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Abstract. The coastal ecosystem of the Gulf of Alaska

(GOA) is especially vulnerable to the effects of ocean acid-

ification and climate change. Detection of these long-term

trends requires a good understanding of the system’s natu-

ral state. The GOA is a highly dynamic system that exhibits

large inorganic carbon variability on subseasonal to interan-

nual timescales. This variability is poorly understood due to

the lack of observations in this expansive and remote region.

We developed a new model setup for the GOA that cou-

ples the three-dimensional Regional Oceanic Model System

(ROMS) and the Carbon, Ocean Biogeochemistry and Lower

Trophic (COBALT) ecosystem model. To improve our con-

ceptual understanding of the system, we conducted a hind-

cast simulation from 1980 to 2013. The model was explicitly

forced with temporally and spatially varying coastal fresh-

water discharges from a high-resolution terrestrial hydrolog-

ical model, thereby affecting salinity, alkalinity, dissolved in-

organic carbon, and nutrient concentrations. This represents

a substantial improvement over previous GOA modeling at-

tempts. Here, we evaluate the model on seasonal to inter-

annual timescales using the best available inorganic carbon

observations. The model was particularly successful in re-

producing observed aragonite oversaturation and undersatu-

ration of near-bottom water in May and September, respec-

tively. The largest deficiency in the model is its inability

to adequately simulate springtime surface inorganic carbon

chemistry, as it overestimates surface dissolved inorganic

carbon, which translates into an underestimation of the sur-

face aragonite saturation state at this time. We also use the

model to describe the seasonal cycle and drivers of inorganic

carbon parameters along the Seward Line transect in under-

sampled months. Model output suggests that the majority

of the near-bottom water along the Seward Line is season-

ally undersaturated with respect to aragonite between June

and January, as a result of upwelling and remineralization.

Such an extensive period of reoccurring aragonite undersatu-

ration may be harmful to ocean acidification-sensitive organ-

isms. Furthermore, the influence of freshwater not only de-

creases the aragonite saturation state in coastal surface waters

in summer and fall, but it simultaneously decreases the sur-

face partial pressure of carbon dioxide (pCO2), thereby de-

coupling the aragonite saturation state from pCO2. The full

seasonal cycle and geographic extent of the GOA region is

under-sampled, and our model results give new and impor-

tant insights for months of the year and areas that lack in situ

inorganic carbon observations.

Published by Copernicus Publications on behalf of the European Geosciences Union.



3838 C. Hauri et al.: Gulf of Alaska inorganic carbon chemistry model

Figure 1. Map of the GOA-COBALT model domain showing the

depth (m) of the ocean in color and the altitude of the mountains (m)

in gray. Glaciated areas are indicated using turquoise coloring of the

mountains. The Seward Line is shown using the black line. The in-

set shows the model mesh and its horizontal resolution of 4.5 km.

“I” represents Kodiak Island, “II” represents Cook Inlet, “III” rep-

resents Copper River, “IV” represents Prince William Sound, “V”

represents Yakutat Bay, and “VI” represents the Kenai Peninsula.

1 Introduction

The Gulf of Alaska Large Marine Ecosystem (GOA-LME) is

home to highly productive commercial and subsistence fish-

eries including salmon, pollock, crab, Pacific cod, halibut,

mollusks, and other shellfish (Mundy, 2005). The dynamics

of these fisheries and their susceptibility to climate change

and ocean acidification remains poorly understood. Large

glaciated mountains (Fig. 1), complex bathymetry, season-

ally varying cycles of winds, iron-enriched freshwater dis-

charge, and solar radiation (Stabeno et al., 2004; Weingart-

ner et al., 2005; Janout et al., 2010) set the stage for high

physical, chemical, and biological spatiotemporal variabil-

ity across the GOA continental shelf. At the same time, the

GOA-LME is sparsely sampled due to its large spatial extent,

harsh environmental conditions, and remote geography. The

large natural variability and the lack of data for this region

make it challenging to understand the inorganic carbon, nu-

trient, and ecosystem dynamics and to predict the potential

impacts of the regional manifestation of climate change and

ocean acidification on fisheries, economies, and communities

(Mathis et al., 2014). Therefore, expansion of the current ob-

servational and modeling efforts needs to be made a priority.

The GOA-LME is especially susceptible to the effects of

climate change and ocean acidification. This high-latitude re-

gion is naturally low in [CO2−

3 ] due to the increased solubil-

ity of CO2 at low temperatures, the increased vertical mixing

of CO2-enriched deep water into the upper water column in

winter, riverine and glacial inputs in summer and fall, and the

inner shelf dynamics that tend to retain coastal discharges

close to shore (Feely and Chen, 1982; Feely et al., 1988;

Byrne et al., 2010; Weingartner et al., 2005). The freshwa-

ter fluxes into the coastal zone are increasing (Neal et al.,

2010; Hill et al., 2015; Hood et al., 2015; Beamer et al., 2016)

as this subpolar region continues to warm and deglaciation

takes place (Arendt et al., 2002; Larsen et al., 2007; O’Neel

et al., 2005). Because glacial meltwater in this region is char-

acterized by low total alkalinity (TA) relative to dissolved in-

organic carbon (DIC; Stackpoole et al., 2016, 2017), increas-

ing freshwater discharge pushes the system further towards

undersaturation with respect to aragonite. This process likely

exacerbates the effects of ocean acidification (Evans et al.,

2014).

The GOA-LME is characterized by high concentrations of

biologically available dissolved iron (dFe) and low nitrate

(NO3) concentrations on the shelf and low dFe and high NO3

concentrations off the shelf (Aguilar-Islas et al., 2015; Wu

et al., 2009; Lippiatt et al., 2010; Martin et al., 1989). These

two limiting nutrients lead to a phytoplankton community

composition dominated by diatoms in the dFe-rich nearshore

area and by small phytoplankton in the dFe-poor off-shelf

area (Strom et al., 2007). Limited inorganic carbon observa-

tions suggest that along with primary productivity and rem-

ineralization, physical processes such as downwelling, on-

shelf intrusions of deep water, tidal mixing, freshwater dis-

charge, and eddies, are important drivers of the inorganic car-

bon system dynamics. High biological productivity in spring

depresses the partial pressure of carbon dioxide (pCO2) in

the water column, resulting in shelf waters supersaturated

with respect to aragonite and supporting large fluxes of at-

mospheric CO2 into the ocean (Fabry et al., 2009; Evans and

Mathis, 2013). In September, bottom waters along the shelf

are undersaturated with respect to aragonite. This large-scale

pattern of aragonite undersaturation is a suggested result of

on-shelf intrusion of DIC-rich Pacific basin water near the

seafloor and the remineralization of large quantities of or-

ganic matter produced during spring blooms (Fabry et al.,

2009; Evans et al., 2014). Recent inorganic carbon surveys

near marine tidewater glaciers in Glacier Bay, Alaska, and

Prince William Sound also suggest that glacial melt water,

which is endowed with naturally low total alkalinity (TA),

induces seasonal aragonite undersaturation in surface waters

(Evans et al., 2014; Reisdorph and Mathis, 2014) and forms

corrosive mode water that may subsequently be advected and

potentially subducted to distant shelf regions (Evans et al.,

2013, 2014).

