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Abstract—Predicting violent storms and dangerous weather
conditions with current models can take a long time due to
the immense complexity associated with weather simulation.
Machine learning has the potential to classify tornadic weather
patterns much more rapidly, thus allowing for more timely
alerts to the public. To deal with class imbalance challenges
in machine learning, different data augmentation approaches
have been proposed. In this work, we examine the wall time
difference between live data augmentation methods versus the
use of preaugmented data when they are used in a convolutional
neural network based training for tornado prediction. We also
compare CPU and GPU based training over varying sizes of
augmented data sets. Additionally we examine what impact
varying the number of GPUs used for training will produce given
a convolutional neural network.

Index Terms—deep learning, data augmentation, parallel per-
formance, TensorFlow, Keras

I. INTRODUCTION

Forecasting storm conditions using traditional, physics
based weather models can pose difficulties in simulating
particularly complicated phenomena. These models can be
inaccurate due to necessary simplifications in physics or the
presence of some uncertainty. These physically based models
can also be computationally demanding and time consuming.
In the cases where the use of accurate physics may be too
slow or incomplete using machine learning to categorize
atmospheric conditions can be beneficial [1]. Machine learning
has been used to accurately forecast rain type [1], [2], clouds
[2], hail [3], and to perform quality control to remove non-
meteorological echos from radar signatures [4].

A forecaster must use care when using binary classifications
of severe weather such as those which are provided in this
paper. The case of a false alarm warning can be harmful to
public perception of severe weather threats and has unneces-
sary costs. On the one hand, an increased false alarm rate will
reduce the public’s trust in the warning system [5]. On the
other hand, a lack of warning in a severe weather situation
can cause severe injury or death to members of the public.
Minimizing both false alarms and missed alarms are key in
weather forecasting and public warning systems.
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With advances in deep learning technologies, it is possible
to accurately and quickly determine whether or not application
data is of a possibly severe weather condition like a tornado.
Specifically one can use an supervised neural network such
as a convolutional neural network (CNN) for these binary
classification scenarios. However these CNNs must be heavily
tuned and hardened to prevent false positives, or worse, false
negatives from being produced. These CNNs require large
amounts, hundreds of thousands and even millions, of data
samples to learn from. Without an ample amount of data to
learn from a CNN has no hope of achieving accurate predic-
tions on anything except the original training data provided.
Of the 183,723 storms in the data set used in this work only
around 9,000 entries have conditions which lead to tornadic
behavior in the future [6]. This imbalance of tornado versus
no tornado results in a situation where a machine is very good
at predicting no potential tornado but is very bad at predicting
when there is a tornado imminent hence false negatives.

It is for these reasons there is a real motivation to acquire
more data that would result in tornadic conditions however
one cannot simply go outside hoping to collect storm data
that results in these conditions. This heralds the need of
synthetic data to bolster the amount of data used for training a
neural network. Synthetic data must be generated such that it is
indistinguishable from real data and can be used in conjunction
with the natural data to train a neural network on a more
balanced data set which produces less if any false negatives. To
train and tune a neural network of this nature is very time con-
suming and resource intensive taking anywhere from several
hours to several days given enough data. In order to quickly
tune, train, and test the validity of a neural network with
several different hyperparameter combinations, a variation of
the parallel framework originally introduced in [7] to train
many networks simultaneously with varying hyperparameter
values in a high performance computing environment is used.

This paper has several contributions. 1) Benchmarking of
two data augmentation approaches and their effects to deep
learning training times. Through the benchmarking, we ex-
amine their differences in terms of the effective use of re-
sources. 2) Benchmarking of MPI-based parallel deep learning
hyperparameter tuning. This is done with a custom framework
that allows for in-depth examination of all possible hyper-



parameter configurations in an HPC environment. 3) Lastly,
benchmarking of CPU and GPU based parallel deep learning
hyperparameter tuning.

The remainder of this paper is organized as follows. Sec-
tion II gives a basic introduction to convolution neural net-
works and the problem of data augmentation. Section III intro-
duces the natural data used for training the neural networks and
the preprocessing method used on the data prior to training.
Section IV discusses hyperparameters and their importance in
training and the parallel framework used for hyperparameter
tuning in a high performance computing environment. Sec-
tion V presents the parallel performance of various hyper-
parameter configurations produced using the new framework.
This section also compares and contrasts the performance of
CPU and GPU based learning, and it demonstrates the impact
of varying the number of GPUs used for training by forcing
TensorFlow to use a certain number of GPUs via Keras. Lastly
Section VII collects the conclusions of this work.

