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11 ABSTRACT: Lithium-ion capacitors (LICs) represent a new type of energy-storage devices,
12 which have combined merits of high energy density Li-ion battery and high power density
13 supercapacitor. Nevertheless, one significant challenge for LICs is the imbalanced kinetics

Lithium lon Capacrtor
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14 between the fast capacitive cathode and relatively slow intercalation anode that limit the

15 energy-storage performance. Here, the asymmetric LIC devices were developed based on a
16  nitrogen-doped, carbonized zeolitic imidazolate framework (ZIF-8) cathode and a three-
17 dimensional, nano-network-structured, conversion reaction-based Ni/NiO/C anode. These
18 nanostructures associated with both the cathode and anode enable rapid electron and ions
19 transport in the LIC devices, which allows the asymmetric LICs to be operated on either high 5=
20 energy mode (energy density of 114.7 Wh/kg at power density of 98.0 W/kg) or high power ;
21 mode (power density of 60.1 kW/kg at energy density of 17.6 Wh/kg). The device also £ &z
22 exhibited long-term cycle stability with 87% capacitance retention after 12 000 cycles. These §
23 results demonstrate that the rational design of nanoporous electrode structures could deliver a
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24 balanced, high-performance-activated cZIF-8INi/NiO/C-based lithium-ion capacitor.

25 KEYWORDS: lithium-ion capacitor, nanoporous template, nanocomposite, nanoporous materials, electroless plating,

26 template synthesis

27 With the rapid growth of portable electronic devices, the
28 requirements for their energy-storage unit to achieve
29 high energy and power densities are growing more
30 stringent. ~ Recently, significant efforts have been dedicated
31 to develop electrochemical energy-storage devices with high
32 efficiency, particularly for supercapacitors (SCs) and lithium-
33 ion batteries (LIBs).”” LIBs exhibit high energy density (100—
34 270 Wh/kg), relatively low power density (<1 kW/kg), as well
35 as limited cyclability (~10° cycles). These limitations result
36 from the lithium intercalation reactions at working electro-
37 des.”” On the other hand, SCs perform at much higher power
38 density (5—10 kW/kg) over extended cycles (~10° cycles),
39 which is associated with the fast charge/discharge mechanism
40 by physical adsorption/desorption of ions at the interface
41 between working electrodes and an electrolyte. The main
42 drawback for the SCs is their typically low energy density (in a
43 range below 10 V\fh/kg).g_m To overcome these trade-offs, Li-
44 ion capacitors (LICs) were introduced in recent years to
45 provide balanced energy and power performance, which
46 represents a potential solution to fill the gap between high
47 energy density devices and high power density devices."' ~'® A
48 LIC system is generally composed of a highly porous carbon
49 cathode with a LIB-like anode and an electrolyte. With the
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optimization of the design of the working electrodes and so
electrolyte, LICs can usually deliver better energy density than s1
conventional SCs as well as better power density than s2
conventional LIBs.'””>* However, recent reports for LICs s3
focus primarily on achieving a high energy density, where the s4
LIC devices were often operated at unfavorable low current ss
densities.””** The use of low current densities can be ss
attributed to the kinetic unbalance between the cathode and s7
the anode, where the kinetic rate for lithium intercalation sg
reaction-based anode is much slower than that of the capacitive s9
cathodes.” 60

With that knowledge, the rational design of anode and 61
cathode materials is required for high performance in LIC to 62
achieve synergy in capacity and efficiency. Most reported LIC 63
anodes are LIB intercalation electrodes, such as Li,TisO;, or 64
TiO,, which have limited specific capacities and slow redox ss
reaction rates due to the intercalation mechanisms.””*® A ¢
viable way to improve the energy density of LICs is to use 67
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68 anode materials with high specific capacity and excellent rate
69 performance. Recently, some transition-metal oxides or
70 carbides with well-defined nanostructures, such as Nb,O,,
71 TiC, and VN,"**7?° were investigated as alternative anodes for
72 LICs with the purpose of increasing the specific capacity of the
73 anode while retaining high stability. Simultaneously, hybrid-
74 ization of the transition-metal oxide with carbonaceous redox
7s materials (carbon nanotube, graphene, graphene oxide, or
76 conductive polymers) was utilized to improve the conductivity
77 for high power density LICs.'*"”**7*" As compared to the LIC
78 anodes, reports on the design of cathode materials for LICs are
79 more limited. The most utilized cathodes, such as activated
80 carbon (AC), exhibit low specific capacitance in nonaqueous
s1 electrolytes.” One of the major reasons is the low electro-
82 chemically active surface area of the activated carbon that
83 restrams the transport of ions during the charge/discharge
s4 cycle.’” Based on the capacitance equation

