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Abstract

In this paper, we extend our previous 2D connected-tube
marked point process (MPP) model to a 3D connected-tube MPP
model for fiber detection. In the 3D case, a tube is represented by
a cylinder model with two spherical areas at its ends. The
spherical area is used to define connection priors that encourage
connection of tubes that belong to the same fiber. Since each long
fiber can be fitted by a series of comnected short tubes, the
proposed model is capable of detecting curved long tubes. We
present experimental results on fiber-reinforced composite
material images to show the performance of our method.

1. INTRODUCTION

Due to their excellent strength-to-weight ratio, short fiber
reinforced composites (SFRC) are potential candidate materials in
numerous aerospace and automobile light-weight applications.
Injection molding, the main manufacturing process associated with
SFRCs, enables large-scale production of simple to highly
geometrically complex parts, which have considerable variation of
the microstructure. It is known that a material’s physical properties
are crucially linked to its microstructure [1-4]. Thus, to connect
material response with the underlying heterogeneity, robust
characterization methods and models are required to provide a
promising platform of quantitatively describing the structural
features [5-6]. In this work, we focus on the task of fiber detection
in X-ray tomography images. Most popular deep learning methods,
such as the U-Net [7], cannot be directly applied to this task due to
the lack of labeled data. So only unsupervised detection methods
will be discussed here.

Detect fibers in Separate the Clustering ellipses
2D slice as ‘ touching fibers on successive 2D
ellipse objects in2D slices

Figure 1. Previous pipeline of fiber detection from 2D to 3D.

With the assumption that a 2D slice of a cylindrical fiber can
be characterized by an ellipse, with the major and minor axe of the
ellipse indicating the orientation of the fiber, localizing fibers in
3D space has previously been realized by the pipeline shown in
Figure 1. First, fibers in 2D tomography slices are extracted as
ellipse objects by a 2D ellipse fitting method. Then extracted
ellipse objects are converted into binary images and a watershed
segmentation algorithm is applied to the binary images for
separating the touching fibers. Finally, matching ellipses on
successive 2D slices are stacked to localize the fibers in 3D. There
are mainly two drawbacks of the above method. First, the fibers in
2D slices may not be characterized by ellipses well. This can be
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seen in Figure 2. In this example, an ellipse marked point process
model is applied to a 2D microscopy slice. The long fibers cannot
be detected as its shape does not fit well with the ellipse; also the
fibers in the green rectangles are missed due to close contact of
fibers.

Figure 2. An example of fiber detection in 2D slice.

Moreover, in the step of clustering ellipses on successive 2D
slices, errors such as clustering two different fibers into one could
happen when two fibers closely contact each other.

Considering the problems in 2D-3D fiber detection methods,
modeling and detecting fibers in 3D directly could be a better
solution, since the fiber can be better modeled in 3D and the step
of clustering ellipses is no longer needed.

Marked point process (MPP) modeling [8] provides a
framework for the task of detecting fibers in 3D directly. As a
stochastic approach for object detection, it is useful for modeling
the random locations of objects in images. It has already achieved
success in many object detection applications [9, 10].

Intuitively, a fiber could be associated with a cylinder in the
MPP framework. However, there are two problems with a cylinder
shape model. One is that the length of a fiber can vary over a wide
range, which will result in a huge computational burden in the
sampling process. The other is that not all fibers are straight. The
cylinder model cannot model curved fibers well.

In order to model the fibers properly, we extend our previous
2D connected-tube MPP model [11] into a 3D version. In the 3D
connected-tube MPP model, each fiber is modeled as a series of
connected short tubes rather than a single cylinder. To accelerate
the detection process, we introduce a grow kernel in optimization
which allows more birth of new tubes near the ends of current
tubes.

This paper is organized as follows: In Section 2, we describe
the 3D connected-tube MPP model. In Section 3, the optimization
method is discussed. In Section 4, experimental results for
synthetic fiber images and real fiber-reinforced composite
materials images are presented. Conclusions are given in Section 5.

2. 3D Connected-tube MPP model
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Let Y be the observed 3D image and S = [0, Xpq,]X
[0, Yiax]X[0, Zimax] the image lattice, S © R3. A point process on
S is a set of points {S,S,, ..., Sy} € S, with random variable S;
representing the random location of the ith point. In a marked
point process, for each S;, there is an associated mark, which
consists of random variables from a mark space M describing an
object located at point i. For our 3D connected-tube MPP model,
the mark of a tube represents a cylinder, which is defined by the
vector (7, h, oY, BZ), as in Figure 3. The random variable r is the
minor semi-axis length (radius), his the major semi-axis length
(semi-height). 87 € [0,7] and 8% € [0, 7] control the orientation
of the tube. To determine the orientation of a tube, consider an
erect tube which is vertical to the x — y plane, first rotated around
the y axis in the clockwise direction by AY, then rotated around the
z axis in the counter-clockwise direction by 8%. The mark space is
given as M = [Tin, Tinax] X [Rimin, Rmax]X[0, 7] X[0, 7], for some
parameters Tyin, Tmaxs Pmin> Pmax- A marked object is defined as
a vector W; = (S;, M;) € W, where W € SXM. Let Q,, be the
configuration space, which denotes the space of all possible
realizations of W. Then w = (wq,w,, ..., w,) € Q,, is a possible
object configuration, where n is the number of objects in this
configuration.