Insufficient inorganic carbon data coverage impedes our

ability to understand the interplay between drivers in dif-

ferent seasons and to determine the relative importance of

the various controls of the inorganic carbon system at dif-

ferent locations. Ongoing and historic inorganic carbon sys-

tem observations in the GOA consist of a limited set of ship-

board oceanographic observations, underway measurements

from research vessels and scientific sampling systems in-

stalled on ferries, and a small number of sensors deployed at

fixed nearshore coastal locations (Fabry et al., 2009; Evans

and Mathis, 2013; Evans et al., 2014, 2015; Reisdorph and

Mathis, 2014; Miller et al., 2018). These draw an incom-
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plete picture of the spatial and temporal variability of the sys-

tem because the low frequency of the available observations

causes aliasing issues. Moreover, because variability is large

from seasonal to decadal scales in these waters, the time se-

ries from deployed sensors at fixed nearshore locations are

not long enough yet to detect an anthropogenic trend in sea-

water pCO2 and pH (Sutton et al., 2018).

In other shelf systems, regional biogeochemical models

have been used to better understand past, present, and fu-

ture inorganic carbon dynamics and the impacts of climate

change and ocean acidification on these ecosystems (Hauri

et al., 2013; Turi et al., 2016; Gruber et al., 2012; Franco

et al., 2018). Previous regional GOA-LME modeling stud-

ies have focused on refining large- and mesoscale circulation

features (Dobbins et al., 2009; Xiu et al., 2012), iron limi-

tation (Fiechter and Moore, 2009), and the influence of Ek-

man pumping (Fiechter et al., 2009) and eddies (Coyle et al.,

2012) on the timing and magnitude of the spring bloom.

There are only two regional models that simulate the oceanic

carbon cycle in the GOA (Siedlecki et al., 2017; Xiu and

Chai, 2014). However, neither of these models simulate the

influence of freshwater input along the coast, which exhibits

high spatiotemporal variability. Siedlecki et al. (2017) used

the monthly riverine input climatology by Royer (1982) and

applied it equally to the topmost vertical cell along the land

mask, whereas Xiu and Chai (2014) did not include river-

ine input at all. Therefore, to fill gaps in the understanding

of the inorganic carbon cycle in the GOA we need a moder-

ately high-resolution model that includes (1) important phys-

ical processes such as downwelling, eddies, and cross-shelf

fluxes; (2) the carbon cycle; (3) the large spatial and temporal

variability of freshwater input; (4) historical simulation long

enough to be able to distinguish natural variability from the

long-term anthropogenic trend; (5) multiple phytoplankton

groups; and (6) iron limitation to reproduce the highly pro-

ductive nearshore and high-nutrient low-chlorophyll offshore

regions.

Here, we introduce a new GOA model that includes a

three-dimensional regional ocean circulation model, a com-

plex ecosystem model, and a moderately high-resolution ter-

restrial hydrological model. We present a thorough model

evaluation to test the model’s capability to simulate seasonal

and interannual inorganic carbon patterns, and we use it to

study the seasonal variability and drivers of the inorganic

carbon system along the historic Seward Line (Fig. 1). We

expand on previous regional modeling efforts by using spa-

tially and temporally variable freshwater forcing; parameter-

izing freshwater DIC, TA, and nutrients based on available

seasonal observations; and conducting a multidecadal hind-

cast simulation.

2 Methods

2.1 Model setup

We used a GOA configuration of the three-dimensional phys-

ical Regional Oceanic Model System (ROMS; Shchepetkin

and McWilliams, 2005). ROMS is a free-surface, hydro-

static primitive equation and finite volume (Arakawa C-grid)

ocean circulation model. The vertical discretization is based

on a terrain-following coordinate system (50 depth levels),

with increased resolution towards the surface and the bot-

tom of the ocean. Due to shallower bathymetry, the shelf and

coastal areas have higher vertical resolution. For example,

in the shallowest areas (depth = 0.5 m), the vertical spacing

is 0.01 m, whereas in the deepest water, the vertical spacing

is 5 m in surface waters, expanding smoothly to over 300 m

near the bottom. The horizontal resolution is eddy-resolving

at 4.5 km, which resolves regional coastal upwelling scales.

The grid covers a large coastal area from the southern tip

of Prince of Wales Island in the southeast to west of Sand

Point in the middle of the Aleutian Islands (Fig. 1). The cur-

rent model configuration is based on Danielson et al. (2016),

although with a larger grid extent and a lower horizontal res-

olution to accommodate the computationally intense ecosys-

tem model. Our GOA-COBALT domain is based on Coyle

et al. (2012), although it includes the Alexander Archipelago.

Experiments with the Coyle et al. (2012) model have shown

that the model had insufficient near-surface vertical mixing,

leading to overly fresh water at the surface, which is chal-

lenging to mix down. In order to improve on our surface mix-

ing, we added the parameterization of Li and Fox-Kemper

(2017). They looked to large-eddy simulations (LESs) to

study the effects of unresolved Stokes drift driven by surface

waves and the resulting Langmuir circulation on the vertical

mixing in a variety of stratification regimes. Their parame-

terization is now being routinely used in global climate sim-

ulations (e.g., Adcroft et al., 2019).

The biogeochemical model used for this study is a mod-

ified version of the Carbon, Ocean Biogeochemistry and

Lower Trophic (COBALT) marine ecosystem model, which

has been applied on a global scale in conjunction with the

Earth system model from the Geophysical Fluid Dynam-

ics Laboratory (GFDL) (Stock et al., 2014). Only recently,

COBALT was coupled to ROMS and modified with an ad-

ditional coastal chain-forming diatom to better represent

biogeochemical processes and properties in highly produc-

tive coastal regions (3PS-COBALT, Van Oostende et al.,

2018). 3PS-COBALT resolves the cycles of nitrogen, car-

bon, phosphate, silicate, iron, calcium carbonate, oxygen,

and lithogenic material with 36 state variables. The model

contains small phytoplankton that are grazed by microzoo-

plankton; a medium phytoplankton that can be consumed by

small copepods; and a larger, chain-forming diatom, which

can only be grazed by large copepods and krill. Light, tem-

perature, the most limiting nutrient, and metabolic costs are
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used to calculate primary productivity for each phytoplank-

ton group. The chlorophyll-to-carbon ratio is dynamic and

is based on light (Manizza et al., 2005) and nutrient limita-

tions. Iron limitation depends on an internal cell quota and

nitrate and phosphate limitations are simply dependent on

their ambient concentrations in the seawater. The currency

of biomass and productivity in the model is nitrogen. Or-

ganic nitrogen is converted into organic carbon following the

Redfield ratio of 106 : 16 (Redfield et al., 1963). DIC and

TA are state variables and dictate the inorganic carbon sys-

tem. Like all other tracer concentrations in the model, these

two variables are affected by diffusion, horizontal and ver-

tical advection, and sources minus sink terms that include

net primary production, CaCO3 formation and dissolution

both in the water column and sediments, detritus reminer-

alization in the water column and sediments, zooplankton

respiration, and atmosphere–ocean CO2 fluxes. The Chl-a-

specific initial slope of the photosynthesis–light curve and

the iron-scavenging coefficient onto sinking detritus were

both adjusted to better represent the GOA biogeochemistry

and ecosystem (Table 1). All other constants are based on

Van Oostende et al. (2018).

