Integrating Materials and Manufacturing Innovation
https://doi.org/10.1007/540192-019-00160-5

TECHNICAL ARTICLE q

Check for
updates

ModLayer: A MATLAB GUI Drawing Segmentation Tool for Visualizing
and Classifying 3D Data

Imad Hanhan'® - Michael D. Sangid'

Received: 6 September 2019 / Accepted: 21 October 2019
© The Minerals, Metals & Materials Society 2019

Abstract

Characterizing a material’s microstructure, especially as it relates to the manufacturing processes used to fabricate it, is
of great interest to engineers and researchers. In recent years, state-of-the-art imaging techniques have been able to yield
a plethora of high resolution 3D data that can be used to study materials at various length scales. This 3D data is usually
organized as stacked serial sections of 2D images and almost always requires some combination of enhancement and seg-
mentation (the process of separating an image into subsets), in order to extract meaningful information. To aid in this process,
ModLayer was created as a MATLAB® executable. ModLayer is an interactive graphical user interface that seeks to remove
the burden of import/export redundancies when interacting with 3D data in MATLAB during visualization, modification,
or segmentation through manual drawing across image stacks. The utility of ModLayer is demonstrated here through three
case studies; (1) classifying regions of damage with in-situ time lapse X-ray micro-computed tomography (u-CT) of a glass
fiber reinforced polypropylene (GFRP), (2) correcting multi-class segmentation errors in segmented X-ray y4-CT images of
a GRFP composite, and (3) capturing features of interest within in-situ 3D X-ray u-CT images during fatigue crack growth
experiments of aluminum 7050. Overall, this tool is especially useful to engineers and researchers interested in correct-
ing—within MATLAB—automated segmentation of noisy 3D images which can yield erroneous microstructural features

in segmentation procedures.
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Introduction

Modern characterization techniques are able to yield robust
3D images of materials and their microstructures, providing
engineers and scientists powerful capabilities in understand-
ing the behavior of materials [1, 2]. One requirement of most
techniques is digital image processing, which is the process
of either enhancing the images for visual observation, or
segmenting and classifying features for measurement or sta-
tistical analysis [3]. Segmentation is a specific type of data
processing and is defined as the separation of an image with
intensity domain / into non-intersecting subsets. This can
prove to be challenging, especially for 3D images [4]. In fact,
selecting the appropriate segmentation technique in itself is
usually a complex problem [5]. To combat the difficulties
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experienced in segmentation, which is typically considered
the most critical step in image processing, a number of
higher accuracy segmentation tools have been developed [6].

MATLAB is often used in these segmentation processes
because of its user friendly matrix operation capabilities,
as well as its robust image processing toolbox [7]. These
capabilities are exemplified by MIPAR™, a MATLAB
based software package used to align, pre-process, seg-
ment, visualize, and quantify 3D images [6]. MIPAR offers
an automated segmentation module that allows the user to
determine the optimum parameters for automated binary
segmentation of 3D images, which can be conducted on dif-
ferent features within an image and stored as layers in multi-
dimensional space (instead of a multi-class segmentation
dataset). However, despite optimum segmentation param-
eters, certain imaging techniques - like X-ray micro-com-
puted tomography (4-CT) - contain stochastic fluctuations
in image intensities which can still result in erroneous auto-
mated segmentation results. Even when coupled with train-
able machine learning, automated multi-class segmentation
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procedures cannot always correctly segment every feature
of interest and its exact edge [8]. Therefore, there remains a
need to simultaneously view serial sections of 3D images,
and apply manual modifications to multi-class 3D segmenta-
tion data. In MATLAB, this poses a challenge because there
is no straightforward open-source method to visualize two
sets of linked 3D images, and apply modifications through
freehand drawing to multi-class datasets. To do so, the user
would typically export their 3D data to external software
with these capabilities [9], and re-import their 3D data back
into MATLAB to continue their quantification analysis, as
shown in Fig. 1.

To alleviate this issue, ModLayer, a user-friendly, open
source, and easily implemented MATLAB graphical user
interface (GUI), was created to allow the user to view and
simultaneously scroll, zoom, and pan through linked sets of
stacked images (typically the raw 3D image and its multi-
class segmentation). Additionally, ModLayer allows the user
to apply modifications to 3D images in order to classify fea-
tures of interest, or correct segmentation results for cases
of under- or over-detection, incorrect segmentation, and/or
incorrectly touching edges of segmented features, through
interactive freehand drawing.

