding stable twisted orbital integral. Secondly, the general
Base Change Fundamental Lemma is only available for char(F) = 0. The
way to circumvent this was already discussed in §1.3 above.

We define ¢ := (tkpJ, —rkpG) /2. Up to lower order error terms, we may
combine the above-mentioned computation of TOy(f,s) with asymptotics
of the Kato—Lusztig formula [22] to rewrite the left hand side of (1.4.1), and
we may use the dimension formula for X,(b) (by Hamacher [15] and Zhu
[47]) to rewrite the right hand side of (1.4.1). The result is the following:

(1.4.2) > dimVu(\) - Mg

AEX*(T)F A<p

=+ > vol(Stabz J)'¢¥ +0(¢*), s3>0,
ZEJ\Stop

where each MY, (¢71) is the value at @ = ¢! of a polynomial MY, (q) € C|q],
given explicitly in terms of the g-analogues of Kostant’s partition functions
(see Definition 5.2.7 and §5.3).

The key computation needed to further analyze (1.4.2) is summarized
in the following.

Proposition 1.4.2. Let )\;r € X*(f)Jr be the dominant conjugate of \y. For
all X € X*(T)* — {\}, we have

M (g) = o(g*), s> 0.

When G is the split adjoint Eg, we only prove a weaker form of Propo-
sition 1.4.2, which also turns out to be sufficient for our purpose.
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Proposition 1.4.2 tells us that on the left hand side of (1.4.2), only the
summand indexed by A = )\Zr has the “right size”. Taking the limit, we
obtain

(1.4.3) dimV,(\y) - % = Y vol(Staby J) ™!,
ZeJ\Stor

where %, is independent of pu.

In (1.4.3), we already see both the number dimV,();) and the set
J\X'P. In order to deduce the desired (1.1.1), one still needs some infor-
mation on the volume terms vol(Stabz.J). It turns out that even very weak
information will suffice. In §3 we show that the right hand side of (1.4.3)
is equal to R(q), where R(T') € Q(T) is a rational function which is inde-
pendent of F' in a precise sense. Moreover we show that |R(0)| = |J\XP].
Therefore, the desired (1.1.1) will follow from (1.4.3), if we can show that

(1.4.4) 2, = S(q), for some S(T) € Q(T') with |S(0)| = 1.

A remarkable feature of the formulation (1.4.4) is that it is independent
of . We recall that in the works of Hamacher—Viehmann and Nie, special
assumptions on u are made. Hence we are able to bootstrap from known
cases of Conjecture 1.1.1 (for example when p = A;") to establish (1.4.4),
and hence to establish Conjecture 1.1.1 in general.

We end our discussion with the following remark.

Remark 1.4.3. At the moment, we are unable to directly compute the ratio-
nal functions S(7T') appearing in (1.4.4) in general. To do this would require
a much better understanding of the polynomials 9, (q). We are however
able to compute S(7) in a very special case. When b is a basic unramified
element in the sense of [45], we show directly that (1.4.4) is satisfied by
S(T) =1, see §6.2. From this we deduce the conjecture for b, as well as the
equality vol(Stabz J) = 1 for each Z € X'°P. This last equality implies (ac-
cording to our normalization) that Staby J is a hyperspecial subgroup of J.
This gives another proof of a result in [45], avoiding their use of Littelmann
paths.

1.5. Organization of the paper
In §2, we introduce notations and state the Chen—Zhu conjecture. In §3, we

study the action of J on X*P proving Theorem B. In §4, we prove Proposi-
tion 1.4.1, and then apply the Base Change Fundamental Lemma to compute
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twisted orbital integrals. In §5 we review the relationship between the coef-
ficients of the Satake transform and the g-analogue of Kostant’s partition
functions, and draw some consequences. In §6 we state Proposition 6.3.2 as
a more technical version of Proposition 1.4.2. We then deduce Conjecture
1.1.1 from Proposition 6.3.2. The proof of Proposition 6.3.2 is given in §7,
68, and §9, by analyzing the root systems case by case. In Appendix A, we
generalize our main result to quasi-split groups.

1.6. Notations and conventions

We order N by divisibility, and write s > 0 to mean “for all sufficiently
divisible s € N”. The notation limgs_,,, will always be understood as the
limit taken with respect to the divisibility on N. If f(s), g(s) are C-valued
functions defined for all sufficiently divisible s € N, we write

f(s) = o(g(s))

to mean that lims_, f(s)/g(s) = 0, where the limit is understood in the
above sense. We write

to mean that
dM >0 3sp € NVs € 9N, [f(s)/g(s)] < M.

In this case we do not require f(s)/g(s) to be bounded, or even defined, for
all s € N.

For any finitely generated abelian group X, we write Xpee for the free
quotient of X. We let C[X] be the group algebra of X over C, and denote
by e” the element in C[X] corresponding to = € X.

We use q, or g1, or sometimes q~1/2, to denote the formal variable in
a polynomial or power series ring.

The following lemma is elementary and will be used repeatedly in the
paper. We omit its proof.

Lemma 1.6.1. Let I" be a finite group. Let X be a Z[I'|-module which is
a finite free Z-module. As usual define the norm map N : X — X, =z —
> er V(). LetY C X be aT-stable subgroup. Then the following statements
hold.

1. The kernel of the map Y — X1 free is equal to {y € Y | N(y) =0}. In
particular, it is also equal to the kernel of Y — YT free.



Twisted orbital integrals and irreducible components 159

2. Suppose Y has a finite Z-basis which is stable under I'. Then the I'-
orbits in this Z-basis define distinct elements of Yr, which form a Z-
basis of Yr. In particular Yr is a finite free Z-module.

3. The map N : X — X factors through a map Xr — X'. We have a
canonical isomorphism Xr @ Q — X' ® Q given by ﬁ N. ]

2. Notations and preliminaries
2.1. Basic notations

Let F' be a non-archimedean local field with valuation ring O and residue
field kp = . Let mp € F be a uniformizer. Let p be the characteristic
of kp. Let L be the completion of the maximal unramified extension of F,
with valuation ring O, and residue field k = kp. Let T' = Gal(F/F) be the
absolute Galois group. Let o be the Frobenius of L over F.

Let G be a connected reductive group over Op. In particular its generic
fiber G is an unramified reductive group over F', i.e. is quasi-split and splits
over an unramified extension of F. Then G(Op) is a hyperspecial subgroup
of G(F). Fix a maximal Op-split torus A of G. Let T' be the centralizer of
Ap in Gp, and fix a Borel subgroup B C GF containing 7. Then T is an
unramified maximal torus in Gp. In the following we often abuse notation
and simply write G for Gp.

Note that T7, is a split maximal torus in G. Let V be the apartment of
G, corresponding to Tr. The hyperspecial vertex s corresponding to G(Op)
is then contained in V. We have an identification V = X, (T') ® R sending s
to 0. Let a C V be the alcove whose closure contains s, such that the image
of a under V = X, (T) ® R is contained in the anti-dominant chamber. The
action of ¢ induces an action on V, stabilizing both a and s. We let Z be
the Iwahori subgroup of G(L) corresponding to a.

2.2. The Iwahori—Weyl group

The relative Weyl group Wy over L and the Iwahori-Weyl group W are
defined by

Wo = N(L)/T(L), W =N(L)/T(L)NT,
where N denotes the normalizer of T in G. Note that W} is equal to the

absolute Weyl group, as 17, is split.
We have a natural exact sequence

(2.2.1) 1 — X (T) — W — Wy — 1.
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The canonical action of N(L) on V factors through an action of W, and we
split the above exact sequence by identifying Wy with the subgroup of W
fixing s € V. See [12, Proposition 13] for more details. When considering an
element A € X, (T) as an element of W, we write t* € W. For any w € W,
we choose a representative w € N(L).

Let W, be the associated affine Weyl group, and S be the set of simple
reflections associated to a. Since a is o-stable, there is a natural action of o
on S. We let Sg C S be the set of simple reflections fixing 5. Then W contains
W, as a normal subgroup, and we have a natural splitting W = W, x §,
where  is the stabilizer of a in W and is isomorphic to 71(G). The length
function ¢ and the Bruhat order < on the Coxeter group (W,,S) extend in
a natural way to W.

For any subset P of S, we shall write Wp for the subgroup of W generated
by P.

For w,w’ € W and s € S, we write w >, w' if w’ = swo(s) and £(w') <
(w). We write w —, w’ if there is a sequence w = wog, w1, ..., w, = w’ of
elements in W such that for any i, w;_1 —», w; for some s; € S. Note that
if moreover, ¢(w') < £(w), then there exists ¢ such that ¢(w) = ¢(w;) and
Si+1wi0(8i+1) < w;.

We write w =, w' if w =, w and w' —, w. It is easy to see that
w R, wif w —, w and L(w) = ((w'). We write w &,w’ if there exists

7 € Q such that w ~, Tw'o(7) L.

2.3. The set B(G)

For any b € G(L), we denote by [b] = {g~'bo(g) | g € G(L)} its o-conjugacy
class. Let B(G) be the set of o-conjugacy classes of G(L). The o-conjugacy
classes have been classified by Kottwitz in [26] and [28], in terms of the
Newton map v and the Kottwitz map k. The Newton map is a map

(2.3.1) 7: B(G) = (X.(T)§)7,

where X*(T)(E is the set of dominant elements in X, (7T")g = X.(T) ® Q.
The Kottwitz map is a map

k=kqg: B(G) = m(G)r.
By [28, §4.13], the map

(2.3.2) (#.5) : B(G) = (X.(T)E)7 x m(Q)r
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is injective.
Let B(W, o) denote the set of o-conjugacy classes of W. The map W —
G(L),w — w induces a map

V: B(W,0) — B(G),

which is independent of the choice of the representatives w. By [18], the map
VU is surjective. We again denote by (7, k) the composition of (2.3.2) with
. This composed map can be described explicitly, see [20, §1.2] for details.

The map ¥ is not injective. However, there exists a canonical lifting to
the set of straight o-conjugacy classes. By definition, an element w € W is
called o-straight if for any n € N,

(wo(w)--- o™ (w)) = nl(w).

This is equivalent to the condition that ¢(w) = (Dy,2p), where p is the
half sum of all positive roots. A o-conjugacy class of W is called straight if
it contains a o-straight element. It is easy to see that the minimal length
elements in a given straight o-conjugacy class are exactly the o-straight
elements.

Theorem 2.3.1 ([18, Theorem 3.7]). The restriction of ¥ : B(W,o) —
B(G) gives a bijection from the set of straight o-conjugacy classes of W to
B(G). O

2.4. The affine Deligne-Lusztig variety X p,,(b)

Let P be a standard o-invariant parahoric subgroup of G(L), i.e. a o-
invariant parahoric subgroup that contains Z. In the following, we will gener-
ally abuse of notation to use the same symbol to denote a parahoric subgroup
and the underlying parahoric group scheme. We denote by P C S the set of
simple reflections corresponding to P. Then o(P) = P. We have

GILy= || POLPOL).
wEWR\W/Wp

For any w € Wp\W/Wp and b € G(L), we set
Xpw(b)(k) := {gP(Or) € G(L)/P(Or) | g~ 'bo(g) € P(OL)wP(OL)}.

If P = Z (corresponding to P = (), we simply write X, (b)(k) for Xy ,,(b)(k).
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We freely use the standard notations concerning loop groups and partial
affine flag varieties, see [1, §9] or [47, §1.4]. When char(F') > 0, it is known
that Xp,(b)(k) could be naturally identified with the set of k-points of
a locally closed sub-ind scheme Xp,(b) of the partial affine flag variety
Grp. When char(F) = 0, thanks to the recent breakthrough by Bhatt—
Scholze [1, Corollary 9.6] (cf. also [47]), we can again identify Xp,(b)(k)
with the k-points of a locally closed perfect sub-ind scheme Xp,,(b) of the
Witt vector partial affine flag variety Grp. In both cases, the (perfect) ind-
scheme Xp,(b) is called an affine Deligne-Lusztig variety, and one could
consider topological notions related to the Zariski topology on Xp,,(b).

We are mainly interested in the case when P = Gp,. In this case the
corresponding set of simple reflections is K := Sg. Recall from §2.2 that we
fixed a splitting of (2.2.1) using the hyperspecial vertex s. According to this
splitting, the subgroup Wy of W is the same as Wi, the subgroup generated
by K = Sg. We have identifications

Wi \W/Wi = Wo\(X«(T) x Wo)/Wo =2 X.(T)/Wo = X.(T)*.

For p € X.(T)*, we write X,(b) for X 4 (b).

We simply write Grg for Grg,,, . The relationship between the hyper-
special affine Deligne-Lusztig variety X, (b) C Grg and the Iwahori affine
Deligne-Lusztig varieties X,,(b) C Grz is as follows. We have a projection
w . FL — Grg which exhibits 7L := Grz as an étale fibration over Grg.
Indeed the fiber of this map is isomorphic to the fpqc quotient L*G/LTT
where LTG, LT are the positive loop groups attached to G and Z. More
concretely, LTG/L"T is a finite type flag variety over k when char(F) > 0,
and is the perfection of a finite type flag variety over k when char(F') = 0.
We have

N XL0) = X0 = | Xu(®)
weWotr+ Wy

2.5. Basic information about X, (b)

For A\, X € X,(T)q, we write A < X if X — X is a non-negative rational linear
combination of positive coroots. Let p € X, (7). As in [41], we set

B(G,p) = {b] € B(G) | w([b]) = u*, 1% < p°}.

Here p® denotes the image of u in 71(G)r, and u® € X.(T)g denotes the
Galois average of u.



Twisted orbital integrals and irreducible components 163

The following result is proved by Kottwitz [29] and Gashi [8], strengthen-
ing earlier results of Rapoport—Richartz [40], Kottwitz—Rapoport [24], and
Lucarelli [34].

Theorem 2.5.1. For b € G(L), we have X,,(b) # 0 if and only if [b] €
B(G, p). O

We now let € X,.(T)T and let b € G(L) such that [b] € B(G, ).

Definition 2.5.2. We define defg(b) := rkpG — rkpJp, called the defect of
b.

Theorem 2.5.3. If char(F) > 0, then X, (b) is a scheme locally of finite
type over k. If char(F) = 0, then X, (b) is a perfect scheme locally perfectly
of finite type over k. In both cases the Krull dimension of X,,(b) is equal to

1
{1 =, p) — 5 def(b).

Proof. The local (perfectly) finiteness is proved by Hamacher—Viehmann
[16, Lemma 1.1], cf. [17]. The dimension formula is proved by Hamacher
[15] and Xinwen Zhu [47], strengthening earlier results of Gortz—Haines—
Kottwitz-Reuman [10] and Viehmann [44]. O

Definition 2.5.4. For any (perfect) scheme X, we write 3(X) for the set
of irreducible components of X. When X is of finite Krull dimension, we
write ¥'°P(X) for the set of top dimensional irreducible components of X.

Define the group scheme J, over F' by
(2.5.1) Jp(R) = {g €EGR®FpL) | g_lba(g) = b}

for any F-algebra R. Then J, is an inner form of a Levi subgroup of G,
see [42, §1.12] or [40, §1.11]. The group J,(F) acts on X, (b) via scheme
automorphisms. In particular J,(F) acts on (X, (b)) and on LP(X,(b)).
The following finiteness result is proved in [17, Theorem 1.1].

Lemma 2.5.5. The set Jp(F)\X(X,(b)) is finite. O

Definition 2.5.6. We write A4 (u,b) for the cardinality of Jy(F)\
SUP(X,, (b))



164 Rong Zhou and Yihang Zhu

2.6. The Chen—Zhu conjecture

In this paper we shall utilize the usual Langlands dual group (as a reductive
group over C equipped with a pinned action by the Galois group), rather
than the Deligne-Lusztig dual group which is used in [16]. As a result, our
formulation of the Chen—Zhu conjecture below differs from [16, Conjecture
1.3, §2.1]. However it can be easily checked that the two formulations are
equivalent.

The Frobenius o acts on X (T') via a finite-order automorphism, which
we denote by 6. Let G be the usual dual group of G over C, which is a
reductive group over C equipped with a Borel pair (B T) and isomorphisms
X*(T) & X.(T),X.(T) = X*(T). These last isomorphisms, which will be
regarded as equalities, identify the positive roots (resp. coroots) with the
positive coroots (resp. roots). For more details on the dual group see §5.1
below.

Definition 2.6.1. Let S be the identity component of the 6- fixed points of
T. Equivalently, S is the sub-torus of T such that the map X*(T) — X*(S)

is equal to the map X*(T) —» X*(T)9 free"

Definition 2.6.2. For y € X,(T)" = X*(T)*, let V,, be the highest weight
representation of G of highest weight y. For all N € X *( ) we write V,(\)
for the X'-weight space in V), as a representation of T.Forall A\ € X *(5’)7
we write V,(A)rel for the A-weight space in V), as a representation of S.

As in §2.5, let p € X, (T)", and let [b] € B(G, ). By Lemma 1.6.1 (3)
we identify X, (T)¢ with

X*(T)9 ®Q= X*(T)G,free ®Q= X*(f)é,free ®Q= X*(g) ® Q,

and we shall view 7, (see (2.3.1)) as an element of X*(5) ® Q. We also have
k(b) € m (G)r = m1(G),, which is equal to the image of y.
Let Q be the root lattice inside X™*(7T ) Applying Lemma 1.6.1 to X =
X*(T ) and Y = Q, we obtain:

. Qé is a free Z-module. It injects into X*(f)é and also injects into
X*(T)é,free = X*(S)

e The image of the simple roots in @ in @, (as a set) is a Z-basis of Q.
We call members of this Z-basis the relative simple roots in @é.

Lemma 2.6.3. There is a unique element \p € X*(f)é satisfying the fol-
lowing conditions:
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1. The image of Xy in T (G)y is equal to k(b).

2. In X*(S)®Q, the element (\y)|g — Uy is equal to a linear combination
of the relative simple roots in Qp, with coefficients in QN (—1,0]. Here
(S\b)\g denotes the image of Ny under the map X*(f)é — X*(T)é,free =

~

X*(S).
Proof. This is just a reformulation of [16, Lemma 2.1]. O
Definition 2.6.4. Let \, € X*(T\)|é be as in Lemma 2.6.3. We write A, for

(M)lg € X*(S).

Conjecture 2.6.5 (Miaofen Chen, Xinwen Zhu). Let p € X.(T)" and let
[b] € B(G,p). There exists a natural bijection between Jy(F)\X*P(X,, (b))
and the Mirkovié—Vilonen basis of V,,(Ap)rel-

Definition 2.6.6. For p € X, (T)" and [b] € B(G, u), we write A4 (u,b) for
the cardinality of J,(F)\X'"P(X (b)), and write . (u,b) for dim V,,(Xp)rel-

Conjecture 2.6.5 has the following numerical consequence:

Conjecture 2.6.7 (Numerical Chen-Zhu). Let p € X.(T)" and let [b] €
B(G, ). We have

N (u,b) = A (1, b).
In [35], Nie obtained the following results:
Theorem 2.6.8 (Nie).

1. In order to prove Conjecture 2.6.5, it suffices to prove it when G is
adjoint and b is basic.

2. There is a natural surjective map from the Mirkovic—Vilonen basis of
Vi Xo)rel to the set Jp(F)\X'P(X,,(b)). Thus in order to prove Con-
jecture 2.6.5, it suffices to prove Conjecture 2.6.7.

3. Congecture 2.6.5 holds if p is a sum of dominant minuscule elements.
In particular, it holds if all absolute simple factors of G* are of type
A.