II. DEEP LEARNING WITH CONVOLUTIONAL NEURAL
NETWORKS

The general idea and information behind neural networks is
that when given a set of inputs and known outputs we train
a neural network to make predictions about future data inputs
whose output is unknown. In order to gauge how accurate
the network has become we provide data that was not in the
learning data set and the CNN uses the knowledge gained from
training to guess the outcome of data that it has not seen before
[8]. We test against a testing set of data where our outputs are
still known but the answers are not provided to the network.
We then grade its accuracy based on the correctness of these
predictions. A general neural network is made of three phases
as seen in [9]. There is the input layer where the data is pushed
into the network. Then there are some number of hidden layers
which are responsible for digesting the input data and learning
from it. Then finally the output layer whose output meaning is
predetermined by the context of the problem. For example the
output can be a binary classification of the input data, maybe
even a new image entirely, but whatever output is produced,
the network itself has no understanding of what the output
truly means. In the context of tornado prediction consider a
32 x 32 grid of data points where each data point contains the
composite reflectivity, 10 meter west-east wind component,
and the 10 meter south-north wind component as the data
used to predict future conditions. Then the mean future vertical
wind velocity will serve as the indicator that a tornado will
occur [6], [7]. A single input to the neural network would
be a 32 x 32 x 3 array with each variable in its own grid.
This data would then be evaluated by the first hidden layer
whose result would be pushed into the second hidden layer,
and so on until the final result is put into the output layer.
The output layer would contain an integer, specifically 0 or 1
in this case. A binary classifier in the context of mean future
vertical wind velocity might seen nonsensical with regards to
the question: what is the mean future vertical wind velocity
given these input conditions? However the network is not

attempting to, nor is it capable of, answering that question.
With this binary classification the network provides an answer
to: is the mean future vertical wind speed large enough to be
considered tornadic? With regards to this question the network
sensibly outputs either 0 for no or 1 for yes. These three
weather conditions from a storm snapshot can be made into
images as seen in Figure 1 which predicts if the winds result
in a future tornado. With the lack of natural data available
researchers must turn to synthetic data.

There are several methods to acquire synthetic data for
fitting a CNN. The current method, outside of machine
learning, is through storm simulation models. These are very
computationally expensive often taking days for only a few
hours of simulated data. On top of that there are variations
between each of the models used to simulate these storms each
with their own meaningful results and possible drawbacks.
The computational expensive of these models and the time
taken to generate the synthetic data is what gives machine
learning an edge. If a storm can be predicted without the
need for simulations, because the neural network takes raw
satellite data and quickly produces a prediction, then solving
the data imbalance for the initial training gives CNN’s a clear
advantage. Similarly, if we can train the CNN using quickly
generated synthetic data we can forgo the need for these
expensive simulations alltogether in the prediction process.

An alternative to simulated data would be using primitive
duplication methods like data reflection and data rotation
which can be used to fill out an existing data set rather than
generating strictly new data. If the conditions present on the
data grid can cause a tornado then simply reflecting the data
grid over an axis results in a technically different storm that
also results in a tornado. When only five percent of the data
is storms that result in a tornado you would need to augment
every entry in 19 unique ways to balance the data set to a
perfect fifty-fifty balance of tornadic versus not tornadic.

III. DATA

The data set used in this analysis was obtained from
the Machine Learning in Python for Environmental Science
Problems AMS Short Course, provided by David John Gagne
from the National Center for Atmospheric Research [10]. Each
file contains the reflectivity, 10 meter U and V components of
the wind field, 2 meter temperature, and the maximum relative
vorticity for a storm patch, as well as several other variables.
These files are in the form of 32 x 32 x 3 images describing
the storm. We treat the underlying data as an image and
push it through the CNN as if it were a normal RGB image.
This allows our findings to generalize to other non-specialized
CNN:ss. Figure 1 shows two examples image from one of these
files. Storms are defined as having simulated radar reflectivity
of 40 dBZ or greater as seen in Figure 1b. Reflectivity, in
combination with the wind field, can be used to estimate the
probability of specific low-level vorticity speeds. In the case
of Figure la the reflectivity and wind field were not sufficient
enough to cause future low-level vorticity speeds. The dataset



contains nearly 80,000 convective storm centroids across the
central United States.