The Gibbs density of the marked point process is given by

fwly) = Zexp{=Va(yIw) =V, (W)} M

where y denotes the observed 3D image, Z is the normalizing
constant (also called the partition function), V;(y|w) is the data
energy, which describes how well the objects fit the observed
image data y. V,(w) is the prior energy introducing the prior
knowledge on the object configuration.

Figure 3. The 3D tube model.

2.1. Data Energy
Data energy V,;(y|w) is modeled as the sum of the individual
object energies:

Va(ylw) =X Va(yIwy) 2

where V;(y|lw;) describes how well object w; fits the
observed image y. We define an inner region D™ and outer region
D% for each object, as shown in Figure 4. D™ is the set of pixels
in the inner cylinder, and D°%t is the set of pixels in the outer
cylinder but not in the inner cylinder. By defining the Bhattacharya
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distance B(y|w;) between D and D% of each object w;,
V4 (y|w;) can be calculated as in [10]:

B i
Vlw) =] T BOMw) <T 3
alyiwi) = Bylw)-T
ex (— SEow) 1) else

/ Inner cylinder

-~ \‘Outer cylinder Outer region

Figure 4. The inner region and outer region of a tube.
2.2. Prior Energy

V,(w) describes the prior knowledge about objects. It is
similar to the prior energy in the 2D connected-tube MPP model

[11]:

Vp = a? (w) + BYEm(w) + A% (w) 4)

where Vp"l(w) penalizes overlapping between objects;
Vplen(w) penalizes the tubes with short semi-height; V,"°™(w)
encourages connections between tubes; «, 5, 4 are the weights for
each term.

2.2.1 Overlap prior

The overlap prior V! (w) is given as:

VDOl(W) = Zi,j VOL(Wl', W]) (5)
VOI(WL-, W]) — {R(Wolc: W]) lf R(WL,W]e)lS<e Tol (6)

where T,; is an overlap threshold; R(wi,w}-) is the mutual
overlap ratio between object w; and w; defined as:

#(D,NDYY)

min (#DJ #DGHY)

R(wi,wy) = (7

where #4 means number of pixels in set A.

2.2.2. Length prior

A shorter tube may not fit the observed image data Y properly
as its orientation is sensitive to noise. Moreover, shorter tubes
could greatly increase the dimension of an object configuration w.
Thus Vple" (w) is introduced to penalize shorter tubes.

Let

vjen(w) = 3 Vier(ylwy) ®
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where V' (ylw;) = exp((hmax — hi)/hmax), and h; is the semi-
height of tube w;.

2.2.3. Connection prior
The connection prior V,7°™(w) is used to encourage tubes to
be connected.

Vromw) = 2 Verr(wy) )

To calculate V°™(w;), we define the front and back joint
region at the two ends of a tube. Unlike the joint region in 2D
connected-tube MPP model [11], the joint regions are not defined
by circles but balls, as on the left of Figure 5, where the blue ball is
the front joint region and the red ball is the back joint region. We
expect the joint regions of a tube to be overlapped with the joint
regions of other tubes as in right of Figure 5. Then V™ (w;) is
defined as:

Ve (w,) = 0.5%F™ (w;) + 0.5xB™(w;) (10)
where F™(w;) = 0.5 — Re(w;); B (w;) = 0.5 — R, (w;);

Rg(w;) and R, (w;) are the overlap ratio of object w;’s front and
back joint regions respectively.

.

Figure 5. The front and back joint regions (left) and an example of connected
tubes (right).

3. Optimization

The optimization goal is to find an object configuration that
maximizes the energy function V;(y|lw) +V,(w). We use the
multiple birth and death algorithm proposed by Descombes et al.
[12] to realize this goal. There are three types of kernel used for the
state transitions in the configuration space: birth and death kernel,
grow kernel and local perturbation kernel.

Birth and death kernel allows an object to be added or
removed from the current object configuration w. In the
framework of the multiple birth and death algorithm, each voxel
that is not associated with current objects in the image lattice S has
the same probability to give a birth of a new object.

Grow Kkernel is used to give birth of objects close to the joint
regions of current objects in w. For an object wy, if its front/back
joint region is not overlapping with the joint region of other
objects, then a new object wy,, will be added close to its
front/back joint region with grow rate g_rate, which is updated by
g_rate = ogg_rate in each iteration of the multiple birth and death
algorithm with decay factor o. As in Figure 6, if we grow from the
right side of object w;, one end of the new object wy,,, will be
fixed at point A, which is the center of w;’s right end. For the other
end of wy,,,, we assume it is uniformly distributed in the blue ball,
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which is centered around point B with radius h;. B is extended
from A along the major semi-axis of w; with distance 2h;. One
possible new object is the wy,,, with end points A and C in Figure
6.