Remark 2.6.9. After the present paper was finished, Nie uploaded online
new versions of the preprint [36], in which he proved Conjecture 2.6.5 in full
generality. His methods are independent of ours. The present paper depends
logically only on Nie’s results stated in Theorem 2.6.8, see Remark 6.3.4 for
more details.

A further standard argument, for example [20, §6], shows that one can
also reduce the proof of Conjecture 2.6.7 to the case where G is F-simple.
Therefore in view of Theorem 2.6.8 (1) (2), we have:
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Proposition 2.6.10. In order to prove Conjecture 2.6.5, it suffices to prove
Conjecture 2.6.7 when G is adjoint, F-simple, and b € G(L) represents a
basic o-conjugacy class. ]

3. The action of Jy(F)
3.1. The stabilizer of a component

In this section we study the stabilizer in J,(F') of an irreducible component
of X, (b). Here as before we let p € X, (T)" and [b] € B(G, p). The first
main result is the following.

Theorem 3.1.1. The stabilizer in Jy(F) of each Z € ¥(X,(b)) is a para-
horic subgroup of Jy(F').

We first reduce this statement to a question about the Iwahori affine
Deligne-Lusztig varieties X, (b), w € Wyt'Wj. Note that J,(F') acts on each
Xw(b) via automorphisms.

Proposition 3.1.2. The projection @ : FL — Grg induces a bijection
between S(X, (b)) and (X (u,b)%) compatible with the action of Ju(F).
Moreover, this bijection maps $°P(X, (b)) onto LP(X (u,b)X).

Proof. This follows from the fact that the fiber of 7 is (the perfection of) a
flag variety. O

In view of Proposition 3.1.2, the proof of Theorem 3.1.1 reduces to show-
ing that the stabilizer of each irreducible component of X (1, )X is a para-
horic subgroup of J,(F').

Now let Y € X(X(p,b)%). Then since each X, (b) is locally closed in
FL, there exists w € WyttW, such that Y N X,,(b) is open dense in Y and
is an irreducible component of X, (b). Since the action of J,(F) on X (u, b))%
preserves X, (b), it follows that j € Ju(F') stabilizes Y if and only if j
stabilizes Y N X,,(b). Hence we have reduced to showing that the stabilizer
in Jy(F) of any element of 3(X,,(b)) is a parahoric subgroup. We will show
that this is indeed the case in Proposition 3.1.4 below.

One important tool needed in our proof is the following result, which is
[11, Corollary 2.5.3].

Proposition 3.1.3. Let w € W, and let s € S be a simple reflection.

1. If U(swo(s)) = L(w), then there exists a universal homeomorphism

X (b) — Xswo(s) (b) :
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2. If {(swo(s)) < £(w), then there is a decomposition X, (b) = X7 U X,
where X1 is closed and X5 is open, and such that there exist morphisms
X1 = Xouwo(s)(b) and Xo — Xgu(b), each of which is the composition
of a Zariski-locally trivial fiber bundle with one-dimensional fibers and
a universal homeomorphism.

Moreover the universal homeomorphism in (1) and the morphisms X; —
Xowo(s)(b) and Xo — Xgu(b) in (2) are all equivariant for the action of
Jp(F). O

Proposition 3.1.4. Assume X,,(b) # 0 and let Z € X (X, (b)). The stabi-
lizer in Jy(F) of Z is a parahoric subgroup of Jy(F).

Proof. We prove this by induction on ¢(w). Assume first that w € W is of
minimal length in its o-conjugacy class. Then X,,(b) # 0 implies ¥(w) = b,
i.e. w and b represent the same o-conjugacy class in B(G), by [18, Theorem
3.5]. In this case, by [18, Theorem 4.8] and its proof, there is an explicit
description of the stabilizer of an irreducible component which we recall.

Let YW € W (resp. W) € W) denote the set of minimal representa-
tives of the cosets Wp\W (resp. W/W,(p)). Let Pye(P) he the intersection
PYW nweP) (cf. [18, §1.6]). By [18, Theorem 2.3], there exists P C S,
z € PWo®) and u € Wp, such that:

o Wp is finite.
e 1 is o-straight and 27 1o(P)z = P.

In this case, there is a Jy,(F')-equivariant universal homeomorphism between
Xw(b) and X,z (b), and we have ¥U(uzx) = ¥(w), see [18, Corollary 4.4].
Hence we may assume w = uz. By [18, Lemma 3.2] we have ¥(z) = ¥(w),
and therefore we may assume b = . Upon replacing P, we may assume P
is minimal with respect to a fixed choice of x and u satisfying the above
properties.

Let P denote the parahoric subgroup of G(L) corresponding to P. The
proof of [18, Theroem 4.8] shows that

Xua(#) 2 J5(F) X g, (mynp X (8),

where X7 (i) is the reduced k-subscheme of the (perfectly) finite type
scheme LTP/LTZ whose k-points are

X7.(&)(k) = {g € P(OL)/Z(OL) | g 'ic(g) € T(OL)udI(OL)}.

Thus it suffices to show the stabilizer in J;(F) N P(Or) of an irreducible
component of X (i) is a parahoric subgroup of J;(F).
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Let P denote the algebraic group over k, which is the reductive quotient
of the special fiber of P. Recall its Weyl group is naturally identified with
Wp. Then T is the pre-image of a Borel subgroup Z of P under the reduction
map P — P. Let o; denote the automorphism of P given by p — 2~ 1o (p).
Then the natural map LTP/LTZ — P /T induces an identification between

XP (&) and (the perfection of) the finite type Deligne-Lusztig variety
X' ={pecP/T|p 'o:(p) € Tul}.

The natural projection map P — P takes J;(F) N P(Or) to P°*, and
the action of J;(F) NP(Op) factors through this map. Since P is minimal
satisfying u € Wp and since 2~ 1o (P)x = P, it follows that u is not contained
in any o;-stable parabolic subgroup of Wp. Therefore by [9, Corollary 1.2],
X' is irreducible. It follows that the stabilizer of the irreducible component
1 x XP (%) C Xyz() is Jz(F) N P(Or), which is a parahoric of J;(F). Tt
also follows that the stabilizer of any other irreducible component of X, (%)
is a conjugate parahoric.

Now we assume w is not of minimal length in its o-conjugacy class. By
[19, Corollary 2.10], there exists w'~,w and s € S such that sw'o(s) < w'.
Then by Proposition 3.1.3, there is a Jy(F)-equivariant universal homeo-
morphism between X,,(b) and X, (b). Thus it suffices to prove the result
for X, (b).

Let Z' € 3(Xy (b)), and let X; and X3 be as in Proposition 3.1.3. We
have either Z’ N X, or Z' N X5 is open dense in Z’. Assume Z' N X7 is open
dense in Z’; the other case is similar. Since Jy,(F') preserves X1, it suffices to
show that the stabilizer of Z’ N X is a parahoric. From the description of
X1, there exists an element V' € X(X,4(5)(b)) such that Z'NX; — Vis a
fibration and is J,(F')-equivariant. Therefore by induction, the stabilizer of
V is a parahoric of J,(F'), and hence so is the stabilizer of Z’' N X;. O

3.2. Independence of F and volumes of stabilizers

The second main result of this section is that the set of J,(F')-orbits of
irreducible components of X, (b) and the volume of the stabilizer of an irre-
ducible component depend only on the affine root system together with the
action of the Frobenius. In particular, it is independent of F' in a manner
which we will now make precise. This fact is a key observation that we will
need for later applications.

By [18, §6], the set of J,(F)-orbits of top dimensional irreducible compo-
nents of X, (b) depends only on the affine root system of G together with the
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action of ¢. This is proved by using the Deligne-Lusztig reduction method
to relate the number of orbits to coefficients of certain class polynomials,
which can be defined purely in terms of the affine root system for G, see
loc. cit. for details. In view of the fibration

7 X (1, 0)% — X,(b)

it follows that the same is true for X, (b). In particular, the number 4" (1, b)
depends only on the affine root system and hence does not depend on the
local field F.

We will need the following stronger result. To state it, we introduce some
notations. Let F’ be another local field with residue field F,. Let G’ be a
connected reductive group over Op. Let T" € B’ C G’», be analogous to
T C B C Gp as in §2.1. Define the hyperspecial vertex &', the apartment
V', and the anti-dominant chamber @’ analogously to s, V, a. Assume there
is an identification V = V' that maps X,(T)" into X,(T)", maps a into o',
maps s to s, and induces a o-¢’ equivariant bijection between the affine root
systems. Here o’ denotes the ¢’-Frobenius acting on the affine roots system of
G’. We fix such an identification once and for all. To the pair (u, b), we attach
a corresponding pair (u/,b’) for G’ as follows. The cocharacter p’ € X, (T')*"
is defined to be the image of x under the identification X, (T)" = X, (T")".
To construct o', we note that since b is basic, it is represented by a unique o-
conjugacy class in €. The identification fixed above induces an identification
of Iwahori-Weyl groups W = W', which induces a bijection on length-zero
elements. Then b’ is represented by the corresponding length-zero element
in W’.

By our choice of ¥, the affine root systems of .J, and J; together with
the actions of Frobenius are identified. We thus obtain a bijection between
standard parahoric subgroups of J, and those of Jy. Let J C Jp(F) and
J' C Jy(F") be parahoric subgroups. We say that J and J' are conjugate,
if the standard parahoric conjugate to J is sent to the standard parahoric
conjugate to J' under the above-mentioned bijection. In the following, we
write J := Jp(F) and J' := Jyp (F').

Theorem 3.2.1. There is a bijection
J\EP (X, (b)) — JADP (X (1))

with the following property. If Z € X*°P(X,,(b)) and Z' € B*°P(X,,/(V')) are
such that JZ is sent to J'Z', then the parahoric subgroups Stabz(J) C J
and Stabz (J') C J' are conjugate.
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The theorem will essentially follow from the next lemma.

Lemma 3.2.2. Let w' € W' correspond to w € W under the identification
W = W'. Then there is a bijection

O+ J\E'P(Xy (b)) — J\DP (X (1))

with the following property. If Z € ¥*°P(X,, (b)) and Z' € ¥ (X, (V') are
such that ©(JZ) = J'Z', then Stabz(J) and Stabz (J') are conjugate.

Proof. We induct on ¢(w). First assume w is minimal length in its o-conju-
gacy class. Then by [18], X, (b) # 0 if and only if ¥(w) = b, which holds
if and only if ¥(w') = ¥/, if and only if X, (b)) # 0. If this holds, then by
[18] the group J acts transitively on X'°P(X, (b)), and similarly the group
J' acts transitively on X'°P( X,/ (b')). Hence the two sets J\XP(X,, (b)) and
J\XP(X,, (b)) are both singletons. Let © be the unique map between
them. The desired conjugacy of the stabilizers follows from the computation
of Stabz(J) in Proposition 3.1.4.

Now assume w is not of minimal length in its o-conjugacy class. Let
Z € X%P(X,(b)). Then as in the proof of Proposition 3.1.4, there ex-
ists wiR,w and s € S such that swio(s) < wy. Then X, (b) is univer-
sally homeomorphic to Xy, (b). We fix such a universal homeomorphism
and we obtain a corresponding element Z; € X%P(X,, (b)). By Proposi-
tion 3.1.3, there exists U € X'P(X 45 (b)) or U € X*P(Xy, (b)) such
that Z; is universally homeomorphic to a fiber bundle over U. We assume
U € X'P(X,0(5)(D)); the other case is similar. Then Stabz(.J) = Staby ().
Note that the choice of U depends on the choice of w; and a universal home-
omorphism X,,(b) = X,,,. However upon fixing these choices, the J-orbit of
U is canonically associated to the J-orbit of Z.

By the induction hypothesis, we have a bijection

01 : J\E*P (X, 0(5) (D) — J\EP (X051 (),
where s',w] € W' correspond to s,w; respectively. Choose
U/ E EtOP(XS/wllo./(S/)(b,))

such that J'U" = ©1(JU). By the induction hypothesis, Staby(J) is
conjugate to Staby.(J'). Reversing the above process we obtain Z' €
YP(X,/ (b)) such that Staby.(J') = Stabyz/(J'). Again the J'-orbit of
7' is canonically associated to U’ upon fixing the universal homeomorphism
X vy = Xy (V).

We define the map © to send JZ to J'Z'. Switching the roles of G and
G’, we obtain the inverse map of ©, and so © is a bijection as desired. [
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Proof of Theorem 3.2.1. For each w € W, fix a bijection
O : J\X'P(X,, (b)) — J\ZPP( Xy (b))

as in Lemma 3.2.2. Let Z € $*P(X,(b)). Then the pre-image 7~ (Z) un-
der the projection 7 : X (u,b)%X — X, (b) is a top dimensional irreducible
component of X (u,b)%X. Hence there exists a unique w € W such that
Xu(b) N7 1(Z) is open dense in Z. Moreover we have X, (b) N7~ 1(2) €
YP (X, (b)). Write Y for X,,(b) N 7~1(Z), and choose Y’ € LtP(X,, (b))
such that ©(JY) = J'Y’. Then since dim X (u,b)% = dim X (1/, )X, the
closure of Y’ in X (/,b')%" gives an element of X%P(X(u/,¥')%"), whose
J'-orbit is independent of the choice of Y’. Taking the image of the last
element under the projection X (1/,b)%" — X,/ (V') we obtain an element
Z' € ¥'"P(X, (V') by dimension reasons, and the orbit J'Z’ is indepen-
dent of the choice of Y. Moreover Stabyz(J) is conjugate to Staby/ (J’) since
Staby (J) is conjugate to Staby-(J'). The association JZ +— J'Z' gives a
well-defined map

J\SP (X, (b)) — J\SP (X (V)

which satisfies the condition in the proposition. Switching the roles of G and
G’ we obtain the inverse map. O

For later applications we need some information on the sizes of the stabi-
lizers appearing in Theorem 3.2.1. We now assume that b is basic, so that G
and Jp are inner forms. Since b is basic we may choose a representative 7 for
b where 7 € Q C W. Using this one may identify the Iwahori-Weyl groups
for J, and G respecting the base alcoves. However the Frobenius action on
W (or S), defined by Jy, is given by 7o, where T acts via left multiplication.
See for example [20, §5] for more details. Since G and J, are inner forms,
the choice of a Haar measure on G(F') determines a Haar measure on Jy,(F'),
and vice versa, see for example [27, §1].

Definition 3.2.3. We fix the Haar measure on J;(F") such that the volume
of G(OF) is 1. For each Z € ¥*P(X (b)), we denote by vol(Z) the volume
of the compact open subgroup Stabyz(Jy(F)) of Jp(F') (see Theorem 3.1.1)
under this Haar measure.

Corollary 3.2.4. For each Z € X*P(X,,(b)), there exists a rational function
R(t) € Q(t) such that

vol(Z) = R(q).
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Moreover this rational function satisfies R(0) = e(Jp) and is independent
of the local field F. Here e(Jy) is the Kottwitz sign (—1)™r=keG - pore
precisely, in the notation of Theorem 3.2.1, if J'Z' corresponds to JZ, then
vol(Z'") = R(q).

Proof. Since Jy splits over an unramified extension, the volume of a standard
parahoric of J,(F') corresponding to any To-stable subset K; C S can be
calculated in terms of the affine root system. More precisely, let X ; be the
corresponding parahoric subgroup of J,(F') and Z; be the standard Iwahori
subgroup of J,(F'). Then we have

Vol(K 5 (Op)) = %.VOI(I(OF)).%
_ [Ks(0F) : Z,(0p)] vol(Z;(OF))

(OF) :
~ [G(OF) : Z(Op)] " vol(Z(Op))

where 7 is the standard Iwahori subgroup of G(F') (whereas previously we
denoted by Z the standard Iwahori subgroup of G(L)). The term [K;(OpF) :
Z;(Op)] (resp. [G(OF) : Z(OF)]) is just the number of Fy-points in the finite
type full flag variety associated to the reductive quotient of the special fiber
of Ky (resp. G).

For any connected reductive group H over F, and B a Borel subgroup,
let W4 denote the absolute Weyl group. Then we have the Bruhat decom-
position

H/BF) = || S
weEW
We have S,,(Fy) # 0 if and only if o(w) = w, in which case S, is an affine
space of dimension ¢(w) defined over F,. In particular

H/BF)= Y "

weWz

It follows that [K;(OF) : Z;(Op)] and [G(OF) : Z(OF)] are both poly-
nomials in ¢ with coefficients in Z and constant coefficient 1, and the poly-
nomials depend only on the root systems of the corresponding reductive
quotients of the special fiber.

Similarly the ratio % can be computed as the ratio

det(1 —q tss | V) _det(qg—<s|V)
det(1—q ¢ | V)  det(g—c|V)
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where ¢ denotes the linear action of the Frobenius on V' = X, (T)g, and
similarly for ¢;, see [27, §1]. This is also a ratio of polynomials in ¢ with
coefficients in Z, and the ratio at ¢ = 0 is equal to

det(sy)/ det(s) = (1) h7r0E = ¢( ).

Moreover the polynomials depend only on the affine root system of G and
the element b. The result follows. O

Finally we record the following immediate consequence of Theorem 3.2.1.

Corollary 3.2.5. If Conjecture 2.6.7 is true for all p-adic fields F', then it
is true for all local fields F'. O

From now on we will assume that F is a p-adic field.
4. Counting points
4.1. The decent case

For each s € N, let F§ be the degree s unramified extension of F'in L. Let O
be the valuation ring of Fj, and let ks be residue field. The number A (i, b)
depends on b only via its o-conjugacy class [b] € B(G). Recall that given
b € G(L), one can associate a slope cocharacter v, € Homp (D, G), where D
is the pro-torus with character group Q.

Definition 4.1.1. Let s € N. We say that an element b € G(L) is s-
decent, if sv, is an integral cocharacter G,, — G (as opposed to a fractional
cocharacter), and

(4.1.1) bo(b)---o* 1 (b) = (sv)(mp).
Lemma 4.1.2. Assume b € G(L) is s-decent. Then svy, is defined over Fy,

and b belongs to G(Fy).
Proof. The proof is identical to the proof of [42, Corollary 1.9]. O

By [26, §4.3], any class in B(G) contains an element which is s-decent
for some s € N. In the following, we hence assume without loss of generality
that b is sg-decent, for some fixed sg € N. We may and shall also assume
that sg is divisible enough so that T is split over F,.
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Definition 4.1.3. Let s € soN. Let G := Resp /p G, so that b € Gs(F).
Let © be the F-automorphism of Gy corresponding to the Frobenius o €
Gal(F,/F). Let G4 e be the centralizer of b© in G, which is a subgroup of
G defined over F'. Define

G(Fs)po :={g € G(F}) | g tbo(g) = b}.

Thus G(Fj)pe is naturally identified with G pe(F).

Lemma 4.1.4. For s € sgN, there is a natural isomorphism of F-groups
Jp =2 G po. Moreover, Jy(F) = G(Fs)ps as subgroups of G(L).

Proof. Let R be an F-algebra. Recall from (2.5.1) that
Jo(R) = {9 € G(R®r L) | g 'bo(g) =b}.