This paper will first describe the general function and
GUI, then provide three case studies to show the function-
ality of ModLayer by (1) classifying regions of damage
with in-situ time lapse X-ray u-CT of a glass fiber rein-
forced polypropylene (GFRP), (2) correcting multi-class
segmentation errors in segmented X-ray u-CT images of
a GRFP composite, and (3) capturing features of interest
within in-situ 3D X-ray u-CT images during fatigue crack
growth experiments of aluminum 7050. For the first case
study, an explanation is provided outlining the importance
of image classification for time lapse u-CT, followed by
an example using ModLayer to identify regions of damage
found within time-resolved images. For the last two case
studies, a brief background of the importance of image
segmentation for the particular application is provided,
an explanation of an automated segmentation procedure is
given, and examples are provided in each case showing the
use of ModLayer in correcting segmentation inaccuracies.
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Fig.1 A flowchart showing the post-processing of 3D images in
MATLAB, which sometimes requires the user to export their data
to an external software for visualization and manual correction of
automated segmentation results that incorrectly captures certain fea-
tures, whereas ModLayer allows for direct visualization and free-
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hand drawing corrections of 3D stacked images within MATLAB (as
shown by the sample images), providing a streamlined multi-class
segmentation correction process that can yield accurate results for
further quantification of segmented features
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Methods

ModLayer, which is freely available for download at http://
www.github.com/imadhanhan/ModLayer, is written as a
GUI function in MATLAB that requires two inputs: the
reference 3D image and the adjustable 3D image. The
first input, the reference 3D image, is entered during the
execution of the ModLayer function. The second input,
the adjustable 3D image, is imported into ModLayer as a
global variable. Therefore, the adjustable 3D image must
be instantiated within the Workspace as a global variable
called ‘data_modify’ prior to the execution of the func-
tion ModLayer. The use of the global variable (1) is a
safety feature which ensures that in the event ModLayer
is accidentally closed, manual modifications remain in the
Workspace and are not lost, and (2) allows for real-time
observations, within ModLayer, to bulk changes made to
the adjustable 3D image in the MATLAB Workspace, such
as feature dilation or erosion.

With both the reference 3D image and the adjustable 3D
image (imported in the form of the global variable ‘data_
modify’) visible in ModLayer, a Colormap that is best
suited for viewing each of the data sets can be selected,
as shown in Fig. 2a, b. The Colormap options include all
the default MATLAB Colormaps, as well as an additional
Colormap called ‘jetwhite’, which can make certain multi-
class segmentation visualizations easier to observe. The
images may also be linked in the XY and Z which couples

the scrolling, panning, and zooming of the reference and
adjustable images. The linked 3D images can be observed
for time lapse activity, or multi-class segmentation, in each
layer by either using the scroll bars next to the images, or
by typing the desired layer number and pressing ‘GO’.

If a region of interest or low accuracy segmentation is
found, a manual modification to the adjustable 3D image can
be conducted within ModLayer. Prior to applying a modifica-
tion, a drop-down menu allows for the selection of freehand
drawing on the left reference image (which is useful espe-
cially for under-detection corrections) or on the right adjust-
able image (which is useful especially for correcting over-
detection or separating touching edges), as shown in Fig. 2c.
The user can input any multi-class segmentation value they
wish to impose on the adjustable 3D image, and press the
modify button to make modifications. The user can then click
and drag to freehand draw on the selected image, and when
the click is released, the change is immediately applied to
the selected layer of the adjustable 3D image which is also
immediately saved to the MATLAB Workspace.

Visualizing and Classifying 3D Data Using
ModLayer
Identifying Damage in 3D Time Lapse Images

The first case study to show the functionality of Mod-
Layer was time lapse sequences of 3D X-ray u-CT images

(A) (B)
2 & 4"’;\ \k\ ~ parula
jet
Reference 3D Image Adjustable 3D Image (global data_modify) hsv
1 1
000 000 hot
cool
j 0.9 0.9 i spring
summer
0.8 0.8 autumn
winter
07 07 gray
bone
0.6 0.6 copper
1 1 pink
0.5 0.5
) 5 lines
colorcube
0.4 0.4 prism
flag
] o2 0.2 (C)
K
0.1 0.1 v Draw on Right Image
1 Draw on Left Image
OD 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 GU 0.1 D.‘Z 0‘3 0.4 0.‘5 U‘G 0.‘7 0%
Colormap:  gray T Colormap:  jetwhite (D)
Modify
5 Draw on Right Image
Crastes by mad Hanhan Link XY Axes (Loraw on Rightimage ) Modify OFF
Undated October, 2019 Link Z Axes Value to Impose on Right Image: 0
Undo
Single Modification & MODIFY

Fig.2 The overall layout of ModLayer shown in a, with the Colormap options including the additional ‘jetwhite’ Colormap shown in b, as well
as the image selection menu in ¢ and the modify toggle button in d
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of a GFRP composite under tensile load. Time lapse CT,
in general, can be useful in understanding the evolution
of certain materials or structures as damage accumulates
under external loading conditions [10, 11]. Usually, the
analysis of time lapse 3D images requires image process-
ing and classification to segment locations of damage and
identify types of damage within the 3D images [12—-14].