(Cluc = Cl + C;),33 the low specific capacity of LIC

anode cathode

—_

8s cathode will adversely affect the overall specific capacitance of
86 the LICs device to produce devices with low energy density. As
87 a result, it is indispensable to develop cathode materials with
88 large electrochemically active surface area and high con-
89 ductivity to improve the performance of LICs.

9 Based on the aforementioned considerations, hybrid LICs
91 with a nano-network-structured Ni/NiO/C anode and a
92 nitrogen-doped carbonized zeolitic imidazolate framework-8
93 (activated cZIF-8) cathode was developed in this work (Figure
94 1). On the anode side, the unique interconnected nano-
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Figure 1. Schematic illustration of the Li-ion capacitor developed in
this work.

95 network-structured template was produced by a modified
96 method from our previous report.’* After introducing an
97 additional metal source and surface carbon layers, the nano-
98 network-structured Ni/NiO/C electrodes with ultrafine
99 carbon-coated transition-metal oxide particles were produced.
100 The anode materials exhibit large capability and good charge/
101 discharge rate performance in half-cell tests, which can be
102 attributed to the high surface area of the materials and
103 pseudocapacitance from the conversion reaction.”> Those
104 advantages render the nano-network-structured Ni/NiO/C
105 electrodes promising as an anode material to achieve high
106 energy and power densities. In addition, a nitrogen-doped
107 porous carbon cathode material was synthesized from ZIF-8
108 precursors, followed by an activation process. This ZIF-derived
109 doped carbon material (activated cZIF-8) possesses several
110 favorable characteristics, such as excellent conductivity, tunable
111 particle size, and high specific surface area. By combining these

two electrode materials and utilizing their half-cell performance 112
to balance the kinetics between the cathode and anode, the 113
assembled LICs demonstrated high energy (~114.7 Wh/ kg at 114
98.0 W/kg), high power (~60.1 kW/kg at 17.6 Wh/kg) 11s
densities, and long-cycle life (87% capacitance retention after 116
12000 cycles). These characteristics illustrate the ability to 117
obtain high energy storage and high rate performance as well 118
as long-term cyclic stability through this design. This result
demonstrated the feasibility of fabricating high-performance
LICs through the rational design of nanostructures for 121
electrodes. 122
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B RESULTS AND DISCUSSION 123

Preparation of Anode Materials. The Ni/NiO/C 124
nanocomposites with the network structure (i.e., nanoporous 125
structure) were characterized following similar methods in 126
literatures.***” Small- -angle X-ray scattering (SAXS) was used
to elucidate the interdomain spacing of the forming nanonet- 128
work (curve (i) in Figure 2a). The structures obtained by the 129 22
spinodal decomposition of the dimethylformamide (DMF) 130
and polystyrene (PS) (at different annealing times to control 131
the coarsening of the forming nanostructure) lead to scattering 132
of X-ray at a wavenumber q = 27/d, where d is the interdomain 133
spacing (d ~ 25 nm) of the structures (see Table S1 for 134
details). Brunauer—Emmett—Teller (BET) analysis of the N, 135
adsorption isotherm indicated (Figure S1) a high specific 136
surface area of 256 m?*/g for the nanoporous PS. The average 137
pore diameter of the nanoporous PS is approximately 10 nm 138
based on the Barrett—Joyner—Halenda analysis. Figure 2b 139
shows the scanning electron microscopy (SEM) micrograph of 140
the nanoporous PS where the nanoporous structure of the PS 141
template with interconnected nanochannels can be clearly 142
identified. Nanoporous Ni was subsequently fabricated by 143
templated electroless plating on these nanoporous PS.** Curve 144
(i) in Figure 2a is the one-dimensional (1D) SAXS profile of 145
the PS/Ni, where the scattering peak position remains same as 146
compared to the curve (i). The corresponding transmission 147
electron microscopy (TEM) image shown in Figure 2c further 14s
confirms the formation of the Ni nanonetwork structure in the 149
PS matrix, indicating the preservation of the structure after Ni 150
deposition. 151