It suffices to prove that for any g € J,(R) we have g € G(R ®F Fy,). Now
such a g commutes with b x o, and so it commutes with (bxo)%. By (4.1.1),
we have (bx0)% = (sovp) () x 0. On the other hand, by the functoriality
of the association b — 1}, we know that g commutes with . It follows that
g commutes with ¢*°, and so g € G(R ®F Fy,) as desired. O

4.1.5.  We keep assuming that F'is p-adic. In §2.4, we discussed the geo-
metric structure on X,(b), as a locally closed subscheme of the Witt vector
Grassmannian over k = kp. In the current setting, X, (b) is naturally “de-
fined over kg,”. More precisely, we can work with the version of the Witt
vector affine Grassmannian as an ind-scheme over kg, rather than over k,
see [1, Corollary 9.6] and cf. [47, §1.4]. Then the affine Deligne-Lusztig va-
riety can be defined as a locally closed kg, -subscheme of the Witt vector
affine Grassmannian, as in [47, §3.1.1]. The key point here is that since T’
is split over F,, all the Schubert cells in the Witt vector affine Grassman-
nian are already defined over kj,, see [47, §1.4.3]. We denote respectively by
Grg and X, (b) the Witt vector affine Grassmannian and the affine Deligne—
Lusztig variety over ky,, and we continue to use Grg and X, (b) to denote
the corresponding objects over k.

Let us recall the moduli interpretations of Grg and X, (b). For any per-
fect ks,-algebra R, write Wy, (R) for W(R) @y, ) Os,- Then Grg(R) is the
set of pairs (€, 3), where & is a G, (r)-torsor on W, (R), and (3 is a trivi-
alization of € on Wy, (R)[1/p], (see [47, Lemma 1.3]). We also have (see [47,

(3.1.2)])

Xu(0)(R) = {(£,B) € Grg(R) | Inv, (8~ bo(B)) = p, Yz € specR} .



Twisted orbital integrals and irreducible components 175

Lemma 4.1.6. For any s € soN, we have
Xu(b)(ks) = {9 € G(F)/G(Os) | g_lba(g) S G(Os)M(WF)G(OS)} :

Proof. We only need to show that Grg(ks) = G(Fs)/G(Os). For this it
suffices to show that any G -torsor over O is trivial (cf. the proof of [47,
Lemma 1.3]). By smoothness this reduces to the Lang—Steinberg theorem,
namely that any Gy -torsor over the finite field &, is trivial. O

Lemma 4.1.7. The action of Jy(F) on X, (b) descends to a natural action
on X, (b) via ks, -automorphisms.

Proof. By Lemma 4.1.4, Jy(F) = G(Fs,)po- The group G(Fs, )y, naturally
acts on X, (b)(R) by acting on the trivializations /3, for each perfect ks,-
algebra R. O

Lemma 4.1.8. Up to enlarging so, all the irreducible components of X, (b)
are defined over kg, i.e., they come from base change of irreducible compo-
nents of X, (b).

Proof. This follows from Lemma 2.5.5 and Lemma 4.1.7. O
4.2. Twisted orbital integrals and point counting

We fix sp € N to be divisible enough so as to satisfy all the conclusions in
§4.1. In particular G is split over Fy, and the conclusion of Lemma 4.1.8
holds. Let s € sgN.

For any C-valued function f € C°(G(Fy)), define the twisted orbital
integral

(4.2.1) TO(f) = / f(g~ b0 (g))dg,

G(Fc)bU\G(FG)

where G(Fs)po is equipped with an arbitrary Haar measure, and G(Fs) is
equipped with the Haar measure giving volume 1 to G(Os). The general
convergence of TOy(f) follows from the result of Ranga Rao [38]. However,
in our specific case the convergence could be proved more easily. In fact,
the decency equation (4.1.1) implies that b© is a semi-simple element of
Gs x (0), from which it follows that the twisted orbit is closed in G(Fj).
The convergence of T'Op(f) then follows from the closedness of the twisted
orbit, cf. [5, p. 266].

Definition 4.2.1. Let f, s € C°(G(F;)) be the characteristic function of
G(Os)u(mp)G(Os).
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In the following we study the relationship between T'Oy( f,,s) and point
counting on X, (b).

Lemma 4.2.2. FEach irreducible component Z of X, (b) is quasi-compact,
and is isomorphic to the perfection of a quasi-projective variety over k. More-
over, Z has non-empty intersection only with finitely many other irreducible
components of X, (b).

Proof. Since X, (b) is a perfect scheme by Theorem 2.5.3, the generic point
n of Z and its residue field k(n) make sense. Moreover k(n) is a perfect field
containing k. Let (£,3) € X,(b)(k(n)) C Grg(k(n)) correspond to 7, and
define X := Inv(8) € X,(T)". Since {n} is dense in Z, it follows from [47,
Lemma 1.22] that Z is contained in Grg <y, the Schubert variety inside Grg
associated to A. On the other hand, it follows from [47, §1.4.1, Lemma 1.22]
and [1, Theorem 8.3] that Grg <y is the perfection of a projective variety
over k. Since Z is closed in X,(b) and X, (b) is locally closed in Grg, we
conclude that Z is locally closed in Grg <y, and hence Z is quasi-compact
and isomorphic to the perfection of a quasi-projective variety over k.

Since X, (b) is locally perfectly of finite type (Theorem 2.5.3), each point
in X, (b) has an open neighborhood that intersects with only finitely many
irreducible components of X, (b). Since Z is quasi-compact, it also intersects
with only finitely many irreducible components of X,,(b). O

For each z € J,(F)\X,(b)(ks), we pick a representative Z € X,,(b)(ks)
and consider the volume of Stabz J,(F'), with respect to the chosen Haar
measure on Jy(F') = G(Fs)py (cf. Lemma 4.1.4). This volume is independent
of the choice of Z, and we shall denote it by vol,.

Lemma 4.2.3. The set J,(F)\X,(b)(ks) is finite. For all z € X, (b)(ks),
the stabilizer Stabg Jy(F) in Jp(F) is a compact open subgroup of Jp(F).
We have

TO(fus) = 3. vol,l.

z€Jy (F)\X,. (0) (k)

PTOOf. Let C = {g € G(Fs)bo\G(Fs) ’ gilba(g) € G(OS)M(T"F)G(OS)} By
the discussion below (4.2.1), we know that C' is a compact subset of
G(Fs)pe \G(Fs), as C is homeomorphic to the intersection of the compact
set G(Os)pu(mr)G(Os) with the closed twisted orbit of bo. The group G(Os)
acts on C by right multiplication, and all the orbits under this action are
open. Since C' is compact, the number of orbits is finite. On the other hand,
by Lemma 4.1.6 and Lemma 4.1.7, these orbits are in one-to-one correspon-
dence with J,(F)\X,,(b)(ks). In particular J,(F)\X,(b)(ks) is finite.
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Now for each = € Jy(F')\X,,(b)(ks), we denote the corresponding G(Oj)-
orbit in C' by C,. Let & € X,(b)(ks) be a representative for z, and fix
r € G(Fs) lifting Z in the sense of Lemma 4.1.6. It follows from the definition
of quotient measure that the volume of C), is the inverse of the volume of the
compact open subgroup G(Fs)p, N7G(O5)r~1 of G(Fy)pe. Since TOp(f,.5) is
nothing but the volume of C, we are left to check that G (F)perG(Og)r—1 =
Stabz Jp(F'). But this follows from Lemma 4.1.4. O

Proposition 4.2.4. Let d = dim X, (b). For s € N divisible by so, we have

TOW(fus) = > vol(Z) ! |ks|? + o([ks|T), s> 0.
ZeJy(F)\E*r (X, (b))

Here Z runs through a set of representatives of the Jy(F)-orbits in
SP(Xu(b)).
Proof. In view of Lemma 2.5.5, we let {Z1,---, Zys} be a set of representa-
tives of the Jy(F)-orbits in ¥(X,(b)). For each 1 < i < M, we write J; for
Stabz, (Jp(F')). For each y € X,,(b)(ks), we write J, for Staby (Jy(F)).

For each 1 <17 < M, we set

Ui = Zi — U ’ij - U 'yZi.
1<5<i,y€ Ty (F) YEJ(F)NZi#Zi

By Lemma 4.2.2, U; is open dense in Z;. By Lemma 4.1.8, we know that
Ui, V; are the base change of locally closed ks, -subschemes Z;, U; of X, (b)
respectively, where Z;, U; are perfections of quasi-projective varieties over
ks,. Moreover, Z; and U; are irreducible.

We denote the natural maps

I Zi(ks) — J(F)\X,u(b) (k)

1<i<M

and

TT Uitk — JENX,(0) (k)

by II and 7, respectively. Here we take the disjoint union of the Z;(ks) for
1 < i < M even though they may have non-trivial intersections in X, (b)(ks).
Then II is a surjection (between finite sets).
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Fix an element y € Z;(ks), and let z = II(y). We have

voly - |H_1(x)} > voly - [Jy| = vol(Jy) - [Ty
(4.2.2) > vol(Staby, (I;)) - |J;y| = vol(J;),

where the last equality follows from the orbit-stabilizer relation.
Now fix y € U;(ks) and let z = 7(y). We observe that 7—1(z) = J;y, and
that J, = Stab,(J;). We then have

(42.3)  voly - |7~ (z)| = vol(Jy) - |Tiy| = vol(Staby (1)) - [Jay| = vol(J;).

We now apply (4.2.2) and (4.2.3) to estimate T'Op(fy,s). We have

TOfus) = Z vol ! (by Lemma 4.2.3)
mer(F)\X (0)(ks)
— Z Z voly 1 “HII(y ))‘_1 (by the surjectivity of IT)
1=1 yeZ;(ks)
(4.2.4) gzpﬂm4mﬂm| (by (4.2.2)).

Similarly, we have

TOy(fs) = > vol ;!

z€Jy (F)\X,. (b) (k)

Z vol 1

T€ image of 7

=Z:§:Vd1\” (r(y))|

1=1 yeU;(ks)

Vv

(4.2.5) :§)mmer@n (by (4.2.3)).
=1

Now let U; be a quasi-projective variety whose perfection is U;. Then
U; is irreducible, and U;(ks) = U;(ks). By the Lang—Weil bound (see [32])
applied to U;, we know that

(4.2.6) Ui (ks)| = |ks| M™% + o(|ks|T™ %), s> 0.
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Similarly we have
(4.2.7) 1Zi(ks)| = ks "™ 7+ o(|ks| ™ 7)), s> 0.
The proposition follows from (4.2.4) (4.2.5) (4.2.6) (4.2.7). O

4.3. Applying the Base Change Fundamental Lemma in the basic
case

Recall that we assumed that [b] € B(G, 1) and b is so-decent. We now assume
in addition that b is basic.
For s € N, recall from [25, §5] that the s-th norm map is a map

N, : {o-conjugacy classes in G(Fy)}
— {stable conjugacy classes in G(F')}.

By [25, Proposition 5.7], two o-conjugacy classes in G(F;) are in the same
fiber of 9 precisely when they are stably o-conjugate, a notion that is
defined in [25, §5].

Lemma 4.3.1. Let s € soN. Then M4(b), as a stable conjugacy class in
G(F), consists of the single element (sv,)(mr). Moreover, the cocharacter
svp : Gy, — G is defined over F.

Proof. By [25, Corollary 5.3], any element in 94(b) is G(F)-conjugate to
bo(b)---o* 1 (b) € G(F,),

which is equal to (sv})(7F) since b is s-decent. Now since (svp)(7r) is central,
we know that Ms(b) = {(svp)(7r)} and that (svp)(7r) € G(F). It follows
from the last statement that sv, is defined over F'. O

Lemma 4.3.2. Let s € soN. Let b/ € G(F5) be an element in the stable
o-conjugacy class of b. Then vy = vy, and V' is s-decent. In particular b is
basic. Moreover, if [V'] € B(G, ), then b is o-conjugate to b in G(Fs).

Proof. By hypothesis we have DM5(b) = N,(b'). By Lemma 4.3.1 applied to
b, we know that the DM,(b) consists of the single central element (sv})(7F) €
G(F). On the other hand any element of 9,(b’) should be G(F)-conjugate
to t'o(b)--- o*~L(¥) (by [25, Corollary 5.3]). Therefore

Vo) - o 1) = (sv)(np).
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By the characterization of v (see [26, §4.3]), the above equality implies that
vy = vy and that o' is s-decent. The first part of the lemma is proved.

Now we assume [V/] € B(G, u). Since B(G, 1) contains a unique basic
class, we have [V/] = [b]. Finally, by [42, Corollary 1.10], we know that b and
b’ must be o-conjugate in G(Fy), since they are both s-decent and represent
the same class in B(G). O

Let s € sgN. We now consider stable twisted orbital integrals along b.
By our assumption that b is s-decent and basic, we know that

bo(b) - - 'asfl(b) = (svp)(7F)

is a central element of G(Fs), and is in fact an element of G(F') by Lemma
4.3.1. In particular, this element is semi-simple, and the centralizer of this
element (namely G) is connected. Therefore, with the terminology of [25],
an element b’ € G(Fy) is stably o-conjugate to b if and only if it is F-o-
conjugate to b. This observation justifies our definition of the stable twisted
orbital integral in the following, cf. [13, §5.1].

For any C-valued function f € C2°(G(F5)), we let STOp(f) be the stable

twisted orbital integral

STO(f) = e(Gspo)TOy(f),

b

where the summation is over the set of o-conjugacy classes b’ in G(F;) that
are stably o-conjugate to b, and e(-) denotes the Kottwitz sign. Here each
TOy is defined using the Haar measure on G(F5) giving volume 1 to G(O;),
and the Haar measure on G(Fs)yo = Gspo(F') that is transferred from the
fixed Haar measure on G(Fs)pr = Gspo(F).

Definition 4.3.3. We denote by H, the unramified Hecke algebra consisting
of G(Os)-bi-invariant functions in C°(G(Fs), and denote by BCy the base
change map Hs; — H.

Definition 4.3.4. For s € soN, we write 75 for (svp)(mr), and write 7o for
S/So

Ys,- Thus 79 belongs to G(F') (see Lemma 4.3.1) and s = 7,
Proposition 4.3.5. Assume s € soN. For any f € Hs, we have

STO,(f) = vol(G(OF)) " (BCs £)(7s),

where vol(G(OF)) is defined in terms of the Haar measure on G(F) trans-
ferred from the fized Haar measure on Ggpe(F'), for the inner form G pe
of G.
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Proof. By Lemma 4.3.1, 914(b) consists of the single central semi-simple
element 7, € G(F'). By the Base Change Fundamental Lemma proved by
Clozel [5, Theorem 7.1] and Labesse [31], we know that ST Oy(f) is equal to
the stable orbital integral of BCs f at 915(b). The latter degenerates to

e(G,) - Z— - (BC, £)(759)

since s is central. Here p; denotes the Haar measure on G(F’) giving vol-
ume 1 to G(OF), and py denotes the Haar measure on G, (F) = G(F)
transferred from G, po(F'). The notation % denotes the ratio between these
two Haar measures on the same group G(F'). Obviously this ratio is equal
to vol(G(OF))~! as in the proposition. Finally, since G-, = G is quasi-split,
we have e(G,,) = 1. O

s

Lemma 4.3.6. For s divisible by sg, we have

STOb(fu,s) = €<Jb)TOb(fu,S)'

Proof. Firstly, by Lemma 4.1.4 we have G e = J,. We need to check that
TOy (fus) = 0, for any ¥ € G(Fy) that is stably o-conjugate to b but not
o-conjugate to b in G(F;). Assume the contrary. Then there exists g € G(F5)
such that f,s(g~ o (g)) # 0, from which g7'0'c(g9) € G(Os)u(rr)G(Os).
Hence x([V']) = pf by Theorem 2.5.1. But this contradicts Lemma 4.3.2. [

Corollary 4.3.7. Keep the notation in Proposition 4.2.4. For s > 0, we
have
e(Jy) vol(G(OF)) ™ (BCs fu,s)(7s)

_ 3 vol(Z) ™! [k + of |k, |%).
ZeJy(F)\Xtor (X, (b))

Proof. This follows from Proposition 4.2.4, Proposition 4.3.5, and Lemma
4.3.6. O

5. Matrix coefficients for the Satake transform
5.1. General definitions and facts
In this subsection we expose general facts concerning the Satake isomor-

phism, for unramified reductive groups over F. The aim is to give an inter-
pretation of the coefficients for the matrix of the inverse Satake isomorphism
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in terms of a g-analogue of Kostant’s partition function. This is well known
by the work of Kato [22] in the case when G is split; we will need the case
of non-split G. Our main reference is [4, §1].

Let G be an unramified reductive group over F. At this moment it is
not necessary to fix a reductive model over Op of G. Inside G we fix a Borel
pair, namely a Borel subgroup B and a maximal torus T' C B, both defined
over F'. In particular, 7" is a minimal Levi, and is split over F™".

We denote by

BRD(B,T) = (X*(T),® > A, X,(T),® > AY)

the based root datum associated to (B,T'). This based root datum has an
automorphism 6 induced by the Frobenius o € Gal(F"/F). Let d = dy < oo
be the order of 6.

Fix an F-pinning (B, T, X ) of G. Since the Galois action on BRD(B, T
factors through the cyclic group generated by 6, we know that 6 is a Galois-
equivariant automorphism of BRD(B,T'), and so it lifts uniquely to an F-
automorphism of G preserving (B, T, X, ). We denote this F-automorphism
of G still by 6.

Let A be the maximal split sub-torus of 7. We have!

X(A) = X.(T), X*(A) = [X*(1)/(1 = 0) X" (1)
Let p® C X*(A) be the image of & C X*(T'). The triple
(X*(A), r®, X4 (A))
naturally extends to a (possibly non-reduced) root datum
(X*(A), p®, X, (A), p®Y),

see for instance [43, Theorem 15.3.8]. Elements of p® are by definition 6-
orbits in ®. For a € ®, we write [a] for its #-orbit. The f-orbits in A give
rise to a set of simple roots in p®, which we denote by pA. As usual, we
denote the structural bijection p® - p®" by [a] > [a]".

We let @1 C p® be the subset of indivisible elements, namely, those [a] €
#® such that %[a] ¢ p®. The image of ®! under the bijection p® — @V is

denoted by ®'V. The tuple (X*(A4), ®!, X,(A), ®"V) has the structure of a

n [4, §1.1], it is stated that X*(A) = X*(T)/(1 — 6)X*(T), which is not true
in general.
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reduced root datum. We note that A is also a set of simple roots in ®!. We
henceforth also write Al for pA. For the sets ®, p®, &1, &V, pdY, LY, we
put a superscript + to denote their respective subsets of positive elements.

As before we denote by W the absolute Weyl group of G. We let W' C
Wy be the subgroup of elements that commute with #. Then W is a Coxeter
group (see [4, §1.1]), and we denote by /1 the length function on W1,

The complex dual group G of G is a connected reductive group over
C, equipped with a Borel pair (B T ) and an isomorphism BRD(B T )
BRD(B,T)". In particular, we have canonical identifications X*(T ) =
X.(T), X,(T) = X*(T), which we think of as equalities. We fix a pin-

ning (B, T,X,). The action of § on BRD(B,T) translates to an action on
BRD(B,T), and the latter lifts to a unique automorphism 0 of G that pre-
serves (B,T,X,). The L-group LG is defined as the semi-direct product

G x (9), where (0) denotes the cychc group of order d generated by 6.

We denote the group X*(T' 7)Y = X,(T)? by Y*. Let A be the quotient
torus of T corresponding to Y*. Then A is also identified with the dual torus
of A. Define

PT:={AeY*|(\a)>0, Vac A} = {/\EY* | (A [a]) >0, V[a] € Al},
R := the Z>¢-span of p@V'T C Y*.

