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Abstract—Mineral dust, defined as aerosol originating from
the soil, can have various harmful effects to the environment and
human health. The detection of dust, and particularly incoming
dust storms, may help prevent some of these negative impacts. In
this paper, using satellite observations from Moderate Resolution
Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation Observation
(CALIPSO), we compared several machine learning algorithms
to traditional physical models and evaluated their performance
regarding mineral dust detection. Based on the comparison
results, we proposed a hybrid algorithm to integrate physical
model with the data mining model, which achieved the best
accuracy result among all the methods. Further, we identified
the ranking of different channels of MODIS data based on the
importance of the band wavelengths in dust detection. Our model
also showed the quantitative relationships between the dust and
the different band wavelengths.

Index Terms—hybrid dust detection, data mining, physical
model, satellite data, feature importance

I. INTRODUCTION

In arid and dry regions with high velocity winds, soil
particles are lifted into the atmosphere, becoming mineral
dust. It is one of the most abundant types of aerosol in the
atmosphere with the Saharan desert as the largest contributor.
Mineral dust aerosols affect the Earth’s energy budget through
several ways. It has a direct radioactive effect by scattering and
absorbing solar radiation. By acting as cloud nucleation nuclei,
mineral dust can indirectly impact the global radiation balance.
High levels of mineral dust results a significant decrease in the
air quality, negatively affecting our health. Inhalation of large
quantities of mineral dust can lead to lung fibrotic diseases
(where damage occurs to the lung tissue) as well as an increase
in hospital admissions due to aggravated asthma, chronic
bronchitis, and other respiratory illnesses [7]. Unfortunately,
the amount of dust in the atmosphere and its direct impact is
unknown largely due to errors in the methods of retrieval.

Many of the methods for dust detection rely upon the
usage of satellite data. The more accurate data has been

from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation Observation (CALIPSO). While CALIPSO is
more accurate at dust detection, it has multiple drawbacks like
only gathering data from a smaller swath of the Earth’s surface.
Researchers have shifted towards using data from Moderate
Resolution Imaging Spectroradiometer (MODIS), which is a
passive sensor. However, MODIS is unable to directly detect
mineral dust. Thus various algorithms have been developed
combining physical knowledge of mineral dust and the data
captured by MODIS to calculate the probability of dust [4],
[1], [5], [6], [8]. Unfortunately, many of these algorithms have
a lower detection rate or accuracy rate than desired.

In this paper, we want to leverage accurate dust detection
capability of CALIPSO satellite dataset to predict dust for
the large volume of MODIS satellite dataset which covers
the whole earth. To do it, we mainly tackled the following
two challenges. First, how to best integrate existing physics
model based dust detection approach and data-driven machine
learning algorithms for the best results? Second, how to
identify the importance of different channels at the MODIS
instrument for dust detection, which could provide important
recommendations for future dust detection instrument con-
struction?

In summary, the contributions of this paper are three folds.

• We compared several machine learning algorithms to tra-
ditional physical models and evaluated their performance
regarding mineral dust detection for MODIS data.

• Based on the comparison results, we proposed a hybrid
algorithm to combine machine learning techniques with a
physics background to develop an algorithm with around
90% accuracy rate, which is the best accuracy result
among all available methods.

• Based on the Lasso variable selection approach, we iden-
tified the ranking of different channels/bands of MODIS
data based on the importance of the band wavelengths in
dust detection.

The remainder of the paper is organized as follows. In



Section II, we discuss related studies and their differences
from our proposed approach. Section IV discusses and com-
pares different physics-based algorithms and machine learning
algorithms for dust detection. Section V explains our channel
importance ranking approach. Our main hybrid dust detection
algorithm is presented in Section VI and evaluated in Section
VII. Last, we conclude in Section VIII with some ideas for
future work.

II. RELATED WORK

Dust detection using MODIS data has been reported in
many papers [17], [18], [20], [25], [27]. The commonly used
algorithms include Support Vector Machine (SVM), Artificial
neural network (ANN), decision tree, random forests, multiple
regression etc. Logistic regression is seldom reported. In
most papers, they compared physical models to their machine
learning approach. Some of them tried satellite image analysis
for dust analysis [17], [18], [20], [25], [27]. But none of these
papers mentioned the feature engineering, one reason is that
people used the same variables from the physical algorithms;
another reason is that some machine learning methods don’t
require feature selection, such as random forests. One draw
back for most data mining methods is that they are black-box
models, such as neural network. With a number of hidden
layers, it is hard to interpret the relationship between the input
variables and outcome, and the whole process works like a
black box.

