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Abstract—Granger causality and its learning algorithms have
been widely used in many disciplines to study cause-effect
relationship among time series variables. In this paper, we
address computing challenges of state-of-art Granger causality
learning algorithms, specially when facing increasing dimension-
ality of available datasets. We study how to leverage gradient
boosting meta machine learning techniques to achieve accurate
causality discovery and big data parallel techniques for efficient
causality discovery from large temporal datasets. We propose two
main algorithms for gradient boosting based causality learning,
and parallel gradient boosting based causality learning. Our
experiments show our proposed algorithms can achieve efficient
learning in distributed environments with good learning accuracy.

Index Terms—Granger causality, gradient boosting, parallel
machine learning, big data analytics

I. INTRODUCTION

As a fundamental research problem in many disciplines
including climatology [22] and neuroscience [14], causality
studies cause-effect relationship among variables, such as tem-
perature and humidity. Causality learning results could help
many other research problems in the discipline. For instance,
by studying how the climate system works from causality
perspective, its findings could be used for many research areas
including climate variability and climate change [29], climate
dynamics [12] and climate extreme prediction [15].

With the increasing available datasets, different data-driven
graphical causality discovery approaches such as dynamic
Bayesian network [25] and Granger causality [18], have
been proposed. We have been studying how these various
approaches can help discover climate causality [19], [30],
[31]. One challenge we encountered is that most state-of-
art approaches will face computing challenges when they are
used to discover causality from the explosion of available
data with increasing dimensionality (i.e. the count of available
variables) and increasing temporal resolution. Take the popular
ECMWF atmospheric reanalysis data [3] as an example.
Its data product transition from its current ERA-Interim to
upcoming ERA5 will increase in total volume from 100 TB
to 9 PB with 2.7-fold increase in variable count, over 4-
fold increase in spatial resolution, 6-fold increase in temporal
resolution. Current causality discovery algorithms’ execution
time grow quadratically or even worse with the increase of
either dimensionality or spatial/temporal resolution [9]. It will

be prohibitively expensive to learn causality from the whole
dataset using existing approaches.

In this paper, we study how to efficiently discover cause-
effect relationship from large time series data. We focus on
Granger causality [18] because of its natural support of time
series. We study how to leverage gradient boosting meta
machine learning techniques [23] for causality discovery and
parallel techniques for efficient causality discovery from large
temporal datasets. Further, many scientific datasets are char-
acterized as nonlinear because of internal nonlinear dynamics
of the systems that produce the data [13]. We extend original
Granger causality to support both linear and nonlinear datasets.
Our open-source implementations of the algorithms can be
found in Github at [4]. To the best of our knowledge, this
is the first study that leverages gradient boosting and parallel
techniques in Granger causality learning and can work with
both linear and nonlinear datasets.

In summary, the contributions of this paper are three folds:

• We proposed algorithms to leverage gradient boosting
meta-algorithm [23] and its additive model for Granger
causality learning. Within the same gradient boosting
framework, the algorithms can be easily configured to
support linear or nonlinear datasets.

• We explored two levels of parallel opportunities in
graphic Granger causality learning and proposed an algo-
rithm to conduct gradient boosting based parallel Granger
causality learning. Specifically, we combined thread pool
techniques and the Spark big data platform [2] to achieve
two level parallelization.

• To evaluate our proposed work, we did experiments on
both algorithm learning accuracy and algorithm execution
performance. Experiments results show that our algo-
rithms can run on distributed environments and achieve
scalable execution with high learning accuracy.

The rest of the paper is organized as follows. In Section II,
the background of this paper is introduced. Section III explains
our gradient boosting based causality learning algorithms.
The parallelization of the learning algorithms is discussed in
Section IV. In Section V, our experiments and results of our
proposed algorithms are presented, followed by related work
discussion in Section VI. Our conclusion and future work are
summarized in Section VII.



II. BACKGROUND

In this section, we explain background of techniques used
in this paper: 1) pairwise Granger causality, 2) multivariate
graphic Granger causality, and 3) Gradient boosting. Notations
of the variables used in this section and later sections can be
found at Table I.

TABLE I
VARIABLE NOTATION TABLE

x Time series variable x
xt Variable x at timestamp t
P Maximum time lag

XP
l=1

Lagged variables of time series variable x from
time lag 1 to maximum lag P :

xt−1, xt−2, ..., xt−P

L A list of time series variables: [l[0], l[1], ...]

L[i]Pl=1
Lagged variables of time series variable l[i] from

time lag 1 to maximum lag P

L[a : b]Pl=1 L[a]Pl=1, L[a+ 1]Pl=1, ..., L[b]Pl=1

A. Pairwise Granger Causality Model

Granger causality [18] was proposed in 1969 as a predictive
model in economics by Nobel Laureate Clive W. Granger. The
Granger causality is defined as follows. One time series x
Granger causes another time series y, if and only if regression
based prediction for y based on past values of both x and y
is statistically significant than regression based prediction of y
only based on past values of y. Let lagged variable x be xt−i
for x with time lag l = i, and XP

l=1 denoting all the lagged
variable x with time lags from 1 to maximum lag P , and
similarly, lagged y be yt−i and all lagged y as Y Pl=1 denoting
all the lagged variable y with time lag from 1 to maximum lag
P . To evaluate Granger causality, it first does the following
two linear regressions:

yt = a11 · yt−1 + a12 · yt−2 + ...+ a1P · yt−P + ε1 (1)

yt = a21 ·yt−1+...+a2P ·yt−P+b21 ·xt−1+...+b2P ·xt−P+ε2
(2)

Then it compares whether the regression function in Equa-
tion (1) performs better in accuracy than Equation (2) when
predicting yt. To decide which regression has better accu-
racy, Granger causality often uses a statistical hypothesis test
method such as F -test or Chi-squared (χ2) test to get a p-value
to determine statistical significance.