The C-vector space C[Y*]"" has a basis {mu},,cp+, where

(5.1.1) my =Y e

AEW1ig

Here W1 denotes the orbit of g under W,

Definition 5.1.1. Let n be the Lie algebra of the unipotent radical of E
equipped with the adjoint action by “G (see [4, §1.3.2]). For each pu € X*(T)
let n(u1) denote the u-weight space in 1 for the action of T. Letw € VV1 and
¢ € {£1}. We define a C[X*(T)]-linear operator £ on n®@c CIX*(T T)] by
letting B act on A(u) via the scalar e € C[X*(T')], for each p € X*(T).
We define

D(E,q) :=det(1—q-0- E%, 7) € C[X*(T)][d],

P(E™,q) := D(E®,q)"! € Frac (qx*(f)][q]).
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Definition 5.1.2. Let [a] € ®! C p®. We say that [a] is of type I, if
2[a] ¢ p®. Otherwise we say that [a] is of type II. For [a] € ®!, we define

al) = #[a], if [a] is of type I,
el {%#[@] if [a] is of type II,

where #[a] denotes the size of [a] viewed as a f-orbit in ®. Then b([a]) €
Z>1, see [4, §1.1].

Definition 5.1.3. For any element 8 = [a]Y € ®LV (with [a] € ®1), we
define b(B) to be b([«]), and we say that  is of type I or IT if [a] is of type I
or I1. For any 8’ € p®V, we define b(’) to be b(3), where 3 is the element
in @1V that is homothetic to 3.

Definition 5.1.4. For 8 € &1V, we define dg(q) € C[Y*][q] as follows:

dy(q) = 1— qP®eh, if 8 is of type I,
A= (1 —q®B®eP2)(1 4 ?PeP/2), if B is of type II.

Here, when 3 is of type II, 3/2 is always an element of p®" and in particular
an element of Y*, see [4, §1.1] or [30, §1.3].
Lemma 5.1.5. For e € {£+1}, we have

DESq) = ] dsla), PE@Q= ][ dsla)
efedl:V.+ efePLV +

Proof. The case € = 1 is [4, Lemma 1.3.7]. The case ¢ = —1 is proved in the
same way, by switching the roles of positive elements and negative elements
in ®LV, [

Definition 5.1.6. For each A € Y*, we define P(\, q) € C[q] as follows. In
view of Definition 5.1.4 and Lemma 5.1.5, we have an expansion

(5.1.2) P(Eq) = Y P\ qe?,
AERT

with each P(\,q) € C[q]. We set P(\,q):=0forall \ € Y* — R™.

Corollary 5.1.7. For A € R — {0}, the constant term P(X,0) of P(\,q)
15 0.

Proof. This immediately follows from Lemma 5.1.5 and Definition 5.1.6. [
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Definition 5.1.8. Let p¥ € X,(T) ®z 3Z be the half sum of elements in
®V+, and let p € X*(T) ®z 3Z be the half sum of elements in ®*. Then p"

in fact lies in Y* ®7 $7Z, and is equal to the half sum of elements in ®1V:+,

see [4, §1.2]. For w € W' and pu € Y*, we let
wep:=w(p+p’)—p’ eV
We also write we(-) for the induced action of w on C[Y™*]. Define the operator

J:CY* | —C[Y*], fr— > (-1)"™wef.
weW?

Definition 5.1.9. For A € P' and for a formal variable q, we define

(5.1.3) ma(a):=J(EPE " q)= Y J()P(p,a)e ™ € C[Y*][[q]l.
pneERt

Definition 5.1.10. For any A € P* C Y* = X*(f)é, we define V) to be

the irreducible representation of G of highest weight .

Theorem 5.1.11 (Weyl character formula, [4, Theorem 1.4.1]). Let A € P*.
Then 75(1) € C[Y*]W'. The character of Vy, as a function on T, descends
to the function on A given by Tx(1). O
Definition 5.1.12. For any A\ € P", we simply write 7, for the element

(1) € (C[Y*}Wl.
5.2. Matrix coefficients

We now fix a reductive model of G over Op as in §2.1. As before we denote
by H; the spherical Hecke algebra H(G(F')//G(OF)). For each u € X,.(A),
we let f, € Hi be the characteristic function of G(Op)u(mr)G(OF). Then
the C-vector space H; has a basis given by f,, for p € PT C X, (A).

Recall that the Satake isomorphism is a canonical C-algebra isomor-
phism

Sat : Hy — C[Y*"",
see for instance [4, §1.5]. In the following, we simply write f,, for Sat(f,),

which shall cause no confusion. At this point we have introduced three bases
of the C-vector space C[Y*]""', namely {m,},{r.},{f.}, all indexed by
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p € Pt (see (5.1.1) and Definition 5.1.12 for m,, and 7,,). We denote some
of the transition matrices between these bases as follows:

Y A A
M= oM, =) fn me=) Mf
Y y y

A

In the following we deduce a formula for imf; from known formulas for nj,

and t/’l.
Definition 5.2.1. Asin [4, §1.7], we have a partition of Y* into the following
subsets:
Yy = {)\ €eY*|Jwe W wis a reflection, w e A = )\} ,
YVo={AeY*|werePt} weW
For each x € WU {0} we let e, : Y* — {0, 1} be the characteristic function
of Y'.

Theorem 5.2.2 (van Leeuwen’s formula, [4, Lemma 1.7.4]). For u, A\ € P*,
we have

= > > (- w'n)d(w e (w'p), ).

w €W /W1 weW!
Here 0(-,-) is the Kronecker delta, and I/V1 is the subgroup of W' generated
by the reflections attached to those [a] € Al such that {u, [a]) = 0. O
Definition 5.2.3. For \,\ € P™, we define
(5.2.1) Kyval@) = > (-D)"™PweXN - q).

weWw!
Remark 5.2.4. The notation K , in Definition 5.2.3 is compatible with [22]
when G is split.

Theorem 5.2.5 (Kato-Lusztig formula, [4, Theorem 1.9.1]). For u, A\ € PT,
we have

th = K, (Jkp| ) [kp| =) O
Corollary 5.2.6. Write q for |kg|. For u, A € P*, we have

imﬁ = ¢~ Z Z (1 —eo(w'p)) P < o (W) — A q1>.

weW?! /Wi weWw?
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Proof. We compute
- Y W
NeP+
= Z (_1)51(11/’)610,/ (w'u)d(w” ° (w'u), /\’)Kx,,\(q_l)q_<)"p>
NepPt

weW /W,
w’eW?

- X @4%W”amwmm*Mw—n“”P(wwwouwn—xﬂ*>
weWr /W,
w’eW?
weWw?!

where the second equality is by Theorems 5.2.2, 5.2.5, and the third equality
is by (5.2.1). Under the substitution ww” — w, the above is equal to

g YT Y (D) ey (wp) P <wo(w’,u) —)\,q1>.

w W /W w' €W weW?

Since ), ey €w () = 1 — eo(+), the proof is finished. O
Motivated from Corollary 5.2.6, we make the following definition.
Definition 5.2.7. For u, A\ € Pt and a formal variable q—1/2, we define

Mg ) =g M YT Y (- (1= eo(w'n))-

wEW /WL weW?
-P<w-Wﬁo—%q*)eCWﬂh*”k
As a special case, we define

(5.2.2) My D= > Y (=) (1—ep(w'p))-

weWt/WhweW!
-P(wwwm@ﬂ)ecwmwﬂ

Lemma 5.2.8. Let uy,A € PT. Let v € X.(AN Zg). Then Dﬁ/’}(q_l) =
Mo (a).

Proof. In fact, we have (\, p) = (A—v, p), I/Vl Wi, eo(w w) = eo(w'(n—
v)),and we (wpu)—A=we(w(u—v))— (/\— v), for all w' € W' /W, and
we Wt O
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5.3. Interpretation in terms of Kostant partitions

In certain cases the polynomial P(\,q) € Clq] in Definition 5.1.6 has a
concrete description as a g-analogue of Kostant’s partition function, which
we now explain. Let P be the set of all functions p®"'* — Z>o. We shall
typically denote an element of P by m, and denote its value at any 5 € p®V:+
by m(f3). For m € P, we define

Sm):= ) mBBeR CY,

BEFDPV-T

m| ==Y m(B)b(B) € Lo

BERDV-T

Here b(f) is as in Definition 5.1.3.

For all A € Y*, we define P(\) to be the set of m € P such that 3(m) = A.
Thus P()) is empty unless A € RT. Elements of P()\) are called Kostant
partitions of \. For any L € Z>(, we define P(\)z, to be the set of m € P(X)
such that |m| = L. For A € Y*, we define

,PKOS(A7q) = Z q|m| € C[(ﬂ
meP(N)

This is known in the literature as the q-analogue of Kostant’s partition
function, at least when G is split.

Proposition 5.3.1. The following statements hold.

1. Assume p® = ®L. For all A € Y* we have P(\,q) = Pkos(), Q).
2. In general, to each m € P, we can attach a polynomial Q(m,q) € C[q],
with the following properties:

(a) For all 0 < x < 1, we have |Q(m,z)| < 1.
(b) For any A € Y* we have
P = Y Qmqq™

meP(A)

Proof. Part (1) immediately follows from Definitions 5.1.4, 5.1.6. For part
(2), we note that if § € &V is of type II, then 5’ := 3/2 is an element of
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r®V, and we have

=0 =0
_ [Z(q%(ﬁ’)eﬁ’)i] [Z(_qb(ﬁ’)eﬁ’)z]
=0 =0

=> Ran(@)(q®Pe”),
n=0

with

n

Ron(@) =D _(-1)"'q®?) € Clg], Vn € Zx.
i=0
We observe that for all 0 < z < 1 we have

(5.3.1) Rgn(x) < 1.

Now for each 3 € p®" and each n > 0, define
Rogn(q), if 28" € LY,
Qpn(a) = Y
1, if 268" ¢ V.

We take
Qm,q) == [[ Qsme)(@-

Berdv

Then condition (a) follows from the construction and the observation (5.3.1).
Condition (b) follows from Lemma 5.1.5 and Definition 5.1.6. O

5.4. Computation with the base change

We keep the setting of §4.3 and §5.1. We assume that sg is divisible by the
order d of 8, and consider s € sgN.
The Satake isomorphism for H; is

Sat : Hy — C[X*(T))"°.

For each p € X *(f)Jr, let 7/, be the character of the highest weight repre-
sentation V,, of G of highest weight p. Then

{T/;}/J,EX* (f)+
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is a basis of C[X*(T)]Wo. This basis is the absolute analogue of the basis
{Tu}ep+ of C[Y*]"" (i.e., they are the same if § = 1).
Recall from §2.6 and §5.1 that we have

By Lemma 1.6.1 (3), the composition
Y'eQ-»X"(1)oQ—X*(S)®Q

is invertible. We denote its inverse map by A — A, For all \ € X*(g), we
define A®) to be s\, which lies in Y* since s is divisible by d. Thus we
have a map

(5.4.1) X*8) — Y, A A0,

which is an isomorphism after ®Q. In the case # = 1, this is none other
than the multiplication-by-s map from Y™ to itself. In general, we denote by
X*(8)T c X*(8) the natural image of X*(T)". Then (5.4.1) maps X*(8)"
into PT C Y*. Moreover, the action of W' on X *(f ) induces an action of
W' on X*(S), and the map (5.4.1) is W-equivariant.

Proposition 5.4.1. Under the Satake isomorphisms, the base change map
BC, : Hs — Hq becomes

BC, : C[X*(T)]"W —s C[y* W'
Ve X*(T)T, T, Z dim V,,(A)rel - M.

AeX+(S)+
Proof. To simplify notation we write X* for X *(f ). To compute BC; as a
map C[X*|We — C[Y*]"", it suffices to compose the map with the natural
inclusion C[Y*]W" < C[X*]. For each € X**, let

! A
my, = E e’.

AEWL (1)

Then {mL}ME ot 18 a basis of C[X *Wo. This basis is just the absolute
analogue of the basis {m,.} . p. of C[Y*]"". 1t easily follows from definitions

(see for example [2]) that BC, as a map C[X*]"o — C[X*] sends each m,
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to

Z 6A+é)\+-~+é5*1>\

AEWL (1)
It follows that for all 4 € X**, we have

(5.4.2) BC,7, = > dim V, (\) A+,
AEX

Here the summation is over X* and not over X*T. For each A € X*, the
element

A+ON+---+ 0N e X*

lies in Y* C X*, and its image under the natural map
V= (X% — XS = (X5 40

is equal to the image of sA € X* under the natural map X* — X*(S). In
other words, we have

A+ ON+ -+ 057N = (M)

~

where A|g € X*(8) denotes the image of A under X* — X*(8). Hence by
(5.4.2) we have

BC, 7' Z dlmV ()‘l )
AEX™

which is easily seen to be equal to

Z dim V,,(A)rel A = Z dim V,,(A)rel My - d
AEX=(S) AeX*(8)*

Since b is basic and sg-decent, and since s is divisible by sg, by Lemma
4.3.1 the cocharacter sy, : G, — G is a cocharacter of Zg defined over F'.
In particular we may view sy, € X, (A) = Y™

Corollary 5.4.2. For u € X*(T)*, we have

(BCs 7,)(7s) = ZA dim Vi (Nsel M3y, (Ikp 7).
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Proof. By Proposition 5.4.1 we have

(BCem)(vs) = > dimVu(A)rel mae (1)
AeX+(8)+

Recall from Lemma 4.3.1 that sy, is a central cocharacter of G defined
over F. By Corollary 5.2.6 and Definition 5.2.7, each my (7s) is equal to
m;i;(ku\‘l), which by Lemma 5.2.8 is equal to S)L)T?\(S)_Syb(]kp\_l). O

5.5. Some inductive relations

We keep the setting and notation of §2.6 and §5.1. We assume in addition
that G is adjoint, and that G is F-simple. To emphasize the group G we
write ?J)T(/{’G(qfl) for the polynomial MY (q~!) in Definition 5.2.7. In the
following we discuss how to reduce the understanding of these polynomials
to the case where G is absolutely simple.

We write Dynk, for the Dynkin diagram of (G, B, T'). By our assumption
that G is adjoint and F-simple, the action of (#) on Dynk is transitive on
the connected components. Let dg be the number of connected components
of Dynkg. Fix one connected component Dynkzg of Dynk once and for all.
The connected Dynkin diagram DynkJGr, together with the automorphism
6% determines an unramified, adjoint, absolutely simple group G’ over F,
equipped with an F-pinning (B’,T’,X/_). We apply the constructions in §5.1
to G'. We shall add an apostrophe in the notation when we denote an object
associated to G, e.g., A’, (Y*)'.

We have natural identifications

( ( ) r®, X, (A)’F(I)V) = (X*(A/)v (F(I))/ﬂX*(A/)v (F(I)v)l)7
L (ol @V (@YY,

vy,  wh=wl.

IIZ

To be more precise, all the above identifications are derived from an
identification

do—1

(5.5.1) X.(T) = P X.(T"),

1=0

under which the automorphism 6 on the left hand side translates to the
following automorphism on the right hand side:

(X0s X5+ s Xdog—1) — (0" Xedo—15 X0s X15 """ s Xdo—2)-
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In particular, the identification (Y*)" = Y™* when composed with Y* =
X«(A) C X, (T) and with (5.5.1), is the diagonal map

do—1
(5.5.2) V) — P X(T), xX— X
i=0

Proposition 5.5.1. For A\ € Y* and N € (Y*) that correspond to each
other, we have

M ala™h) =M a(a™®),
as an element of C[Y*][q™!] = C[(Y*)][qa}].

Proof. When 3 € ®V corresponds to 8 € (@), we know that 3 is of
the same type (I or II) as ', and we have b(8) = dob’(f’). It follows from
Lemma 5.1.5 and Definition 5.1.6 that P()\,q) = P'(\,q%) for all A € Y*
and X € (Y*)’ that correspond to each other. The proposition then follows
from Definition 5.2.7. O

Next we deduce a relation between the construction of Ay in §2.6 for G
and for G’. Denote by S’ the counterpart of S for G'. Since G (resp. G) is
adjoint, we know that X*(T') (resp. X*(T")) has a Z-basis consisting of the
fundamental weights. It then easily follows from Lemma 1.6.1 (2) that we
have

X*(T)g = X*(T)g pree = X*(S),
X*(T\/)é, _ X*(T\/)A _ X*(S/),

0’ free

and we have natural identifications

-~

XS =Xx*(S), Q=qQ), m(G)=m (G

Fix an arbitrary 1 € X.(T'). Choose ' € X,(T"), such that the image
of p/ in X*(§') corresponds to the image of p in X*(S). Such ' always
exists because the map X, (T") = X*(T'") — X*(§’) is surjective. It then
follows that the image uf € m(G), of u and the image (i/)? € 71(G")o of p/
correspond to each other. Let [b] (resp. [b]) be the unique basic element of

B(G, ) (resp. B(G',1)).

Proposition 5.5.2. In the above setting, the elements A\, € X* LS ) and Ay €
X*(8") correspond to each other, under the identification X*(8) = X*(&).

Proof. This immediately follows from the uniqueness in Lemma 2.6.3. [
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6. The main result

6.1. The number of irreducible components in terms of
combinatorial data

We keep the setting of §2.6 and §4.1. Thus we fix a reductive group scheme
G over Op, an element p € X, (T)", and a basic class [b] € B(G, ). In this
section, we relate the number of irreducible components .4 (i, b) to some
combinatorial data.

As in §4.1, we fix sg € N such that b is sg-decent. As in §5.4 we assume
sg is divisible by the order d of 6, and various natural numbers s € N that
are divisible by sg. In particular, G will always be split over the extension
F, of F. We shall write

qs = |ks| = ’kF|S~

By Corollary 4.3.7, we have

(6.1.1)  e(Jy) vol(G(OF)) " (BCs fus)(vs)
_ Z VOI(Z)flqgimX‘t(b) _i_o(q;iimX“(b)).
ZEJ,(F)\Ztop (X, (b))

By the dimension formula in Theorem 2.5.3, we have
: 1
(6.1.2) dim X, (b) = (u, p) — §def(;(b)

(since 1, is central). In particular, from (6.1.1) we get

p)—Ldefa (b
(6.1.3) (BC, fu0)(7s) = O(g" ™21y,

Proposition 6.1.1. With the notation in §5.4, we have

- —Ldefe(b
BC,(74)(7) = @i ¥ (BC, fus) () + oy =),

Proof. For A running over X*(T)", the Satake transforms of fx,s, which we
still denote by f s, form a basis of C[X*(T')]"*. By the split case of Theorem

5.2.5, we have

o= Y Kia(g e ™M f,
xex=(T)+



Twisted orbital integrals and irreducible components 195

where K, ,(+) is the absolute analogue of (5.2.1), i.e., it is defined by (5.2.1)
with 0 replaced by 1. By Definition 5.1.6, Corollary 5.1.7, and (5.2.1), we
have

1+O(Qs_1)7 AZM:

K, (g5 =S O(g:h), A< p,
0, otherwise.
Therefore
(6.1.4) =0 " Y O M

xex*(T)+, A<p

Note that (6.1.3) is valid with g replaced by each A € X*(T)t, A < p,
because we still have [b] € B(G, ). The proposition then follows from (6.1.4)
and the above-mentioned bounds provided by (6.1.3) with u replaced by each
A< p. OJ

Corollary 6.1.2. We have

(6.1.5)
— 7ldefg b 7ldefc b
BC,(r)(v) = () > vol(2) gy 2 4o(g, 2.
ZEJ(F)\Ztor (X)

Proof. This follows by combining (6.1.1), (6.1.2), and Proposition 6.1.1. [J

Theorem 6.1.3. Assume the Haar measures are mormalized such that
G(OF) has volume 1. There exists a rational function S, ,(t) € Q(t) that is
independent of the local field F' (in the same sense as Corollary 3.2.4), such
that

(6.1.6) Spup(0) = A (p,b),
(6.1.7) Suplqr) = e(Jp) > vol(Z)7L,
ZET(F)\ZoP (X, (b))

and such that

(6.1.8)
—Ldefa (b . _ —Ldefe (b
Sup(a)as = =3 dm V(W My, (a7 + ofgs

AeX+(8)+

).
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In particular

Ldefq (b)

(61.9)  Sup(qr) = lim g2 Y dim V(W My, (a17)-

AeX+(8)+

Proof. Fix a set of representatives {Z; | 1 <i < A" (u,b)} for the Jp(F)-
orbits in X%°P(X,(b)). For each Z;, let Ry, (t) € Q(t) be the rational function
associated to Z; as in Corollary 3.2.4. Let

A (,b)

Sup(t) :==e(B) > Rz ()"

=1

Then S, (t) belongs to Q(t) and it satisfies (6.1.6), (6.1.7). It follows from
Corollary 3.2.4 and (6.1.5) that

—Ldefs (b —Ldefq(b
BC, (7)) (7s) = Sup(an)gs 27 + o(gs 247,

Comparing this with Corollary 5.4.2, we obtain (6.1.8). O

The upshot of this theorem is that the right hand side of (6.1.9) is
purely combinatorial and can be computed (at least in certain instances)
using Kostant’s partition function Pkos(A, q). Moreover the fact that S, ,(t)
is a rational function independent of the local field F', means that it is in
principle determined by its values S, ;(q1) for infinitely many choices of ;.
Once S, () is determined, the number 4" (p, b) can be read off from (6.1.6).