2.2 Initial conditions, boundary conditions, and forcing

Physical initial and boundary conditions for currents, ocean

temperature, salinity, and sea surface height were taken from

the Simple Ocean Data Assimilation ocean/sea ice reanal-

ysis 3.3.1 (SODA, Carton et al., 2018, available as 5-day

averages). After a model spin-up of 10 years, the hindcast

simulation (1980 to 2013) was forced at the surface with

3-hourly winds, surface air temperature, pressure, humidity,

precipitation, and radiation from the Japanese 55-year Re-

analysis (JRA55-do) 1.3 project (Tsujino et al., 2018). The

atmospheric fields were used to compute surface stresses and

fluxes using a bulk flux algorithm (Large and Yeager, 2008).

Precipitation was solely counted as a negative salt flux and

did not change any volume or dilute any other tracers, such

as DIC and TA. Along its coastal boundary, freshwater was

brought in from numerous rivers and tidewater glaciers. This

was done with a point-source river input via exchange of

mass, momentum, and tracers through the coastal wall at

all depths (Danielson et al., 2020). A hydrological model

provided riverine input at a 1 km resolution and at a daily

time step (Beamer et al., 2016). The hydrological model was

based on a suite of weather, energy balance, snow/ice melt,

soil water balance, and runoff routing models forced with

Climate Forecast System Reanalysis data (Saha et al., 2010).

The reanalysis data were regridded from their 0.2 degree res-

olution to the 1 km hydrological model grid using MicroMet

(Liston and Elder, 2006). Nutrient, DIC, and TA concentra-

tions in the freshwater were based on available observations

and are summarized in Table 2. As found in other freshwater

data (Rheuban et al., 2019), DIC concentrations were higher

than TA, showing that the freshwater discharging into the

GOA is quite acidic (Stackpoole et al., 2016, 2017).

DIC and TA initial conditions for the hindcast simulation

were extracted from the mapped version 2 of the Global

Ocean Data Analysis Project (GLODAPv2.2016b, Lauvset

et al., 2016) data set. GLODAP DIC data, which were ref-

erenced to 2002, were normalized to 1980 using the anthro-

pogenic CO2 estimates for the GOA by Carter et al. (2017).

Carter et al. (2017) suggest two different rates of the depth-

dependent increase of anthropogenic CO2 per year for the

period from 1980 to 1999 and for the period from 2000 to

the present. The anthropogenic CO2 increase for the corre-

sponding time period was added (or subtracted) in monthly

increments from the reference year. A seasonal cycle was

added to the surface based on Takahashi et al. (2014). Fol-

lowing Hauri et al. (2013), DIC and TA were assumed to

vary throughout the upper 200 m of the water column, but

they were attenuated proportional to the seasonal variations

of temperature across depth. Each year, DIC boundary con-

ditions increased as a result of anthropogenic CO2 increase,

following estimates for the region made by Carter et al.

(2017). Nitrate, phosphate, oxygen, and silicate initial con-

ditions were taken from the World Ocean Atlas 2013 (Gar-

cia et al., 2013). All other variables were initialized based

on a climatology from a GFDL-COBALT simulation (1988–

2007) forced by Common Ocean-ice Reference Experiment

(CORE-II) data, as described in Stock et al. (2014). Atmo-

spheric pCO2 was forced with monthly means derived from

the Mauna Loa CO2 record (https://www.esrl.noaa.gov/gmd/

ccgg/trends/data.html, last access: 22 January 2018).

3 Model evaluation

3.1 Physics

The model domain is strongly influenced by freshwater com-

ing from hundreds of glacier-fed rivers and tidewater glaciers

that ring the GOA. Our approach of using a hindcast simula-

tion from a highly resolved land hydrography model (Beamer

et al., 2016) to force the freshwater input was recently eval-

uated through comparison to salinity, temperature, velocity,

and dynamic height observations (Danielson et al., 2020).

The findings of Danielson et al. (2020) are summarized in

the following paragraph. The influence of the springtime

freshet is well reproduced by the model, with low salini-

ties (∼26 PSU) in the nearshore upper 10–20 m of the water

column (r ∼ 0.5–0.6, p ∼ 0.05). While the correlation be-

tween salinity observations and model output is only slightly

weaker in summertime, the model has difficulty in reproduc-

ing small-amplitude salinity variations between October and

March, when riverine input is lowest and the signal-to-noise

ratio of salinity is small. Temperature is particularly well

modeled in the first half of the year, with the highest cor-

relations (r ∼ 0.9, p < 0.05) in the middle of the water col-
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Table 1. Summary of the definitions, abbreviations, values, and units of the model parameters adjusted from Van Oostende et al. (2018) to

better represent the ecosystem in higher northern latitudes (Strom et al., 2010). a = 365.25 · 24 · 3600, and b = 4.5998.

Parameter Name Value Units

α fescav Iron-scavenging coefficient onto sinking detritus 10/a (s−1)

Chl-a specific initial slope of the photosynthesis–light curve

α Lg Large chain-forming phytoplankton 3.0 × 10−6
· b (g C) (g Chl−1) (W m−2)−1

α Md Medium Phytoplankton 3.33 × 10−6
· b (g C) (g Chl−1) (W m−2)−1

α Sm Small Phytoplankton 6.0 × 10−6
· b (g C) (g Chl−1) (W m−2)−1

Table 2. Table listing riverine dissolved inorganic carbon, total alkalinity, nitrate, dissolved iron, dissolved oxygen, and temperature values.

When seasonal observations were available, the variables followed a seasonal cycle. These variables are listed with their minimum, mean,

and maximum levels. The values of all other variables were initialized at a very small number (< 0.0001).

Parameter Value Units Reference

Dissolved inorganic carbon 365, 397, 446 (µmol kg−1) Kenai River (Stackpoole et al., 2016, 2017)

Total alkalinity 333, 366, 410 (µmol kg−1) Kenai River (Stackpoole et al., 2016, 2017)

Iron 30 (nmol kg−1) Aguilar-Islas et al. (2015) ∗

Nitrate 1.5, 4.86, 8.91 (µmol kg−1) Herbert River (Hood and Berner, 2009)

Temperature 0.16, 5.06, 11.88 (◦C) Seth Danielson (personal communication, 2017)

Dissolved oxygen 355.1, 386.5, 405.2 (µmol kg−1) Cowee Creek (Fellman et al., 2015)

∗ Aguilar-Islas et al. (2015) observed a maximum of 10 nmol kg−1 dFe in nearshore waters with a salinity of 25. In order to model high nearshore dFe

values (see Fig. 2), riverine dFe was set to 30 nmol kg−1.

umn. The model is also able to skillfully reproduce monthly

dynamic height anomalies in summer, fall, and winter (not

shown). Overall, the freshwater fluxes used in this study are

more realistic than in previous studies because they are de-

rived from a temporally and spatially highly resolved hind-

cast simulation forced with meteorological reanalysis data

sets. Compared with previous studies (Royer, 1982; Wang

et al., 2004; Hill et al., 2015; Siedlecki et al., 2017), this

current model configuration is better able to reproduce low

salinity levels in coastal areas across the GOA and can, there-

fore, more adequately reproduce the Alaska Coastal Current

(Danielson et al., 2020).