The F -test is mostly used when considering a decompo-
sition of the variability in a collection of data in terms of
sums of squares. The ratio of two scaled sums of squares
reflecting different sources of variability in the F -test statistic
is computed. The F statistic tends to be larger when the null
hypothesis is not true. In order for the statistic to follow
the F -distribution under the null hypothesis, the sums of
squares should be statistically independent, and each should
follow a scaled Chi-squared-distribution. The latter condition
is guaranteed if the data values are independent and normally
distributed with a common variance.

When we apply F -test in regression problems, it is used to
decide whether a model fits the data significantly better than a
naive model does. In the case of Granger causality, Equation
(1) is the naive model, referred as model 1, and Equation (2)
referred as model 2, with Residual Sum of Square RSS1 and
RSS2, the number of parameters p1 and p2 for model 1 and
model 2 correspondingly. Let n be the number of total data
samples, then the null hypothesis is that model 2 does not fit
data better than model 1. And we can calculate the F statistics
of these two models as:

F =

RSS1−RSS2

p2−p1
RSS2

n−p2

(3)

Then we look up the F statistics in F -distribution with its
corresponding degree of freedom to get p-value of the null
hypothesis and consider rejecting the null hypothesis. If the
p-value is less than or equal to the level of significance, we
reject the null hypothesis because the test statistic falls in
the rejection region. In other words, if we set the level of
significance of p-value as 0.05, it means that the probability
of ”model 2 does not fits data better than model 1” is less than
5%, thus we believe that model 2 is better, which concludes
x Granger causes y.

Generally speaking, the Granger causality test has two
important parts: 1) regression model between the two time
series with their corresponding time lagged variables and 2)
the hypothesis test.

B. Multivariate Graphic Granger Causality Model

Even though the above pairwise Granger Causality can work
to discover the causality between each pair of variables, when
an input dataset contains multiple variables, scientists might
be interested in the causality among a subset of the variable or
whole variable causal relationships. In such context, pairwise
Granger causality ignores the causalities with other untested
variables, which could generate spurious causal relationships
such as confounding variable [26] and indirect causal relation-
ship [22].

Multivariate conditional Granger causality analysis is to
address this problem by fitting a vector autoregressive model
(VAR) to time series data [21]. To demonstrate conditional
Granger causality in VAR model, using the same notions used
in Section II.A, the joint VAR model is as follows:{

yt = A1 · Y Pl=1 +B1 ·XP
l=1 + ε1t

xt = C1 ·XP
l=1 +D1 · Y Pl=1 + ε2t

(4)

with the prediction error covariance matrix being:

CovMatrix =

[
var(ε1t) cov(ε1t, ε2t)

cov(ε2t, ε1t) var(ε2t)

]
(5)

Besides lagged variables XP
l=1 and Y Pl=1, when a new

variable z is taken into account, the new VAR model is:

yt = A2 · Y Pl=1 +B2 · ZPl=1 + C2 ·XP
l=1 + ε3t

zt = D2 · Y Pl=1 + E2 · ZPl=1 + F2 ·XP
l=1 + ε4t

xt = G2 · Y Pl=1 +H2 · ZPl=1 + I2 ·XP
l=1 + ε5t

(6)



Correspondingly, the prediction error covariance matrix of
VAR model in (6) is:

Σ =

 var(ε3t) cov(ε3t, ε4t) cov(ε3t, ε5t)
cov(ε4t, ε3t) var(ε4t) cov(ε4t, ε5t)
cov(ε5t, ε3t) cov(ε5t, ε4t) var(ε5t)

 (7)

Similar to the pairwise Granger causality testing, we care
about whether introducing z can improve the prediction of y
and how significant the improvement is. From the VAR model
in Equation (4) of variable y and x, and the VAR model in
Equation (6) of variable y, z, and x, the conditional Granger
causality test from z to y conditioned on x, denoted as (z →
y|x), is:

F -test(var(ε1t), var(ε3t)) (8)

From F -test in Equation 8, we can get a p-value and
compare the p-value to a threshold to conclude whether z
Granger causes y conditioned on x.

Using the above multivariate conditional Granger causality,
the original pairwise causality model can be extended to a
graphic model so that it can measure whether and how one
variable/node of the graph is caused by multiple other variables
in the graph [9], [32]. Then the final learning output can
be represented as a directed graph G = (V,E) where V
is a set of time series variable nodes and E is a set of
directed edges connecting two nodes for discovered cause-
effect relationships. For instance, a directed edge in a graph
from one variable node x1 to another variable node x2 presents
that a cause-effect relationship from x1 to x2 is discovered
conditioned on all other variable nodes in the graph, denoted as
x1 → x2|(x3, x4, ...) where the orders of conditional variables
do not matter. Graphic Granger causality learning algorithms
are to test every possible directed edge and add the edge to
the graph model if the edge satisfies the conditional Granger
causality definition in Equation 8. For a dataset with N time
series variables, N ∗(N−1) number of edges need to be tested
for possible causality.