Different from the above approaches, we proposed a hybrid
algorithm by combining physics-based model and data-driven
models. Specifically, our uniqueness lies as follows. 1) We
quantitatively demonstrated the relationship between input
variables and dust outcome. Our approach not only shows the
importance of each variable, but also shows their contribution
to the dust. For example, the coefficient for band 20 is 0.85,
which means one unit increase for band 20 would lead to the
probability of being dust 2.3 times higher than not being dust;
2) Through feature engineering, we identified the importance
of input variables based on their entering steps during variable
selection. For example, in Lasso selection, band 32 entered the
model first, which indicates that band 32 is the most important
variable in dust detection. The importance of band 32 was also
reported in several other literature [1], [33]; 3 ) Combination
of physical algorithm and data mining approach. Besides the
pure data driven results from logistic regression, we added
physical understanding from physical algorithm, which could
strengthen the model interpretation.

III. SATELLITE DATA

MODIS is a passive sensor onboard the Terra satellite since
1999 and the Aqua satellite since 2002 launched by NASA.
With a viewing swath of 2,330 km, it images the entirety
of the earth at most every two days. It measures data in 36
spectral bands, ranging from 0.045 to 14.385 µm, at three
different spatial resolutions, 250m, 500m, and 1km. The data
can be accessed at various levels, depending on the information
requested. In this study, we use MODIS level-1 data, which

contains calibrated and geolocated radiance observation in the
36 spectral bands. The information is stored in HDF files,
each containing approximately 5 minutes of MODIS data
referred to as a granule. The MODIS observation have been
applied to derive a large variety of remote sensing products,
from land vegetation coverage to sea surface temperature,
from ice and snow extend to aerosol and cloud distributions.
Here in this study, of particular interest in the detection of
air-borne mineral dust aerosols using MODIS observations.
In the past, a number of algorithms have been developed
based on physical principles to detect dust aerosols based
on satellite observations. Most of these algorithms are based
on the analysis of the reflectance of sunlight in the visible
bands and the brightness temperature of the thermal emission
in the infrared region. For example, Zhao et al. [8] developed a
physically-based algorithm which tests a variety of the optical
properties of the target, i.e., brightness, color, and temperature
to determine if it is dust aerosol. Such algorithms face several
challenges. First of all, it is difficulty to validate and evaluate
the detection results. Secondly, the algorithms relies on the test
of multiple threshold, which often lead to artificial effects,
such as abrupt discontinuity. Furthermore, the development
of such algorithm often involves large amounts of trial-error
testing and fine-tuning, which is tedious and time consuming.
We wanted to be able to validate our results from the MODIS
data using observations from CALIPSO. As both CALIPSO
and Aqua are among the international satellites along the same
orbital track called the A-Train, we decided to use MODIS
data from Aqua.

The CALIPSO satellite, which is a joint venture between
NASA and its French counterpart CNES, has been recording
data as a part of the A-train as of 2006. Among its three
instruments, it has a lidar sensor, called Cloud-Aerosol Li-
dar with Orthogonal Polarization. Different from the above-
mentioned MODIS, CALIPSO is an active senor. It measures
the reflection, refraction, and scattering of its own transmitted
lidar signals by the Earth’s surface and atmosphere. CALIPSO
measures the strength of the reflected lidar signals in two
bands, the 532 nm and 1064 nm bands. In addtion, it also
measures the so-called depolarization ratio of the lidar signal
in the 532 nm band. If the aerosols particles are spherical,
such as sulphate and smoke aerosols, then their scattered lidar
signals have near zero depolarization ratio. In contrast, the
scattering of the non-spherical aerosol particles, such as dust,
have significant depolarization. Therefore, using the observed
lidar depolarization, it is easy to detect the dust aerosols
distinguish them from other types of aerosols. Through this
use of depolarization, it is able to better detect clouds and
dust aerosols. However, as seen in Figure 1, it covers much
less area than MODIS, which is why we would like to use
MODIS data to detect aerosol.

