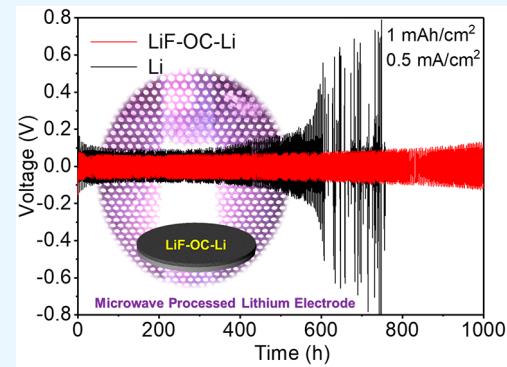


1 Microwave Processed, Onionlike Carbon and Fluoropolymer 2 Passivated Lithium Metal Electrode for Enhanced Li Stripping/ 3 Plating Performance

4 Kewei Liu,^{†,§} Yanfeng Xia,^{‡,§} Chung-Fu Cheng,[†] Xuhui Xia,[‡] Feng Zou,[†] Bryan D. Vogt,^{*,‡,||,ID}
5 and Yu Zhu^{*,†,ID}


6 [†]Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States

7 [‡]Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States

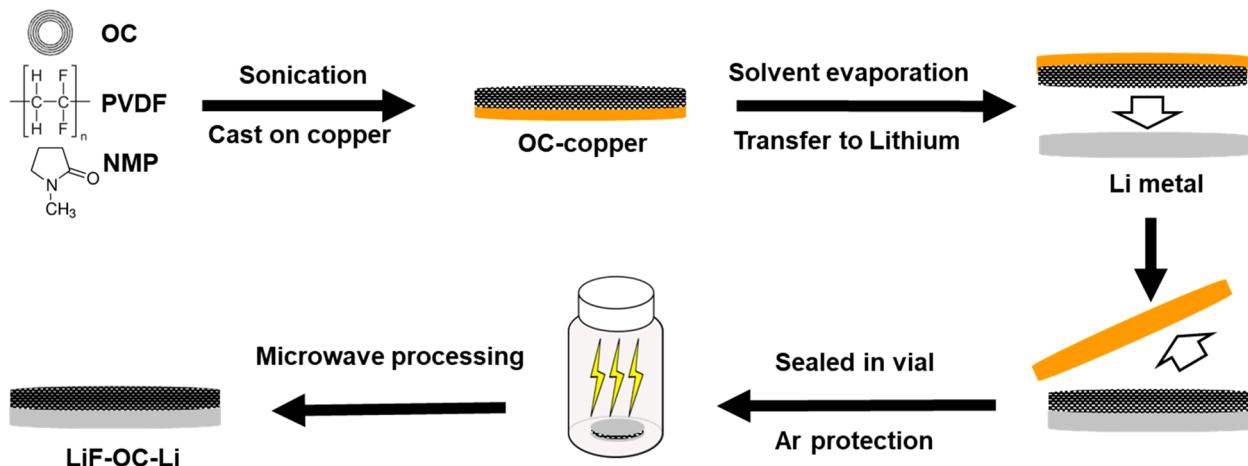
8 Supporting Information

9 **ABSTRACT:** One key limitation of lithium metal electrodes is their
10 propensity for dendrite formation that limits their use in commercial
11 batteries. Here, a simple surface modification method was demonstrated to
12 improve the electrochemical stability of the lithium metal electrode through
13 direct coating of onionlike carbon (OC) and fluoropolymer onto the lithium
14 metal electrode. Selective and rapid microwave heating of the OC resulted in
15 the *in situ* formation of a LiF-rich composite with the simultaneous
16 infiltration of lithium into the OC. The electrochemical stability of the
17 modified electrode was compared with a neat lithium metal electrode with
18 symmetric stripping/plating cells. The microwave processed surface coating
19 acted as a robust and stable passivation layer to prevent electrolyte
20 decomposition, while also suppressing fast dendrite growth. The potential
21 stability during the stripping and plating was enhanced at all rates examined
22 (0.5–2 mA/cm²). With the stripping/plating capacity of 1 mA h/cm², the
23 microwave processed lithium metal electrode can be cycled over 1000 h at a current density of 0.5 mA/cm². These results
24 demonstrated that microwave treatment is a promising method for selective modification of the lithium metal electrode to
25 improve its performance in energy storage applications.