3.2 Nutrients and Chl-α

High concentrations of biologically available dFe prevail

across the inner to mid GOA shelf due to the dFe-rich input

of glacially fed rivers (Aguilar-Islas et al., 2015; Wu et al.,

2009; Lippiatt et al., 2010). While these shelf areas are low

in NO3, they border the NO3-rich and dFe-poor waters off

the shelf (Martin et al., 1989). The spatial variability of these

two limiting nutrients orchestrate the phytoplankton commu-

nity composition, with diatom-dominated areas in the dFe-

rich nearshore environment and small phytoplankton in dFe-

depleted offshore areas (Strom et al., 2010). Here, we first

evaluate the modeled spatial variability of surface dFe, NO3,

and Chl-α by comparing them to in situ and satellite observa-

tions (Aguilar-Islas et al., 2015; Lippiatt et al., 2010; Crusius

et al., 2017; MODIS-Aqua Ocean Color Data, NASA God-

dard Space Flight Center, Ocean Ecology Laboratory, 2014).

dFe observations along a transect near the Copper River

estuary suggest that coastal surface concentrations can reach

up to 9.4 nmol kg−1 in mid to late summer west of Prince

William Sound (Fig. 2a), when glacial melt and riverine input

are highest. These surface concentrations decrease rapidly

with distance from shore, with levels of < 1 nmol kg−1 near

the shelf break and beyond. The horizontal surface dFe gra-

dient across the shelf, with high dFe concentrations in coastal

areas and dFe levels near depletion offshore, was simulated

well by the model. For example, the model shows dFe values

of up to 8 nmol kg−1 (Fig. 2a) in some coastal areas and low

concentrations (< 0.5 nmol kg−1) at the shelf break. Over-

all, the model slightly underestimates dFe along the coast,

except for the area surrounding Copper River and near the

shelf break, despite the relatively high dFe riverine boundary

condition (Table 2).

The low observed surface summertime values of NO3 in

coastal areas are simulated well by the model. Observed NO3

values range up to 5.4 µmol kg−1 (with the exception of a

few outliers in southeast Alaska), and modeled surface NO3

concentrations reach a maximum of 4.3 µmol kg−1 (Fig. 2b).

The modeled spring phytoplankton bloom starts in April

and coarsely matches with the timing of the satellite-

observed spring bloom (Fig. 3). Simulated surface Chl-

α then ranges between 3 and 4 µg kg−1 across the en-

tire shelf, with some nearshore areas reaching surface Chl-

https://doi.org/10.5194/bg-17-3837-2020 Biogeosciences, 17, 3837–3857, 2020
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Figure 2. Observed (left) and GOA-COBALT-simulated (middle) surface dissolved iron (a, dFe, nmol kg−1) and nitrate (b, NO3, µmol kg−1)

concentrations. The right panel shows the difference between the observed and modeled (a) dFe and (b) NO3. The observations were made

in July, August, and September (Aguilar-Islas et al., 2015; Lippiatt et al., 2010; Crusius et al., 2017). The model output is based on a mean

of modeled July, August, and September values from a 1980 to 2013 climatology. dFe and NO3 are plotted on a log scale.

α levels of 5 µg kg−1. However, satellite images suggest

that Chl-α concentrations are more patchy in April than

shown by the model, with lower concentrations across the

shelf (1–2 µg kg−1). While peak observed Chl-α concentra-

tions between 7 and 9 µg kg−1 are localized in southeast

Alaska in May, simulated Chl-α levels of 5 µg kg−1 are more

widespread along the coast, with peak concentrations of 6 to

7 µg kg−1 in some select areas. In July through August, simu-

lated Chl-α levels slowly taper off, although some nearshore

areas still reach peak concentrations of 6 µg kg−1. In Septem-

ber, on-shelf modeled Chl-α concentrations are < 3 µg kg−1.

In summary, observed Chl-α concentrations are lower than

suggested by the model across the shelf and the domain

throughout the summer. With the exception of November

through February, when modeled Chl-α concentrations are

< 1 µg kg−1, standing stock Chl-α concentrations are also

overestimated by a factor of 2 by the model throughout the

year.

3.3 Model skill to simulate spring and fall

oceanographic conditions

Inorganic carbon observations in the GOA have been col-

lected every spring and fall along the historic Seward Line

since 2008 (Evans et al., 2013). Here, we compare May and

September monthly means of our 2008–2012 model out-

put to the publicly available shipboard observations made in

May and September of the corresponding years. To do so,

the model output was sampled at the closest grid point to

every Seward Line station. The model output and observa-

tions were then interpolated onto the same grid and averaged

across all years for May and September.

In May, observations and model output clearly show the

influence of freshwater on the coastal water properties, in-

cluding inorganic carbon chemistry (Fig. 4). In nearshore

surface areas, waters are cold, fresh, and low in TA and

DIC. The influence of freshwater is visible throughout the

transect but with slowly increasing values of salinity, DIC,

and TA with distance from the coast. The model gener-

ally reproduces these patterns well, although with slightly

higher values for all three parameters across the transect. For

example, observed surface salinity ranges between 31.4 at

59.8◦ N and 32.2 at the end of the transect (Fig. 4b). TA

varies between 2143 and 2170 µmol kg−1, and DIC varies

between 1965 and 2017 µmol kg−1 (Fig. 4c, d). Simulated

ranges of these parameters are similar (salinity from 31.7 to

32.4, TA from 2163 to 2203 µmol kg−1, and DIC from 2009

to 2038 µmol kg−1). The largest biases in salinity (Sbias =

0.6), alkalinity (TAbias = 35 µmol kg−1), and DIC (DICbias =

46 µmol kg−1) are found around 59.6◦ N. The overestimation

of salinity suggests that the freshwater influence is overly

weak, leading to the modeled overestimation of TA and DIC.

However, the bias in DIC relative to the bias in TA is largest

in the grid cell closest to the coast, which leads to an under-

estimation of modeled pH and �arag of up to 0.09 and 0.29,

respectively (Fig. 4e, f). The bias of surface pH and �arag

vanishes with distance from the coast. The larger difference

in DIC relative to TA near the coast is likely due to an un-

derestimation of biological carbon drawdown, leading to the

underestimation of pH and �arag in nearshore surface waters.