In the first stage of our work, we used MODIS and
CALIPSO data at the same location using the collocation
algorithm in [32]. With the MODIS data, we were able to
predict dust, which was then compared against the results
from CALIPSO. We were fortunate to have access to already



Fig. 1. Comparison of MODIS granule and CALIPSO track.

collocated data for MODIS Level-2 and CALIPSO. This
allowed us to determine the correct MODIS Level-1 files
corresponding to the CALIPSO data. An important difference
between the two data sets was the spatial resolution; CALIPSO
has dust detection for every 5 km while the data utilized from
MODIS was over 1 km. We decided to average over 5 pixels
(each 1 km) for the MODIS data so that the data sets would
correspond.

IV. COMPARISON OF PHYSICAL ALGORITHMS METHODS
AND MACHINE LEARNING METHODS FOR DUST DETECTION

A. Physical Algorithms

For this part of study, we use MODIS and CALIPSO
collocated data to develop an algorithm for dust aerosol
detection. In the collocated data, CALIPSO provides robust
information of dust identification, MODIS provides radiances
or emittance for up to 36 spectral bands. By using those
pixels with both MODIS and CALIPSO observations and
based on the knowledge of physical properties of mineral
dust aerosols and previous studies on dust detection, we tried
several methods to separate MODIS pixels with and without
dust aerosols.

1) Color Ratio Algorithm over Ocean: Considering clear
sky over ocean is much darker than dust and clouds, the
reflectance at visible wavelengths for clear sky should be much
smaller than the other two cases. Moreover, we know that
dust aerosols are yellowish and clouds are usually white in
color. Therefore, we expect that the color ratio defined as R460

nm/R860 nm may be different among clear, dusty and cloudy
sky. To determine the ratios corresponding to each case, we
plotted the color ratio as a function of its reflectance at 860
nm. As seen in Figure 2, strict classifications were not found.
Thus, we were unable to proceed with the use of the color
ratio in dust detection.

2) Reflectance and Emittance Ratio Algorithm over Ocean:
Clouds are usually more reflective than yellowish dust aerosols
and dark ocean at visible wavelengths. In contrast, in the
thermal infrared such as 11µm, ocean surface emits more
than dust aerosols and clouds due to the higher temperature of
ocean surface. Therefore, we investigated the relation among
reflectance at 859nm, emittance at 11 µm and R859 nm/E11

Fig. 2. The color ratio R460 nm/R860 nm as it depends on the reflectance
at 860 nm, classified into the four cases: Cloud without Dust, No Dust No
Cloud, Dust and Cloud, and Dust without Cloud.

µm, which is shown in Figure 3 and Figure 4. We can see that
dust aerosols are not able to be separated from other cases by
using R859 nm and E11 µm. Hence, we decided to investigate
other methods for a physical algorithm.

Fig. 3. The emissivity at 11 µm as a function of the reflectance at 859 nm,
classified by the 4 different possible outcome.

3) Infrared Algorithm: Through observation and modeling
studies, Ackerman [8] showed that brightness temperature
difference (BTD), defined as the difference between the bright-
ness temperature at 11 µm and 12 µm, of dust is smaller
than that of clouds. In this algorithm, we first find a BTD
threshold distinguishing between the dust and cloud cases.
If BTD is smaller than the threshold, the pixel is classified
as dust. In order to determine the BTD threshold, we first
applied different thresholds for MODIS data along CALIPSO
track and then calculated detection accuracy for different BTD
threshold using CALIPSO dust detection as reference. We
achieved the highest accuracy between 60% and 70% with
the BTD threshold at 0.8. Using this threshold, we wrote
an algorithm to detect dust aerosols over the entire MODIS
granule.



Fig. 4. The ratio of the reflectance at 859 nm to emissivity at 11 µm as a
function of the reflectance at 859 nm, classified by the 4 different possible
outcome.