C. Gradient Boosting

Gradient boosting [23] is a meta machine learning technique
for regression and classification problems. On top of an addi-
tive model, the principle of gradient boosting is to eventually
get a strong learner by adding multiple weak learners and
classification/regression prediction error can be reduced by
iteratively adding new learners to fit the prediction errors of
current models.

As an ensemble model, gradient boosting combines a set
of weak prediction models and can work with different types
of prediction models. For gradient boosting based regression,
different regression models, such as linear regression and
decision tree regression, could be used in gradient boosting.

Algorithm 1 shows the process of gradient boosting regres-
sion. It requires a training dataset of variable x and y as
{(xi, yi)}ni=1, the loss function L(y, f(x)), and the restriction
number of iterations M to generate the output function for
regression of y as FM (x). Starting from line 1, the first step of

gradient boosting regression is to fit an initialization function
f0(x) to predict y by minimizing the loss function. In lines 2
to 6, in each iteration m of total iteration number M (called
a stage in gradient boosting), the residual is first computed
using the gradient as in line 3. Then, in line 4, a regression
γm is fitted on the residuals using training set {(xi, rim)}ni=1.
The gradient boosting model can be updated then in line 5
as fm(x) = fm−1(x) + γm by adding the function from last
iteration and the new one fitted on the residuals. After M
iterations, the final output function is as FM (x) to predict y.

Algorithm 1: Gradient Boosting Regression
Input: Training dataset: {(xi, yi)}ni=1;
Loss function: L(y, f(x));
Number of iterations: M ;
Output: A regression function FM (x)

1: Fit regression for y based on xi by minimizing the
loss function: f0(x) = arg min

f

∑n
i=1 L(yi, f0(xi))

2: for m = 1, 2, ...,M do
3: Compute residual:

rim = −[∂L(yi,f(xi))
∂f(xi)

]f(xi)=fm−1(xi)

4: Fit regression γm for residual rim using training
set {(xi, rim)}ni=1

5: Update gradient boosting model:
fm(x) = fm−1(x) + γm

6: end for
7: Output FM (x)

III. GRADIENT BOOSTING BASED CAUSALITY LEARNING

A. Gradient Boosting based Causality Learning Design

From the previous section, it can be concluded that Granger
causality is to compare regression accuracy by adding new
lagged time series variables to the regression model and
gradient boosting approach employs an additive model to add
new learners iteratively by training each new learner based on
the current learning errors (i.e., regression residual). Thus we
apply gradient boosting approach to iteratively evaluate the
regression accuracy by adding lagged variables to the existing
regression model. By comparing how regression accuracy
changes when different lagged variables are added to the
model, we could know whether a variable can significantly
improve the regression of the target variable, and therefore
conclude whether the variable Granger causes the target vari-
able. Here, we want to highlight two main differences between
our approach and regular gradient boosting approaches.

The first difference is about choosing which variables to be
used for each iteration/stage of gradient boosting. Most current
gradient boosting approaches train a new regression model
consisting of the same variables using the current residual as
learning target in each iteration. Since Granger causality tests
how regression accuracy improves by adding new variables,
we choose to train a new model only using one new variable
for the current residual as target in each iteration. In this way,



we can directly compare the difference between the prediction
accuracy of the current iteration and that of the previous
iteration to conclude whether the new variable improves the
regression prediction, and therefore Granger causes the target
variable.

The second difference is Granger causality does not use
a time series variable itself, but use the lagged variables for
each original variable. For a single time series variable x with
maximum lag P , we now have P variables: xt−1, ..., xt−P .
We use XP

l=1 to denote all the lagged variable x with time lags
from 1 to maximum lag P . In this paper, we use all XP

l=1 for
each iteration/stage of gradient boosting to determine whether
variable x can improve regression accuracy significantly.

B. Gradient Boosting based Causality Learning Algorithms

We first propose a Gradient Boosting based Causality dis-
covery (GBC) algorithm to learn Granger causal relationships
among multiple time series variables. Gradient boosting is
utilized in the GBC algorithm by having residual based
additive model in its iteration.

As part of the GBC algorithm, Algorithm 2 (GBC Edge)
shows how to learn a certain Granger causality graph edge
for a specific pair of cause/effect variables conditioned on all
other variables.