At depth farther offshore, salinity-, DIC-, and TA-enriched

waters are visible on the shelf. As a result, the springtime

in situ aragonite saturation horizon (depth where �arag = 1)

is shallower offshore than nearshore (Fig. 4f). Observations

suggest that with a depth of the aragonite saturation hori-

zon of about 200 m, the seafloor on the shelf up to 59.1◦ N

is undersaturated with respect to aragonite. The model un-
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Figure 3. Monthly climatology (1980–2013) for satellite-based (left, MODIS) and GOA-COBALT-simulated (middle) surface Chl-α con-

centrations for (a) March, (b) April, (c) May, (d) July, and (e) September. The right panel shows the difference between MODIS and GOA-

COBALT surface Chl-α concentrations. (Source for MODIS data: MODIS-Aqua Ocean Color Data, NASA Goddard Space Flight Center,

Ocean Ecology Laboratory, 2014.)

derestimates the aragonite saturation horizon depth slightly.

However, because the model’s bathymetry is shallower than

the observed depth at this particular location (gray areas in

Fig. 4), modeled bottom water masses across the shelf are

not undersaturated with respect to �arag north of 59◦ N.

In September, nearshore surface waters are warm

(∼ 11 ◦C) and much fresher than in spring (Fig. 5a, b). The

observed surface salinity is as low as 27.6 at 59.8 ◦C and in-

creases to 32 salinity units at the end of the transect. Modeled

surface salinity ranges between 26.3 and 31.8. It is important

to note that observed surface salinity at the station closest to

the coast is also as low as 26.8, but it is masked out in this

point-by-point comparison. As a result of this bias in salinity,

modeled nearshore TA and DIC concentrations in the upper

30 m are underestimated by ∼ 30 and ∼ 20 µmol kg−1, re-

spectively (Fig. 5c, d). Because the model is likely underesti-

mating the magnitude of late-season phytoplankton blooms,

the bias in DIC is slightly smaller than in TA. Modeled �arag

underestimates observations by < 0.2 in this area (Fig. 5f).

At depth, the model output aligns well with observations.

Both observations and model output suggest that bottom wa-

ters across the Seward Line transect are undersaturated with

respect to aragonite in fall. Observations also show an inter-

mediate maximum in DIC at about 150 m depth, which leads
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Figure 4. Visual comparison of vertical sections of (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), (d) dissolved

inorganic carbon (DIC, µmol kg−1), (e) pH, and (f) the aragonite saturation state (�arag) of climatologies (2008–2012) of observations made

along the Seward Line in May (left, Evans et al., 2013), the corresponding monthly model output (middle), and the difference between

observed and GOA-COBALT-simulated variables (right). The model output was sampled at locations where observations were made. Obser-

vations and model points were then vertically and horizontally interpolated onto the same grid and averaged across the years 2008 to 2012.

The gray area depicts the observed sampling depth in the left panel and the seafloor in the model output. The black line in panel (f) indicates

�arag = 1.

to an even shallower aragonite saturation horizon (Fig. 5d).

This small-scale feature may be due to remineralization at

mid depth and is not simulated by the model. Overall, the

model does a reasonable job of simulating the spatial patterns

of salinity, TA, DIC, pH, and �arag in spring and fall, with

statistically significant (p value < 0.05) Pearson correlation

coefficients of between 0.82 and 0.97 (Fig. 6a, b). The model

overestimates springtime temperature along the surface and

around 100 m offshore, which is reflected in a slightly lower

Pearson correlation coefficient of 0.62. The Pearson correla-

tion coefficients (Pcc) and their corresponding p values were

calculated based on the climatologies presented in Figs. 4

and 5. All standard deviations and correlation coefficients be-

tween the observed and modeled variables are summarized

using Taylor Diagrams in Fig. 6.

3.4 Model skill to simulate interannual variability

The GOA oceanography undergoes large interannual to

decadal variability as a result of the El Niño–Southern Os-

cillation (ENSO), the Pacific Decadal Oscillation (PDO),

and other climate modes of variability that drive changes

in freshwater flux, water temperature, and winds (Whitney

and Freeland, 1999; Hare and Mantua, 2000). These physical

changes are likely translated into the inorganic carbon chem-

istry. Here, we investigate the model’s skill to simulate inter-

annual features, comparing Hovmöller plots of observations

made in May and September between 2008 and 2012 and

modeled monthly means of the corresponding time and loca-

tion for temperature, salinity, TA, and DIC (Figs. 7, 8). We

also calculate the monthly observed and modeled anomalies

for May and September, based on the observed and modeled

5-year monthly mean of each variable (Figs. 9, 10). In the

following, we will describe observations of years that stand

out within this 5-year record and determine whether these

features were captured by the model.

The observed and modeled springtime surface tempera-

tures show large interannual variability (Figs. 7a, 9a). Within

the 5-year-long record, 2008 was a particularly cold spring,

with surface temperatures of around 5 ◦C. The model also

simulated May 2008 as the coldest spring, but it overesti-

mated the temperature by approximately 1 ◦C. In May 2010,

observed sea surface temperatures were particularly high

(> 6 ◦C) across the shelf, which was well reflected by the

model. While the model also suggested high temperatures in

the previous spring, the observations do not show a particu-

larly warm spring in 2009. The modeled and observed inter-

annual variability of surface temperatures in May are statis-
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Figure 5. Visual comparison of vertical sections of (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), (d) dissolved

inorganic carbon (DIC, µmol kg−1), (e) pH, and (f) the aragonite saturation state (�arag) of climatologies (2008–2012) of observations

made along the Seward Line in September (left, Evans et al., 2013), the corresponding monthly model output (middle), and the difference

between observed and GOA-COBALT-simulated variables (right). The model output was sampled at locations where observations were

made. Observations and model points were then vertically and horizontally interpolated onto the same grid and averaged across the years

2008 to 2012. The gray area depicts the observed sampling depth in the left panel and the seafloor in the model output. The black line in

panel (f) indicates �arag = 1.

Figure 6. Taylor diagrams (Taylor, 2001) of model-simulated temperature, salinity, total alkalinity (TA, µmol kg−1), dissolved inorganic

carbon (DIC, µmol kg−1), pH, and the aragonite saturation state (�arag) compared to observations made along the Seward Line in (a) May

and (b) September across the upper 300 m (Figs. 4, 5). Climatologies of the averaged modeled monthly means of May and September are

compared to climatologies of observed conditions during spring and fall cruises in the years 2008 through 2012. The distance from the origin

is the normalized standard deviation of the modeled parameters. The azimuth angle shows the correlation between the observations and the

modeled output, whereas the distance between the model point and the red observation point shows the normalized root mean square misfit

between the modeled and observed data.
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Figure 7. Hovmöller plots showing the observed (left) and modeled monthly mean (right) surface (a) temperature (◦C), (b) salinity, (c) total

alkalinity (TA, µmol kg−1), and (d) dissolved inorganic carbon (DIC, µmol kg−1) in May along the Seward Line between 2008 and 2012.

Gray areas show missing data.