To prepare nano-network-structured Ni/NiO/C, a modified 152
calcination/carbon coating approach was used.**** The 153
calcination process removed the PS template and partially 154
oxidized Ni into NiO at 550 °C, producing the nano-network- 1ss
structured Ni/NiO. Figure 2d shows the SEM micrograph 156
where the network structure can be clearly identified, 157
indicating the successful formation of the nano-network- 1s8
structured Ni/NiO. SAXS results (Figure la) confirmed the 159
preservation of the network nanostructure from the invariance
of the peak location for the intermediates and final product at 161
approximately 0.27 nm™' (d-spacing of 23 nm). Figure 2e 162
shows the SEM micrograph of nano-network-structured Ni/ 163
NiO/C, indicating that there are no morphological variations 164
after the carbon coating. Wide-angle X-ray diffraction was used 165
to examine the crystalline structures of the nano-network- 166
structured Ni/NiO/C. As shown in Figure 2h, all of the 167
diffraction peaks can be indexed as face-centered cubic NiO 168
(JCPDS no. 47-1049) and Ni (JCPDS no. 04-0850), with 169
peaks of (111), (200) for Ni and (111), (200), (220) for NiO 170
clearly evident in the diffraction patterns. There is no 171
characteristic peak of graphitized carbon in the XRD, 172
suggesting the amorphous nature of the carbon film from the 173
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Figure 2. Characterization of Ni/NiO/C nanocomposites and their precursors. (a) One-dimensional (1D) SAXS profiles of (i) PS template; (ii)
PS/Ni nanohybrids; (iii) nano-network-structured Ni/NiO; (iv) Nano-network-structured Ni/NiO/C. (b) SEM image of the PS template. (c) The
TEM image of PS/Ni. (d) The SEM image of the nano-network-structured Ni/NiO. (e) The SEM image of the nano-network-structured Ni/NiO/
C. (f) The high-resolution TEM (HRTEM) image of the nano-network-structured Ni/NiO/C. (g) The HRTEM image of the nano-network-

structured Ni/NiO/C of the selected area in (f). The dashed line is the interface of NiO and Ni. The arrows show the directions for the grains of

the NiO and Ni. (h) X-ray diffraction (XRD) profile of the nano-network-structured NiO/Ni/C, the diffraction peaks of NiO (blue) and Ni

(black) are shown in the figure.
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Figure 3. Electrochemical properties of the nano-network-structured Ni/NiO/C half-cell. (a) CV curves at different scan rates ranging from 0.2 to
3 mV/s. (b) Peak current vs scan rate from 0.2 to 3 mV/s. (c) Rate performance with different current densities from 0.1 to 20 A/g. (d) Cyclic
performance of the nano-network-structured Ni/NiO/C electrode at 1 A/g up to 600 cycles.

174 CVD process. This might be attributed to the relatively low
175 deposition temperature (450 °C). The lattice constants for the
17¢ nickel and nickel oxide were calculated by the primary
177 diffraction peak with ay; = 3.520 A and ayo = 4.171 A
175 Figure 2f shows the high-resolution TEM (HRTEM) image,
170 Where the lattice fringes of Ni and NiO grains with the
150 dimensions of the (111) plane of Ni and the (200) plane of
151 NiO (Figure 2g) were visible, consistent with the XRD pattern.
152 The composition of Ni/NiO/C was determined by thermog-
183 ravimetric analysis (TGA) as shown in Figure S2 where the

atomic percentages of Ni, NiO, and C were determined as 17,
72, and 11%, respectively.

Electrochemical Properties of the Anode. Ni/NiO/C-
based half-cells were fabricated to investigate the electro-
chemical performance of the Ni/NiO/C electrode. As shown
in Figure 3a, cyclic voltammetry (CV) measurements of the
Ni/NiO/C electrode were performed at different rates. The
mechanism follows the previous report of the NiO conversion
electrode where NiO reacts with lithium and forms Ni metal
and lithium oxide.>** The storage mechanism was further
studied by analyzing the peak current and the scan rate
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Carbon

Nitrogen

Figure 4. Field emission SEM images of (a) ZIF-8, (b) carbonized ZIF-8 (cZIF-8), (c¢) KOH-activated cZIF-8 (activated cZIF-8), (d) TEM
micrograph of activated cZIF-8. The inset shows the corresponding HRTEM image. (e—g) Energy-dispersive X-ray spectroscopy (EDS) mapping

of the activated cZIF-8.