6.2. The case of unramified elements

In this subsection we apply Theorem 6.1.3 to prove Conjecture 2.6.5 for
unramified and basic b. This is a new proof of the result [45, Theorem
4.4.14].

We keep the setting of §6.1. Assume in addition that b is unramified, in
the sense of [45, §4.2]. Then we have J, = G, and hence def;(b) = 0, e(Jp) =
1. In view of Theorem 6.1.3, we would like to compute
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Proposition 6.2.1. Let A € X*(8) and s € soN. We have

B 1, A=,
m[))\(ﬁ)—suh (ql 1) = { ’

O(ql_as) for some a € Ryg,  otherwise.

~

Proof. Firstly, by [45, Lemma 4.2.3], Ay € X*(S) is the unique element such
that )\és) = su, for one (and hence all) s € soN. (In particular, A, € X*(5)"
as vy is central.) Thus for A € X*(8), we have A = X, if and only if
M) — 51, = 0 for one (and hence all) s € soN.

Let w € W', Since wp¥ — pV is not in Rt for w # 1, it follows from
Definition 5.1.6 and Definition 5.2.7 that MJ(¢~1) = 1 € C[g~!]. This proves
the case A\(8) = SUp.

Now assume A®) # sy, (for all s). Fix w,w’ € W'. We write u, :=
A — spy and s := w e (w'ps). By the formula (5.2.2), it suffices to show
that

(6.2.1) Ja >0, P(s,q7 ") = O(q7 ™).

If s ¢ RT for some value of s, then by definition P(¢s,¢7 %) = 0 €
Clg~!]. Hence we may ignore these values of s. On the other hand, if s € RT
for some s € soN, then it is easy to see that 1,5 € R for all n € N. We
thus assume that s € R for all sufficiently divisible s. Then for such s we
have

ww'ps € spang(p®Y) — {0} CY* @ Q.

Hence there exists a non-zero Q-linear functional fo on spang( F®Y), and a
constant ¢g € Q — {0}, such that

(6.2.2) folww'ps) = s+ co, Vs> 0.
We define

A= [fo(wp” = pY)| €Rzo,  B:= sax [fo(B)l +1 € Rxo.

Then for s > 0 we have

min [m| > B~ - [ fo(vs)] = B7H(| fo(ww'us)| = A) = B~ (s |co| — A),
meP(is)
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where the last equality follows from (6.2.2). Since B~! and ¢ are both non-
zero, there is a constant Ny > 0 such that

(6.2.3) min |m| > Ny -s, Vs > 0.
meP(ys)

Combining (6.2.3) and Proposition 5.3.1 (2), we have

(6.2.4) [P (s, a1 )| < #P(s) - g .

On the other hand, note that for any Q-linear functional f on spang( F®Y),
the function s — f(v¢s) is an affine function in s. Hence there exists a
constant L > 0 such that

Vs >0, Vm € P(¢s), |m| < Ls.

It follows that

Ls Ls
(6.2.5) #HP() = Y #P(y) < D 1FET) < (Ls)M
=1

=1

for some constant M > 0. The desired estimate (6.2.1) then follows from
(6.2.4) and (6.2.5). O

Theorem 6.2.2. Keep the setting of §6.1. Assume in addition that b is
unramified. Then A (p,b) = A4 (p,b). Moreover, for any Z € %'°P(X,,(b)),
the group Stabz(Jy(F')) is a hyperspecial subgroup of Jy(F) = G(F).

Proof. Let S,,4(t) € Z(t) be as in Theorem 6.1.3. By (6.1.9) and Proposition
6.2.1, we have

Sup(qr) = dim V, (X)rer,

where A is the unique element of X *(3’ )T such that A60) = so1,. By varying
the local field F', we see that S, ;(t) is the constant dim V,(A\y)rel = 4 (11, b).
In particular

‘/V(Ma b) = Su,b(o) = %(Mv b)
For the second part, by our normalization we have vol(Z) < 1 for each
element Z € X'P(X (b)), where equality holds if and only if Stabz(J,(F'))

is hyperspecial. On the other hand, combining (6.1.6) and (6.1.7) and the
fact that S, (t) is constant, we have

N (1, b) = > vol(Z)~ L.

ZeJy(F)\E*P (X, (b))
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It follows that each vol(Z) must be 1, and that Stabz(J,(F)) is hyperspecial.
U

6.3. The general case

We now prove the general case of Conjecture 2.6.5. By Proposition 2.6.10,
there is no loss of generality in assuming that G is adjoint and F-simple,
and that [b] € B(G) is basic. In particular 7, = 0. In the following, we fix
such G and [b], and freely use the notation from §6.1. Note that we only fix
[b] and do not fix a prescribed u € X,(T)" such that [b] € B(G, p).

As in Definition 2.6.4, we have \; € X*(§) Denote by A the unique ele-
ment in the W-orbit of A, that lies in X*(8)". We define (cf. the discussion
above Lemma 2.6.3)

A(b) == {/\ EX (ST IANAN, A=\ € @é} .

The following lemma is the motivation for introducing A(b).

Lemma 6.3.1. Let A € X*(8)" and let pn € X,(T)*. Assume that [b] €
B(G.p). If Vu(Nat # 0, then A € A(b) L {2}

~

Proof. Assume that V() # 0. Then there exists A € X*(T') lifting A,
such that V,,(\') # 0. It follows that p and X" have the same image in 7 (G),
and hence the same image in 71 (G),. Let A" be the image of X' in X*(f)é.
Then the image of A" in 71(G), is equal to that of p, namely x(b). Hence

A and A, have the same image in 71 (G),. By the exact sequence
Q; — X*(1)y = m(G),

we know that A, — A" lies in @é. Now recall from the discussion above Lemma
2.6.3 that @é injects into both X*(f)é and X*(ESA’) Hence A\, — A belongs to
@é viewed as a subgroup of X*(8). This shows that A € A(b) LU {Nf} O

Since G is F-simple, all the simple factors of G have the same Dynkin
type. We shall call this type the type of G. The following proposition is the
key result towards the proof of Conjecture 2.6.7.

Proposition 6.3.2 (Key estimate). Assume G is adjoint, F-simple, and
not of type A. Let [b] € B(G) be a basic class. Assume [b] is not unramified.
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1. Assume G is not a Weil restriction of the split adjoint Eg. For all
A € A(b), there exists a > 0, such that

_ —s(Ldefg(b)+a
(6.3.1) M, (g7h) = O(g "),

Moreover, there exists j1 € X*(T\)+ that is minuscule, such that [b] €
B(G, ) and A (p1,b) == dim V,, (Ap)rel = 1.

2. Assume G is a Weil restriction of the split adjoint Eg (necessarily
along an unramified extension of F'). Then there is an element Apaq €
A(b) with the following properties:

o For all A € A(b) — {Avaa}, there exists a > 0, such that

_ —s(idefg(b)+a
(6.3.2) MY, (1) = O(g, 2Ty,

~

o There exist ju1, o € X*(T)T, such that py is minuscule and o is
a sum of dominant minuscule elements, such that b € B(G, u1) N
B(G, p2), and such that

%(ul, b) = dim Vul()\b)rel = 1,

and

V,ul (Abad)rel = 07 V,u2 ()\bad)rel 7& 0.

The proof of Proposition 6.3.2 will occupy §7, §8, §9 below. We now
admit this proposition.

Theorem 6.3.3. Conjecture 2.6.7 holds for G adjoint, F-simple, not of
type A, and for [b] € B(G) basic.

Remark 6.3.4. Here is the logical dependence of our proof of Theorem 6.3.3
on the previous work of other authors:

e If [b] is unramified, then our proof is logically independent of the ap-
proaches in [45], [16], or [36].

e If [b] is not unramified, and if we are in the situation of Proposition
6.3.2 (1), then our proof depends on results from [16].

e If [b] is not unramified, and if we are in the situation of Proposition
6.3.2 (2), then our proof depends on Nie’s result Theorem 2.6.8 (3)
applied to G and p1, po.
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Proof of Theorem 6.3.3. 1f [b] is unramified, then the present theorem is just
Theorem 6.2.2 (which is also valid for type A). From now on we assume [b]
is not unramified. To simplify notation, we write def for def(b).

Assume we are in the situation of Proposition 6.3.2 (1). By Theorem
6.1.3, Lemma 6.3.1, and Proposition 6.3.2 (1), for all u € X,(T)" such that
[b] € B(G, i), we have

. Ldef _
(6.3.3) Spp(q) = - (n,b) lim g2 MY (q)-

In particular, we have

A (. b)

Smb(fh) = m

Suplqr) = A (11,0)S,, p(q1).

By varying the local field F' (whilst preserving the affine root system of G)
we conclude that

(6.3.4) Sunlt) = A (11,5) Sy, (1) € Q).
Evaluating at 0, we have
N (11,5) = Syu(0) = o (11,5)S,1, (0) = oA (11, b).N (ju1,b).

On the other hand, as p; is minuscule, it is shown in [16, Theorem 1.4]
that A (u1,b) < .4 (p1,b). Since A (u1,b) is a positive natural number and
A (p11,b) = 1, we have A (u1,b) = 1. Thus A (u,b) = A (u,b), as desired.

Now assume we are in the situation of Proposition 6.3.2 (2). For each
p € X(T)", we write d, for dimV},(Ayad)rel- By Theorem 6.1.3, Lemma
6.3.1, and Proposition 6.3.2 (2), for all u € X,(T)* such that [b] € B(G, i),
we have

. Ldef
(6.3.5) Sup(qr) = lim |4 (u,b)gs™ 93

1 %def 0 1
ro () Hdugd M (g7 ]
b bad

In particular, taking u to be p; and us respectively, we obtain

(6.3.6)
. %def 0 -1
Spq,b((ﬂ) = Slggo qs m/\;r,<s>(Q1 )s
(6.3.7)

) Ldef _ Ldefe (b _
Suz,b((h) = lim |4 (p2,0)qs fmojms)(‘h 1) + dy, 43 ol )Dﬁo s (Q1 1) .

500 A Aeh
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Comparing (6.3.5) (6.3.6) (6.3.7) and using d,, # 0, we obtain

d
Sup(qr) = A (1, 0) Sy, p(q1) + d—”(Suz,b(m) — M (p12,0)S,., p(q1))-
2

By varying F', we obtain

d

(S p(t) — A (p2,b) Sy, (1)),

(6:38)  Sup() = A (1 D)5y p(t) + -

as an equality in Q(¢). Since p1, g are sums of dominant minuscule elements,
Theorem 2.6.8 (3) implies that

N (p1,0) = A (p1,b) =1, and A (p2,b) = A (p2,b).

Consequently we have S, 3(0) = 1 and S, ;(0) = .#(pu2,b). Evaluating
(6.3.8) at t = 0, we obtain

() = Sy0) = A (1.0) + P (M (12,D) — A (3, 1)) = 1. D)

2
as desired. 0
Corollary 6.3.5. Conjecture 2.6.7 is true in full generality.

Proof. By Proposition 2.6.10, we reduce to the case where G is adjoint and
F-simple, and [b] is basic. If G is not of type A, the conjecture is proved in
Theorem 6.3.3. If G is of type A, the conjecture follows from Theorem 2.6.8
(3). O

The rest of the paper is devoted to the proof of Proposition
6.3.2.

6.4. Reduction to the absolutely simple case

Lemma 6.4.1. Proposition 6.53.2 holds true if it holds for all G that are
absolutely simple and adjoint, not of type A.

Proof. Let G be as in Proposition 6.3.2, not necessarily absolutely simple.
Fix a basic [b] € B(G) as in Proposition 6.3.2. Let G’ be the auxiliary
absolutely simple and adjoint group over F', constructed in §5.5. We keep the
notation established there. Note that [b] is completely determined by k() €
71(G),. We construct a basic [V/] € B(G’) as in §5.5, such that kg(b) and
ke (b') correspond to each other under the identification 71 (G), = 1 (G ),
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We write EDynk, for the extended Dynkin diagram of G and write
Aut(EDynkg) for its automorphism group. We write |[EDynk| for the set
of nodes in EDynk. Similarly for G'.

We claim that

(6.4.1) defc(b) = defe (V).

In fact, there is a natural embedding 71 (G) x (#) — Aut(EDynk.) given by
the identification of 71 (G) with the stabilizer € in W of the base alcove, and
the natural faithful action of Q on EDynk. The number def(b) is computed
as the number of #-orbits minus the number of [u] X f-orbits in |EDynk],
where [u] € m1(G) is any lift of kg(b) € 1 (G),. Similarly, choosing a lift
(1] € m(G) of kg (b)), we compute defg (b') as the number of §-orbits
minus the number of [p/] x #-orbits in |EDynkq|. Now by construction,
EDynk, is identified with a particular connected component of EDynk.
We may thus embed Aut(EDynkg, ) into Aut(EDynkg) by extending the
action trivially to other connected components. Then inside Aut(EDynk)
we have the following relations:

do*].
0 =0" m(G) =P om(G) .
=0

In particular, we have an embedding 7 (G’) = 8°m (G")0° — 71 (G). We
may arrange that [p] is the image of [¢/] under this embedding. Then we
have

# {f-orbits in |EDynkg|} = # {#'-orbits in |EDynk |},
# {[n] » 6-orbits in [EDynkg|} = # {[1'] x §'-orbits in |[EDynkg |} .
The claim follows. R R
Next, we naturally identify X*(S) with X*(S’). Then it is easy to see

that A, corresponds to Ay under this identification. For clarity, we denote
the analogue of the map (5.4.1) for G’ as:

X*(8) — (Y, A— A6,

The target of the above map is identified with Y*. Then since the identifi-
cation Y* 2 (Y*)" amounts to the diagonal map (5.5.2), we see that

(6.4.2) Alos) — X)) wx e X*(S).
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Combining (6.4.1), (6.4.2) with Propositions 5.5.1, 5.5.2, we see that the
bounds (6.3.1) and (6.3.2) in Proposition 6.3.2 for (G,b,s := dys’) reduce
to the corresponding bounds for (G, V', s"). In the situation of Proposition
6.3.2 (2), we define Apaqg for (G, d) to be equal to that for (G’,1'), under the
identification A(b) = A(V).

Finally, by hypothesis the desired p} or {u}, ph} are already defined for
(G', V'), as in Proposition 6.3.2. Under the identification (5.5.1) we define
wi € Xo(T)* to be (u,0,---,0) for i =1,2. O

6.5. Strategy of proving Proposition 6.3.2 in the absolutely
simple case

In Lemma 6.4.1, we already reduced the proof of Proposition 6.3.2 to the
absolutely simple case. From now on until the end of the paper, we
assume that G is an absolutely simple adjoint group over F which
is not of type A.

As in the proof of Lemma 6.4.1, we denote by EDynk, the extended
Dynkin diagram of G, denote by Aut(EDynk ) its automorphism group, and
denote by |[EDynkg| the set of nodes. To prove Proposition 6.3.2, consider
a basic class [b] € B(G) which is not unramified. Since b is not unramified,
we have kg (b) # 0, and in particular the groups m1(G) and Aut(EDynk)
are non-trivial. By our assumptions on GG, we see that the following are the
only possibilities for Dynk, and 6 (viewed as an automorphism of Dynk;):

1. Type B,,n > 2,0 =id. 6. Type Dy, 0 has order 3.
3. Type D,,n > 4,0 = id.

4. Type D,,n > 5,6 has order 2. 8. Type Eg, 0 has order 2.
5. Type Dy, 0 has order 2. 9. Type FEr,0 =id.

In fact, the above are the only cases (apart from type A) where EDynk
has non-trivial automorphisms. Our proof of Proposition 6.3.2 will be based
on this classification.

In §7 below, we prove many cases of the estimates (6.3.1) and (6.3.2). To
be precise, we define an explicit subset A(b)go0a of A(b), and prove (6.3.1)
or (6.3.2) for all A € A(b)good- These shall be done in a case-by-case manner
according to the previous classification of (Dynkg, ).

In §8, we finish the proof of (6.3.1) for all A € A(b). We also define Ap,q in
Proposition 6.3.2 (2), and finish the proof of (6.3.2) for all A € A(b) —{Apad }-
In view of what we have done in §7, we only need to analyze elements
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A € A(b) — A(b)good- If we are in the situation of Proposition 6.3.2 (1), then
we show (6.3.1) for all A € A(b) — A(b)gooa- If we are in the situation of
Proposition 6.3.2 (2), then we define a distinguished element Ap,q € A(b)
and show (6.3.2) for all A € A(b) — A(b)good U {Abad }-

In §9, we construct the element p; in Proposition 6.3.2 (1), and the
elements pi1, o in Proposition 6.3.2 (2). We then check that they satisfy the
desired properties. The proof of Proposition 6.3.2 is then finished.

7. Proof of the key estimate, Part I

The goal of this section is to define an explicit subset A(b)go0a of A(b), and
to prove (6.3.1) or (6.3.2) for all A € A(b)good-

7.1. Types B,C,D,0 = id

7.1.1. The norm method. We follow [3, Chapitre VI §4] for the presen-
tation of the root systems of types B,, C),, D,, and for the choice of simple
roots. The root systems will be embedded in a vector space £ = R", with
standard basis eq, - - , e,, and standard inner product (e;, e;) = d;; so that
we may identify the coroots and coweights with subsets of the same vector
space. Following loc. cit., we define the following lattices in E:

Lo:=A{(&,- &) € E|&G €L},

Ly:= {(51,--. &) €LY &€ 22},

=1
1
Lo:= Lo+ Z(i Ze,)
=1

We assume 6 = id, so that T' = A and S = T = A. The cocharacter
lattice X, (T) is identified with the coweight lattice in E. Moreover 71(G)
is equal to the quotient of the coweight lattice modulo the coroot lattice
in F.

Since [b] € B(G) is basic, it is uniquely determined by kg (b) € m(G)s =
71(G). The defect def(b) of b is computed in the way indicated in the proof
of Lemma 6.4.1.

For any v = (&1, -+ ,&,) € E, we write

(7.1.1) o] ==&+ + |l
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It is easy to verify the following three facts.

1. || is a norm on E.
2. |wv| = |v| for any w € Wy and v € E.
3. For any coroot oV € ®V, we have |aV| < §, where ¢ = 2.