26 **KEYWORDS:** lithium metal anode, onionlike carbon, microwave, lithium metal battery, fluoropolymer

1. INTRODUCTION

27 Advances in lithium ion batteries (LIBs) have enabled the
28 expansion in mobile electronics and their performance over the
29 past decades, but the anodes of these LIBs have been based on
30 carbon materials that are rapidly approaching their theoretical
31 capacities^{1–5} in commercialized cells. The conventional
32 graphite anode is based on an intercalation mechanism,
33 which limits the Li ion storage capacity and results in a
34 relatively low gravimetric energy density.⁶ The ever-growing
35 need for higher energy densities to facilitate high-power-
36 consumption mobile devices and electric vehicles has driven
37 research into exploring chemistries for new electrode materials.
38 For LIBs, Li metal represents the ideal anode material with a
39 capacity of 3860 mA h/g and the lowest negative electro-
40 chemical potential possible.^{7,8} Although the use of alloying
41 (e.g., Si, Sn, Ge)^{9–11} or conversion reactions (e.g., metal oxide,
42 metal sulfide)^{12–14} can significantly increase the specific
43 capacity as well, their electrochemical potentials are higher
44 than lithium or graphite, leading to the undesired trade-off
45 between cell voltage and capacity. In addition, beyond-LIB
46 systems (Li-oxygen and Li-sulfur) with potentially even higher
47 energy densities^{15–18} rely on Li metal anodes.


48 However, there are great challenges to make Li metal anodes
49 commercially viable. The repeated removal and redeposition of
50 Li metal lead to continual roughening of the surface. The
51 uneven Li deposition culminates in the formation of
52 dendrites.¹⁹ The growth of dendrites also generates a new
53 exposed Li surface to consume additional electrolyte through
54 the formation of a solid electrolyte interface (SEI) layer on the
55 newly exposed Li.^{20–25} Additionally, the early stages of
56 dendrite formation and growth generate porous and rough
57 structures at the Li anode. This morphology increases the ion
58 diffusion path length and effective resistance of the anode,
59 which increases the required overpotential to drive the Li
60 stripping/plating associated with charging/discharging.^{26–30}

61 Significant efforts have been dedicated to developing routes
62 to suppress dendrite growth, including the design of special
63 electrolytes^{31,32} and the surface modification of the Li
64 anode.^{28,33} The rationale associated with electrolyte mod-
65 ification relies on the formation of a robust and highly ionic
66 conductive SEI layer that can effectively mitigate the

Received: July 21, 2019

Accepted: October 31, 2019

Published: October 31, 2019

Figure 1. Schematic illustrating the preparation process of the LiF-OC-Li electrode. OC/PVDF/NMP slurry was cast on copper foil and dried. The OC-PVDF film was compressed on Li to achieve a free-standing OC-PVDF-Li electrode. Microwaves transform the OC-PVDF-Li electrode to the LiF-OC-Li electrode.

67 nucleation and growth of dendrites. A variety of additives, such
 68 as KNO_3 ,³⁴ LiODFB,³⁵ LiBOB,³⁶ AlCl_3 ,³⁷ and Li poly-
 69 sulfides,^{38–40} have been shown to improve the ionic
 70 conductivity of the SEI,^{41,42} while selection of nontraditional
 71 electrolytes, such as ceramic ion conductors,^{43,44} polymer
 72 electrolytes,^{45–47} and superconcentrated electrolytes,^{48–51} can
 73 improve the mechanical strength and electrochemical stability
 74 of the electrolyte layer to mitigate dendrite growth and various
 75 side reactions. Alternatively, methods to confine Li within
 76 conductive 3D matrixes on the anode were reported to
 77 suppress dendrite growth. Such matrix materials include
 78 graphene derived matrix,^{52–54} graphene–CNT hybrid materi-
 79 al,⁵⁵ porous carbon films,^{56,57} Cu/Ni foam,^{58,59} and Li_7B_6
 80 frameworks.^{60,61} In the examination of cases where a stabilized
 81 lithium anode was demonstrated, LiF was often reported as an
 82 active ion-conducting material in the robust artificial SEI, due
 83 to its excellent chemical stability and low solubility in
 84 carbonate-based electrolytes.^{33,62} However, the direct deposi-
 85 tion of the LiF on the Li anode is a tedious process and
 86 requires special capabilities.^{63,64} Here, a simple and efficient
 87 method was developed to fabricate a LiF decorated Li metal
 88 electrode through localized microwave heating of onionlike
 89 carbon (OC) and PVDF decorated Li foil. Microwaves were
 90 efficiently absorbed by the OC to lead to lithium infiltration
 91 into the OC and thermal decomposition of PVDF. The
 92 degradation of the PVDF leads to *in situ* formation of a LiF-
 93 rich composite at the surface of the Li electrode (LiF-OC-Li).
 94 The LiF-OC-Li electrode exhibited improved stability in
 95 stripping plating tests as compared to neat Li electrodes.
 96 This microwave processed artificial passivation layer is a
 97 promising methodology to facilitate safe lithium metal
 98 electrode implementation in rechargeable batteries.