We preprocessed the original NCAR storm data containing
183,723 distinct storms, each of which consists of 32 x 32 x 3
grid points, and extracted composite reflectivity, 10m west-
east wind component in meters per second, and 10m south-
north wind component in meters per second at each grid point
giving approximately 2 GB worth of data. We use the future
vertical velocity as the output of the network. This gives us 3
layers of data per storm entry producing a total data size of
183,723 x 32 x 32 x 3 floats to feed into the neural network. We
use 138,963 storms for training the model and 44,760 storms
for testing the accuracy of the model. We track the total wall
time for training and testing over both image sets.
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Fig. 1. Sample images of radar reflectivity and wind field for a storm which
(a) does not and (b) does produce future tornadic conditions.

IV. PARALLELISM OF HYPERPARAMETER TUNING
A. Hyperparameters

As the popularity and depth of deep networks continues
to grow, efficiency in tuning hyperparameters, which can
increase total training time by many orders of magnitude, is
also of great interest. Efficient parallelism of such tasks can
produce increased accuracy, significant training time reduction
and possible minimization of computational cost by cutting
unneeded training.

We define hyperparameters as anything that can be set
before model training begins. Such examples include, but are
not limited to, number of epochs, number and size of layers,
types of layers, types and degree of data augmentation, batch
size, learning rates, optimizer functions, and metrics. The
weights that are assigned to each node within a network would
be considered a parameter, as opposed to a hyperparameter,
since they are only learned through training. With so many
hyperparameters to vary, and the near infinite amount of
combinations and iterations of choices, hyperparameter tuning
can be a daunting task. Many choices can be narrowed down
by utilizing known working frameworks and model structures,
however, there is still a very large area to explore even within
known frameworks. This is compounded by the uniqueness of
each dataset and the lack of a one-size-fits all framework that
is inherent with machine learning.

Section IV-B talks about the new MPI based framework
which used the Dask framework in [7] as a baseline concep-
tually but many aspects, including how analytics are handled,
have been improved or redesigned entirely.

B. MPI Framework for Parallelized Training

The Dask framework for hyperparamter tuning in an HPC
environment from [6], [7] was used as a baseline for the
new framework. We replace Dask with MPI by using the
latest mpidpy. Dask had predetermined configurations for
a SLURM based master-worker setup. With MPI we created
two parallelism setups. The first is a typical master-worker
configuration. The master-worker system allows one master
process to distribute a specific combination of hyperparameters
to each process. This allows for the most optimal load balanc-
ing scheme at the cost of using one node for book keeping.
The master node distributes a hyperparameter configuration to
a worker node, waits for the work to finish, then collects all
timing results and other metrics from the worker node and
saves the results into a collection of JSON files.

The second parallelism configuration is the fully sychro-
nized setup. We created a custom combination generator that
takes in a dictionary full of all possible hyperparameters values
and a process id and returns a dictionary that contains a
specific combinations of hyperparameters. At a higher level
this generator allows all combinations of hyperparameters to
be indexed without actually being generated until they are
needed by the workers. This generator also attempts to balance
the loads by distributing the more theoretically intensive jobs
evenly among all processes such that each process gets heavy
and light work periodically throughout the training process.
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Fig. 2. The preaugmented data is saved to disk before training begins. It is then loaded from disk to be used during training.

By replacing Dask with these systems we have enabled
a method which allows us to measure the effects of every
single hyperparameter combination rather than just viewing
things grouped by batch size. We now have the ability to
group by any arbitrary hyperparameter and examine how each
one plays a role in the training time and accuracy of the
model. We also changed the base CNN used for testing to
use multiple GPUs by using Keras’ multi_gpu_model
wrapper. TensorFlow will always allocate memory on all GPUs
but may not bother to use the any additional GPUs provided.
By using multi_gpu_model Keras duplicates the network
on every GPU and trains each network with mini-batches of
the original batch and then computes new weights based on
the each of the mini-batches. In this way Keras does all high
level management for multiple GPUs rather than TensorFlow.