Now given any subset S of A(b), we define Z(S) := minyeg|A|. (The
minimum obviously exists.) In the following, we will specify a subset A(b)go0d
of A(b), satisfying

(7.1.2) D(A(b)gooa) > 6 - defg(b)/2.

We show how to get the bound (6.3.1) for all A € A(b)go0d, from (7.1.2).
Let A € A(b)good. Fix w,w’ € W, We write ¢s := w o (w'A\(*)). By the
formula (5.2.2), it suffices to show that

_ —s(2defq(b)+a
(7.1.3) Py, qr") = O(q, ")

for some a > 0.
By Proposition 5.3.1 (2), we have the bound

(7.1.4) P ar )| < #P(Ws) g7, Ng:= min |m|.

Suppose m € P(1)5). Then

6 ) mB)=| > mB)B| =l

BERDV-T BeERPVT

> ‘ww’)\(s) — ‘wpv — pv| =S |A‘ —-C>s- -@(A<b)g00d) B C’

where C'is a constant independent of s, and |-| is the norm defined in (7.1.1).
Since 0 = id, we have p®Y'" = ®V'" and b(3) = 1 for all 3 € ®". Hence
the leftmost term in the above inequalities is none other than § |m|. It follows
that

Ny > (s2(A(b)gooa) — C)5 .
By the above estimate and (7.1.2), we have

_ —s(2defg(b)+a’
(7.1.5) g = 0(g, ")

for some a’ > 0.
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On the other hand, by the same argument as in the proof of Proposition
6.2.1, we have

(7.1.6) #P(1ps) < (Ls)M

for some constants L, M > 0. The desired estimate (7.1.3) then follows from
(7.1.4) (7.1.5) (7.1.6).

In the following we specify the definition of A(b)go0q satisfying (7.1.2),
for types B,C, D with 0 = id.

7.1.2. Type B,,n > 2,0 = id. The simple roots are o; = e€; — €41
for 1 < i <n-—1, and a,, = e,. The simple coroots are a;/ = q; for
1<i<n-1,and o, = 2e,. The fundamental weights are @; = e +---+¢;
for1<i<n-1, and w, = %(61 + -+ ey). The coroot lattice is L1, and
the coweight lattice is Lg. We have

Pt ={(, &) |&GELEGL>E > > &, >0},

We have 71 (G) = Z/2Z, and the non-trivial element is represented by e; €
Lo. Recall that we assumed that kg(b) is non-trivial, so there is only one
choice of kg(b) (and hence only one choice of the basic b € B(G, u)). We
have A\, = —e,, and )\;r = e;. Since kg(b) acts on EDynk, via its unique
non-trivial automorphism, we easily see (both for n = 2 and for n > 3)
that defg(b) = 1. We take A(b)good := A(D), and we have Z(A(b)) = 2. The
inequality (7.1.2) is satisfied.

7.1.3. Type C,,n > 3,0 = id. The simple roots are a; = e; — €;41
for 1 < i <n-—1, and o, = 2e,. The simple coroots are a;/ = oy for
1<i<n-—1,and o) = e,. The fundamental weights are @; = e1 +---+e¢;
for 1 <4 < n. The coroot lattice is Lg, the coweight lattice is Lo. We have

P ={(&, &) el |4 >& > >& >0}.

We have m(G) = Z/27Z, and the non-trivial element is represented by
(3,-++,3) € Ly. Since k¢(b) is non-trivial, we have

111 S TS B |
)‘b_(_§7§7_§7'”)(_1) 5)7 )‘b _(2) 72)

Since kg (b) acts on the EDynk via its unique non-trivial automorphism,
we easily see that defg(b) = [5] (i.e. the smallest integer > n/2). We take
A(D)good := A(b), and we have Z(A(b)) = (n + 2)/2. The inequality (7.1.2)
is satisfied.
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7.1.4. Type D,,n > 4,0 = id. The simple roots are a; = e; — e; 41 for
1<i<n-—2 and ap_1 = en_1 — €n,n = €,_1 + €,. The simple coroots
are o = ;. The fundamental weights are

wi=e1+---+e, 1<i<n—2,
1
wnflz§(€1+62+'--+6n71—€n),

1
wn:§(61+62+-"+6n).

The coroot lattice is L, the coweight lattice is Lo. We have

Pr={(&, &) el | & >& > > &1 > 6]}

Case: n is odd. We have 71 (G) = Z /47, and a generator is represented

by (%, . ,%) € Ly. For i = 1,2,3, we let b; € B(G) correspond to the image
of i(3,--+,3) in m(G). Then
n—2 i
(1) 1 (—1)(n+1)/2 L1 1
Aoy =D e = sen1 +—e——en, N = (5. 5),
a2 2 2 22
Ab, = —€n—1, AL =er,
n—2 ;
—1) 1 —1)(n=1)/2 1 1 1
)‘bazz(2)€i—§€n1+%€m )‘l;i’:(§>'”7§7_§)'
i=1

Since up to automorphisms of Z/47, there is only one way that Z/47
could act on EDynk,, we easily see that

def(br) = def(bg) = 22

, defq(bs) = 2.

Let

Mg (3L 31 11
1,bad -— 279’ "9 9 :

For i = 1,3, we obviously have \; paq € A(b;). We take
(717) A(bi)good = A(bz) - {Ai,bad} .

Then 2(A(b;)good) = 22 and the inequality (7.1.2) is satisfied.
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For i = 2, we take A(b2)good := A(b2), and we have Z(A(b2)) = 3. The
inequality (7.1.2) is satisfied.

Case: n is even. We have 71 (G) = Z/27 x Z/27Z. The three non-trivial
elements are represented by

1
(5775 3), e, (3 “',§)+61€L2.

n—2
(-1’ 1 (=12 Lo 1
)\lizl g G gtnlt T e )‘bl:(? ’5)’
Ab, = —€n—1, N =el,
n—2 ;
B (_1)2 1 (_1)n/2+1 v 1 1 1
E Z g gttt e Ay =G g )

Since ki(b1) and kg (bs) are related to each other by the automorphism of
the based root system e, +— —e,, it is clear that they correspond to the
two horizontal symmetries of order two of EDynk,. On the other hand,
the action of kg (b2) on EDynk. is of order two, is distinct from the two
horizontal symmetries, and commutes with the two horizontal symmetries.
Hence this must correspond to the vertical symmetry of EDynk, that has
precisely two orbits of size two and fixes all the other nodes. Thus we have

defg(by) = defg(bs) = =, defg(bs) = 2

n

27

For i = 1,2,3 we take A(bij)good := A(b;). Then we have Z(A(b1)) =
P(A(b3)) = (n+2)/2, and Z(A(b2)) = 3. The inequality (7.1.2) is satis-
fied.

7.2. Type D,,n > 5,0 has order 2

The simple (absolute) roots and coroots are the same as in §7.1.4, embedded
in £ = R"™ We identify E with X,(T) ®z R. Then 6 acts on E by

(15 6n) = (&1, nm1, —n)-

The subgroup X.(A) C X.(T) = Ly is given by {(&1, -+ ,&n) € Lo ] & =0},
Let L C Q"1 be the analogue of Lo, namely L), = Z"~1 + Z( Lo ,%)
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~

The quotient X, (1) = Ly — X*(S) is the same as

L2 — L/27 (617' T 7§n) = (517” : 7571—1)'

The map

~

(s): X*(8) — X, (A), Ar— A
(for s € 2Z>) is given by
(7.2.1) Ly — Xu(A), (&1, ,&n1) — (s, ,80-1,0).
The set p®Y'F, as a subset of X,(A), is equal to
{eite|1<i<j<n—1}U{2,|1<i<n-—1}.
We have
bleste;))=1,1<i<j<n—1; b(2¢) =2, 1<i<n-—1.
Moreover p®" is reduced. We have

P+:{(§1,7§n)EL2|§1Z€22an—lan:0}7

XS ={E - &) eX ) =Lh @2 &2 2 61 20}

We again write ey, - - -, e,_1 for the standard basis of X~ (§)®Q =Qn 1.

-~

The relative simple roots in Q; C X*(S) are:
€1 —€2,62 — €3, ,€n—2 — €n—1,n-1

(i.e., the same as type B,_1.)

Case: n is odd. We have 71(G) = Z/4Z, and o acts on 71 (G) by the
unique non-trivial automorphism of 71 (G). Hence m(G), = Z/27Z, and the
non-trivial element is represented by

1 1 1 1
—5(61 — 62) — 5(63 — 64) cee— §(€n_2 — en_1) + §6n € Ly = X*(T)

The image of the above element in X *(§) ®Q = Q" ! is obviously equal to
a linear combination of the relative simple roots in @3 with coefficients in
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QN (—1,0]. Hence this image is Ay, and so

T I TP
)\b_( 279’ ) Z)Z)GQ _X(S)®Q7
1 1 _ P
A =(53) €T =X (S) 2 Q.

If v is any generator of m1(G) = Z /47, then the number of orbits of vy x ¢
in |[EDynkg| is 2 + 252, while the number of orbits of 6 in |[EDynk| is n.
Hence

(7.2.2) defa(b) = = 5 L
We have
(7.2.3)
A(b) = {(§1 + %7 7§n_1 + %) E L,2 | 51 > Oavzagl 6 Z?&’L 2 éi-‘rl} .

We take A(b)good := A(D). In the following we show (6.3.1) for all A € A(b).
The proof will be similar to the arguments in §7.1.1.

Fix w,w’ € W'. We write ¢, := w o (w’'\(¥)). By the formula (5.2.2), to
show (6.3.1) it suffices to show that

_ —s(2defg(b)+a
(724) da > O’ P(w57Q1 1) — O(q1 (2 a(b) ))

Again we have the bounds (7.1.4) and (7.1.6), so it suffices to find a suitable
lower bound of |m|, for m € P(¢)5). We keep the definition (7.1.1) of the
norm |-| on E = R". For m € P(¢5), we have

2[m| =2 m(B)b(8) =2> m(B) > |>_ m(B)B
B B B

= |ob| > ‘ww’)\(s)

— |wp" = p¥| = Ws)

—-C,

where the sums are over 3 € p®""", and C is a constant independent of s.
On the other hand, by (7.2.1) and (7.2.3), we have }/\(S)‘ >s(n+1)/2. In

conclusion we have

(7.2.5) 2im| > s- 5
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Combining (7.2.2) (7.2.5) with (7.1.4) (7.1.6), we obtain the desired (7.2.4).
Note that in the above proof, we only used the fact that (n+1)/2 > defs(b).

Case: n is even. We have m(G) = Z/2Z x Z/2Z. The action of ¢ on
71(G) swaps the classes represented by (3,---, 1) and (3,---,3) +e1 € Lo,
and fixes the class represented by e;. Hence 7r1(G) Z/ 2Z, and the non-
trivial element is represented by

1
§(en_1 — en) € Ly = X*(T)

1 1
The image of the above element in X *(S\) ®Q = Q”_i is obviously equal to
a linear combination of the relative simple roots in 3 with coefficients in
QN (—1,0]. Hence this image is Ap, and so

l\DlH
N | —

N= (- ) €@ =x"§) a0
A = (% 3 e =x"§ o0

Let v € m1(G) be the class of (1,---,1) € Ly. We have seen in §7.1.4
that v acts on EDynk via one of the two order-two horizontal symmetries
of EDynk,. Hence v x o acts on EDynk, via one of the two order-four
horizontal symmetries of EDynk., and the number of orbits is 1 + "T_z =
5. On the other hand the number of orbits of 6 in [EDynks| is n. Hence
defe(b) = n/2. The set A(b) is again given by (7.2.3). We take A(b)good :=
A(b). The proof of (6.3.1) for all A € A(b) is exactly the same as in the odd
case, using the fact that (n +1)/2 > defg(b).

7.3. Type Dy, 0 has order 2

The difference between this case and §7.2 is that the D4 Dynkin diagram has
three (rather than one) automorphisms of order two. However we explain
why the proof of (6.3.1) for all A € A(b)good := A(D) is the same. In fact,
there exists a permutation 7 of {1,3,4}, such that the root system can be
embedded into R* with simple roots:

Qr(1) = €1 — €2, Qg = €2 — €3, Qr(3) = €3 — €4, Qr(4) = €3 T €4,

and such that 6 acts on R* by eq — —ey.
If 7 =1, then the extra node in EDynk, is given by ag = —e; — e, and
the proof is exactly the same as §7.2. For general 7, we still have 71 (G), =
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Z/27 and hence a unique choice of b, and the only place in the proof in
§7.2 that could change is the computation of defg(b), as the extra node
in EDynk, is no longer given by —e; — e2. However, it is still true that
as long as kg(b) is the non-trivial element in 71(G), = Z/27Z, we have
defi(b) = 2, which is n/2 for n = 4. In fact, for any order-two element
v € m(G) = Z/2 x Z/2 which is not fixed by o, the action of v x 6 on
|EDynk| must be of order four and have two orbits. The computation of
def(b) easily follows.

7.4. Type Dy, 0 has order 3

In this case m(G) = Z/27 x Z/2Z. We know that 6 acts on 7;(G) by an
order-three permutation of the three non-trivial elements. Thus m (G), =0
and any basic b is unramified.

7.5. Type Eg,0 = id

We consider the root system FEg embedded in R?, which we will consider
as R? @ R? @ R3. The set of roots is given by the 18 elements consisting of
permutations of

(1,-1,0;0,0,0;0,0,0), (0,0,0;1,—-1,0;0,0,0), (0,0,0;0,0,0;1,—1,0)

under the group S3 x S3 x S3, together with the 54 elements given by the
permutations of

2. 1. 121 1.2 11
33 33 3 3°3 3 3

)

1 211
'37 3°3'3° 3733

Wl

)7 (72’

under the same group. We will call the first set of roots type A roots, and
the second set type B roots. A type A root is positive if and only if the
coordinate 1 appears to the left of the —1. A type B root is positive if and
only if the first coordinate is positive.

A choice of simple roots is given by

o1 = (0,0,0;0,1,—1;0,0,0), as = (0,0,0;1,~1,0;0,0,0),
1 21 211 211

S P e — (0,1, -1;0,0,0;0,0,0

a3 (37 3737 373737 37373>7 (e %1 (7 ) y Uy, U, U, U, Uy )7

as = (0,0,0;0,0,0;1,—1,0), ag = (0,0,0;0,0,0;0,1,—1).
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The corresponding Dynkin diagram is

1 2
e} @)

ow
ot
=)

=~ O

Under the standard pairing of R? with itself, each root is equal to its own
corresponding coroots. We therefore identify RY with its dual and do not
distinguish between roots and coroots. The subspace of R? generated by the
roots is given by the equations

(7.5.1) x1+ 2o+ 23 =24+ 25+ 26 =27+ 28+ 29 =0

where z; are the standard coordinates. The fundamental weights are given

2 1 111 2 4 2 22 1 1
= (Z ~ - 2. -2.0,0,0 (o, s S 2.0,0,0
w1 (37 30 373737 370 )7 w2 (37 30 373 30 30 )a
w3 = (2a _17_1;07070;07070)7 Wy = (1707 _1;07070;07070)a
4 2 2 2 1 1 2 1 1 11 2
= (5, -2,-2,0,0,0;2, —=, —= = (2,22, 2250,0,0; 5, =, — ).
(% (37 35 3a y» Uy 735 3) 3)7 wWe (37 37 35 ) Yy 73737 3)

For an element A\ = 21‘6:1 a;w; with a; € Z, we have X lies in the root
lattice if and only

(7.5.2) as —ag —az2 +a; =0 mod 3.

We have 71(G) = Z/37Z, with the isomorphism being given by

6
)\:ZQiWi?—)af)—aﬁ—CLQ—i-al mod 3.
i=1
Moreover A is dominant if and only a; > 0 for i =1,...,6.

We let b;, i = 1,2 denote the non-trivial elements in 71 (G). We have
)\Z =t and )\Z; = wg. We set

A(b1)gooa := A(b1) — {ws, w4 + w1, w2 + ws, 206 },
A<b2>good = A(bg) — {WQ,W4 + wg, W5 + W1, 2w1}.
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We let || be the standard Euclidean norm on R®. Then |-| is Wp-invariant,
and we have |a¥| < 6 := /2, for all oV € ®V. Given any subset S of A(b;),
we define Z2(S5) := minyeg |A|. We claim that

D(A(D1)good) > V8, Z(A(b2)good) > V8.

Since defg(b) = 4 (which we know by counting orbits of the unique non-
trivial symmetry of EDynk) and § = v/2, the claim will imply the inequality
(7.1.2), and by exactly the same argument as in §7.1.1, we conclude that
(6.3.1) holds for all A € A(b;)good-

We now prove the claim. By the obvious symmetry (16)(25)(3)(4) of the
Dynkin diagram, it suffices to only discuss A(b1)good-

Let A = Z?:1 aiww; € A(by), with a; € Z>g, and suppose |\| < v/8. We
will show

’)\| S {W5, w4 + W1, W2 + We, 2w6}.

Since A € A(by1), we have by (7.5.2) that
(7.5.3) as —ag —as+a; =1 mod 3.

By looking at the first three coordinates of A and using the triangle inequal-
ity, we easily obtain the inequalities

a1§37 a2§17 a‘3§17 a4§37 a‘5§11 a6§3-

If a3 = 1, then we have a; > 0 for some i # 3 since A € A(by), hence
az = 0.

If ap = 1, we have a5 = 0 and ay,a4,a6 < 1 (by looking at the first 3
coordinates). We check each case and see that only A\ = w9 + wg is possible.

If a5 = 1, we similarly obtain that A = w5 is the only possibility using
(7.5.3).

The only cases left are when the only non-zero coefficients are ay, a4, ag.
Again by looking at the first three coordinates, we see that a; + a4+ ag < 3.
We check each case and see that the only possibilities are A = wj 4+ w4 and
A= 2@6.

7.6. Type Eg,0 has order 2

We keep the notation §7.5. Then 6 acts on the root system via the action
on R given by

(.’L’l, X2,X3;T4,T5,T6; L7, T8, I’g) (3?1, X2,X3;T7,X8,T9; T4, L5, xﬁ)'
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It therefore acts on 71(G) by switching the two non-trivial elements. Hence
71(G), = 0 and all basic elements are unramified.

7.7. Type E7,0 = id

We consider the root system E7 as a subset of R8. The set of roots is given
by the 56 permutations of (1,-1,0,0,0,0,0,0) and the (i) permutations of

(%, %, %, %,—%,—%, —%, —%) A set of simple roots is given by
a1 = (0,0,0,0,0,0,—1,1), az = (0,0,0,0,0,—1,1,0),
as = (0,0,0,0,—1,1,0,0), ay =(0,0,0,-1,1,0,0,0),
1 1 1 1
as = ( ), ag = (0,0,—1,1,0,0,0,0),
(

1111

27272727 27 27 27 2
1,0

The corresponding Dynkin diagram is

1 2 3
o e} e}

O
o
~

o
5

Under the standard pairing of R® with itself, roots correspond to coroots
and we therefore do not distinguish between them. The subspace of R®
generated by the roots is the hyperplane given by the equation Z§:1 z; =0.

The corresponding fundamental weights are given by

3 1 1 1 1 1 13
s=p - e )
31 1 1 1 111
@ =555 5y Tyyg)
9 3 3 3 3111
- (47 4a 47 47 4743171)7

= (37 1707 O? 07 0)7

701 01 11 1 1 1
:@“"1’ e
w6 = (2,-1,-1,0,0,0,0,0),
wr = (1, - 1000000)
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For an element \ = ZZ:1 a;w;, a; € Z, we know A lies in the root lattice if
and only if a; +a3z+as =0 mod 2. We have 71(G) = Z/2Z. By assumption
k(b) € m1(G) is the non-trivial element. Then we have A\ = w;. We set
A(B)gooa == A(b) — {w5}.