2. EXPERIMENTAL SECTION

99 **Materials.** Lithium hexafluorophosphate (LiPF_6 , battery grade,
 100 Oakwood), lithium foil (15.6 mm in diameter and 0.25 mm in
 101 thickness, MTI Corporation), ethylene carbonate (EC, 99.9% Sigma-
 102 Aldrich), diethyl carbonate (DEC, 99% Sigma-Aldrich), and *N*-
 103 methyl-2-pyrrolidone (NMP, 99.5% EMD) were utilized as received.
 104 Other materials were purchased from VWR and used as received.
 105 **Preparation of the OC.** The OC was synthesized by hydro-
 106 thermal processing of phenolic resin (resol), tetraethyl orthosilicate
 107 (TEOS), Pluronic F127, and trimethylbenzene (TMB), following a

prior published report.⁶⁵ Briefly, 1.0 g of Pluronic F127 was dissolved
 108 with 6.25 g of resol in 20 wt % ethanol solution⁶⁶ and 1.0 g of TMB
 109 under magnetic stirring at 25 °C for 1 h to obtain a clear solution.
 110 Simultaneously, 2.34 g of TEOS was hydrolyzed using 150 mL of 1.0
 111 M HCl at 40 °C for 30 min. The dissolved F127/resol solution was
 112 then added dropwise to the TEOS solution under continuous stirring
 113 for 12 h at 400 rpm at 40 °C. Subsequently, the solution was
 114 transferred to the Teflon chamber of a hydrothermal autoclave reactor
 115 (50 mL). The sealed autoclave was heated at 90 °C for another 24 h.
 116 The solid raw products from the autoclave were filtered and washed
 117 repeatedly using deionized (DI) water until the pH of 7 is reached.
 118 The sample was then left to dry in air until no obvious water was
 119 visible. The dried materials were carbonized at 800 °C for 1 h
 120 under N_2 protection in a ceramic tube furnace. The silica in the
 121 carbonized powder was subsequently etched with 6 M KOH solution
 122 (ethanol: H_2O = 50:50 v/v) for 24 h at 90 °C. The resultant
 123 mesoporous carbon was washed by deionized water over 20 times
 124 using Soxhlet extraction to completely remove the residual KOH and
 125 was dried in an oven at 80 °C.
 126

Preparation of the LiF-OC-Li Electrode. A 22 mg portion of
 127 OC was dispersed in 1.5 mL of PVDF solution (1.6 mg/mL in 1.5 mL
 128 NMP) in an Ar-filled glovebox. After 20 min of sonication, a 55 μL
 129 OC suspension was drop-cast onto the smooth side of a Cu chip
 130 (diameter 1/2 in.) that was then dried at 80 °C overnight in an Ar
 131 glovebox. (The smooth side of the Cu chip was employed for the OC
 132 film coating to allow for the Cu to be removed in the next step.) The
 133 OC-PVDF coated side of the Cu chip was placed onto a Li foil chip
 134 (1/2 in. diameter) and compressed at 250 psi with OC-PVDF
 135 embedding in the Li under this pressure. The Cu foil was then simply
 136 peeled off (like removing a sticker from its backing) to obtain the
 137 freestanding OC-PVDF film embedded Li foil chip. Due to the
 138 stronger adhesion between the lithium metal and OC-PVDF
 139 composite, almost all of the OC-PVDF was transferred to the surface
 140 of the lithium foil. The OC-PVDF-Li electrode was punched in a 7/16
 141 in. diameter disk and transferred into a 20 mL vial. An additional Li
 142 chip was placed on top of the OC-PVDF-Li electrode without any
 143 pressure applied. The vial was sealed and moved into the microwave
 144 chamber (BP-210 microwave, Microwave Research and Applications
 145 Inc., 2.45 GHz). The composite stack was exposed to 1000 W
 146 microwaves for 10 s to transform the OC-PVDF to LiF-OC. After the
 147 microwave reaction, the sealed vial was returned to the Ar glovebox.
 148 The top Li chip was removed, and the LiF-OC-Li electrode was
 149 collected.
 150