V. RESULTS

We use the framework detailed in Section IV-B to show a
much closer look at how each hyperparameter impacts training
time of the neural network using both preaugmented data and
live data augmentation in Sections V-A and V-B.

Then with that the same framework we examine how
varying the number of GPUs impacts wall time performance in
Section V-C. The centeral idea being that this helps determine
an optimal hardware configuration for future training of similar
networks with an immense data size. We only consider wall
time in the results and not accuracy. All forms of augmentation
are done using Keras® datagen API with identical inputs. Any
differences in accuracy are an artifact of seeding or data
shuffling during training. With this in mind we present only
wall times as a demonstration of how some hyperparamters
can have a meaningful impact on wall time and thus should
be tuned carefully, perhaps even last, to prevent cumbersome
training times.

The numerical studies in this work use a distributed-memory
cluster of compute nodes with large memory and connected
by a high-performance InfiniBand network. The CPU nodes
feature two multi-core CPUs, while the 2018 GPU node has
four GPUs. The following specifies the details:

¢ 2018 CPU nodes: 42 compute nodes, each with two
18-core Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz

clock speed, 24.75 MB L3 cache, 6 memory channels).
Each node has 384 GB of memory (12 x 32 GB DDR4
at 2666 MT/s). The nodes are connected by a network
of four 36-port EDR (Enhanced Data Rate) InfiniBand
switches (100 Gb/s bandwidth, 90 ns latency).

e 2018 GPU node: 1 GPU node containing four NVIDIA
Tesla V100 GPUs connected by NVLink and two 18-core
Intel Skylake CPUs. The node has 384 GB of memory
(12 x 32 GB DDR4 at 2666 MT/s).

A. Preaugmented Data

Each network was trained using a single node’s total re-
sources with the framework mentioned in Section I'V-B regard-
less of whether CPUs or GPUs were used during training. This
section contains the wall time results for training all neural
networks using data which has been preaugmented before
training with primitive methods and saved to disk. This means
that the network will not perform any live augmentation but
rather read in the preaugmented data directly from disk. By
timing in this way all the computational time will be tied
directly to moving data and training the network. This is
sketched in Figure 2. Additionally the words “data multiplier”
refers to data that has been augmented enough that the total
size of the data has increased multiplicatively by the multiplier.
A data multiplier of 2 means that data has been augmented to
be twice as large in size.

The results in Table I are made of up of the total times
to train networks with various hyperparameter configurations
using the 2018 CPU hardware. The timing in the upper left
corner of the first subtable is the time taken to train a network
on preaugmented data which has the same number of total
records as the original nonaugmented data using a batch size
of 128, 5 epochs, and a learning rate of 0.001. Similarly the
bottom right entry of that same subtable is the time taken to
train a network on preaugmented data which has four times
as many entries as the original unaugmented dataset using a
batch size 4096, 5 epochs, and a learning rate of 0.001.

The first subtable in Table I used 5 epochs and a learning
rate of 0.001 for training all subconfigurations within the table.
The first column of this subtable uses as many records as
the original dataset but each network in the column used a



different batch size for training. As the batch size increases
the time taken to train the network decreases. However the
time saved after each increase in batch size does not scale
proportionally with the change in batch size. Now consider
only the first row of the first subtable. All networks trained in
this row use the same number of epochs, the same learning
rate, and the same batch size of 128 but the total number of
records increase multiplicatively with the column’s associated
multiplier. The first entry in the row uses the same number of
entries as the original dataset but the second entry in that row
uses twice as many entries and the last row uses four times
as many entries. As the number of total entries used doubles
the timings grow proportionally larger. With two times the
amount of data used to train the network the network takes
twice as long to train. Similarly using four times as much data
results in the time taken to train being four times larger than
the first entry in the row. The more data used the longer it
takes to train. These changes in timings hold for all subtables
in Table L.

Examine the upper right entry in each of the subtables. Each
of these entries were trained using the same learning rate,
batch size, and dataset but with a varying number of epochs.
The first subtable uses the least number of epochs and also
has the fastest time among the three. The second subtable
uses double the number of epochs as the first and also takes
twice as long to train. Similarly the third subtable takes three
times as long to train and uses three times as many epochs as
the first subtable. An increase in the number of epochs means
the data is passed that many more times to the network for
training. It is sensible then that the time taken to train would
increase linearly with the number of epochs used so long as
all other hyperparamters are the same.