To show how ModLayer can be used to identify loca-
tions of activity in time lapse 3D images, the microstruc-
ture of a discontinuous GFRP (30% by weight glass fiber)
was imaged using synchrotron X-ray u-CT [8]. The 3D
images were examined for signs of damage, which appear
as dark pixels at the loaded state (4% strain) which were
not present at the unloaded state. To visualize and locate
these regions of damage, the 3D X-ray u-CT images were
normalized so that 0 < 7 < 1, and were inputted into Mod-
Layer so the unloaded state was the reference (Fig. 3a)
and the loaded state was the adjustable image (Fig. 3b).
The 3D images were simultaneously inspected by scroll-
ing, zooming, and panning through the linked stacked
images and examined for regions of damage activity. When
regions of damage activity were found in the image at
the loaded state, like those circled in Fig. 3b, ModLayer
was used to draw directly on the image and impose a seg-
mentation value of — 1 (a value outside of the range of
0 <71 < 1) in order to classify regions of damage within the
microstructure, as shown in Fig. 3c. This shows that Mod-
Layer can be used to examine and investigate linked time
lapse 3D images directly in MATLAB without the need
to open multiple windows or export to external software,
while also providing the capability to classify locations
of damage activity through freehand drawing for further
quantification in MATLAB.

Correcting Feature Segmentation in Tomography
Images of a Composite Material’s Microstructure

The second case study to show the functionality of Mod-
Layer was to correct segmentation errors in X-ray u-CT
images of a fiber composite. In discontinuous fiber rein-
forced polymers, the full characterization of the micro-
structure, including the fiber volume fraction, porosity
volume fraction, fiber length, and fiber orientation distri-
butions, is important to not only qualify composite mate-
rials for use, but also predict their mechanical behavior
[15-19]. Because the characterization of these microstruc-
tural features is sensitive to segmentation errors, research-
ers have worked to develop tools and techniques to conduct
these characterizations with the highest possible fidelity
and to minimize segmentation errors of microstructural
features that could impact characterization or predic-
tive capabilities [20-22]. However, despite these efforts,

@ Springer

(A)

| 50 um

Fig.3 Using ModLayer to visualize and investigate time lapse X-ray
u#-CT images of a GFRP composite simultaneously at a the unloaded
state and b the loaded state by scrolling, zooming, and panning
through the linked time-resolved images. ModLayer was then used to
mark the locations of damage by drawing around the regions of inter-
est circled in b, in order to impose a segmentation value of — 1 to
produce the classified image shown in ¢ for damage quantification

sometimes it can be very difficult—especially for charac-
terizing porosity—to achieve high fidelity segmentation of
every feature [8]. To show how ModLayer can be used to
correct these occurrences, X-ray u-CT images of a discon-
tinuous GFRP (30% by weight) were analyzed [8].
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Fig.4 a Using ModLayer to improve automated segmentation con-
ducted on X-ray u-CT images (with axes shown in pixels and where
1 pixel = 1.3 um) of a glass fiber reinforced polymer, where b shows
an example of drawing directly on the u-CT image to correct the seg-

The serial sections of the reference 3D image, as shown
in Fig. 4a, show high intensity pixels (white) at the locations
of fibers, and low intensity pixels (black) at the locations of
small pores and at the edges of large pores. An automated
segmentation procedure was conducted in MATLAB to seg-
ment the image into values of 0 for the matrix, 1 for the
fibers, and 2 for the pores. The procedure was as follows:

1. normalization sothat) <7 <1,
2. segmentation of fibers by / > 0.65,
3. segmentation of large pores by

(a)
(b)

selection of pixels with / < 0.33,
dilation using a spherical structural element with
radius 4,

(c) adjustment to fill 3D holes,

(D)

mentation of a pore, ¢ shows drawing directly on the 4-CT image to
correct under-segmented fibers, and d shows drawing directly on the
segmented image to separate touching segmented fibers

(d) erosion using a spherical structural element with
radius 5,

removal of features with a volume smaller than
10,000 pixels, and

segmentation of small pores by I < 0.25.

(e)
4.

The result of this automated procedure is shown in Fig. 4a
with the adjustable 3D image shown on the right, where it
can be seen that small pores were detected well but large
pores were generally under-detected.

ModLayer was then used to visualize the results of the
segmentation analysis in each layer of the 3D images, and
apply corrections to cases of low accuracy segmentation of
porosity by drawing on the left reference image in Fig. 4b
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(to capture the full pore) and imposing a value of 2 for the
drawn region in the multi-class segmented image. Addition-
ally, regions with fibers that were under-detected were cor-
rected by drawing on the left reference image in Fig. 4c and
imposing a value of 1 for the drawn region in the multi-class
segmented image. Lastly, regions with touching fiber edges
were separated by drawing on the right segmented image in
Fig. 4d and imposing a value of 0 between detected fibers in
the multi-class segmented image. This shows that ModLayer
can be used to visualize and improve the multi-class seg-
mentation accuracy of the microstructural features of a com-
posite material imaged through X-ray u-CT, as was seen in
Fig. 4b—d, especially for large pores which can be very dif-
ficult to capture through standard segmentation algorithms.

