
A Marked Point Process Model Incorporating Active Contours
Boundary Energy
Camilo Aguilar, Mary Comer
Purdue University, West Lafayette, IN, USA

Abstract
In this paper we incorporate an active contours energy into

the Marked Point Process (MPP) framework. The addition of
this energy allows the MPP model to detect objects with irreg-
ular shapes. This energy accounts for the elasticity and curvature
properties of the detected objects. We employ the balloon method
to prevent the contour from stagnating at local minima. We use
calculus of variations to evolve each individual contour and we
use stochastic multiple birth and death dynamics to optimize the
MPP energy function. We demonstrate that our method success-
fully models components with irregular shape in material images,
but the model can be extended to other applications.

Introduction
The Marked Point Process Framework(MPP) has became a

powerful tool in image analysis. It exploits the geometric proper-
ties of certain systems to model a scene as a configuration of ob-
jects. This method has been implemented in both material and bi-
ological images. For example, Craciun et al. proposed an efficient
ellipse model to detect and track images of biological cells in [1].
Similarly, Gadgil et al. used the disk model to detect nuclei in [2].
Zhao et al. proposed a unified ellipse MPP model together with
a Markov Randon Field framework to analyze NiCrAl particles
in [3]. All of these methods successfully characterized images
comprised of repeated patterns. However, some systems require
analysis of more complex shapes without a pre-defined geome-
try. For example, Figure 1 shows two images of a fiber reinforced
polymer. This system is composed of glass fibers, polymer ma-
trix, and voids. Li et al. proposed in [4] a Multimark MPP with
segments and ellipses that models fibers successfully. However,
voids represent a more challenging task due to two reasons: they
often have an irregular geometry and they do not have a constant
pixel intensity. These factors can cause problems in segmentation
algorithms that rely on pixel intensities such as watershed or MRF
based segmentations, as shown in Figure 2(a).
On the other hand, contour-based detection methods have shown

promising results for detecting individual voids. Figure 2(b) de-
notes the resulting contour from applying the balloon model pro-
posed by Cohen in [5] on a single void. Kulikova et al in [6]
successfully incorporated the active contours framework into an
MPP configuration to model objects with irregular shapes. This
method evolved contours based on contour smoothness, image
edges and precomputed background and foreground intensities.
However that approach would not yield satisfactory results on im-
ages such as Figure 2(b) due to the similar intensities between the
object foreground and background.
Our method aims to extend the work presented in [6] by incor-
porating a different optimization technique. We also use differ-

(a) (b)

Figure 1. Example of irregularly-shaped objects: Fiber reinforced compos-

ite polymer. Fibers(white), Voids(dark), Matrix(gray). Courtesy of The Ad-

vanced Computational Materials and Experimental Evaluation Lab, Purdue

University.

(a) (b)

Figure 2. Example different detection/segmentation algorithms. (a) The

EMMPM with 3 classes: Fibers(white), Voids(dark), Matrix(gray). (b) Active

Contours used to detect voids

ent forces such as the balloon force proposed by [5], and a pre-
segmentation energy. These changes allow the MPP-Active Con-
tours Framework to detect a larger range of objects while model-
ing the object structural characteristics.

Contour Energy
We model an individual object as a closed contour denoted

by C(t) = (x(t),y(t)), t ∈ [0,2π]. This contour is defined on the
image domain and is deformed according to the energy functional
E(C(t)) given by:

E(C(t))=
∫ 2π

0

1
2
(α||C′(t)||2+β ||C′′(t)||)+Eext(C(t))dt(1)

In this equation, C′(t) and C′′(t) denote the first and second
derivative of the contour with respect to parameter t. These terms
model the object elasticity and curvature respectively and they
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are regulated by the positive parameters α and β . During all the
methods described in the paper, we set the parameters α ,β ∈ [0,1].

External Energy
The external energy defines the fitting of the snake with the

image and it is defined by:

Eext(C(t)) = EEdge(C(t))+Edark(C(t)) (2)

The first term attracts the contour towards image edges and it is
given by EEdge =−||∇(gσ ∗ I(x(t),y(t)))||2, where gσ is a Gaus-
sian smoothing filter with parameter σ and ∇ is the gradient op-
erator. The second term is a pre-segmentation energy and it is
defined as : Edark = Ik(x(t),y(t)), where Ik is zero everywhere
except at the output for a pre-segmentation algorithm. For exam-
ple, in Figure 2(a),the class of interest is the void region, therefore
we chose class k = 1, the one with lowest pixel intensity values.
We used the EM/MPM segmentation proposed in [7] as a pre-
segmentation algorithm.
Finally, We used the method proposed in [5] to ensure the contour
will evolve even when it is not subject to an external force. This
force contributes to the characterization of irregular objects that
do not have a constant internal pixel intensity. The balloon force
is given by: Fballoon = κ n̂(t), where κ is a positive constant and
n̂(t) represents the normal vector to the contour.