Table II contains the times taken to train networks with
various hyperparameter configurations using the 2018 GPU
hardware. All timing results draw the same conclusions as
Table I except all timings for the GPUs are 10x faster and
in some instances even 12X faster. This massive increase in
speedup is expected by researchers in the machine learning
community and is a common theme seen when comparing
CPU based training versus GPU based training. The process
of training a convolutional neural network such as the one
discussed in Section I uses many complex matrix operations
in the process of computing weights for the hidden layers
of the network. GPUs are specifically designed to do matrix
operations of many flavors and it is accepted fact that they
do these operations much faster than CPUs. Sensibly then,
these specialized accelerators perform the training process
considerably faster than a CPU. In the case of the 2018 GPUs
there are four GPUs training the neural network at any one
time as opposed to the two CPUs used to train the neural
networks in the CPU tables.

Since there is no data augmentation happening during train-
ing, all the times listed are pure training times. The timings for
the CPUs improve dramatically as the batch size is increased
regardless of the number of epochs. The GPUs are so effective
with regards to training that batch size plays a smaller role in

TABLE I
WALL TIME FOR BATCH SIZE VERSUS DATA MULTIPLIER GROUPED BY
EPOCHS WITH LEARNING RATE 0.001 FOR THE 2018 CPUS WITH
PREAUGMENTED DATA IN SECONDS.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 195 369 737
256 124 253 484
512 95 194 384
1024 77 159 310

2048 64 125 251
4096 56 107 211

10 Epochs Data Multiplier
Batch Size 1 2 4
128 373 720 1494
256 238 486 962
512 189 382 763
1024 154 313 629
2048 123 240 506
4096 110 210 422
15 Epochs Data Multiplier
Batch Size 1 2 4
128 574 1120 2239
256 367 740 1408
512 284 558 1140
1024 233 468 929
2048 184 370 730
4096 158 308 649

TABLE II
WALL TIME FOR BATCH SIZE VERSUS DATA MULTIPLIER GROUPED BY
EPOCHS WITH LEARNING RATE 0.001 FOR THE 2018 GPUS WITH
PREAUGMENTED DATA IN SECONDS.

5 Epochs Data Multiplier

Batch Size 1 2 4
128 20 36 72

256 12 24 47

512 11 18 38

1024 10 17 32

2048 10 16 30

4096 13 18 37

10 Epochs
Batch Size 1 2 4
128 36 74 146

256 24 48 96

512 22 36 77

1024 19 32 62

2048 17 30 58

4096 20 36 67

15 Epochs
Batch Size 1 2 4
128 56 110 223

256 37 72 144

512 32 55 109

1024 25 48 99

2048 25 48 88

4096 32 56 98

the training time. GPUs are, in all regards, faster than CPUs
for training.

B. Live Augmentation

This section contains the results that use live data aug-
mentation during training. The original natural data is loaded,
but while training the data is pushed through the primitive
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Fig. 3. The original data is first loaded from disk. When an epoch starts the one batch of data is augmented and trained on. While the network trains on that

batch another is augmented in parallel as indicated by the green arrow.

augmentation methods provided by Keras. The training times
that are seen represent the wall time taken to move data,
augment the data on-the-fly, and train the network. A high level
view of this process can be seen in Figure 3. Keras’ primitive
augmentation supports parallel augmentation meaning that
data is being augmented in parallel to the networks being
trained. This parallel operation can be seen as the green arrows
in Figure 3.

Live augmentation is typically done so that one does not
need to preaugment gigabytes or even terabytes of unbalanced
data. In some cases, you may even do live augmentation to
turn small amounts of balanced or unbalanced data into larger
amounts of balanced data so while the original dataset may fit
into memory the larger augmented dataset might not. If your
data is too large to fit into memory then preaugmented data
would be I/O bound as it is read from disk rather than being
CPU bound by being augmented on-the-fly.