We let || be the standard Euclidean norm on R®. Then |-| is Wy-invariant,
and we have |aV| < § := /2, for all o € ®". Given any subset S of A(b),
we define Z(S) := minyeg |A|. We claim that

P (A(b)good) =

\)

Since defg(b) = 3 and § = v/2, the claim will imply the inequality (7.1.2),
and by exactly the same argument as in §7.1.1, we conclude that (6.3.1)
holds for all A € A(b)good-

We now prove the claim. Suppose \ = 23:1 a;\; € A(b) with a; € Z>o,
and |\| < v/22/2. We will show that A\ = ws. By looking at the first four
coordinates, we obtain the trivial (in)equalities:

w1 <2, wo <1 w3=0, wyg=0, w5s<1, wg<1, wy <1

We also obtain 23:1 a; < 2. It is not hard to see that A = w;y is the only
possibility.

8. Proof of the key estimate, Part 11

The goals of this section include:

e to finish the proof of (6.3.1) in Proposition 6.3.2 (1);
e to define \p,q and to prove (6.3.2) in Proposition 6.3.2 (2).

In §7, we already proved (6.3.1) and (6.3.2) for all A € A(b)go0d. Moreover
the subset A(b)go0d C A(b) is proper only in the following three cases:

Proper-I Type D,,n > 5,nis odd, § =id, b = by or bs. See §7.1.4.

Proper-I1 Type Eg,0 =id,b = by or by. See §7.5.
Proper-III Type E;,0 =id. See §7.7.

8.1. Combinatorics for D,,
In order to treat the case Proper-I, we need some combinatorics for the

type D,, root system. The material in this subsection is only needed in the
proof of Proposition 8.2.1 below.
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Let n be an integer > 5. We keep the presentation of the type D, root
system in a vector space R", as in §7.1.4. In particular we keep the choice
of positive roots. We do not distinguish between roots and coroots. Let ®p
be the set of roots and let @En be the set of positive roots. Thus

@Bn:{eiiej|1§i<j§n}.

If m > n is another integer, we embed R" into R" via the inclusion of
the standard bases {e1,- - ,en} < {e1, - ,em}. In this way we view ®p_
(resp. @En) as a natural subset of ®p  (resp. @JDF)

In the following we fix an odd integer n > 5. We keep the notation in
§5.3, with respect to p®Y' T = <I>J]5n and b = 1. The goal of this subsection

is to prove the following:

Proposition 8.1.1. Let (vo,--- ,v,) € {+1}""!. Fort e N, let
)\t = (6t, 2tl/2, 2tV3 Tty Qtljn).

When t € N is sufficiently large, for any integer L in the interval [0, (n +
3.5)t], we have

(8.1.1) S USR-S B =0,

Scef, Bes

In order to prove Proposition 8.1.1, we shall use some graph theory
to facilitate the computation of the left hand side of (8.1.1). We first recall
some standard terminology from graph theory. Recall that a graph consists of
vertices and edges, such that each edge links two distinct vertices. A path on
a graph is a sequence (v1, E1, -+ , g, Eg, Uk+1), where v; and v;41 are the two
distinct vertices linked by the edge E;, for each i, and such that Fq,--- , Ej
are all distinct. A tree is a graph, in which any two vertices are connected
by exactly one path. In particular, on a tree we may represent each path
(v1, E1, -+, vk, B, vk4+1) unambiguously by the sequence (v, ve, -+, Vk+1),
and we know that vy, - -+, vg41 are all distinct. A rooted tree is a pair (7, O),
where 7 is a tree and O is a distinguished vertex of .7, called the root.

In a rooted tree (.7,0), every vertex v # O has a unique parent, that
is, the vertex w such that the unique path from O to v passes through
w immediately before reaching v. In this situation we call v a child of w.
A vertex of (7, 0) that does not have children is called an end vertez. We
denote by |.7| the set of vertices, and denote by |.7| 4 the set of end vertices.
By a complete family line on (7, 0), we shall mean a path (vg,vi, -, vk)
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such that v = O and v, € |.7|,4- Note that in this case each v; is the
parent of v;41.

In the following, we fix an abelian group FE, and fix subsets U,V of
E, such that U is finite and 0 ¢ V. In applications, we shall take £ = R",
U ={e1 +vjej | 2<j <n}forsome (va, - ,v,) € {£1}" 1 and V = o .

Definition 8.1.2. By a (U, V)-tree, we mean a tuple (7,0, ¢,1), where
(Z,0) is a finite rooted tree, and ¢, 1) are maps

¢: |7 -{0} = U,

Vi | T =T | g — V-

end

We shall graphically represent a (U, V)-tree (7,0, ¢,1) by marking

o) || ¢ (v)

at each vertex v. If ¢(v) or ¥(v) is not defined, we leave it as blank. (Thus
O could be recognized as the unique vertex where ¢(v) is left as blank.)

Definition 8.1.3. We say that a (U, V)-tree (7,0, ¢,) is admissible, if
the following conditions are satisfied:

1. Bach w € |7| — |7 |,,q has precisely two children v,o. Moreover, we
have 6(v) — 6(5) € {H(w), —(w)}.

2. Every complete family line (vg,v1,---,v;) on (7,0) satisfies k =
|U| — 1. Moreover, ¢(v;) are distinct from each other for 1 < i < k,
and v (v;) are distinct from each other for 0 <i < k — 1.

Definition 8.1.4. Let (7,0, ¢,) be an admissible (U, V)-tree. Let w €
| T | = |7 | pna- Since ¥ (w) # 0, there is a unique ordering of the two children
v, 0 of w, such that ¢p(v) — P(v) = ¥ (w). We call v a positive vertex and call
v a negative vertew.

Proposition 8.1.5. For each odd integer n > 5 and each (va,--- ,vy,) €
{(#£1}"7 we let E == R", U := {e; +vjej |2<j<n}, and V := @Bn.
Then there exists an admissible (U, V')-tree.

Proof. We prove this by induction on n. To simplify notation, when n and
(v2,- -+ ,vy) are fixed, we define

g;j == e1+vjej, hiji=e; —vivje;,

for i,5 € {2,--- ,n}.
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The base chase is n = 5. One checks that the (U, V')-tree represented by
the following diagram is admissible:

| h2s

g2 || h3a g3 || hoa

93 || has| |gall h3s| |92 || has| |94 || hos

Lga 1|95 I1)[ g3 1[5 I1|[ga 11| g5 I1|[ 2 11| g Il

Now assuming the proposition is proved for n — 2, we prove it for n
(with n > 7). Let (va, -+ ,vp), U, and V be as in the proposition. Let U’ :=
{gj|2<j<n—-2} and V' := @sz. By induction hypothesis there exists
an admissible (U’,V')-tree (77,0, ¢',1’). We shall construct an admissible
(U, V)-tree based on this.

First, to each end vertex v of ', we associate a (U,V)-tree
(T, Oy, by, 1) as follows. Let (O, vy, -+ ,vp = v) be the complete family
line on .7’ from O to v. Since (7', 0, ¢', ') is admissible, we have k = n—4,
and there is a unique index j, € {2,--- ,n — 2} such that

{d)|1<i<k}={gi|2<j<n—2,j#ju}.

We define (F, Oy, ¢y, Py) to be:

” hj«;,n
93, H hnfl,n 9n || hjv,nfl
lgoi Il] g ll] (g5 1] [gn1ll]

Now for each end vertex v of .7/, we glue 7, to .7’/ by identifying the
root O, of 7, with v. We also combine the marking | ¢'(v) ||| at v with the

marking | || 1,(Oy) | at O, to get the new marking | ¢'(v) || 1,(O,) | In this
way we obtain a larger tree .7 containing .7, and a (U, V)-tree (.7, O, ¢, ).
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It is then an elementary exercise to check that the (U, V)-tree (.7, O, ¢, )
thus obtained is admissible. As an example, we check that for each com-
plete family line (vg, vy, ,vx) on (Z,0), the elements ¥ (v;) are distinct
for 0 < ¢ < k — 1. The other desired conditions can all be checked simi-
larly. Note that (vg,v1,- - ,vg_2) is a complete family line on (7', O). For
0 <i < k-3, we have ¢(v;) = ¢'(v;), and these are distinct from each other
by induction hypothesis. Now writing v for vx_o, we have 1 (vg_2) = 1,(O,),
and ¥ (vg_1) = ¥y (vg—_1). By the definition of v, we see that the set formed
by ¥ (vg—2) and ¥ (vg_1) is either {hj n,hn—1n} or {hj, n,hj, n-1}. Thus
these two elements are distinct from each other, and being in V' — V’, they
are distinct from v (v;) for 0 < i < k — 3, since the latter elements are in V.
Thus we have shown that (v;) are distinct for 0 <7 < k — 1. O

Fix an odd integer n > 5, and fix (vo,--- ,vpn) € {£1}" L. Let U,V be
as in Proposition 8.1.5, and fix an admissible (U, V)-tree (7,0, ¢,1) as in
that proposition. Let 2" denote the power set of V.

For each v € | 7| — {O}, we define a subset C, C 2" as follows. Let w
be the parent of v. We define

o {Se2V|y(w)¢ S}, ifvisa positive vertex,
v {Se2V |y(w)e S}, ifvisa negative vertex.

Now let (O, v1,- -+ ,vp = v) be the unique path on 7 from O to v. We define
k
D, = m Cy, C 2V,
i=1

We also define Do := 2V, It is easy to see that if v, ¥ are the two children
of any vertex w, with v positive, then

D,={S e Dy, |¢¥(w)¢ S}, Dy={S€D,|(w)eS},

(8.1.2)
Dy = D, U Dy.

In this situation, there is a bijection
(8.1.3) D, = Dy, S+— SU{y(w)}.

Next, for any A in the root lattice span,(®p, ), any L € Z>(, and any
v € |.7|, we define a subset P(\)} of P(\)r. (See §5.3 for the definition of
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P(\).) If v # O, let (O,v1,---,v, = v) be the unique path from O to v.
We define

PN = {m € PO 1, | m(s(v;)) = 0, Y1 <i < k}.

If v = O, we define
P(N? :=P(\);.
For any two v1,v2 € |7 |, we define
P =P PO
Lemma 8.1.6. Let A be an element in the root lattice spany (®p, ). For each

subset S C @En, let As == A= gcg B Let w € |T| —|.T| and let v, v
be its two children. Then

end’

Yo EDFHPOs)E = > (CD)FI#POs)L + Y (FD)PI#P(Os)T

SeD,, seb, SeD;

Proof. We may assume v is positive. In view of (8.1.2) and the bijection
(8.1.3), it suffices to show that for each S € D, we have

(8.1.4) HP(As)Y ™ = #P(\s — d(w))y .

To show this we consider the map

fiPAs)y™" — P(As = ¢(w))p "

defined by
m(B) —1, if 8= ¢(v),
f(m)(B) := {m(B) +1, if B =¢(v),
m(p), else.

One easily checks that f is well-defined and bijective, using the admissibility
of (7,0, ¢,1). This proves (8.1.4), and hence the lemma. O

Lemma 8.1.7. Let || be the norm on R™ as in (7.1.1). Fix a real number
M > n/2. Let (va,--- ,un) € {£1}"" !, and t € N. Let A € spany(®p ),
such that

(8.1.5) |\ — (6t, 2tvo, 2tvs - - -, 2twy,)| < t/M.
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Let m € P(\). Assume there is a subset I C {2,--- ,n} of cardinality n — 2,
such that m(e1 + vie;) =0 for alli € I. Then

Im| > (n+4— %)t.

Proof. Assume the contrary. Let jo be the unique element of {2,--- ,n}—1I.
Define m’ € P by:

0, if sef{erte |2<i<n},

+ / —
VB e Pp,, m(B) = {m(ﬁ), else.

Write A = \eg + Z:-L:z Aivie;, with A1, .-+, A, € R. From our assumption
(8.1.5), it easily follows that each A\; > 0. We have

Y(m') = Z()\z + m(e1 — viei))viei + N v, €5,
el

with some \’ € R. Obviously [m/| = |m| — A1, so we have

2 |m/| =2|m| -2\ > |S(m)| > ZAZ' +m(er — vie;),
iel
from which we get:
0 §Em(el —vie;) < 2|m| — 2\ — z)‘i
i€l iel
<2n+4- %)t — (6t — t/M) — |I] (2t — t/M) = 0,

a contradiction. O

We are now ready to prove Proposition 8.1.1.

Proof of Proposition 8.1.1. As in the proposition, we fix (vo,--- ,v,). We let
As 1= M=) gcq B, for any subset S C @En. Let U :={e1 +vje; | 2 < j <n},
and let V := @En. Fix an admissible (U, V)-tree (7,0, ¢, 1) as in Proposi-
tion 8.1.5. By repeatedly applying Lemma 8.1.6 (with respect to A := \;),
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we obtain
S (D)EIHPOs)L = D (—DEIEP(A)S
Scef S€Do
= Y D ()PP
velT|,,, SED,

Hence the proposition is proved once we show the following claim:
Claim. When ¢ is sufficiently large, for each L € Z N [0, 3.5¢] and for

each v € |7 4, We have

> (—1)SI#P(As); = 0.

Seb,

To prove the claim, we fix a real number M > n. Let || be the norm on
R™ as in (7.1.1). When ¢ is sufficiently large, we have

max Zﬁ <t/M
Scof, Ges

Thus we can apply Lemma 8.1.7 to A := Ag for each S C <I>+ Using the
admissibility of (7,0, ¢,), we know that any m € IP)()\S)E ‘satisfies the
hypothesis in Lemma 8.1.7 about the vanishing of m(e; + v;e;). Thus by
that lemma, P(Ag)} is non-empty only if

This proves the claim. The proof of the proposition is complete. O
8.2. The case Proper-I

We treat type D,, with n > 5 odd, and § = id, b = by or b3. See §7.1.4.
By symmetry we only need to consider b = b;. Recall in this case A(by) —

A(bl)gOOd = {Al,bad}7 where

31 1 1
Al,bad: (5757 a __)7

and we have defg(by) = ”T“'S
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Proposition 8.2.1. The bound (6.3.1) holds for A\ = A\ pad-

Proof. The proof uses the results from §8.1. By the formula (5.2.2), it suffices
to show for each w” € Wl = W), that

(8.2.1)
w s _ —s édefc b)+a
Z (_1)21( )zp(w//)\g’})aad +wpv - pv7q1 1) — O(ql ( (b) ))
weW=W,

for some a > 0. Here we have made the change of variable ww’ — w” in
(5.2.2), and have used the fact that eo(w’)\fl?)ad) =0 for all w’ € W, as long
as s > 0.

Fix w”, and write (s := w”)\gsl)jad. Let |-| be the norm on R™ defined in
(7.1.1). Since Wy C {£1}" x S,, there exist 1 < j < n, ¢ € {1}, and
v=_(vg, ) € {:I:l}"_l, such that

1 1 1 3 1

(s = (=svo, —svsz, - - ,isuj, —SE, =SVjp1, - -

925 253 )

2

where %ss is at the j-th place.

Assume either j # 1 or ¢ = —1. Then for s > 0 and all w € Wy, we
have (s +wp” — p¥ ¢ RT, and so P((s +wp” — p¥, ¢, ') = 0. We are done
in this case.

Hence we assume j = 1 and € = 1. Assume without loss of generality
that s = 4¢ for t € N. As an easy application of the Weyl character formula,
we know that any function &2 from Y* to any abelian group satisfies

D ()W (wpY —pY) = D (1)l (=) " p).

weWy SCov-+ Bes

In particular, the left hand side of (8.2.1) is equal to

Z (-1 ‘Slp Zﬁy qQ

SCov+ Bes

By Proposition 5.3.1 (1) and Proposition 8.1.1, the above is equal to

(8.2.2) Yoot DD DEIHPG =D B

Lez, L>(n+3.5) Scov.+ Bes
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By the same argument as in the proof of Proposition 6.2.1, the expression

o> (0P - 8

LEZso SCHV+ BCS

is of polynomial growth in s (or in t). Hence (8.2.2) is bounded by

O(ql_(n+3‘4)t). Since s - def(b)/2 = (n + 3)t, the desired bound (8.2.1) fol-
lows. O

8.3. The case Proper-II

We now treat type Eg, 0 = id, b = by or ba. See §7.5. By symmetry, it suffices
to treat the case of b;. Recall in this case

A(b1) — A(b1)good = {@s, w4 + w1, w2 + ws, 26 |,

and we have defg(b;) = 4.

Proposition 8.3.1. The bound (6.3.2) holds for all X\ € {w4 + w1, w2 +
we, 2w }. In other words, in Proposition 6.3.2 (2) (for b = b1) we may take
)\bad to be ws5.

Proof. We define a function |-|' : R — Rsq in the following way. For any
v = Z?:l zie; € RY, we define
‘/

lv|" = max | T35k — T3j41]-

1,j€{0,1,2},i#j;
kl€{1,2,3}

In other words, we think of RY as (R?)3, and we take the largest difference
between a coordinate in one factor of R? and a coordinate in a different fac-
tor. Then |-|" is a semi-norm, i.e., it is compatible with scalar multiplication
by R and satisfies the triangle inequality. Note that |-| is not Wp-invariant.
By the explicit description of the roots, we have |a|" = 1 for all positive
roots a.

Claim. |p|" > 7/3 for all u € WyA.

We prove the claim. We first record explicitly the Wy-orbit of A. To state
it we need some notation. Let C'5 be the cyclic group of order 3 with a fixed
generator c. We let C3 act on S3 x S3 x S5 via

C: (0_170—270—3) — (0—270_370_1)'
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Let H denote the semi-direct product (S3 x S3 x S3) x C3. Then we have
an action of H on R?, where S3 x S3 x S3 acts naturally on the coordinate
indices, and ¢ € C3 acts via

C: (x1,.1'2,.’ﬂ3;$4,$5,$6;I’7,x8,x9) 7 (.’I)4,l’5,x6;I'?,.’L'S,.’L'g;xl,.TQ,JT:;)-

For A\ = wy + wg, its Wy-orbit is given by the union of the H-orbits of
the following 7 vectors:

2 1 111 2 2 1 111 2
2, —1,-1;2,—=, —=; =, =, —= S s, —2i2,-,—2:3,3,-6
( ’ 37 3) 37373) 3)) (3’ 37 373737 37 I )7
41 5 2 1 1 112 5 1 4
= 1,0,—1; 2, —=, —= = 2,51,0, 132, — =, ——
(3737 37 ’ 37 37 3)7 (373737 I 737 37 3)7
41 5 22 4 4 2 2 5 1 4
= :0,0,0; 2,2, = =, -2,-2.0,0,0; 2, -2, —=
(3737 3 a3737 3)7 (37 37 37 s Uy 737 37 3)7
A2 2 .22 4
37 37 37 s 73a37 3 .

For A = w1 +wy, its Wy-orbit is the union of the H-orbits of the following
4 vectors:

4 2 1 1 ) 4

1 5 11 2 1
= ;0,0,0; -, —=, —= - =, —=;0,0,0; =, —=, —=
(37 37 37 37 37 3)7 (3737 37 ) ) 737 37 3)7
A2 20 g2 L L il 222 4
37 37 37 ) ) 737 3’ 3 ) 3’37 37 ) ) 73’3’ 3 *
For A = 2wy, its Wy-orbit is the H-orbit of
4 2 2 22 4
- —=,—=;0,0,0; -, =, —=).
(37 37 37 9 Yy 73737 3)

One sees easily that |-|' of all the above vectors are > 7/3. Since |-|
is invariant under the action of H, it follows that |u|" > 7/3 holds for all
€ WoA. The claim is proved.