B. Machine Learning Methods

Machine learning has been widely used in science and
engineering fields, such as medical image analysis and it
also has been proved to be very useful for remote sensing
data including crop disease detection, new product creation
etc [9]. The most commonly used data mining methods include
artificial neural networks (ANN), support vector machines
(SVM), decision trees, also some ensemble methods, such
as random forests. We explored different machine learning
methods for our dust detection in our study.

1) Logistic Regression: Logistic regression is one simple
but powerful method, especially for binary outcome. One key
component is the logistic function, which could convert the
multivariate input into the probability of the outcome between
0 and 1. Among all the machine learning algorithms, logistic
regression has multiple advantages. First, no assumption is
needed such as normal distribution of independent variables;
Second , no assumption is needed about linear relationship
between outcome and covariates. Most importantly, it is easy
to understand and interpret the results [10], [11]. In our logistic
regression model, we used the glm package in R and SAS for
variable selection.

2) Artificial Neural Network (ANN): There has been con-
siderable applications of ANN in remote sensing data. The
basic structure of the ANN includes input layer, output layer
and some hidden layers. The input layer is composed of input
variables, the output layer is the number of outcomes. The
hidden layers could be one or multiple layers. With zero hid-
den layers, we can consider the neural network as one simple
logistic regression model. Through controlling the number of
hidden layers and number of nodes within each layer, ANN
could be built for non-linear and complex relationships, which
is important for dealing with real life problem. Like logistic
regression, it also does not need any distribution assumption
for the input variables, output variables. Another important

advantage is that ANN could infer new relationships on unseen
data, and thus make the model more generalized for new
unknown data [10], [11].

3) Support Vector Machine (SVM): SVM is another popular
machine learning algorithm based on statistical learning the-
ory. The SVM algorithm is to find a decision boundary which
could maximize the distance between the two closest classes.
The biggest advantage for SVM is that it could model non-
linear decision boundary.It has multiple kernel functions and it
is pretty robust against over fitting. However one disadvantage
to this algorithm is that SVM is very memory intensive and
may not scale well to large datasets [12].

4) Random forests: Random forests are considered as one
of the most accurate machine learning methods, which are an
ensemble classifier and proved to be the top winner in several
data competitions. Random forests consist of many decision
trees and combine the result from the individual trees. The
attractive benefits using random forests lie in the following
facts: 1) random forests could handle thousands of input
variables without variable selection, which is heavy burden for
logistic regression; 2) through large number of decision trees
within random forest, it could produce an unbiased estimate
of the generalization error; 3) it may allow large portion of
missing data [13].

5) Ensemble learning: The purpose of ensemble methods
is trying to use multiple learning methods to achieve better
predictive performance than single method [14]. There are
different types of ensembles, in this paper, we used stacking
ensemble learning. In stacking, several basic learning methods
were applied to the datasets, and then another model could
be built from the outputs from each individual models. It
has been reported that stacked ensemble models could boost
predictive accuracy. For this approach, we basically took
logistic regression, ANN, SVM and random forests models as
the base learner and logistic regression as meta learner. Our
machine learning methods and final model are done through
Weka 3.8.0.

C. Comparison of Physical Algorithms and Machine Learning
Methods

1) Results from Infrared Physical Algorithm: Then we
make use of the threshold to detect dust aerosols over the
entire MODIS granule and compare with the RGB image to
check how good our infrared dust detection algorithm is. We
selected two dust storm cases over Atlantic ocean, the RGB
images from MODIS observation of those two dust storms
are shown in Figure 5. From the above RGB figures, we could
easily tell white clouds and dust aerosols, which are yellowish.

Then we use 0.8 as BTD threshold to detect dust aerosols.
If BTD (11-12 µm) of a MODIS pixel is smaller than the
threshold, then the pixel is identified as dust-loading pixel. We
apply this algorithm to the entire MODIS granule to detect dust
aerosols. Figure 7 and Figure 8 show that the infrared BTD
algorithm could detect dust aerosols to some extent, but still
it may mistake clouds as dust aerosols.



Fig. 5. RGB images of two dust storms from MODIS observations, the above
is 06/22/2009, the below is 07/15/2007.