Characterization. SEM and TEM images were collected using
 151 JEOL JSM-7401F and JEOL 1203 microscopes, respectively. High-
 152 resolution TEM (HRTEM) images were obtained using an FEI
 153 Tecnai G2 instrument. Nitrogen adsorption/desorption isotherms
 154

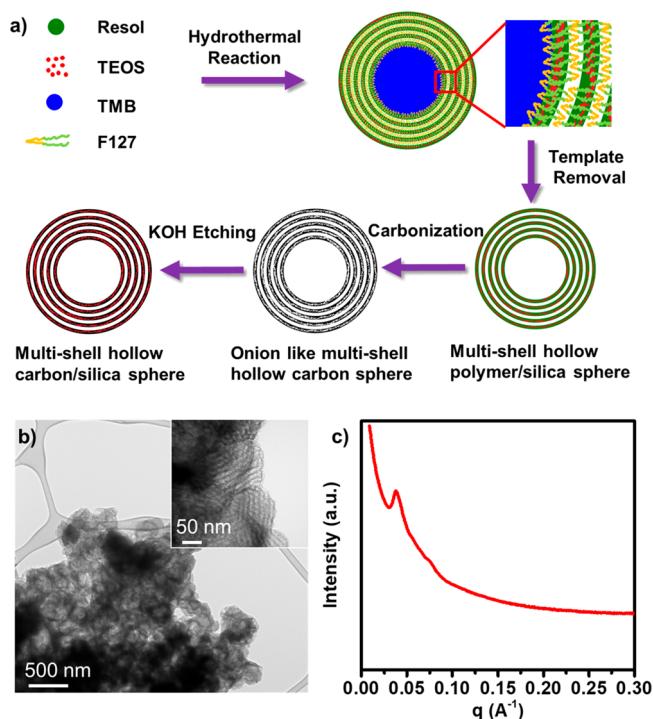
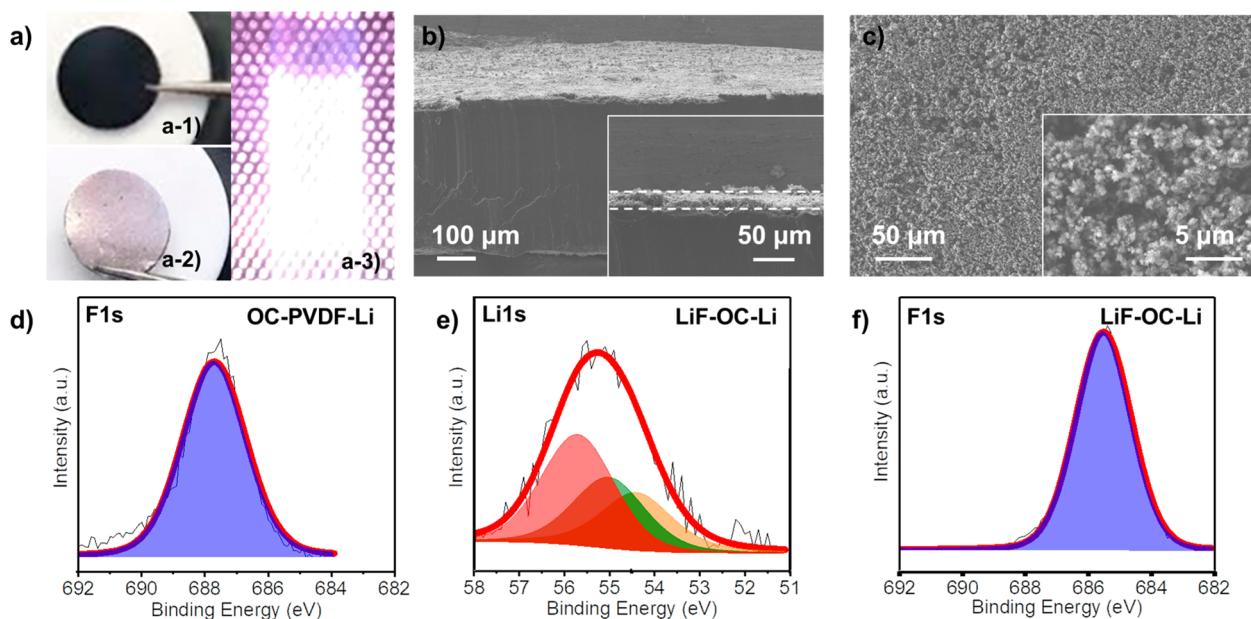
155 were obtained at 77 K using a TriStar II (Micromeritics) instrument.
 156 The Brunauer–Emmett–Teller (BET) method was applied to
 157 determine the specific surface area in the relative vapor pressure
 158 range 0.04–0.27. The adsorption isotherm was utilized to determine
 159 the pore size distribution by applying the Barrett–Joyner–Halenda
 160 (BJH) model. SAXS measurements using 13.5 keV X-rays were
 161 performed on the 11-BM CMS beamline at the National Synchrotron
 162 Light Source II (NSLS-II) at Brookhaven National Laboratory in
 163 Upton, NY. The sample-to-detector distance was 1.98 m with a
 164 Dectris Pilatus 2 M detector (pixel size = 172 $\mu\text{m} \times 172 \mu\text{m}$).