Table III shows similar timing behaviors to Table I when
examining how the data multiplier scales the timing results
but a much stronger diminishing return when batch size is
increased. In order to do live data augmentation Keras starts
as many processes as there are cores on a node. The processes
rotate, scale, and so on in parallel and send the data back to
the main process. These processes are then cleaned up by the
operating system forcing the main process to block during this
time. This becomes a clear bottleneck as we can see that the
timings for smaller batch sizes are much worse than the larger
batch sizes. However the times approach the preaugmented
timings as the overheard of process creation becomes a smaller
player in the time it takes to augment the data. The less data
that can be live augmented the less time the spawned processes
work meaning they spend more time being created and cleaned
up than they do actually generating new data.

The overhead is even more aparent when examining Ta-
ble IV compared to Table II. The scaling in each individual row
has the same behavior but all of the rows in Table IV are much
slower than expected. Subtable 3 is 2x to 3x slower than the

preaugmented numbers in the same positions. This is clearly
due to the CPU bounded operations that are inherent with
live data augmentation. Additionally if you examine the data
mulitplier 4 column of subtable 3 the time savings as batch
size increase disappears and makes way for varying wall times
that are completely unrelated to the increase in batch size. Any
savings that would normally be obtained from increasing batch
size are lost due to the overhead of live augmentation.

The timings for primitive live augmentation methods using
CPUs and GPUs are anywhere from a few minutes to a couple
hours. The GPU training is so efficient the GPU spends most
of its time waiting for the data to be augmented rather than
training. In cases where you are doing CPU based training
the processor is working hard to both train and augment the
data in tandem and often does not have the spare resources to
balance both tasks.

C. GPU Count Variability Tests

This section contains the wall time results for varying the
number of GPUs while training. The number of GPUs used
during training can be treated as a hyperparameter that does
not have any impact on the accuracy of the results. This
hyperparameter may, however, have an impact on the wall time
taken to train a network. If the impact of using more GPUs is
negligable then all future hyperparamter sweeps should use
the lowest number of GPUs possible. If luck would have
it that the optimal number of GPUs can be evenly divided
amongst the MPI processes during training, then result would
be great boon for efficient training in the future. We use
Keras’ mult_gpu_model which will automatically force
TensorFlow to use all available GPUs by duplicating the graph
on each GPU and training each of these with mini-batches in
a process we refer to as “forced” parallelism. Additionally it
has already been show in Section V-B that live augmentation
is far slower than preaugmented data thus for this section we
only use preaugmented data to cut down the wall time as much
as possible.



WALL TIME FOR BATCH SIZE VERSUS DATA MULTIPLIER GROUPED BY
EPOCHS WITH LEARNING RATE 0.001 FOR THE 2018 CPUS WITH LIVE

TABLE III

AUGMENTED DATA IN SECONDS.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 2534 5052 9859
256 1324 2597 5174
512 723 1445 2897
1024 390 776 1527
2048 210 425 852
4096 154 302 527
10 Epochs Data Multiplier
Batch Size 1 2 4
128 5066 10122 19627
256 2626 5271 10322
512 1376 2766 5520
1024 762 1501 3026
2048 429 847 1735
4096 305 620 1636
15 Epochs Data Multiplier
Batch Size 1 2 4
128 7369 14779 30372
256 3893 7950 15476
512 2083 4161 8304
1024 1155 2327 4511
2048 631 1278 2555
4096 388 798 1689
TABLE IV

WALL TIME FOR BATCH SIZE VERSUS DATA MULTIPLIER GROUPED BY
EPOCHS WITH LEARNING RATE 0.001 FOR THE 2018 GPUS WITH LIVE

AUGMENTED DATA IN SECONDS.

5 Epochs Data Multiplier
Batch Size 1 2 4
128 37 70 142
256 35 69 138
512 36 72 140
1024 37 72 142
2048 38 76 150
4096 44 83 163
10 Epochs Data Multiplier
Batch Size 1 2 4
128 73 146 285
256 71 143 286
512 69 141 278
1024 73 144 284
2048 77 150 295
4096 83 161 329
15 Epochs Data Multiplier
Batch Size 1 2 4
128 108 214 442
256 105 211 429
512 107 216 426
1024 109 217 432
2048 117 229 445
4096 126 245 502