2) Results from Machine Learning Algorithms: To decide
which machine learning method is better, we compared the
performance among different approaches. Since some data
mining approaches are very time consuming with large data,
we used data on 07/15/2007 (3,335 data points with 1,510
dust and 1,825 non dust) to predict the data on 06/22/2009
(3,335 data points with 1,915 dust points and 1,410 non
dust points) for our model selection analysis. The predictor
variables include all 38 band values. We used 3 measure
metrics to compare those model performance: The area under
the curve (AUC), accuracy and Youden index.

AUC is one of the most important evaluation metrics to
check model performance. It can tell how much the model is
capable of distinguishing between classes. Higher AUC means
better model. A poor model has AUC near to 0, and if model
could predict a perfect outcome, AUC will be 1 [31].

Accuracy is one very intuitive measure for model per-
formance. The accuracy is defined as the sum of correct
prediction for dust and not dust divided by total data points.
Youden’s index is another popular model performance metric
, which is simply calculated as sensitivity+ specificity− 1
and can be used for the optimal cut-point. Sensitivity is defined
as the true positive rate, which is the proportion of correctly
predicted dust. Specificity is defined as the true negative rate,
which is the proportion of correctly predicted not dust. We

tried logistic regression (LR), Random forest (RF), SVM,
ANN and one stacking classifier. In the stacking classifier,
the base classifiers are the four individual classifiers (Random
forests, Logistic regression, ANN and SVM), and the meta
classifier is still logistic regression.

From the comparison result at Table II, we can see logistic
regression model has the best accuracy, AUC and Youden in-
dex values compared to other machine learning methods, also,
logistic regression needs little specification and is convenient
for implementation. We decide to choose logistic regression
as our further analysis.

TABLE I
PERFORMANCE COMPARISON AMONG DIFFERENT LEARNING METHODS:

DUST DETECTION ALONG CALIPSO TRACK.

Method Accuracy AUC Youden index
Random Forest 67.2% 0.765 0.436
Logistic regression 82.0% 0.864 0.654
ANN 69.8% 0.833 0.429
SVM 59.6% 0.648 0.376
Stacking classifiers
(RF, LR, ANN, SVM) 63.7% 0.68 0.370

V. VARIABLE IMPORTANCE AND SELECTION

Overfitting is one common issue in regression analysis,
which is normally caused by extraneous predictors in the
model. When this occurs, the coefficients may have inflated
magnitude, and then the R square will be large too. To reduce
this effect, feature selection becomes very important [23].
Stepwise, backward or forward variable selection methods are
traditional variable selection procedures, however the draw-
back is that they can not deal with large number of covariates
very well, and may lead to highly bias in parameter estimates.
Lasso selection is one alternative selection method, which was
developed to overcome the limitation of traditional variable
selection when the number of covariates is large [23], [24].
For Lasso variable selection, a widely used penalized measure
of model fit is the Schwarz Bayes criterion (SBC). The formula
is SBC = −2 ∗LL+ log(n) ∗K, where LL is log likelihood
of the logistic model, k is the degree of freedom in the model
and n is the sample size. The smaller SBC, the better. Since
log(n) ∗K will increase with increasing number of variables,
thus more variables in the model will be penalized and increase
the SBC value [19]. Akaike information criteria (AIC) is also
helpful for comparing models regarding the model fit and
model complexity.

We used the hpgenselect package in SAS 9.4 for our
variable selection [30]. The variable selection process can be
found at Table I. After Lasso selection, the variables remain
in the models are column 2 in Table I, and the other variables
are dropped due to insignificant effect in the model.

Our selected variables are very consistent with Lee et al.’s
finding in [32], where the authors claimed that their input
variables are sixteen brightness temperatures (Band 20 - Band
36). Another paper [29] reported B20, B29, B30, B31, B32 as
their important band variables.



TABLE II
VARIABLE SELECTION AND SELECTION STEPS USING LASSO.