Boundary Energy Optimization
We employed calculus of variations to find a force-balanced

equation. The solution to this method is expressed as the Euler-
Lagrange equations given by: αC′′(t)−βC′′(t)−∇Eext = 0. The
numerical approximation for this equation is discussed in [8] and
its solution is given by:

Ck(t) = (A+ γI)−1(γCk−1(t)−∇Eext(Ck−1(t)) (3)

Where Ck(t) denotes the contour at iteration k, γ represents the
step size or viscosity parameter , Matrix A denotes a pentadiago-
nal matrix containing the discrete approximations of the first and
second derivative coefficients, and ∇Eext denotes the gradient of
the external energy.
Note that the external force includes the balloon force to in-
flate the contour together with three positive constants κ1,κ2,κ3
to weight the effect of each individual force: ∇EExt = κ1n̂−
κ2∇Eedge − κ3∇Edark. In our experiments, we used κ1 = 0.5,
κ2 = 1 and κ3 = 0.1, and [5] recommended to choose each κ

within the same order of magnitude.

A Marked Point Process with Active Bound-
ary Energy
Marked Point Process Framework

A Marked Point Process W defined on K ×M models the
observed scene Y as a finite unordered set of random objects.
The positions of these objects are defined on the compact space
K = [0,Xmin]× [0,Ymax]⊂ R2 and their geometry and dimensions
are determined by the mark space M. For example, the mark space
for the disk model is defined as: M = [rmin,rmax], where r de-
scribes the disk’s radius. A single object is denoted ωi = (ki,mi),
where ki ∈ K and mi ∈ M . We say a realization of the MPP W
is defined by w = {ω1,ω2, ...,ωn} ∈ Ωw where w denotes the
configuration of n random objects, ωi is a single object, and Ωw

denotes the space of all possible realizations of W . The point
process can be modeled by a conditional Gibbs density function
given by

p(w|y) = 1
Z

exp{−U(w|y)} (4)

where the observed image y describes a realization of Y , U(w|y)
describes the energy function and Z =

∫
w∈Ωw

p(w|y)dw is the
normalizing constant.

Irregular Shape Marked Point Process
The addition of active contours boundary would require a

high dimensional mark space to represent irregular geometries.
However, Kulikova presented in [6] an alternative space to repre-
sent these configurations based on the disk MPP model and the
contour energy functional E(C(t)). We let an initial disk ωi with
radius ri belong to space W = K×M. We can parametrize a disk
ωi as a contour ωi(t) living in a space Wo and define a contour en-
ergy functional E(ωi(t)). We can minimize this functional using
the method described in section to evolve ωi(t) into ω̃i(t) ∈Wo,
with .̃ : Wo 7→Wo denoting the energy minimization( and follow-
ing the notation of [6]). Therefore, the new single object space is
defined as Wo = W̃ . This space describes the contour initialized
by ωi adapted to the image by a local minimum of E(ω(t)).
We followed [6] to create the extension from a single object to
multiple objects, given by the symmetrical set:

ΩWo =
∞⋃

n=0
[W n

o /Sn], (5)

where Sn is a symmetry group of n elements on the components
of the product. The energy of this MPP model is described as:

U(w|y) = ∑ωi∈wUd(ωi|y)+∑ωi,ω j∈wU(ωi,ω j) (6)

Where Ud denotes the data energy and Up denotes the prior en-
ergy.