Table V contains the wall times for the numbers of GPUs
versus data multiplier grouped by epochs on the 2018 GPUs
with preaugmented data, forced parallelism, and a batch size
of 32768. Consider the first row of 5 epoch table. For one
GPU as the data multiplier increases the wall time increases
proportionally. Now consider the data multiplier 1 column
of the 5 epoch table. As the number of GPUs increases the
time remains nearly identical despite the doubling, tripling,
and quadrupling of the compute power being used during
training. Even considering the entire 5 epoch subtable yields
the same behavior: as the number of GPUs increase the wall
time remains qualitatively the same. All other subtables exhibit
the same behavior as the 5 epoch subtable. While the increase
in epochs causes a general increase in the subtable timings,
changing the number of GPUs does nothing to improve these
timings. Conceptually the batch size of the table is 1/5 of
all data with regards to a multiplier of 1. Multiple GPUs
should have a real edge over a single GPU yet there this is not
demonstrated. This is to say that the number of GPUs does
nothing to improve wall time despite differences in data size.

Table VI contains the wall times for the number of GPUs
versus epochs grouped by data multiplier with preaugmented
data, forced parallelism, and a batch size of 128. Consider
the first row of the first subtable. For one GPU with a data
multiplier of 1 and a varying number of epochs as the number
of epochs increases the wall time increases proportionally. This
proportional increase holds for all rows of the subtable and
similarly this table wide behavior holds for the data multiplier
2 and 4 subtables. Examine the first column of the last subtable
which is the 5 epoch column of data multiplier 4 table with a
varying number of GPUs. As the number of GPUs increases
the time also increases though the increase in time is steepest
from one GPU to two GPUs. From there the time increase
is 10 seconds per GPU additional GPU. As the number of
epochs increases from 5 to 10 the increase from one GPU to
two GPUs triples from around 20 seconds to approximately 60
seconds. Every additional GPU increases time by 20 seconds
per GPU. As the number of epochs increases from 5 to 15 the
increase from one GPU to two GPUs goes from around 20
seconds to approximately 90 seconds. Every additional GPU
is around 30 seconds per GPU. At the smallest batch size the
more GPUs used the slower the training time.

When even larger cases are run in isolation this behavior is
more easily observed with nvidia-smi . With just one GPU
and a batch size of 32,768 the GPU is entirely saturated for
the majority of run-time with only occasional drops in GPU
usage when the training rolls over to the next epoch. Similarly
submitting a 4 GPU job with a batch size of 131,072, meaning
each GPU gets as much data as the multiplier 1 case, results
in maximum saturation as well. This is why timings at much
larger batch sizes seem much closer in time as the GPUs spend
around the same amount of time computing and idling. This
would give the impression that it takes Keras more time to
distribute the data to the GPUs than compute and finalize all
other information associated with computation.



TABLE V
WALL TIME FOR GPUS VERSUS DATA MULTIPLIER GROUPED BY EPOCHS
WITH BATCH SIZE 32768, LEARNING RATE 0.001 FOR THE 2018 GPUS
WITH PREAUGMENTED DATA AND FORCED PARALLELISM IN SECONDS.

5 Epochs  Data Multiplier
GPUs 1 2 4

1 11 18 34

2 11 18 33

3 11 18 33

4 11 18 33

10 Epochs
GPUs 1 2 4

I 17 29 58

2 16 30 59

3 16 30 57

4 18 31 60

15 Epochs
GPUs 1 2 4
1 25 44 92

2 23 44 88

3 23 45 84

4 26 45 88
TABLE VI

WALL TIME FOR GPUS VERSUS EPOCHS GROUPED BY DATA MULTIPLIER
WITH BATCH SIZE 128, LEARNING RATE 0.001 FOR THE 2018 GPUS WITH
PREAUGMENTED DATA AND FORCED PARALLELISM IN SECONDS.

1 Data Multiplier
GPUs 5 10 15

1 20 38 61

2 27 51 77

3 31 55 83

4 41 61 92

2 Data Multiplier
GPUs 5 10 15

1 42 76 114

2 53 103 154

3 59 112 168

4 64 123 182

4 Data Multiplier Epochs
GPUs 5 10 15
1 85 157 229
2 106 215 311
3 116 231 340
4 125 247 368

VI. RELATED WORKS

There are a plethora of papers and textbooks on deep
learning and neural networks that go over methods for solving
data imbalances. These texts, such as [8], [9], and [11] all
talk about the importance of data augmentation to prevent
bias, overfitting of the network, and more. Pundits and blogs
may talk about the use of live augmentations as a cure all
to an imbalanced data set because tools are readily available
to do this task however there is little consideration for the
possible performance benefits of using data that has been
augmented apriori to run time. This work seeks to demonstrate
that there is a clear difference in training time with regards to
preaugmented data and live augmented data even in the case of
an idle CPU during GPU training sessions rather than discuss
the benefits of augmentation versus not.