Lasso Selection Details
Step Description AIC SBC
0 Initial model without covariates 23751 23758.8
1 Band 32 (11.770-12.270) µm) 23248 23271.2
2 Solar azimuth 22340.6 22363.9
3 Solar zenith 20573.4 20604.4
4 Band 36 (14.085-14.385) µm) 20124.8 20171.3
5 Band 31 (10.780-11.280) µm) 19824.3 19878.5
6 Band 24 (4.433-4.498) µm) 19653.7 19723.5
7 Sensor azimuth 19653.7 19723.5
8 Band 28 (7.175-7.475) µm) 19475.5 19560.7
9 Band 29 (8.400-8.700) µm) 19475.5 19560.7
10 Band 27 (6.535-6.895) µm) 19295.5 19396.2
11 Band 35 (13.785-14.085) µm) 19126.4 19227.1
12 Band 21 (3.929-3.989) µm) 18976.8 19085.2
13 Band 33 (13.185-13.485) µm) 18846.5 18962.8
14 Band 22 (3.939-3.989) µm) 18732.2 18856.2
15 Band 25 (4.482-4.549) µm) 18630.2 18761.9

VI. A HYBRID APPROACH FOR DUST DETECTION

Our hybrid algorithm is a combination of physical algo-
rithms and logistic regression model (see Figure 6 for the flow
chart of our hybrid algorithm).

1) Through Lasso automatic selection to identify the most
important variables without human input. Only when
variables meet the minimum requirement of SBC, the
variables stay in the model.

2) Add variables from all physical algorithms to the model
and do another round of Lasso selection.

3) Check the model parameter estimates and remove the
non significant variables from the model and determine
the final model.

Fig. 6. Flowchart of variable selection procedure for our hybrid algorithm.

VII. EVALUATION ON OUR HYBRID ALGORITHM BASED
DUST PREDICTION

We have two types of prediction tasks. One is using data
in CALIPSO region data to predict the data in CALIPSO
region. All those data have accurate labels: dust or not dust.
Another type of prediction is to use CALIPSO region data
as training data, and predict the data outside the CALIPSO
area. For these prediction, since we don’t have labels, and can
only approximately validate the prediction accuracy through

visually checking the predicted images against raw RGB
images.

The data sets used in our experiments include the following
dates: 1) 03/13/2007, 05/09/2007, 07/15/2007, 03/31/2008,
06/22/2009 and 04/22/2010 at northwest coast of Africa near
Atlantic Ocean and 2) 11/05/2009 and 11/11/2009 at the coast
of Arabian peninsula near Arabian Sea. Dust is defined as dust
and clouds or dust without clouds, and not dust is defined
as no dust and no clouds or clouds without dust, so the
study outcome became one binary classification question. The
total data points are 17,058, there are 8,248 dust points and
8,810 not dust points. We include all band wavelengths and 4
geometry variables in our analysis.

A. Results for Predicting CALIPSO Region Data

1) Parameter Estimate Comparison between our Hybrid
Model and Pure Logistic Regression Model: The parameter
estimates (shown in Table III and Table IV) from pure logistic
regression and our hybrid model are pretty consistent regarding
whether the variables have the positive or negative effect on the
dust prediction, though the values are different. For example,
band 20 has coefficient -0.58 compared to -0.86 in our hybrid
model.

TABLE III
PARAMETER ESTIMATES FROM LOGISTIC REGRESSION MODEL

Estimate Std Error P value
(Intercept) -27.9684 5.639937 7.09E-07
Band 20 (3.660-3.840) µm -0.57661 0.047896 2.22E-33
Band 22 (3.939-3.989) µm 0.949023 0.077796 3.15E-34
Band 25 (4.482-4.549) µm 1.557671 0.051672 1.22E-199
Band 27 (6.535-6.895) µm 0.376049 0.017946 1.73E-97
Band 28 (7.175-7.475) µm -0.76633 0.025158 8.54E-204
Band 31 (10.780-11.280) µm -4.19596 0.116641 2.20E-283
Band 32 (11.770-12.270) µm 2.858426 0.126925 2.61E-112
Band 33 (13.185-13.485) µm 2.183724 0.119588 1.71E-74
Band 35 (13.785-14.085) µm -2.35714 0.087024 1.43E-161
Solar azimuth -0.10573 0.005056 4.35E-97
Solar zenith 0.01164 0.001417 2.15E-16