An important input of Algorithm 2 is called Variable
Test List, which is used in the conditional Granger causality
test mentioned in Section II-B. The sequence of variable
appearing in the variable test list denotes cause variable,
conditional variables and effect variable. The variable at the
first position is the effect variable to be tested, the one
at the last position is the cause variable, and the ones in
the middle are conditional variables. Because variables are
added to the existing regression model additively without re-
computing the current regression, one behavior we observed
is that different orders of conditional variables could produce
different causality conclusions. Our current solution is to check
all possible conditional variable orders and create a cause-
effect edge if a causality is discovered using any variable
order. So a permutation list of conditional variables is used
here to compute all possible causal relationships between a
cause variable and an effect variable. One variable test list
represents one conditional Granger causality test. After all
tests of the permutation list are done, the edges associated
to the test lists with same cause-effect pairs are merged into
one edge and added to Granger causality graph. For example,
suppose we have 4 time series variables: x1, x2, x3, x4. We
want to test one causal relationship with x1 as effect and x4
as cause with x2 and x3 as conditions, so x1 would be located
at the first position, and x4 at the end. Since x2 and x3 are
conditional variables, we get the permutation of x2 and x3
and put it in the middle of the variable test list. So, the list
is created as [x1, permutation(x2, x3), x4]. The permutation
of (x2, x3) includes [x2, x3], and [x3, x2]. So the test lists are
[x1, x2, x3, x4] and [x1, x3, x2, x4]. If any of these two tests
is passed, the edge x4 → x1|(x2, x3) is added to the graph.

Algorithm 2: Gradient Boosting based Causality Discov-
ery for a Single Edge (GBC Edge)
Input: Variable test list containing N time series

variables: L = [ l[0], l[1], ..., l[N − 1] ];
Maxlag: P ;
Learning rate: v.
Output: A directed edge in Graph:

l[N − 1]→ l[0] | (l[1], ..., l[N − 2]).
1: Generate lagged variables for each original time series

variable in L: L[0]Pl=1, L[1]Pl=1, ..., L[N − 1]Pl=1

2: Fit regression f0 for target variable l[0]t based on all
lagged l[0]: L[0]Pl=1, by minimizing the loss between
the actual value of l[0]t and its predicted value
l̂[0]t = f0(L[0]Pl=1) :
f0(L[0]Pl=1) = arg min

f

1
2

∑
(l[0]t − l̂[0]t)

2

3: for n = 1, 2, ..N − 1 do
4: Compute residual:

rn = l[0]t − fn−1(L[0 : n− 1]Pl=1)
5: Fit regression γn for residual rn based on next

lagged variables L[n]Pl=1:
γn(L[n]Pl=1) = arg min

γ

1
2

∑
(rn − r̂n)2

6: Update gradient boosting model: fn(L[0 : n]Pl=1) =
fn−1(L[0 : n− 1]Pl=1) + γn(L[n]Pl=1) ∗ v

7: Compute prediction error variance εn
8: end for
9: Calculate p-value from F -test:
p-value = F (εN−1, εN−2)

10: if p-value == 0 then
11: Output edge: l[N − 1]→ l[0] | (l[1], ..., l[N − 2])
12: end if

To better denote the variable test list, besides using a list
of variable names, the variable at index i of the list L can be
also represented by l[i]. Then the variable test list becomes
L = [ l[0], l[1], ..., l[N − 1]] for N variables.

Besides the variable test list L = [ l[0], l[1], ..., l[N − 1]],
other inputs of Algorithm 2 are the maximum lag we want
to test, denoted as P and the learning rate in each stage
of gradient boosting, denoted as v. The final output of the
algorithm is a directed causality graph edge such as l[N−1]→
l[0] | (l[1], ..., l[N − 2]).

In line 1 of Algorithm 2, the algorithm is initialized by
creating time lagged variables for each original time series
variable in the variable test list from input. In line 2, an initial-
ization regression function f0 is created for gradient boosting.
To create this regression function, the lagged variables are
first generated from rotating the values of effect variable at
index 0 of variable test list L, l[0], from 1 to maxlag P as
L[0]Pl=1. These lagged variables are fitted into a regression
function to predict l[0]t to get the initialization function in
gradient boosting process. The regression is trained with the
minimal residual sum of squares arg min

f

1
2

∑
(l[0]t − l̂[0]t)

2
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Fig. 1. Illustration of Gradient Boosting based Granger Causality Discovery Algorithm (Algorithm 3 : GBC).

as objective function.
The gradient descent part of the algorithm is at its for loop

(lines 3-8). After getting the regression model of the effect
variable l[0], as the first element at index 0 in the variable
test list, in line 4, the gradient boosting iteration loop starts
from calculating the residual rn by subtracting l[0]t’s predicted
value fn−1(L[0 : n − 1]Pl=1) from its original value. Next
step, in line 5, is to fit a new regression function γn on the
residual value (a.k.a. prediction error) of the target variable
rn using the lagged variables of next variable L[n]Pl=1 in the
variable test list using minimal residual sum of squares as loss
function. Now the gradient boosting model can be updated as
fn(L[0 : n]Pl=1) = fn−1(L[0 : n − 1]Pl=1) + γn(L[n]Pl=1) ∗ v
in line 6. Note that the learning rate v is used to avoid over
fitting and to keep enough residual value for the upcoming
variables to fit the regression function in next stage. Using
the new model fn(L[0 : n]Pl=1) and the value of the input
variables, the prediction error variance εn is calculated in line
7. Then the current iteration is finished, and the next variable
in the variable test list is going to be put into the loop for
next iteration. After the gradient boosting for loop is done,
the regression part the GBC Edge is finished.