195 correlation (see the Supporting Information (SI) for the
196 details).*>*" As shown in Figure 3b, the peak current changes
197 linearly with the scan rate and the standard deviations for the
198 charge and discharge curves are R* = 0.9895 and 0.9818,
199 respectively. The results indicated a capacitive process on the
200 electrode. The pseudocapacitive properties of the nano-
201 network-structured Ni/NiO/C were further confirmed by
202 high rate CV, as shown in Figure S3. The redox peaks are
203 significantly reduced as compared with the low rate CV,
204 indicating the dominant pseudocapacitive behavior. The
205 corresponding specific capacitance calculated from the
206 integration of the CV curves is listed in Table S2. The
207 galvanostatic charge/discharge curves with current densities
208 ranging from 0.1 to 20 A/g of the nano-network-structured
209 Ni/NiO/C electrode are presented in Figure S4. The
210 corresponding galvanostatic curves (Voltage vs time) are
211 shown in Figure SS. The electrode exhibited a voltage plateau
212 at 0.7 V during the first discharge, in accordance with the CV
213 results shown in Figure S6. Similar as many conversion
214 reaction electrodes,”” this plateau was replaced by a long-
215 sloped curve in the following cycles. In the first cycle, the
216 discharge/charge capacities are 1417 and 1261 mAh/g,
217 respectively. The difference in the capacity is caused by the
218 formation of solid electrolyte interphase, which is generally
219 observed for metal oxide electrode materials.”

220  The rate performance of the anode was evaluated at different
221 current densities from 0.1 to 10 A/g. As shown in Figure 3c,
222 the reversibility of the cell is good even after a high current
223 density of 10 A/g. The capacity is similar to our previous
224 results where the NiO electrode was evaluated as a LIB
225 anode.”” We speculate that the rate performance of the nano-
226 network-structured Ni/NiO/C is associated to the short
227 lithium diffusion distance in the nano-network-structured Ni/
228 NiO/C for which the characteristic feature size is around 23—
229 25 nm from our SAXS result.

Long-cycle test was conducted to investigate the cycle 230
performance. The cell was cycled in the voltage range of 0.02— 231
3.0 Vat 0.2 A/g for four cycles and then at 1 A/g for following 232
cycles. As shown in Figure 3d, the capacity of nano-network- 233
structured Ni/NiO/C electrode increases gradually to 953 234
mAh/g (at 324 cycles) and then decreases to 732 mAh/g after 235
600 cycles. The average fading rate is 0.04% per cycle. This 236
slow fade can be better observed by examining the narrow 237
range of the Coulombic efficiency, as shown in Figure S7. 238

Preparation of Cathode Materials. Carbon materials 239
with large specific surface area, high conductivity are required 240
for high-performance LIC cathodes.**™*® The activation of 241
nanoporous carbon by potassium hydroxide (KOH) has been 242
previously reported to increase the porosity and specific 243
surface area of carbon-based nanomaterials.*>**™* For 244
instance, a KOH-activated, microwave-exfoliated graphite 24s
oxide exhibited a BET surface area of 3100 m*/g.***" Our 246
group has previously reported zeolitic imidazolate framework 247
(ZIF-8)-derived nitrogen-doped (N-doped) carbon materi- 248
als.” This ZIF-derived, N-doped carbon material (cZIF-8) was 249
further treated by KOH to obtain the final product (activated 2s0
cZIF-8) for this study. The SEM micrographs shown in Figure 251 4
4a—c depict the morphologies of the as-synthesized ZIF-8, 252 4
cZIF-8, and activated cZIF-8, respectively. The corresponding 253
TEM micrographs are shown in Figures S8 and S9. Note that 254
the morphology of the ZIF-8 remained unchanged after all of 2ss
the steps. The activated cZIF-8 still showed a rhombic 2s6
dodecahedral morphology. The TEM image (Figure 4d) also 257
confirms the retained nanostructure of the activated cZIF-8. 258
The high porosity of the activated cZIF-8 particles can be 259
further verified by the surface roughness from the HRTEM 260
image shown in the inset of Figure 4d. Energy-dispersive X-ray 261
spectroscopy (EDS) mapping was used to characterize the 262
elemental distribution and the composition of the activated 263
cZIF-8. As shown in Figure 4e—g, C, N, and O were uniformly 264
distributed in the materials, indicating the homogeneity of the 265
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Figure 5. Electrochemical properties of the activated cZIF-8 electrode in half-cell. (a) CV curves at different scan rates ranging from 10 to 100 mV/
s. (b) Rate performance at different current densities ranging from 0.1 to 20 A/g. (c) Cyclic performance of the electrode at 1 A/g up to 600 cycles.