TABLE IV
PARAMETER ESTIMATES FROM OUR HYBRID MODEL

Estimate Std Error P value
(Intercept) 31.33543 6.21873 4.68E-07
Band 20 (3.660-3.840) µm -0.85731 0.051076 3.15E-63
Band 22 (3.939-3.989) µm 1.149253 0.081038 1.19E-45
Band 25 (4.482-4.549) µm 1.047929 0.055049 8.55E-81
Band 27 (6.535-6.895) µm 0.477713 0.019291 2.23E-135
Band 28 (7.175-7.475) µm -0.85452 0.026784 2.38E-223
Band 31 (10.780-11.280) µm -2.96282 0.121345 1.14E-131
Band 32 (11.770-12.270) µm 1.853966 0.131862 6.70E-45
Band 33 (13.185-13.485) µm 2.275425 0.124293 7.29E-75
Band 35 (13.785-14.085) µm -2.31015 0.090737 5.50E-143
Solar azimuth -0.14228 0.005403 7.82E-153
Solar zenith 0.003036 0.001472 0.03915294
Band 3(459-479 nm)/
Band 2 (841-876 nm) -0.68804 0.02672 3.24E-146



2) Model Performance Comparison among Physical mod-
els, Logistic Regression Model and our Hybrid Approach:

We applied 10-fold cross validation for our model with
all data points to evaluate our model performance. In our
analysis, the original sample is randomly partitioned into 10
equal size subgroups. Among the 10 groups, 9 groups are
used for model development, and the remaining single group
is used for testing the model. The cross validation process will
be repeated 10 times so that each of the 10 subgroups will be
used exactly once as the testing data. The averaged results are
shown in Table VI.

Table V and Table VI showed the performance differences
under different conditions, where we can find that the hybrid
approach gave the best accuracy, AUC and Youden index
values.

TABLE V
PERFORMANCE COMPARISON: USING DATA 07/15/2007 AS TRAINING,

DATA 06/22/2009 AS TESTING

Algorithms Accuracy AUC Youden
index

Hybrid approach 0.839 0.907 0.682
Logistic
regression 0.784 0.832 0.567

Physical algorithm:
Infrared 0.701 0.741 0.406

Physical algorithm:
Color ratio 0.414 0.424 NA

Physical algorithm:
Reflectance ratio 0.423 0.5 NA

Note: Due to the poor performance, the Youden index is not
available for physical algorithms: color ratio and reflectance
ratio.

TABLE VI
PERFORMANCE COMPARISON: USING ALL DATA POINTS WITH 10-FOLD

CROSS VALIDATION

Algorithms Accuracy AUC Youden
index

Hybrid approach 0.886 0.949 0.774
Logistic
regression 0.847 0.933 0.695

Physical algorithm:
Infrared 0.674 0.750 0.325

Physical algorithm:
Color ratio 0.655 0.561 0.318

Physical algorithm:
Reflectance ratio 0.633 0.453 0.322

B. Results for Predicting MODIS Region Data

The biggest challenge for dust detection for MODIS region
(2,748,620 data points) is that we do not have any labels for
MODIS region, which means we do not know whether the
prediction is correct or not. We can only visually compare the
RGB images to raw images. We tried to predict the dust of the
whole MODIS region using our hybrid approach and produced
the RGB images based on the predicted probabilities. The
images produced by our hybrid approach (Figure 7 and Figure
8, below) look better than the ones produced by physical

algorithm (infrared) compared to the raw images in Figure
5.

Fig. 7. Dust prediction for MODIS region using infrared physical algorithm
(above) and our hybrid approach (below), the image date is 07/15/2007.

VIII. CONCLUSIONS

In our study, we tried both physical algorithms and sev-
eral data mining approaches for dust detection. Our results
showed that pure machine learning methods could significantly
improve the prediction accuracy compared to pure physical
algorithm (around 85% vs 67% for all data prediction, and
78% vs 70% for different day prediction see Tables V and
VI), which could greatly enhance our capability for future
dust detection. Meanwhile we also tried to combine physical
algorithms with machine learning approach and the combined
approach provided even better results (89% and 84% , see
Tables V and VI).

For future work, we plan to investigate the relationship
between the variables from data mining approach and variables
from the physical algorithm for further variable selection and
composite variable creation. We would also like to expand
our research to land dust detection, which requires slightly
different methods for analysis and increase our data points
from the coast off North Africa to the whole world and include
multiple time periods.
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