Data Energy
The data energy describes how well current configuration w

fits with the current image and it is the sum of all the individual
data energies for each object ωi. The data energy for a single
object is given by:

Ud(ωi|y) = E(ω̃i(t)) (7)

Prior Energy
This energy Up(w) accounts for prior knowledge about the

system. Numerous MPP models use an overlapping penalizer
which discourages spatial overlap between detected objects in w.
Hence, our prior energy depends only on the interaction between
objects:

Up(ωi,ω j)=

{
A(ω̃i, ω̃ j) i f A(ω̃i, ω̃ j)≤ Toverlap

∞ otherwise

}
(8)

Where A(ω̃i, ω̃ j) denotes the overlapping ratio between ω̃i and
ω̃ j. For this section, we chose Toverlap = 5% experimentally in
order to prevent from multiple contours converging to the same
local minimum.
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Optimization
Our objective is to obtain the MAP estimate of equation (4)

by minimizing the energy function given in equation (6). This en-
ergy function is not convex and also it is numerically infeasible to
calculate the normalizing constant Z =

∫
w∈Ωw

p(w|y)dw. Hence
we resort to stochastic optimization embedded in a simulated an-
nealing scheme. We simulate a Markov Chain from ΩW and use
the multiple birth and death dynamics presented by [9] . This
algorithm uses a pre-computed birthmap to favor certain regions
during the birthphase and gives birth to multiple objects in each
iteration. Then it sorts the detected objects by decreasing energy
to ”kill” the less likely objects first. Finally it decreases the tem-
perature T and the process intensity σ to ensure convergence to a
strong local minimum. This optimization method is summarized
in Algorithm 1.

Algorithm 1 Multiple Birth and Death Algorithm
1: procedure MPP ENERGY MINIMIZATION

2: Initialization:
3: Create birthmap bo
4: Initialize brate = bo, T = To, σ = σo.
5: Birth Step:
6: Visit pixels in raster order
7: ω ′ ← draw a sample from space W
8: Add ω ′ to configuration w with probability σbrate
9: Evolve ω ′ using the method described in section to ω̃ ′

10: Death Step:
11: Sort all elements of w by decreasing energy.
12: For every object ωi in w calculate:

13: drate(wi) =
σ (k)exp U(w|Y )−U(w−ωi |Y )

T k

1+σ (k)exp U(w|Y )−U(w−ωi |Y )
T k

;

14: Delete ωi with probability drate(ωi)
15: Convergence Test:
16: if all the elements born during the birth step are killed

during the death step then
17: terminate process
18: else
19: Update parameters: T k+1← T k×α , σ k+1← σ k×

α α ∈ (0,1)
20: goto Birth Step
21: end if
22: end procedure

Results and Experiments
We tested our model on two different datasets: a fiber rein-

forced polymer and a Pb-Sn alloy, and we compared it with the
software provided by [10].

Void Detection in Fiber Reinforced Polymer
Figure 3 represents a fiber reinforced polymer described

in [11]. It belongs to a 4D (volume and time) dataset and
is composed of three classes: matrix(gray), fibers(white) and
voids(dark/gray). Figure 3(c) shows that our algorithm can effec-
tively characterize the largest voids despite their irregular internal
pixel intensity. The birthmap used for this data was a dilated im-
age of the 10% of darkest pixels. We exploited Edark to ensure
that contours with dark edges have low energy. Figure 3(b) shows

(a) Original (b) EMMPM

(c) MPP-AC (d) FIJI Particle Analyzer

Figure 3. Void Detection on Fiber Reinforced Polymer, courtesy of Dr.

Michael Sangid, Purdue University

the EM/MPM results using 3 classes. This algorithm can detect
the contour of the void but the interior region is labeled as back-
ground. Figure 3(d) shows the results of using FIJI’s[10] particle
analyzer tool.

Pb-Sn Dendrite Alloy:

(a) Original (b) EMMPM

(c) MPP-AC (d) FIJI Particle Analyzer

Figure 4. Dendrite Detection on Pb-Sn Alloy. Courtesy of Dr. Peter

Voorhees, Northwestern University

Figure 4 shows Pb-Sn dendrites described in [12].This study
focused on characterizing dendritic morphology. Figure 4(c)
shows that our model fits the majority of objects. However, the
balloon method has drawbacks in objects close to each other,
such as those shown in the upper left part of the image where
the contour merged two nearby objects together. This issue can
be addressed by improving the contour energy model and be ex-
plored in future research. Figures 4(b) and 4(d) show the results
of EM/MPM and FIJI particle analyzer.

Conclusion and Discussion
In this paper we explored a method to incorporate the bound-

ary energy to the Marked Point Process. Our model com-
bines the balloon model active contours with the MPP frame-
work. This combinations allows the MPP to model material im-
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age properties while detecting objects with irregular shapes or
non-homogeneous intensities. Although we focused on detect-
ing voids dataset in Figure 3, we demonstrated that our method
can be applied to a different dataset. This model can be extended
to 3D datasets.
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