heteroatom dopant in the carbon matrix of each activated
cZIF-8 particle. Furthermore, X-ray photoelectron spectrosco-
py (XPS) was used to further confirm the N-doping in the
carbon matrix, as shown in Figure S10a. From XPS results, the
atomic ratios of C, N, and O are 74, 21, and 3% in the
activated cZIF-8, respectively. The small amount of residue
metal ions (~2%) remaining can be attributed to the zinc or
potassium ions. The N-doping content was further examined in
Figure S10b by the deconvolution of N 1s peaks.*’ The results
show 14.72% quaternary-N, 29.53% pyrrolic-N, and 55.75%
(atom%) pyridinic-N.°>°" These results confirmed the
successful nitrogen doping into carbon from the ZIF-8 during
the carbonization process. BET method was used to character-
ize the feature sizes of the materials. As shown in Figure S11,
the BET surface area is 1048 m?/g for the ZIF-8, whereas the
CZIF-8 exhibits a lower surface area of about 332 m?/ g The
decrease of the surface area may be attributed to the
carbonization process, where the collapse or shrinkage of
pores may result in the change of the structure. After the KOH
activation, as shown in Figure Sllc, the surface area of
activated cZIF-8 was increased to 1110 m*/g, indicating a
successful activation process.

Electrochemical Properties of Cathode. The electro-
chemical properties of the activated cZIF-8 electrode in a half-
cell were characterized by CV and galvanostatic charge/
discharge measurements, as shown in Figure 5. The CV curves
of the activated cZIF-8 electrodes reveal quasi-rectangular
shapes throughout all scan rates, suggesting the dominance of
the capacitive behavior for these electrodes. The corresponding
specific capacitance based on the CV curves is listed in Table
S3. Linear galvanostatic charge/discharge curves, which
indicate capacitive behavior of the absorption/desorption of
the anion on the surface of the activated cZIF-8 electrode
(Figure S12), are observed and consistent with the CV curves.
The corresponding galvanostatic curves (voltage vs time) are
shown in Figure S13, and an expanded view of the Coulombic
efficiency is shown in Figure S14 for detail. Benefitting from

the high porosity and specific surface area, the activated cZIF-8
electrode shows capacities of ~77.5 mAh/g at 0.1 A/g and
~42.3 mAh/g at 20 A/g. The electrode also delivers a good
cycling stability (~93% capacity retention after 600 cycles)
(Figure Sc). These properties of activated cZIF-8 are better
than activated carbons (ACs) or other reported carbons for
LICs.>**

Performance of Full LIC Devices. The hybrid LIC full
cell was prepared using nano-network-structured Ni/NiO/C as
the anode and activated cZIF-8 as the cathode in 1 M LiPF in
the ethylene carbonate (EC)/diethyl carbonate (DEC)
electrolyte solution (denoted as the activated cZIF-8INi/
NiO/C LIC). Before the testing of the full LIC device, the
anode materials (nano-network-structured Ni/NiO/C) were
activated by using the Li reference electrode for charging/
discharging under low current density (0.1 A/g) for 10 cycles
to prelithiate the anode. During the charge process of the full
device, anions from the electrolyte (PF~) are absorbed by
activated cZIF-8, whereas cations (Li*) are stored into the
nano-network-structured Ni/NiO/C. The mass loading ratio
of the cathode to anode was 4:1 to aim to optimize the
performance by balancing the cathode and anode as
determined by half-cell tests.”**’ As confirmed by the CV
measurement shown in Figure 6a, the activated cZIF-8INi/
NiO/C LIC device can achieve a working voltage of 4 V,