The next important step is to do F -test in lines 9-12. From
the final gradient boosting regression function and the function
of its previous step, the two mean prediction error variances
εN−1, εN−2 perform as parameters in the F -test. Next step
is to compute the F -score and get the p-value of F -test,
following Equation 8. With all needed values prepared, in line
9, the F -score is calculated and a p-value of its F -distribution
is derived. The hypothesis test happens in lines 10-12, where
the p-value is compared to the input threshold to check if
the causal relationship exists or not. In our definition, if p-
value equals 0, the last element of the variable test list, namely
l[N −1], causes target variable l[0]. The causal relationship is
denoted by the edge l[N − 1]→ l[0] | (l[1], ..., l[N − 2]).

After getting a directed edge l[N−1]→ l[0] | (l[1], ..., l[N−
2]) of the graph, Algorithm 3 (GBC) is used to loop through
all the variable test lists and to generate the complete gradient
boosting Granger causality graph as illustrated in Figure 1.

At the beginning of Algorithm 3, for every variable, the

Algorithm 3: Gradient Boosting based Causality Discov-
ery for All Variables (GBC)
Input: Time series with N variables:

X = {x1, x2, ..., xN}Tt=0, t = 0, 1, ..., T ;
Maxlag: P ;
Learning rate: v.
Output: Directed causality graph: G = (V,E).

1: for i, j = 1, 2, ..., N, i 6= j do
2: Create variable test list vtl for xi as effect variable,

and xj as cause variable, with permutation of all
other x as conditional variables:
vtl = [xi, permutation(X − {xi, xj}), xj ]

3: for each variable test list in vtl do
4: GBC Edge(vtl = [xi, ..., xj ], P, v)
5: end for
6: end for
7: Merge edges with the same cause-effect pair
8: Output Graph G = (V,E)

variable test list with xi as effect variable and xj as cause vari-
able will be created as [xi, permutation(X − {xi, xj}), xj ]
in line 2. By looping through all variable test lists in lines 3-5,
we can get all the causality edges. To generate the complete
causality graph, Algorithm 2 is executed for every variable as
the target variable. After all the edges are generated, the edges
with same cause-effect pair are merged. For instance, if there
are two edges in results from their corresponding variable test
lists: [x1, x2, x3, x4] and [x1, x3, x2, x4], since they both have
causing variable as x4 and effect variable as x1, we merge
these two results as one causality edge: x4 → x1|(x2, x3).
The final output of Algorithm 3 is graph G = (V,E) which
includes V as nodes denoting all variables and a directed edge
set E for all discovered causal relationships.

The overall process of gradient boosting Granger causality
learning algorithm is illustrated in Figure 1. The input dataset
contains N time series variables and every variable has corre-
sponding lagged variables from 1 to maxlag P . Using the time
series and lagged variables, the causality edges are created
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Fig. 2. Illustration of Parallel Gradient Boosting based Granger Causality Algorithm (Algorithm 4 : GBC para).

by looping every variable test list using gradient boosting
causality for edge algorithm GBC Edge. After the loop,
the edges are merged and the final complete causality graph
G = (V,E) is created.

1) Gradient Boosting Causality for Linear Dataset: If the
input time series dataset is characterized as linear, the GBC
algorithm will fit linear regression in its gradient boosting
learning stages. That means in line 2 and line 5 of Al-
gorithm 2, the regression should be in linear format. For
instance, the linear regression fitting can be done using the
sklearn.linear model Python library, and the hypothesis test
can be executed using the F -test from the scipy.stats library.

2) Gradient Boosting Causality for Nonlinear Dataset:
To address the nonlinearity in the nonlinear input dataset,
the regression function in the algorithm will be replaced by
regression trees. For instance, the sklearn.tree library can be
used to generate regression tree.

IV. PARALLEL GRADIENT BOOSTING BASED GRANGER
CAUSALITY LEARNING

Since the complexity of the gradient boosting algorithm is
relatively high, we propose two parallel algorithms to speed
up the causality graph generation. The implementation of
our parallel gradient boosting Granger causality discovery
(Algorithm 4: GBC para) is a parallel version of Algo-
rithm 3 (GBC). In side of Algorithm GBC para, it calls a
parallel version of Algorithm GBC Edge, called Algorithm
GBC Edge para. Due to space limitation, we only describe
Algorithm GBC Edge para in text. Besides, we illustrate
the two parallel algorithms in Figure 2.

The parallelization of gradient boosting causality is imple-
mented mainly in two levels: 1) parallel regression in every
gradient boosting stage (GBC Edge para), and 2) parallel
causality test for all possible variable test lists in order to
generate the whole causality graph (GBC para).

The first level of parallelization is within Algorithm
GBC Edge para which extends on top of Algorithm 2

Algorithm 4: Parallel Gradient Boosting based Causality
Discovery for All Variables (GBC para)
Input: Time series with N variables:

X = {x1, x2, ..., xN}Tt=0, t = 0, 1, ..., T ;
Maxlag: P ;
Learning rate: v.
Output: Directed causality graph: G = (V,E).