Correcting Feature Segmentation of In-Situ AA7050
Fatigue Crack Growth Tomography Images

To show another example of the functionality of Mod-
Layer, segmented X-ray p-CT images of an aluminum alloy
acquired in-situ were improved to increase the accuracy
of segmentation. Certain aluminum alloys, like AA7050,
are known to have fatigue properties which can be severely
impacted by intermetallic particles and voids [23]. There-
fore, it is of interest to study the fatigue crack growth behav-
ior within this alloy as the crack interacts with particles and
voids [24]. Carter et al. noted that the noise levels and recon-
struction artifacts in the X-ray u-CT images posed many
challenges in image segmentation, which is necessary in
understanding the behavior of the crack in 3D. A sample of
the tomography images acquired after 5651 cycles of fatigue
loading on the specimen [24] is shown in Fig. 5a, where the
notch tip can be seen in the upper left corner. The particles
are seen as high intensity white pixels, and the crack plane/
voids are seen as dark gray pixels.

An automated segmentation procedure was conducted in
MATLAB as follows:

1. normalization sothat) <7 < 1,
2. segmentation of particles by 7 > 0.7,
3. segmentation of the notch by
(a) selection pixels with 0.44 < I < 0.57,
(b) slice-by-slice 2D erosion with a disk structural
element of radius 4,
(c) adjustment to fill holes,
(d) removal of features with a volume smaller than
10,000 pixels,
(e) dilation with a disk structural element of radius
40, and
4. segmentation of the crack plane by / < 0.49.

It can be seen in the segmentation result (Fig. 5b) that the
notch was slightly under detected, and the sharp gradient
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Fig.5 ModLayer was used to improve the automated segmentation
conducted on a in-situ X-ray yu-CT images of an aluminum alloy
undergoing fatigue crack growth, where b shows an example of the
result of automated segmentation, and ¢ shows the segmented image
after corrections were conducted in ModLayer by drawing directly on
the pu-CT image or on the multi-class segmentation, with locations of
correcting over-detection of particles circled in b and ¢
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near the edge of the notch caused some erroneous segmenta-
tion of particles as well as the crack plane. Additionally, it
can be seen in Fig. 5b that a portion of the crack plane had
slightly higher intensity values and was therefore incorrectly
segmented as part of the notch. Lastly, regions near the edge
of the crack plane circled in Fig. 5b, ¢, had locations of
particle over-detection. Therefore, ModLayer was used to
draw on either the X-ray y-CT image or the multi-class seg-
mented image to correct the notch segmentation, increase
the accuracy of the crack plane segmentation, and remove
areas of erroneous crack and particle detection by imposing
a value of 0 on the segmented image. The final multi-class
segmentation after corrections conducted in ModLayer can
be seen in Fig. Sc, and shows that ModLayer can be used to
increase the accuracy of the automated segmentation shown
in Fig. 5b for a more accurate analysis of the interaction of
the crack plane with its neighboring microstructural features.

Conclusion

A tool was created within MATLAB that provides the capa-
bility of viewing successive slices of a reference 3D image
and an adjustable 3D image. The tool, ModLayer, was cre-
ated to also manually modify the adjustable 3D image—
through an interactive freehand drawing GUI—in order to
classify features that are either of interest, or correct the
classification of features too difficult to segment automati-
cally. ModLayer allows the user to select Colormaps that
best display the images, while allowing the user to scroll,
zoom, and pan through linked serial sections of the refer-
ence and adjustable 3D images. By clicking ‘Modify’, the
user can draw directly on either of the two images to classify
features or correct segmentation errors in the form of under-
or over-detection, incorrect segmentation, and/or incorrectly
touching edges of segmented features. This tool is especially
useful in correcting the multi-class segmentation of features
that may arise from noise or erroneous artifacts in imaging
techniques which are often too difficult to capture through
standard automatic segmentation procedures. The utility of
ModLayer was shown through its ability to classify regions
of damage in time lapse 3D X-ray u-CT images of a fiber
reinforced polymer matrix composite, correct automated
segmentation of porosity features, and separate touching
segmented fiber regions. Additionally, it was shown to be
useful in correcting automated segmentation errors of the
notch, the particles, and the crack plane in a fatigue cracked
AA7050 specimen captured through in-situ X-ray u-CT.
ModLayer is distributed as an open source MATLAB func-
tion freely available for download at http://www.github.com/
imadhanhan/ModLayer.
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