303
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327

suggesting a wide electrochemical window for the operation of 328

the LIC device. Furthermore, the differences in the CV curve
from an ideal squared curve indicate a “coupling effect”
attributed to the different energy-storage processes of the
anode and cathode of the LIC.”' Figure 6b—d displays the
corresponding galvanostatic curves with varied current

densities. The specific capacitance was calculated based on
4i . . . . .
C= ":TX‘;, where i is the current, t is the discharge time, AV is

the voltage range, and m is the mass of the both electrodes.”**’

The results are summarized in Figure 6e. Furthermore, the
cyclability test was carried out at a fixed current density of 2 A/
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Figure 6. Electrochemical properties of the activated cZIF-8INi/NiO/
C LIC. (a) CV curves at different scan rates. Galvanostatic curves
under different current densities ranging from (b) 0.1 to 0.5 A/g, (c)
1toS A/g and (d) 7 to 30 A/g. (e) Specific capacitance under
different current densities. (f) Ragone plot of the activated cZIF-8INi/
NiO/C LIC compared with other recently published re-
sults."'>175%35 (&) Cycling performance of the LIC with a current
density of 2 A/g. A current density of 0.1 A/g was applied at the first
five cycles (not shown in the figure) for the initiation of the LIC
device.

338 g for 12000 cycles. As shown in Figure 6g, the capacitance
339 retention after 12 000 cycles is of 87%, indicating a low fading
340 rate for the activated cZIF-8INi/NiO/C LIC. Nearly 100%
341 Coulombic efficiency was maintained through all cycles, as
342 shown in Figure S15. A comparison of the cyclability test with
343 other published LIC systems is presented in Table S4.
344 According to our experimental results, the good cyclability
345 can be attributed to the well-interconnected nanonetwork
346 structure of the Ni/NiO/C and the electrochemically stable
347 activated cZIF-8. To cross-compare the performance of energy
348 and power densities, the corresponding Ragone plot of the
349 activated cZIF-8INi/NiO/C LIC device is depicted in Figure
350 6f (see the SI for the detailed calculation). At the high energy
351 density mode, the LIC can achieve 114.7 Wh/kg at the power
352 density of 98.0 W/kg. At the higher power density mode (60.1
353 kW/kg), the LIC exhibited an energy density of 17.6 Wh/kg.
354 Note that a power density of 60.1 kW/kg indicates a full
3ss charge/discharge cycle within 2.5 s. LIC devices usually are

73

operated in high power density range (over 10 KW at Ragone 3s6
plot) for applications. Under these conditions, the device 3s7
reported in this work performed better than previously 3ss
reported LICs (Table S4). The superior electrochemical 359
performance of the LIC confirms the successful design using 360
the high specific capacity conversion reaction-based anode 361
(nano-network-structured Ni/NiO/C) and the capacitor-type 362
cathode (activated cZIF-8) with high porosity. With the 363
rational design by adopting new anode and cathode materials, 364
the newly fabricated LIC device can overcome the intrinsic 365
kinetic and capacity mismatches. The high performance of the 366
LIC devices can be attributed to several unique properties: 367
first, the nano-network-structured Ni/NiO/C anode, as 368
confirmed by the half-cell test, exhibited dominant pseudoca- 369
pacitive behavior within the wide working voltage range. 370
Second, the nano-network structured anode is interconnected 371
and covered with a thin carbon layer, rendering the electrode a 372
high accessible surface area and rate performance. Finally, the 373
nanoscale dimensions of the porous carbon with the high-level 374
N-doping cathode decrease the ion transport path length and 375
increase the amount of the electrolyte ions near the surface of 376
the cathode materials during the adsorption/desorption 377
process. 378

B CONCLUSIONS 379

In summary, a new design of the LIC was demonstrated by 3s0
incorporating an activated ¢ZIF-8 cathode and a nanoporous 381
Ni/NiO/C anode. Benefiting from the unique nanostructure of 382
Ni/NiO/C and the activated cZIF-8, the LIC devices deliver a 383
high energy density up to 114.7 Wh/kg at a power density of 384
98.0 W/kg. The LIC devices are capable to be charged/ 3ss
discharged quickly within seconds, with a power density of 38
60.1 kW/kg at an energy density of 17.6 Wh/kg. Furthermore, 387
the device maintained good cycle stability (87% capacitance 3ss
retention after 12 000 cycles) in the long-cycle tests. With the 3s9
demonstrated energy and power densities, the new LIC could 390
fill the gap between conventional supercapacitor and lithium- 391
ion batteries, facilitating the requirement of versatile electrical 392
devices. The results also demonstrated that it is possible to 393
incorporate conversion anode materials into the LIC device, 394
when a rational design of electrode materials is achieved. 395