Based on the claim, we prove (6.3.2) for A € {wy + w1, w2 + ws, 2ws },
using an argument similar to §7.1.1. By the formula (5.2.2), it suffices to
show for each w,w’ € Wy that

_ —s(5defg(b1)+a)
73(1/157% 1) = O(ql )

for some a > 0, where 1, := we (w'A\(*)). By the same argument as in §7.1.1,
we easily reduce to proving: For some constant a > 0,

(8.3.1) min {|m|: m € P(¢y5)} > s(%defg(bl) +a)=3s(2+a),
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for all s > 0. By the previous claim, for all m € P(¢,) we have

!/

1Y m@) 2| Y m@s| =l = fww'A

Bedv:+ BedV+

! \; v/
— wp” —p

:S’ww’)\’/—CES‘g—C,

where C' is a constant independent of s. Here the number 1 appearing in the
leftmost term is equal to mingegv.+ |8]". Since § = id, the leftmost term in
the above inequalities is none other than |m/|. The desired (8.3.1) follows. O

8.4. The case Proper-II1

We now treat type E7,0 = id, and [b] € B(G) being the unique basic class
such that kg (b) is the non-trivial element of 71 (G) = Z/27Z. See §7.7. Recall
in this case A(b) — A(b)good = {ws}, and defg(b) = 3.

Proposition 8.4.1. The bound (6.5.1) holds for A\ = ws.

Proof. Firstly, the Wy-orbit of A is given by all permutations under Sg of
the following vectors:

T 1 1 1 1 1 1 1
Ny = (L 2 = -
1 (4) RS LR LR 4)a
5 3 3 31111
N = (2 2 2 222
2 (47 44 474747474)7
71111111
Mo — (L 2 2 2 2 2 = =
3 ( 474747474747474)7
5333 1 1 1 1
DI S S i
4 ( 47474747 47 47 4? 4)

Indeed it is easy to see that all these elements lie in WyA (using the fact
that the Wy contains the copy of Sg), and one easily computes the size of
WoA to prove that these are all the elements of WyA.

For 1 <i <8 and 7 € Sg, we define functions

|-|i:R8—>R20, HTZR8—>R20
in the following way. For any v = Z?:l zie; € R®, we define

ol = |zl ol = 2| + 2r)| + |2r@) | + 2] -

T
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Then |-|;,|-|, are all semi-norms on RS.

Note that in the proof of Proposition 8.3.1, we reduced to proving (8.3.1)
for each fixed pair (w,w’) € Wy x Wy. During the proof of (8.3.1) for the
fixed (w,w’), we only needed to apply the semi-norm |-|" to ww’\, and not
to any other element of WyA. Hence for each element in Wy, we could use
a semi-norm, which is specifically designed for that element, to finish the
proof. In the current case, we reduce to proving that each pu € Wy satisfies
at least one of the following inequalities:

def(;(b) . o 3 .
(8.4.1) lul; > = Lin, 18l = 5 Sin, 1815+
defa(b) B .
(8:4.2) lul, > —5— min |B], =5 min |5,

for some 1 <4 < 8 or for some T € Sg.

When p is an Sg-permutation of A1 or Az, assume the ig-th coordinate
of u is +£7/4. Then p satisfies the inequality (8.4.1) indexed by ig. In fact,
any f € @V satisfies |8];, < 1, and we have |u|; = 7/4.

When g is an Sg-permutation of \s or A4, there exists 7 € Sg such that

’ ’ = § + § + § + § = Z
Hr=am a1 1™y
On the other hand |3], < 2 for all 3 € ®"-F and all 7 € Sg. Therefore (8.4.2)

holds for some 7. O
9. Proof of the key estimate, Part 111

We have proved all the statements in Proposition 6.3.2, except the existence
of u1 in Proposition 6.3.2 (1), and the existence of 1, g in Proposition 6.3.2
(2). In this section we construct them.

First assume that G is not of type Eg, and that 8 = id. We easily
examine all such cases in §7 and see that A\ € X *(T)* is always minuscule.
Hence we may take u; := )\;“. Since G is adjoint and 6 = id, the condition
that b € B(G,p1) is equivalent to the condition that b and p; have the
same image in m (G), = 71 (G), which is true by construction. Moreover,
we have dim V), (Ap)rel = dim V)\;r()\lj) = 1. The proof of Proposition 6.3.2
is complete in these cases.

The only remaining cases are the following:

Nonsplit-I Type D,,n > 5,60 has order 2. See §7.2.
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Nonsplit-II Type Dy, 6 has order 2. See §7.3.
Split-Eg Type Fg,0 = id. See §7.5

In fact, in all the other cases listed in §6.5 where 6 is non-trivial, namely
cases (6) and (8), we have shown in §7.4 and §7.6 that any basic [b] € B(G)
is unramified, so we do not need to consider these cases.

9.1. The case Nonsplit-I

As we showed in §7.2, we have 71 (G), = Z /27, and there is a unique choice
of basic [b] € B(G) corresponding to the non-trivial element in 71 (G),-.
Moreover we have

~

N =G e@ =x' a0

~

Recall that X.(T) = X*(T) = Ly C R". We take
1 1 .
M1 = (§7>§)€L2:X*(T):X (T)

Then pp is in X *(f)Jr and is minuscule. From the description of the action
of o on 71 (G) in §7.2, the image of y1 in 71(G), is the non-trivial element,
and hence [b] € B(G, p1). Finally, the only weights in X*(T) of V), are
the elements of Wyu1. Among all these weights, there is precisely one that
restricts to )\b+ € X*(S), namely p1. Hence we have

dim V,,, (Ap)rel = dim V,,, (A )rel = dim V},, (s11) = 1.
9.2. The case Nonsplit-11

We keep the notation of §7.3. Note that what 7 is does not affect the subset
{a1, a9, a3, a4} of R*. Nor does it affect the coroot lattice and the coweight

lattice. Moreover, no matter what 7 is, the quotient map X,(7T) — X*(S)
is always the same as

L2 —)LIQ

(51a§23£37§4) — (51352753%

where Ly = Z'+7(%, 3, 3, 3) and L}, = Z*+7Z(3, 3, 3). Hence the situation is
precisely the same as the case Nonsplit-I discussed in §9.1. More precisely,
for the unique basic [b] € B(G) that maps to the non-trivial element in
™(G)s = ZJ2Z, we have N, = (—3,3,—3),\ = (3,3, 3), and we take

9 DR
-—(l 1T l) 2 27272
M1 = 25929959)"
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9.3. The case Split-Eg

We keep the notation of §7.5. To finish the proof of Proposition 6.3.2 (2),
we need to construct p; and ps. By symmetry we only need to consider by,
among b1, by. Recall from §7.5 that )\Zrl = wy. Recall from Proposition 8.3.1
that the distinguished element Ap,q in A(b1) is ws. Since 6 = id, we have
S=T.

Note that /\;’l = o is minuscule. We take p; := wjp. Then the only
weight of V,, in X*(§)* = X*(I)* is ;. = A, and dim Vy,, (s, )t =
dim V,,, (u1) = 1. We have by € B(G, p1), because the image of p; = )\;rl in
71(G)s = m1(G) is the same as that of Ap,, which is the same as x(b1).

Note that wg is also minuscule. We take po := 2w; + wg. Then uo is a
sum of dominant minuscule coweights. By (7.5.2) we know that pg — o is in
the coroot lattice. Hence pa represents the same element in m (G), = m1(G)
as w1, and in particular by € B(G, u2). We are left to check that Vi, (Abad)rel,
which is V,,(ws), is non-zero. One computes that dim V), (ws) = 14, (see
for example LiE online service, http://young.sp2mi.univ-poitiers.fr/
cgi-bin/form-prep/marc/dom_char.act?x1=2&x2=0&x3=0&x4=0&x5=0&x6
=1&rank=6&group=E6).? The proof of Proposition 6.3.2 is complete.

Appendix A. Irreducible components for quasi-split groups

We explain in this appendix how we can use our results combined with
[18] to obtain a description of the number of J,(F)-orbits of irreducible
components of affine Deligne—Lusztig varieties associated to a group which
is quasi-split but not necessarily unramified. The main result Theorem A.3.1
is a generalization of Conjecture 2.6.7.

A.1. Basic definitions

We extend the notations introduced in §2. We let F', L, kg, k, o, I' be as
in §2. However now we only assume that G is a quasi-split reductive group
over F'. Let T' C GG be the centralizer of a maximal F-split torus in GG. Then
T is a maximal torus in G since G is quasi-split. We fix B to be a Borel
subgroup of G (over F') containing T'. Let A C T}, be the maximal L-split
sub-torus of T7,. Note that 77, is a minimal Levi subgroup of G, so Ais a
maximal L-split torus in Gy. Let N C G, denote the normalizer of A. Let
V be the apartment of G, corresponding to A. Let a be a o-stable alcove in

2Note that in LiE, our aw, as, oy are indexed by 3, 4, 2 respectively.
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V', and let s be a o-stable special vertex lying in the closure of a. Denote by
7 the Iwahori group scheme over O associated to a, and denote by IC the
special parahoric group scheme over Op associated to s. Let I'g C I' denote
the inertia subgroup, which is also identified with Gal(L/L). The choice of
s gives an identification V' = X, (T)r, ®z R, sending s to 0. In the following
we freely use the identification in Lemma 1.6.1 (3). We assume that under
the identification

(A.1.1) V= X, (T)r, @2 R = X (T)g,
the image of a is contained in the anti-dominant chamber — X, (7).

The Iwahori-Weyl group is defined to be W := N(L)/(T(L) NZ(Or)).
For any w € W we choose a representative w € N(L). We write Wy :=
N(L)/T(L) for the relative Weyl group of G over L. Then we have a natural
exact sequence:

1 — X.(T)p, m W — Wy — 1.

Similar to §2.2, the canonical action of N (L) on V factors through an action
of W, and we split the above exact sequence by identifying Wy with the sub-
group of W fixing s € V. For u € X,.(T)r, we write t£ for the corresponding
element in W. The Frobenius o induces an action on W which stabilizes the
set S of simple reflections. See [12] for more details.

Let B(G) (resp. B(W, o)) denote the set of o-conjugacy classes of G(L)
(resp. W). Let X, (T)FO,Q denote the intersection of X, (7T )r, ® Q = X*(T)g0
with X*(T)a Similar to §2.3, we have a commutative diagram

(A.1.2) B(W, o) L B(G) ,

(7,K) %

(X (D)f, )7 * m(G)r
where ¥ is a surjection, and the map (7,x) on B(W, o) can be described
explicitly. These statements are proved in [18], see [20, §1.2] for an exposition.

Let w € W and b € G(L). We define the affine Deligne—Lusztig variety
Xw(b) as follows:

Xw(b) :={9Z(Or) € G(L)/Z(O1) | g™"bo(9) € Z(OL)WI(Or)}.
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Now let p € X, (T)r, be the image of an element y € X, (T)". Similarly we
define the affine Deligne-Lusztig variety X, r(b) as follows:

X,k (b) := {gK(Or) € G(L)/K(Or) | g~"ba(g) € K(OL)iK(OL)}-

When F is of equal (resp. mixed) characteristic, X,,(b) and X, x(b) are
schemes (resp. perfect schemes) locally of finite type (resp. locally perfectly
of finite type) over k, see [17].

We define the set

B(G,p) = {[b] € B(G) | n([b)) = 7 < p°).

Here pf denotes the image of y in 71 (G)r, and p° € (X*(T)ffm(@)" denotes
the average over the o-orbit of u € X,(T)r,. Note that both pf and u°
depend only on g, which justifies the notation B(G, u). The set B(G, p)
controls the non-emptiness pattern of X, rc(b). B B

Theorem A.1.1. We have X, k(b) # 0 if and only if [b] € B(G,p).

Proof. This is proved in [18, Theorem 7.1] assuming char(F’) > 0. The same
proof extends to the case char(F') = 0. O

For b € G(L), the group Jp(F) acts on X, k() via scheme automor-
phisms. Our goal is to understand the cardinality

(A.13) A t) = # (BN 0) )

For simplicity, from now on we assume that G is adjoint. The general
case reduces to this case by a standard argument.

A.2. A dual group construction

The desired formula for (A.1.3) will be expressed in terms of a canonical
reductive subgroup of the dual group G. We keep the assumption that G is
adjoint.

As in §5.1, we let

BRD(B,T) = (X*(T),® > A, X.(T),®" D AY)

be the based root datum associated to (B, T), equipped with an action by
I'. Let G be the dual group of G over C, which is equipped with a Borel
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pair (B,7) and an isomorphism BRD(B,T) -~ BRD(B,T)". We fix a
pinning (B,T,Xy). The action of I' on BRD(B, T') translates to an action
on BRD(B,T'), and the latter lifts to a unique action of I on G via algebraic

automorphisms that preserve (B, T,X,).
We define

(A.2.1) H:= G0,

namely the identity component of the I'yg-fixed points of G. This construction
was also considered by Zhu [46] and Haines [14]. By [14, Proposition 5.1], H is
a reductive subgroup of G and it has a pinning of the form (BFO’O TFD’0 X! "W).

Moreover, the induced action of the Frobenius ¢ € I'/Ty on H preserves
this pinning. We write By = B0 and Ty := T'0. Let 6 denote the
automorphism of H given by . We define

S = (Ty)".

Note that since G is adjoint, the fundamental coweights of G form a I'-
stable Z-basis of X, (T'). It then follows from Lemma 1.6.1 (2) that X.(T)r,

and X, (T)r are both free. Hence we in fact have Ty = 7' and 8 = TF
This observation will simplify our exposition.

Lemma A.2.1. Let b € G(L). There is a unique element A, € X*(S)
satisfying the following conditions:
1. The image of Ay under X*(S) = X.(T)r — m1(G)r is equal to k(b).
2. In X*(S)g = X*(Tr ©® Q = (Xu(D)r)s ® Q = (Xu(T)r,0)7, the

element Ay — Dy 1s equal to a linear combination of the restrictions to
S of the simple roots in ®V C X*(T), with coefficients in QN (—1,0].

Proof. The proof is the same as Lemma 2.6.3. O
A.3. The main result

Assume that G is adjoint and quasi-split over F. Let u € X.(T)r, be the
image of an element ;1 € X,(T)*. Let b € G(L). Define H as in (A.2.1).
Let VMH denote the highest weight representation of H of highest weight

e X*(fH)JF. Let \p € X*(g) be as in Lemma A.2.1, and let Vf()\b)rel be
the A\p-weight space in Vf[ , for the action of S.
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Theorem A.3.1. Assume that [b] € B(G, ). Then

N (1, b) = dim VI ().

Remark A.3.2. The appearance of the representation Vlﬁ of the subgroup

H of G in Theorem A.3.1 is compatible with the ramified geometric Satake
in [46].

Proof of Theorem A.3.1. The idea of the proof is to reduce to the unramified
case. For this we first construct an auxiliary unramified reductive group over
F.

From H and its pinned automorphism é, ~we obtain an unramified reduc-
tive group H over F', whose dual group is H. By definition H is equipped
with a Borel pair (By,Tx), and a o-equivariant isomorphism of based root
data BDR(By, Ty) — BDR(By,Tx)". We write

Then we have canonical o-equivariant identifications
X*(Th) 2 X (Th) = Xo(T)T0 2 X*(T)

and
Xo(Ty) = X*(Ty) = X*(T)r, = Xu(T)ry,

which we shall treat as identities. Here X.(T)p
before.

Note that T 1 is a maximal split torus in Hy. Let Vg be the corre-
sponding apartment, and fix a hyperspecial vertex sy in Vg (coming from
the apartment of H corresponding to the maximal F-split sub-torus of Tfr).
We fix a o-stable alcove a C Vi whose closure contains sr. We identify

, is free, as we have noted

(A.3.1) Vi = X.(Ty) ® R,

sending sy7 to 0, such that the image of az is in the anti-dominant chamber.
Since X4 (Ty) = X«(T)r,, the two identifications (A.1.1) and (A.3.1)
give rise to a o-equivariant identification V' = Vx which maps a onto ag,
and maps s to sp.
By [14, Corollary 5.3], the set of coroots @Y, C X, (Ty) = X.(T)r, is
given by iv’ where ¥ is the échelonnage root system of Bruhat—Tits, see
[14, §4.3]. In particular, the coroot lattice in X, (T ) is isomorphic to the



236 Rong Zhou and Yihang Zhu

To-coinvariants of the coroot lattice in X,(T'). Moreover from @}, = %V
we know that the affine Weyl group of G and the affine Weyl group of H
are equal, under the identification V' = V. See [12] for more details. Since
the translation groups X, (Tx) and X, (7T)r, are also identified, we have an
identification between the Iwahori-Weyl group W of G and the Iwahori-
Weyl group Wy of H. This identification is o-equivariant.

Note that the bottom group in the diagram (A.1.2) and its analogue for
H are identified. Using the identification of W and Wy, and using the surjec-
tivity of the map ¥ : B(W,0) — B(G) and its analogue ¥y : B(Wg,0) —
B(H), we construct [by] € B(H) whose invariants are the same as those
of [b]. Since the set B(G, ) is defined in terms of the invariants (7, k) and
ditto for B(H, u), we see that [b] € B(G, ) if and only if [by] € B(H, p).
Here in writing B(H, 1) we view u as an element of X, (Ty)". B

To relate the geometry of X%;_((b) with the geometry of X,,(by), we use
the class polynomials in [18]. For each w € W and each o-conjugacy class
O in W, we let

fw,0 € Zv — vil]

denote the class polynomial defined in [18, §2.3].
Using the fibration

U Xuw(b) — Xg,K(b)a
weW()tﬁWo

we have an identification

(A.3.2) Jb(F)\Zmp( U Xw(b)) = Jy(F)\E'P(X ., (D))

IUEW() tﬁWU

By [18, Theorem 6.1], we have the formula
1
dim X,,(b) = max §(Z(w) +4(O) + deg fuw,0)) — (Ts, 2p).

where O runs through o-conjugacy classes in W such that (7,k)(O) =
(7, k)(b) and where ¢(O) denotes the length of a minimal length element in
O. Moreover the proof of [18, Theorem 6.1] also shows that the cardinality of
Jp(F)\ZPP (X, (b)) is equal to the leading coefficient of 3°, v/ HHO) £, o,
Since each Xy (b) is locally closed in the union [, ey, sy, Xw(b), any top
dimensional irreducible component in the union is the closure of a top di-
mensional irreducible component in X, (b) for a unique w. It follows that
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the cardinality of

T(F)\5P ( U Xw<b>>

wEWOtﬂWO
is equal to the leading coeflicient of

(A.3.3) T YO, o

we Wo tﬁWO O

By (A.3.2), this number is just .4 (y, b). Since the term (A.3.3) only depends
on the quadruple (W, o, i, (7, k) (b)), the same is true for .4 (i, b).

Applying the same argument to H, we see that .4 (u,by) only de-
pends on the quadruple (W, o, u, (7, %)(bg)). Now since the quadruples
(W, 0,1, (7,5)(b)) and (W, o,p, (7,5)(bgr)) are identified, we have
N (p1,b) = A (p,bpr). It thus remains to check

(A.3.4) N (p, b)) = dim Vf(Ab)rel'

By assumption [b] € B(G, p1), and so [by] € B(H, ut). The right hand side of
(A.3.4) is easily seen to be equal to .# (u,bg) in Conjecture 2.6.7, for the
group H. Hence the desired (A.3.4) follows from the main result Corollary
6.3.5 of the paper. O
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