There are several tools that exist for hyperparameter search-

ing yet they do not solve all of the problems presented
for tuning in our HPC environment or do not solve them
adequately enough. Two mainstream frameworks are Talos
and sklearn’s GridCVSearch. Talos aims to the fix the clunky
interface of sklearn by replacing the Keras fit method with a
method that takes dictionary inputs and automatically searches
over them during fitting. However both these frameworks are
limited to a single node and as such would not automatically
fully utilize a HPC system if given the resources to do so.
The framework mentioned Section IV-B, from [6], [7], exists
to solve that problem by creating an HPC based framework
for hyperparamter searching. This framework has innate limi-
tations like a lack of in-depth analytics on a hyperparameter by
hyperparameter basis, lacks support for live data augmentation,
and only has one type of parallel schema available. This
work creates a parallel framework which solves all of the
aforementioned problems.

There are a slew of technical reports and papers that
talk about the importance of benchmarking and improving
parallel timings such as [12], [13], and [14]. Texts which deal
specifically with training neural networks even go so far as to
mandate GPUs for training like in [8]. In the case where one
may have access to many mid to high end GPUs, or may be
considering a purchase of them, how many is too many? This
work aims cover, in a high level manner, how use case is an
important factor for the number of GPUs that should be used
for optimal training times.

VII. CONCLUSIONS

There is not a lot of discussion on whether or not one
should augment the data prior to experimentation. Careful
consideration should be taken with regards to the time taken
to train a network as can be seen in Sections V-A and V-B.
The time difference between using preaugmented data versus
the use of primitive live augmentation methods is substantial.
If the disk space is available one should always opt for
preaugmented data over primitive live method. This becomes
especially important if one is looking to take advantage of
accelerators like a GPU. The GPU training is so efficient
the GPU spends most of its time waiting for the data to be
augmented rather than training. With preaugmented data the
times were on the scale of minutes compared to the primitive
live augmentation methods whose times were in hours. In
cases where you are doing CPU based training the processor
is working hard to both train and augment the data in tandem
and often does not have the spare resources to balance both
tasks. Preagumented data was clearly the better choice for both
GPU and CPU training. Additionally, GPU training was so
much faster than CPU training that even the GPUs in older
CPU/GPU nodes (from 2013) were faster than the state-of-
the-art CPUs from 2018 used in the studies here.

While the GPU training was clearly better than the CPU
training, there are still more variables to tackle. The question,
“do more GPUs equate to better performance time?,” may
seem obvious but the results in Section V-C beg to differ.
Initially one might suspect that putting more computing power



behind training will result in faster run times but this is not
the case. At the smallest batch size, the more GPUs used, the
slower the training time. The mini-batch system Keras uses
does not cater toward pushing and pulling small amounts of
data to the GPUs as the wall time is always worse as the
number of GPUs increase for this batch size. Additionally the
number of GPUs does nothing to improve wall time despite
differences in data size. A single GPU still out performs all
other counts of GPUs across the board. With just one GPU
and a batch size of 32,768, the GPU is entirely saturated for
the majority of run-time with only occasional drops in GPU
usage when the training rolls over to the next epoch. Similarly
submitting a 4 GPU job with a batch size of 131,072, meaning
each GPU gets as much data as the multiplier 1 case, results in
maximum saturation for very short bursts of a couple seconds.
The original predictive model is computationally cheap to train
and as such it is not unlikely that this leads to one GPU having
the best performance times. Each additional GPU exhibits a
near constant increase in time as it is only a small amount
of overhead to micromanage additional GPUs. This is to say
that training a more simple cheap network where one wants to
train with as many hyperparameter combinations as possible
should be done with only one high end GPU per process.
With a node that has four GPUs you can train four networks
per node rather than just one per node which dramatically
increases throughput. For a sufficiently complex network it
is still possible that multiple GPUs are more efficient as the
extra computing power can be put to good use rather than left
idling.
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