B EXPERIMENTAL SECTION 396

Materials. All reagents and materials including nickel chloride 397
hexahydrate (Alfa Aesar), PACl, (Alfa Aesar), dimethylformamide 398
(Sigma-Aldrich), zinc nitrate hexahydrate (STREM CHEMICAL), 399
ammonia hydroxide (Sigma-Aldrich), hydrazine monohydrate 400
(Sigma-Aldrich), methanol (Sigma-Aldrich), N-methyl pyrrolidone 401
(EMD Millipore), 2-methylimidazole (VWR), carbon black (Super P, 402
Timcal), HCI (Acros or EMD Millipore), KOH (VWR) were used as 403
received without further purification. 404

Preparation of the Polystyrene (PS) Template, Electroless 4os
Plating of Ni, Ni/NiO Formation, and Carbon Coating to Form 406
Ni/NiO/C. The detailed procedures of fabricating the nanoporous PS 407
template were described in the previous publication.”®*® The 408
modified procedure used in this work consists of three steps including 409
the preparation of the PS solution in DMF, crystallization of DMF, 410
and removal of the solvent to form nanoporous PS with continuous 411
nanochannels. In brief, the PS solution (PS, M, = 280 000 g/mol in 412
DMF, 35 wt %) was prepared and subsequently frozen under 413
cryogenic conditions (—195 °C) to give the crystalline DMF network. 414
After the extraction of the crystalline network with methanol at —100 415
°C, the prepared polymer sample was kept in a vacuum oven 416
overnight at 30 °C to remove the residual solvent. The nanoporous Ni 417
was fabricated by electroless plating on the dried template following a 418
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419 published procedure described in the previous report.’”” The
420 formation of nanoporous Ni/NiO and carbon coating of Ni/NiO to
421 form Ni/NiO/C composite were also conducted following the
422 procedures developed in our previous work.”’

423 Synthesis of ZIF-8 and Carbonization of ZIF-8. ZIF-8 was
424 synthesized based on the reported procedure.” The followin

425 carbonization procedure is reported in our previous publication.*
426 An additional activation process was adopted in this work, following
427 the procedures in previous reports of similar carbonaceous
428 materials.**”™* Briefly, the dry cZIF-8/KOH (1:5 wt %) was mixed
429 and transferred into a Ar-filled tube furnace (Ar flow rate 150 sccm at
430 1 atm). The temperature was quickly increased to 280 °C and kept for
431 30 min. After this thermal stabilization process, the temperature was
432 further increased to 800 °C (ramping rate: S °C/min) and held for 1
433 h. The sample was then cooled down over a period of several hours,
434 removed from the furnace, and repeatedly washed with 10 wt % acetic
435 acid and deionized. The final product was collected after overnight
436 drying (80 °C).

437 Activation of Electrodes and Fabrication of the Device. The
438 active materials, carbon black, and binder polymer (poly(acrylic
439 acid)) were mixed at a ratio of 7:2:1, respectively. NMP was added to
440 this mixture to produce a slurry of the electrode. A doctor blade was
441 used to cast the slurry on a copper foil (anode) or aluminum foil
442 (cathode). The electrodes were baked in an oven for 12 h (50 °C)
443 before they were used for coin cell fabrication. The electrode was
444 punched into §/16 in. (7.9 mm) circular disks. The mass loading was
445 0.4—0.6 mg/cm2 for the anode and 1.6—2.4 mg/cm2 for the cathode.
446 A lithium foil (1.27 cm in diameter and 0.76 mm in thickness) was
447 used as the counter electrode in all half-cells. The separator used in
448 this work was Celgard 3501, and the electrolyte was 1 M LiPF4 in EC
449 and DEC (1:1 v/v). For half-cell, the amount of electrolyte is 100—
450 120 pL, whereas the electrolyte in full cell is around 120—140 uL.
451 Before the testing of the full LIC device, the anode materials (nano-
452 network-structured Ni/NiO/C) was prelithiated by using the Li
453 reference electrode for charging/discharging under a low current
454 density (0.1 A/g) for 10 cycles.
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