1: Load data to Spark as DataFrame df , then generate
lagged variables and update df

2: Create empty list list
3: for i, j = 1, 2, ..., N, i 6= j do
4: Create a variable test list (vtl) for xi as effect variable,

and xj as cause variable, with permutation of all
other x as conditional variables:
vtl = [xi, permutation(X − {xi, xj}), xj ]

5: list = list+ vtl
6: end for
7: Create thread pool: threadPool
8: threadPool.map(GBC Edge para(df, P, v),
list)

9: Merge edges with the same cause-effect pair
10: Output Graph G = (V,E)

(GBC Edge). Specifically, lines 2 and 5 in Algorithm 2 are
updated using Spark DataFrame and ML pipeline [6], [24].
The algorithm creates and fits a Spark regression ML pipeline
in each gradient boosting stage. For instance, as shown in
the long block for Thread 1 in Figure 2, the algorithm first
generates one ML regression pipeline for predicting X1 using
lagged variables of X1, then gradually adds X2, X3, and X4
to the additive model through three regression ML pipelines.
In the end, F -test is done to determine whether X4 → X1
is a causality edge. By employing Spark ML pipeline, the
execution can run in parallel through Spark parallelization.

The second level parallelization is within Algorithm 4:



GBC para, which runs Algorithm GBC Edge para in
parallel for different variable test lists. In line 1, the algorithm
(GBC para) starts from loading data into Spark Dataframe
and get lagged variables using Spark SQL window function.
As shown in Figure 2 and lines 8-9 of the algorithm, a thread-
ing pool is created to run Algorithm GBC Edge para in
parallel via map function. In this way, multiple Spark jobs can
be submitted simultaneously. Each Spark job runs Algorithm
GBC Edge para with assigned variable test list as one input.
By using threading pool [16] along with Spark job scheduling
[5] and Apache Hadoop YARN [1] as the resource manager,
we can achieve parallel Spark job submission and execution.
After getting every causality edge, the algorithm merges the
result to generate a complete Granger causality graph.

1) Parallel Gradient Boosting Causality for Linear Dataset:
The linear regression part is implemented in Spark utilizing
the Linear Regression library from Spark MLlib.

2) Parallel Gradient Boosting Causality for Nonlinear
Dataset: The gradient boosting tree regression algorithm is
implemented in Spark utilizing the decision tree regression
library from Spark MLlib.

V. EXPERIMENTS

This section explains how we conduct experiments for the
proposed algorithms to compare 1) causality learning accuracy,
and 2) scalability. Our open-source implementations of the
algorithms can be found at [4].

The experiments are conducted on top of the Google Cloud
Dataproc cloud service [17], which provides clusters for
running Apache Hadoop (v2.9.2) and Spark (v2.3.3) programs.
The cluster mode in our experiments is standard, which
contains one master nodes and several worker nodes. And the
test machine type is standard 8v high-mem CPUs clusters with
52 GB memory for every master or worker node and 1500 GB
standard persistent disk.



x1(t) = 0.95 ·
√

2 · x1(t− 1)− 0.90 · x1(t− 2)
+ ε1

x2(t) = 0.5 · x2(t− 1) + ε2
x3(t) = −0.5 · x1(t− 1) + 0.25 ·

√
2 · x3(t− 1)

+ 0.25 ·
√

2 · x2(t− 1) + ε3
x4(t) = −0.95 · x4(t− 1)− 0.25 ·

√
2 · x3(t− 1)

+ ε4

(9)
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Fig. 3. Causality graph of linear synthetic data ground truth.

For test data, we created three synthetic datasets to evaluate
how our proposed algorithms perform for linear, nonlinear and
hybrid data. One more reason for synthetic dataset generation

is to know causality ground truth so we could evaluate learning
result accuracy. Similar to the synthetic dataset generation
approach for Granger causality evaluation in [32], our datasets
were generated based on Equations 9-11 for linear, nonlinear
and hybrid of linear and nonlinear data respectively, where
εs are random noises. The ground truth of causality graphs
are illustrated as in Figures 3-5, respectively. Three datasets
(100K, 1M and 10M for row number) were generated for all
three datasets.
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√
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√

2 · x2(t− 1) + ε3
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2 · exp(−x4(t− 1)2/2)
+ 1.35 · exp(−x3(t− 1)2/2) + ε4

(10)
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Fig. 4. Causality graph of nonlinear synthetic data ground truth.
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2 · exp(−x4(t− 1)2/2)
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Fig. 5. Causality graph of hybrid synthetic data ground truth.

For experiment parameter setting, we set the maximum time
lagging as 3. And the learning rate in the experiments is set
as 0.1. The thread number set in multi-threading pool is 24.
In nonlinear gradient boosting causality tests, we set the tree
depth as 6 and the minimal instance at each node as 10 to
avoid overfitting and get relatively stable results.

A. Causality Learning Accuracy

The first experiment compares our proposed new Granger
causality algorithms with VAR based algorithm on learning



TABLE II
ACCURACY COMPARISON OF CAUSALITY GRAPHS OF GROUND TRUTH,

BASELINE (VAR) AND GBC PARA USING SYNTHETIC DATA

Data Ground Truth Baseline
(VAR) GBC para

Linear (100K) 1.0 0.75 0.75 (linear)
Linear (1M) 1.0 1 1 (linear)
Nonlinear (100K) 1.0 0.67 1 (nonlinear)
Nonlinear (1M) 1.0 0.8 1 (nonlinear)
Hybrid (100K) 1.0 0.625 1 (nonlinear)
Hybrid (1M) 1.0 0.625 1 (nonlinear)

result accuracy. We choose VAR based algorithm as our
baseline because it is commonly used in many studies [9], [32]
and supported in a popular statistics library in Python, called
StatsModels [7], for Granger causality. The comparison was
done through matrix distance calculation. We first converted
each graph to a matrix based on the connections among
its edges. Then we calculated Jaccard similarity coefficient
between each learned graph with the ground truth graph.