Local perturbation kernel changes the marks h;, r;, 8}, 67
for each object w; in w. Gaussian distributions are chosen to
update these marks.

Figure 6. lllustration of the grow kernel.

4. Experiments

Because of a lack of labeled ground truth of our fiber-
reinforced composite materials images, we test our method on
synthetic fiber images first. Then qualitative results of fiber
detection in the real fiber images are presented.

In the experiments, the parameters of our model are set as
T =50, Ty, = 0.25, Tmin = 2, Tmax =5, hmin = 2, RApax =8,
a=05,=0.12, 1 =0.38, g_rate is initialized with 1, o =
0.98. All the parameters are set by trial and error. The algorithm is
realized by C++ with OpenCV 2.4.9. The CPU in our experiments
is Intel(R) Xeon(R) CPU E5-2690 2.90GHz.

4.1. Synthetic data

We generate 4 groups of image series by setting non-
overlapped cylinders in 3D space with white noise. In each group,
there are 128 2D slices with size 128x128. The first row of Figure
7 shows an example of 4 successive synthetic 2D slices. The
second row presents the corresponding detection results. The third
row is the ground truth. The bottom row is our binarized detection
results. The 3D visualization of our detection results in this
example is given in Figure 8. The precision and recall are used for
measuring the results:

TP

Precision = —— (11)
TP+FP

Recall = —=~ (12)
TP+FN

where TP is true positive, FP is false positive, FN is false
negative. The quantitative results are shown in Table 1. We point
out that the relatively low precision and recall are caused mostly
by incorrect classification of voxels on the surface of fibers. To see
this, we also count TP, FP and FN in a different way: if a voxel
segmented as fiber is within V2 voxel’s distance of a voxel in
ground truth then this voxel is TP; if a voxel segmented as fiber is
not within V2 voxel’s distance of a voxel in ground truth then this
voxel is FP; if a voxel in ground truth is not within v2 voxel’s
distance of a voxel in segmentation then this voxel is FN. The
tolerance of V2 voxel in distance is used to ignore the false
segmentation on the surface of fibers. The alternate test results are
given in Table 2. These results imply that the proposed algorithm
can localize most fibers correctly. Note that in real microcopy or
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X-ray tomography datasets, there is often uncertainty in classifying
voxels at object boundaries, due to limited spatial resolution, so it
is often not possible to determine the correct classification of
boundary voxels in practice either. The average running time for
each group of data is 45 second.

Figure 7. One example of fiber detection in synthetic data (first row: original
image slices; second row: detection results; third row ground truth of
segmentation; fourth row: binarized fiber detection results).

Figure 8. 3D visualization of fiber ground truth (left) and fiber detection
results(right).

Table 1: The quantitative test results on synthetic data.

SynData1 | SynData2 | SynData3 | SynData4
Prec 0.849 0.865 0.879 0.846
Recall 0.820 0.690 0.850 0.782

Table 2: The non-strict test results on synthetic data.

SynData1 | SynData2 | SynData3 | SynData4
Prec 0.995 0.998 0.996 0.990
Recall 0.955 0.944 0.987 0.935

4.2. Real data
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In this experiment, the gauge section of injection molded
cylindrical discontinuous glass fiber polypropylene tensile coupons
were analyzed [13,14]. Projection images generated from 25 keV
X-rays emissions from a monochromator incident on a rotating
cylindrical specimen, were converted to a series of 16-bit, 1.3um
pixel size grayscale images using a gridded reconstruction
algorithm for real-time tomography [15]. Typically, high intensity,
moderate intensity and low intensity features detected on the
greyscale images correspond to fibers, matrix and porosity,
respectively. Despite the rich information in-situ tomography
provides, images are occasionally fraught with random fluctuation
of pixel values which are introduced during image acquisition and
generation, despite conscientious efforts aimed at mitigating these
effects. It is therefore imperative to develop robust segmentation
algorithms capable of segmenting the fibers. Figure 9 shows fiber
detection results in 6 consecutive 2D slices of a 3D microscopy
image with dimension 301x301x301. Different fibers are labeled
with different color. As we can see, even though close contacted
fibers exist in the dashed red circle in 2D slice, different fibers can
be separated properly. Moreover, we can see the two detected
purple fibers merge to one long fiber in the dashed red rectangle
area, which implies the long fiber is curved in 3D space. Figure 10
presents the 3D visualization of fiber segmentation results by Fiji
software.

Figure 10. 3D visualization of the fiber segmentation.

5. Conclusion
To model the fibers in fiber-reinforced composite materials
images, we extend our previous 2D connected-tube MPP model to
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a 3D connected-tube MPP model. The fibers are modeled as a
series of short tubes connected by their joint areas. The
experimental results on synthetic data and real data demonstrate
the performance of our model.
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