Figure 8. Hovmöller plots showing the observed (left) and modeled monthly mean (right) surface (a) temperature (◦C), (b) salinity, (c) total

alkalinity (TA, µmol kg−1), and (d) dissolved inorganic carbon (DIC, µmol kg−1) in September along the Seward Line between 2008 and

2012. Gray areas show missing data.
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Figure 9. Hovmöller plots showing the observed (left) and modeled (center) monthly anomalies from the 5-year mean (2008–2012) of

surface (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), and (d) dissolved inorganic carbon (DIC, µmol kg−1) in May

along the Seward Line. Gray areas show missing data. The right column shows plots of observed vs. modeled monthly anomalies for the

corresponding parameter. Different marker types are used to indicate different years. The marker legend is given in the left column. The root

mean square error (RMSE), the Pearson correlation coefficient (Pcc), and the p value for the observed and modeled interannual monthly

anomalies are listed in Table 3.

tically significantly correlated with a Pcc of 0.54 (Table 3).

The interannual variability in salinity is visible by how far

the freshwater penetrates into the open ocean. For example,

observations suggest that freshwater penetrated farther off-

shore in 2010 than in other years (Fig. 7b), which was not

reflected by the model.

The anomalous warm sea surface temperatures observed

in spring 2010 remained persistent into fall, with temper-

atures around 13 ◦C across the whole transect (Figs. 8a,

10a). This anomalously warm fall was well simulated by the

model. Overall, the modeled interannual variability of fall

surface temperatures correlated well with the observations

(Pcc = 0.87, p =< 0.05). Interestingly, in the anomalously

warm fall of 2010, observations suggest anomalously high

salinities penetrating closer to the nearshore than in other

years, which was not reflected by the model (Figs. 8b, 10b).

However, observed lower salinities mid transect in 2012 were

also simulated by the model, which directly translated into

TA and DIC (Fig. 8c, d). Overall, there was no clear interan-

nual pattern in observed or simulated salinity, TA, and DIC

between 2008 and 2012 (panels b–d in Figs. 7–10), and no

Table 3. Table listing the root mean square error (RMSE), the

Pearson correlation coefficient (Pcc), and the p value between the

observed and modeled interannual variability at the surface. The

RMSE, Pcc, and the corresponding p value were based on observed

and modeled monthly anomalies from a temporal mean of May or

September (2008–2012) along the Seaward Line transect. Statisti-

cally significant Pcc values and the corresponding p values are in-

dicated in bold. The anomalies are shown in Figs. 9 and 10.

Parameter Month RMSE Pcc p value

Temperature May 0.50 0.54 < 0.05

September 0.48 0.87 < 0.05

Salinity May 0.24 −0.08 0.48

September 1.42 −0.03 0.80

TA May 21.6 −0.22 0.09

September 98.5 −0.19 0.08

DIC May 32.6 −0.23 0.07

September 69.1 0.18 0.10
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Figure 10. Hovmöller plots showing the observed (left) and modeled (center) monthly anomalies from the 5-year mean (2008–2012) of

surface (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), and (d) dissolved inorganic carbon (DIC, µmol kg−1) in

September along the Seward Line. Gray areas show missing data. The right column shows plots of observed vs. modeled monthly anomalies

for the corresponding parameter. Different marker types are used to indicate different years. The marker legend is given in the left column.

The root mean square error (RMSE), the Pearson correlation coefficient (Pcc), and the p value for the observed and modeled interannual

monthly anomalies are listed in Table 3.

statistically significant correlation between the observed and

modeled spring and fall anomalies (Table 3).

4 Seasonal inorganic carbon variability along the

Seward Line

The historic Seward Line time series gives insights into the

inorganic carbon dynamics in May and September. Here,

we use our model output to explore other months of the

year that are not covered by inorganic carbon observations

(Fig. 11). The lowest surface temperatures of < 3 ◦C are

found nearshore in February and March (not shown). In

spring, surface waters slowly warm, reaching an annual

maximum in July/August, when surface temperatures are >

13 ◦C. The highest nearshore surface salinities (Smax
= 31)

are observed in late winter, which decrease to 24 salinity

units between August and October, when the influence of

freshwater is strongest. The freshwater also decreases sur-

face TA and DIC to their lowest respective levels of 1625

and 1500 µmol kg−1 in August. The additional biologically

driven decrease in DIC between April and June, when surface

Chl-α concentrations (up to 7 µg kg−1) are highest, leads to

relatively high pH (8.13) and �arag (2.05), despite the fresh-

water influence and its diluting character. Once phytoplank-

ton blooms begin to taper off in July and August, DIC slowly

increases relative to TA, leading to a decrease in �arag to a

low of 1.21 and a pH of 8.05 in October. �arag remains < 1.5

across the whole water column between January and March.

In April, the incoming light and nutrient concentrations are

sufficient again to trigger phytoplankton blooms that slowly

decrease DIC and, in turn, increase �arag and pH.

Starting in May, downwelling relaxes and more saline and

DIC-rich waters intrude onto the shelf, leading to maximum

bottom salinities and DIC concentrations of Smax
= 33.6 and

DICmax
= 2186 µmol kg−1, respectively, on the shelf. The re-

laxation of downwelling results in aragonite undersaturation

of bottom waters across the transect between June and Jan-

uary. The destruction of organic matter and remineraliza-

tion additionally increase DIC between June and Septem-

ber and, therefore, further enhance aragonite undersaturation

(Fig. 12b). The onset of downwelling in September typically

starts the annual decrease in near-bottom shelf salinity and
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Figure 11. Seward Line transect of modeled (a) temperature (◦C), (b) salinity, (c) total alkalinity (TA, µmol kg−1), (d) dissolved inorganic

carbon (DIC, µmol kg−1), (e) pH, (f) aragonite saturation state (�arag), (g) dissolved oxygen (DO, µmol kg−1), (h) dissolved iron (FE,

nmol kg−1), (i) nitrate (NO3, µmol kg−1), and (j) Chl-α (µg kg−1) in January, April, July, and October (averaged across 2008–2012). Note

that Chl-α is only plotted across the upper 75 m of the water column. The black solid line in row (f) indicates �arag = 1. The gray areas

indicate the seafloor.

DIC (increase of �arag and pH) levels, which reach their re-

spective minimums in late winter or spring.

5 Influence of glacial freshwater on surface �arag, pH,

and pCO2

Glacial freshwater is the most important driver of the

nearshore inorganic carbon dynamics of the GOA in sum-

mer and fall. We further investigate the influence of coastal

dilution from the rather acidic TA and DIC freshwater end-

member (Table 2) on surface �arag, pH, and pCO2. Follow-

ing the step-by-step description in Rheuban et al. (2019), we

used a linear Taylor decomposition to separate and analyze

the controlling factors of the variability in surface �arag, pH,

and pCO2. Offshore mixing end-members of �arag, pH, and

pCO2 were determined from offshore DIC and TA in April

and August with CO2sys.m (Lewis and Wallace, 1998; van

Heuven and Wallace, 2011) and were used as reference val-

ues. All calculations are based on the dissociation constants

of Lueker et al. (2000) and the KHSO4 and total boron–

salinity formulations of Dickson (1990) and Dickson (1974),

respectively. Anomalies from the reference value were cal-

culated for each grid cell using a linear Taylor series decom-

position, adding up the thermodynamic effects of tempera-

ture and salinity, the perturbations due to biogeochemistry,

and conservative mixing with freshwater DIC and TA end-

members. For a more detailed description of the methodol-

ogy, the reader is referred to Rheuban et al. (2019). We focus

our analysis on April and August because these 2 months

are the least and most affected by freshwater, respectively.