The comparison results of causality graph for 100K and
1M datasets are shown in Table II. We ran the tests on
linear datasets using the gradient boosting causality with
linear regression, and utilized the nonlinear gradient boosting
causality on nonlinear and hybrid datasets with decision tree
regression. From the accuracy comparison table, we could see
that for linear datasets, our proposed algorithms performed the
same or better than the VAR based baseline approach [21] in
terms of result accuracy. For nonlinear and hybrid datasets, our
proposed algorithms correctly found all edges and performed
better than the VAR baseline. It verifies that our proposed
gradient boosting causality learning approach is valid for
Granger causality discovery in these three types of datasets.

B. Scalability

Scalability with different compute nodes. We conducted
experiments for our proposed algorithms for different sizes
of datasets at a distributed computing environment mentioned
above with 4, 6 and 8 worker nodes. The first scalability
experiment is to test the speed up of our program with different
numbers of worker nodes. We used the 10M row dataset for
this experiment. The results are shown in Table III and Figure
6. In Figure 6, the red dotted line indicated the Nonlinear
GBC para algorithm, and the blue solid line represented the
Linear GBC para algorithm. We could see that the linear
algorithm always ran a little bit faster than the nonlinear one.
That was because the linear regression trained faster than
the tree regression. Moreover, it was significant that with
more worker nodes, the computation time decreased, which
indicated the scalability of our program.

Scalability with different data sizes. We also ran tests on
different sizes of datasets (100K, 1M and 10M) with linear
and nonlinear GBC para programs on 8 worker nodes and
recorded the execution time. The results were shown in Table
IV and Figure 7. In Figure 7, the dotted red line represented
the nonlinear GBC para program, and the solid blue line
represented linear GBC para program. The x-axis shows data

TABLE III
EXECUTION TIME OF LINEAR AND NONLINEAR PARALLEL GRADIENT

BOOSTING CAUSALITY ALGORITHM FOR 10M DATA (GBC PARA)

Worker Nodes Number GBC para Linear GBC para Nonlinear
4 0:15:23 0:17:50
6 0:09:54 0:11:36
8 0:07:58 0:09:28

Number of Worker Nodes
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Fig. 6. Execution time of linear and nonlinear parallel gradient boosting based
causality discovery algorithm for 10M row data.

size, and the y-axis indicates execution time in minutes. From
the experiment, we can conclude our algorithm’s execution
time increases when processing larger datasets, but much
slower than data size increase rate. The total execution time
only increases by about 4 folds when data sizes increase by
100 folds. We also found that the minimum execution time
of our algorithm was around 2 minutes due to i) the need of
testing all the variable test list, ii) the overhead of executing
Spark ML regression pipelines. Although each regression only
took several seconds, the total number of regression training
processes inside all gradient boosting regression was large. So
the total execution time for smaller dataset had a bottle neck.
Also, the execution time for 100K and 1M datasets were quite
similar for both linear and nonlinear GBC para programs.
But for 10M dataset, since each small task in Spark ML
pipeline took relatively longer time than that for the smaller
dataset, the execution time differences started to show out. To
solve this issue, instead of testing all the variable test list, we
could apply early stop criteria in the tests in future work to
improve the execution speed.

Scalability with two-level parallelization. To show the
differences of one-level parallelization with only Spark ML
regression pipelines (called GBC Spark) and two-level paral-
lelization implementation with not only Spark but also Python
thread pool (GBC para), we tested the execution time of
linear and nonlinear GBC Spark and GBC para programs.
The experiments were executed on 8 worker nodes with 100K
and 1M datasets. The results were shown in Table V and Fig-
ure 8. In Figure 8, the blue bar represented dataset with the size
of 100K and the light gray bar represented the 1M row dataset.
It was clear that the GBC para programs executed faster than



TABLE IV
EXECUTION TIME OF LINEAR AND NONLINEAR PARALLEL GRADIENT
BOOSTING CAUSALITY FOR 100K, 1M AND 10M DATA (GBC PARA)

Data Row Number GBC para Linear GBC para Nonlinear
100K 0:02:11 0:02:19
1M 0:02:33 0:02:32
10M 0:07:58 0:09:28
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Fig. 7. Execution time of linear and nonlinear parallel gradient boosting
causality for 100K, 1M and 10M data with 8 worker nodes.

the one-level Spark ML only GBC Spark program in both
linear and nonlinear cases.

VI. RELATED WORK

In this section, we discuss related work through two aspects:
parallel machine learning and nonlinear Granger causality
learning.

A. Parallel Machine Learning

As explained before, a core step in Granger causality
learning is regression. Many systems now support parallel
linear and/or nonlinear regression. For instance, Spark ML-
lib [2] supports linear regression, random forest regression
and gradient-boosted tree regression. XGBoost [11] supports
gradient-boosted tree regression. Our work leverages Spark
Dataframe, Spark ML regression and Spark ML Pipeline in
model learning. But we have not seen related studies on
conducting Granger causality learning in parallel directly.

B. Nonlinear Granger Causality Learning

The original definition of Granger causality and most cur-
rent Granger causality learning algorithms are based on linear
regression. Because scientific data, such as climate data, are
often characterized as nonlinear, there have been studies on
nonlinear Granger causality discovery which can be catego-
rized into two main types. The first category of approaches
uses nonlinear (but parametric) models, such as nonlinear
Fourier and wavelet transformations [10], radial basis func-
tions [8] for nonlinear analysis of Granger causality. The
second category employs information theoretical and hence
non-parametric approaches including transfer entropy [27] and
conditional mutual information [20], [28]. Our work belongs

TABLE V
GRADIENT BOOSTING CAUSALITY ONE-LEVEL AND TWO-LEVEL

PARALLELIZATION EXECUTION TIME COMPARISON ON 100K AND 1M
ROW DATA

Program 100K 1M
Two-level Parallel Linear 0:02:11 0:02:33
One-level Parallel Linear 0:07:54 0:11:24

Two-level Parallel Nonlinear 0:02:19 0:02:32
One-level Parallel Nonlinear 0:08:18 0:13:24

Types of Parallelization Programs
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Fig. 8. Gradient boosting causality one-level and two-level parallelization
execution time comparison on 100K and 1M row data.

to the first category and our novelty lies in employing gradient
boosting tree based model to discover Granger causality from
nonlinear data.

VII. CONCLUSION AND FUTURE WORK

As a popular data-driven causality discovery approach,
many algorithms have been proposed to learn Granger causal-
ity. Yet these existing studies rarely address their computing
challenges, especially when facing large datasets. In this paper,
we leverage gradient boosting technique and parallel comput-
ing technique for Granger causality discovery and proposed a
set of algorithms to learn causality efficiently. We believe it
is the first work that can learn Granger causality both using
gradient boosting approach and in parallel. Even though the
data used in our current experiments are still relatively small,
we still can see clear benefits of proposed algorithms and we
believe the trend will continue for bigger datasets.

For future work, we plan to mainly work on the following
aspects. First, we will apply the algorithms to larger and real-
world datasets, such as global climate simulation, observa-
tion and reanalysis data, to evaluate algorithm efficiency and
causality learning result usefulness to the discipline. Second,
we will study how to reduce the time complexity of the
algorithms further by only selecting a subset of possible
variable test lists, instead of full permutation of conditional
variables currently used in Section III-B.
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[23] R. Meir and G. Rätsch. An introduction to boosting and leveraging. In
Advanced lectures on machine learning, pages 118–183. Springer, 2003.

[24] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar. Mllib: Machine learning in
apache spark. J. Mach. Learn. Res., 17(1):1235–1241, Jan. 2016.

[25] K. P. Murphy. Dynamic bayesian networks: representation, inference
and learning. PhD thesis, University of California, Berkeley, 2002.

[26] J. Pearl. Simpson’s paradox, confounding, and collapibility. Causality:
models, reasoning and inference, pages 173–200, 2009.

[27] K. Schindlerova. Equivalence of granger causality and transfer entropy:
A generalization. 2011.

[28] A.-K. Seghouane and S.-i. Amari. Identification of directed influence:
Granger causality, kullback-leibler divergence, and complexity. Neural
computation, 24(7):1722–1739, 2012.

[29] S. Simard. Climate Change and Variability. IntechOpen, Aug. 2010.
[30] H. Song, J. Tian, J. Huang, P. Guo, Z. Zhang, and J. Wang. Hybrid

causality analysis of ensos global impacts on climate variables based on
data-driven analytics and climate model simulation. Frontiers in Earth
Science, 7:233, 2019.

[31] H. Song, J. Wang, J. Tian, J. Huang, and Z. Zhang. Spatio-Temporal cli-
mate data causality analytics: An analysis of ENSO’s global impacts. In
Proceedings of the 8th International Workshop on Climate Informatics,
pages 45–48, 2018.

[32] C. Zou, K. J. Denby, and J. Feng. Granger causality vs. dynamic
bayesian network inference: a comparative study. BMC Bioinformatics,
10:122, Apr. 2009.

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html 
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html 
http://spark.apache.org
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://github.com/big-data-lab-umbc/Big-Data-Climate-Causality-Analytics
https://github.com/big-data-lab-umbc/Big-Data-Climate-Causality-Analytics
https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/ml-pipeline.html
https://spark.apache.org/docs/latest/ml-pipeline.html
https://www.statsmodels.org
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://cloud.google.com/dataproc/

	Introduction
	Background
	Pairwise Granger Causality Model
	Multivariate Graphic Granger Causality Model
	Gradient Boosting

	Gradient Boosting based Causality Learning
	Gradient Boosting based Causality Learning Design
	Gradient Boosting based Causality Learning Algorithms
	Gradient Boosting Causality for Linear Dataset
	Gradient Boosting Causality for Nonlinear Dataset


	Parallel Gradient Boosting based Granger Causality Learning
	Parallel Gradient Boosting Causality for Linear Dataset
	Parallel Gradient Boosting Causality for Nonlinear Dataset


	Experiments
	Causality Learning Accuracy
	Scalability

	Related Work
	Parallel Machine Learning
	Nonlinear Granger Causality Learning

	Conclusion and Future Work
	References