Figure 13 shows mixing diagrams of surface �arag, pH, and

pCO2 vs. salinity from an area starting at the Kenai Penin-

sula to south of Yakutat Bay. Note that the plots show the

effects of salinity changes and biogeochemistry on surface

�arag, pH, and pCO2 as well as seasonal differences in tem-

perature and in the offshore and freshwater end-members,

DIC and TA. The shaded areas in Fig. 13c and d show the

additive effects of salinity and dilution with seasonally vary-

ing DIC and TA freshwater end-members, as calculated with

the linear Taylor expansion. The gray area in Fig. 13c ac-

counts for variability in DIC and TA mixing curves between

January and April and in Fig. 13d for DIC and TA variability

between April and August. Deviations from the shaded area

are driven by biogeochemistry and temperature.

In April, surface salinity is > 30, with the exception of a

few nearshore spots in Prince William Sound and Yakutat

Bay, where surface salinity can decrease to 28 salinity units

(Fig. 13a). Surface �arag ranges between 1.5 and 1.85, pH

varies between 8.08 and 8.10, and pCO2 ranges between 280

and 340 µatm (Fig. 13b, c).
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Figure 12. Modeled salinity vs. dissolved inorganic carbon (DIC,

µmol kg−1) as a function of �arag and month (a) at the surface and

grid cell closest to the coast and (b) on the seafloor at 59.2◦ N along

the Seward Line. Note that the color bars and axes are on different

scales.

In August, surface salinity can be as low as 18 in Prince

William Sound and near Copper River, with a strong salinity

gradient increasing in the offshore direction, reaching salin-

ities > 32 offshore (Fig. 13a). Surface �arag ranges between

1.14 and 2.5, pH varies between 8.07 and 8.16, and pCO2

ranges between 205 and 333 µatm, reflecting the influence

of freshwater in late summer (Fig. 13d). The linear Tay-

lor decomposition indicates that decreasing salinity increases

both �arag and pH, whereas mixing with low TA and DIC

freshwater end-members decreases �arag and pH (Fig. 14a,

b). The increase in pH due to decreasing salinity is much

stronger than for �arag, thereby canceling or even counter-

acting (depending on the freshwater end-member) the de-

crease in pH due to mixing. Thus, the influence of salinity

on pH works to counteract the influence of low TA and DIC

freshwater end-members on pH such that the observed pH

exhibits no correlation with the observed salinity. �arag is

more strongly affected by mixing than by salinity, resulting

in a decrease in �arag of about 1 unit. In contrast to �arag

Figure 13. Map of the climatological mean (1980–2013) of (a) sur-

face salinity and (b) surface �arag in April (top) and August (bot-

tom). Plots of surface �arag (left), pH (middle), and pCO2 (µatm)

(right) vs. salinity as a function of the TA/DIC ratio in (c) April and

(d) August. The shaded area indicates the range of �arag, pH, and

pCO2, respectively, based on the assumption that changes in the re-

spective variable only arise from variations in salinity and from the

dilution effect of freshwater on DIC and TA.

and pH, decreasing salinity strongly decreases pCO2, which

is counteracted to some degree by an increase in pCO2 due

to mixing with low TA and DIC end-members and respira-

tion (Fig. 14c). Therefore, the additive effects of salinity and

mixing with low TA and DIC freshwater lead to a decoupling

of �arag, pH, and pCO2. Deviations from the shaded areas in

Fig. 13d are mainly driven by biogeochemistry, which de-

creases �arag and pH and increases pCO2 as a result of net

respiration during August. Temperature effects are small for

�arag and pH, whereas the negative effect of decreasing tem-

perature is similar to the negative effect of mixing with low

TA and DIC freshwater end-members for pCO2, enhancing

a decrease in pCO2.

6 Summary and conclusions

Here, we introduced a new regional biogeochemical model,

GOA-COBALT, and evaluated the model’s skill in simu-

lating seasonal and interannual inorganic carbon patterns.

Our model setup is unique because it includes a moderately

high-resolution, three-dimensional regional ocean circula-

tion model, a complex ecosystem model with an ocean car-

bon cycle, a high-resolution terrestrial hydrological model,

and it is forced with reanalysis products to simulate inter-
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Figure 14. Component distributions of the linear Taylor decomposition of surface (a) �arag, (b) pH, and (c) pCO2 vs. salinity in April (left)

and August (right). Following Rheuban et al. (2019), the components are total perturbation from the oceanic end-member (salinity > 32);

perturbations due to salinity, temperature, biogeochemistry, and freshwater mixing; and an estimated residual term.

annual variability and long-term changes over the past 30+

years. In addition, we used available TA and DIC observa-

tions to parameterize seasonal concentrations of DIC and TA

in the freshwater forcing.

Comparison with a limited amount of in situ inorganic

carbon observations showed that the model is able to repro-

duce the general hydrographic and inorganic carbon patterns

along the Seward Line in spring and fall. GOA-COBALT

was particularly successful in reproducing the depth of the

aragonite saturation horizon, showing oversaturated condi-

tions across large parts of the shelf in May and undersat-

uration across the shelf in September (Figs. 4, 5). GOA-

COBALT generally overestimates peak Chl-α concentrations

throughout spring and summer (Fig. 3). However, the results

of the inorganic carbon data–model analysis suggest that DIC

is not drawn down enough by spring biological production

(Fig. 4). This contradiction may be due to an underestima-

tion of the modeled C : Chl-α ratios, which are dependent

on light and nutrient limitation (Geider et al., 1997; Stock

et al., 2014). Modeled C : Chl-α of large and small phyto-

plankton on the shelf are < 30 and < 40 g g−1, respectively.

Measurements of C : Chl-α of small phytoplankton in the

GOA suggest a median C : Chl-α of 41 g g−1 during intense

and early blooms and 76 g g−1 under low-Chl-α conditions

(Strom et al., 2016). Equivalent data for large phytoplankton

do not exist.

GOA-COBALT is more successful in reproducing sur-

face inorganic carbon patterns in September, when fresh-

water is the dominant driver of the system. However, the

limited amount of inorganic carbon observations that cover

one transect in May and September and include a few newer

nearshore time series are not sufficient to properly evaluate

the model. More observations are needed to test the model’s

skill in areas other than the Seward Line and during other

times of the year. While some of the year-to-year differences

seen in Figs. 7 and 8 may be a result of aliasing the spatial and

temporal variability that exists during the cruises, the most

prominent anomalies reproduced by the model have been de-
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Figure 15. Climatological mean of (a) the surface aragonite saturation state (�arag) and (b) the aragonite saturation horizon (m) for Decem-

ber, January, and February (DJF); March, April, and May (MAM); June, July, and August (JJA); and September, October, and November

(SON).

scribed in the past. For example, as a result of anomalies

in coastal runoff, winter cooling, stratification, and winds,

sea surface temperature was 1.5 ◦C colder in spring 2006,

2007, and 2008 than the average spring temperatures, and

they were the lowest spring temperatures since early 1970

(Janout et al., 2010). In contrast, as a result of warm air

temperatures, GOA sea surface temperatures in 2010 were

anomalously high (Danielson et al., 2019).

The observed seasonal relationships between �arag, pH,

and pCO2 in freshwater-influenced coastal waters off Alaska

are different from those found in other regions, such as the

open ocean (Fig. 13). Similarly to the in situ observations of

Evans et al. (2014) near a tidewater glacier in Prince William

Sound, our freshwater inorganic carbon analysis showed that

low �arag values are not always accompanied by low pH and

high pCO2 values in this glacially influenced environment.

This decoupling of the three inorganic carbon parameters is

driven by the additive effects of salinity and mixing with low

TA and DIC end-members. The fact that freshwater-induced

low surface pCO2 caused enhanced CO2 uptake in coastal

areas, as speculated by Evans et al. (2014), could not be con-

firmed here and will require additional investigation.
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The strong influence of freshwater on the inorganic car-

bon system emphasizes the importance of choosing the right

DIC and TA concentrations in freshwater in order to cor-

rectly model the inorganic carbon dynamics in this area.

However, there is a lack of biogeochemical data that describe

the composition of different freshwater sources on seasonal

timescales. The biogeochemical composition of freshwater is

influenced by its exposure to basal rock and, therefore, by the

pathways and duration it takes and the processes it undergoes

until it is introduced to the ocean (Lacroix et al., 2020). Cur-

rent sources of freshwater in the GOA are tidewater glaciers,

proglacial streams, and non-glacial streams, each exposing

the water to basal rock, soils, and the atmosphere differently.

As rapid deglaciation continues in this region (Arendt et al.,

2002; Larsen et al., 2007; O’Neel et al., 2005), not only will

the amount of freshwater discharge increase (Beamer et al.,

2017), but most of the glaciers surrounding the GOA will re-

cede away from the ocean and into higher elevations (Huss

and Hock, 2015), resulting in a change in the biogeochemi-

cal composition of freshwater. This and previous studies have

shown that freshwater discharge is the largest driver of the

nearshore inorganic carbon dynamics in summer and fall,

and this is known to exacerbate the effects of ocean acidi-

fication (Evans et al., 2014; Siedlecki et al., 2017; Pilcher

et al., 2018). Therefore, understanding the composition of

freshwater sources is particularly important for the study of

long-term trends of ocean acidification in the GOA-LME. As

a first best approach, we used seasonal observations of DIC

and TA from Kenai River (proglacial river) and applied them

to every freshwater point source across the domain; however,

this approach likely masks out large differences in the bio-

geochemical composition of freshwater input that could have

implications for the coastal inorganic carbon system.

Precipitation is only counted as negative salt flux and does

not change the volume or dilute any other parameters in

this current GOA-COBALT model version. While the de-

crease in salinity increases �arag and pH and decreases pCO2

(Fig. 14), our model does not account for the diluting effect

of low-TA and low-DIC rainwater. Annual mean riverine in-

put into our model domain is 1.5 times higher than annual

mean precipitation across the first 100 km along the coast and

up to 7 times higher across the first 10 km along the coast.

Model cells in the vicinity of large rivers, such as the Copper

River, receive up to 3 orders of magnitude more freshwater

from rivers than from precipitation. Furthermore, the mod-

eled surface salinity pattern closely reflects the influence of

riverine input (Fig. 13), whereas the precipitation pattern is

not mirrored (not shown). Thus, the diluting effect of precip-

itation on TA and DIC seems to be negligible compared with

the large volumes of water coming in from the thousands of

streams and rivers along the coast. However, this hypothesis

still needs to be tested, especially because rain may increase

in the future as a result of climate change (McAfee et al.,

2014).

The only other regional biogeochemical model with an

oceanic carbon cycle (Siedlecki et al., 2017; Pilcher et al.,

2018) used the monthly riverine input time series from Royer

(1982) and applied it equally to the top cell along the

coast, masking out the large spatial and interannual variabil-

ity of freshwater input along the GOA coast. Furthermore,

Siedlecki et al. (2017) simulated the year 2009, with only

1 year of spin-up and with DIC and TA boundary condi-

tions based on salinity relationships. Their static freshwa-

ter TA concentration to represent a tidewater glacier was

650 µmol kg−1, while freshwater runoff did not affect coastal

DIC at all. In comparison, our GOA-COBALT model and the

model from Siedlecki et al. (2017) both simulate the lowest

surface �arag in winter and the highest surface �arag in sum-

mer (Fig. 15). Similarly, the aragonite saturation horizon is

shallowest in summer and fall in both models. In our model,

the aragonite saturation horizon is shallower throughout the

year, causing aragonite undersaturation across wider areas on

the shelf. A thorough model intercomparison study would

need to be carried out to understand how the new features

of our model setup have affected and potentially improved

the modeling results over Siedlecki et al. (2017) and Pilcher

et al. (2018).

Our simulation results give new and important insights for

months of the year that lack in situ inorganic carbon obser-

vations. For example, the majority of the near-bottom water

along the Seward Line is seasonally undersaturated with re-

spect to aragonite between June and January. Such long and

reoccurring aragonite undersaturation events may be harm-

ful to some organisms. Furthermore, between January and

March, conditions are unfavorable for pteropods across the

entire water column with an aragonite saturation state < 1.5

(Bednaršek et al., 2019). This study also made it apparent

that more observations across the shelf and different times of

the year are needed in order to improve the model and evalu-

ate its skill in areas other than near the Seward Line.

Future work will focus on the progression of ocean acid-

ification and climate change and impacts on the inorganic

carbon chemistry. We also anticipate this simulation to be

a useful tool for the study of the duration and intensity

of extreme events and climate–ocean teleconnections. With

increased confidence in the model, another logical next

step would be to guide the future expansion, diversifica-

tion, and optimization of ocean acidification observing sys-

tems in the GOA-LME through the northern Gulf of Alaska

Long Term Ecological Research (https://nga.lternet.edu/, last

access: 21 July 2020), Alaska Ocean Acidification Net-

work (https://aoos.org/alaska-ocean-acidification-network/,

last access: 21 July 2020) and the NOAA Ocean Acidifi-

cation Program (https://oceanacidification.noaa.gov/, last ac-

cess: 21 July 2020).

https://doi.org/10.5194/bg-17-3837-2020 Biogeosciences, 17, 3837–3857, 2020
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Code and data availability. The code and forcing files

are available on zenodo.org from the following DOIs:

https://doi.org/10.5281/zenodo.3647663 (Hedstrom, 2020),

https://doi.org/10.5281/zenodo.3661518 (Hedstrom et al.,

2020a), and https://doi.org/10.5281/zenodo.3647609 (Hed-

strom et al., 2020b). The model output is publicly available

(https://doi.org/10.24431/rw1k43t, Hauri et al., 2020) and can be

visualized with a user-friendly web interface. This is a product of

our collaboration with Axiom Data Science.
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