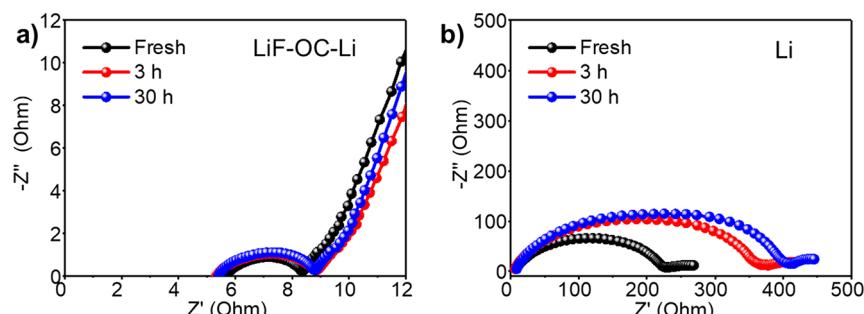
165 **Cell Fabrication and Electrochemical Test.** Symmetric
 166 stripping plating cells and asymmetric cells for Coulombic efficiency
 167 measurements were assembled in an Ar-filled glovebox using 2032
 168 coin cells cases. The oxygen and water contents were controlled below
 169 0.5 ppm. Celgard membrane (MTI) was used as the separator. The
 170 electrolyte was 1 M lithium hexafluorophosphate solution in EC and
 171 DEC (1:1 v/v). Symmetric cells were assembled by using the LiF-
 172 OC-Li (lithium foil thickness: 0.25 mm) or neat Li (lithium foil
 173 thickness: 0.25 mm) electrode as both working and counter/reference
 174 electrodes. A 25 μL portion of electrolyte was added to the cells via an
 175 Eppendorf pipet inside the glovebox. For the Coulombic efficiency
 176 test, a thin Li metal chip with a thickness of 50 μm was utilized as the
 177 working electrode with a LiF-OC-Li or neat Li electrodes as a
 178 counter/reference electrode. Electrochemical impedance spectroscopy
 179 (EIS) was collected by using an electrochemical workstation
 180 (CHI608E) over a frequency range from 100 kHz to 0.1 Hz, with
 181 the open circuit voltage as the perturbation voltage. Galvanostatic
 182 charge and discharge tests were carried out using a battery analyzer
 183 BST-8A (MTI).

3. RESULTS AND DISCUSSION

184 The procedure associated with the preparation of the LiF-OC-
 185 Li electrode is illustrated schematically in Figure 1. The
 186 procedure was described in detail in the Experimental Section.
 187 Briefly, PVDF was dissolved in NMP, and the OC was
 188 dispersed in this solution, which was drop-cast on polished
 189 copper foil. After drying, the OC-PVDF coated copper foil was
 190 mechanically compressed on a Li metal electrode. The copper
 191 foil was then peeled to produce a freestanding OC-PVDF-Li
 192 metal electrode, which was microwave processed under Ar to
 193 produce the LiF-OC-Li electrode.

194 The OC was synthesized following a previously reported
 195 hydrothermal method.⁵⁹ A synthetic scheme (Figure 2a)
 196 illustrates the process as described in the Experimental Section.
 197 The aggregated OC particles were observed by using high-
 198 resolution TEM (HRTEM) (Figure 2b). These OCs exhibit a
 199 hierarchical structure with ca. 200 nm spherical particles
 200 consisting of nanostructured carbon walls separated approx-
 201 imately 15 nm (inset in Figure 2b), which is consistent with
 202 expectations for the onionlike multilayered vesicle structure.⁵⁹
 203 The spherical particles were derived from the vesicular
 204 structure formed by the self-assembly of the Pluronic surfactant
 205 around the trimethylbenzene (TMB) during hydrothermal
 206 reaction. This self-assembled structure was confirmed by small-
 207 angle X-ray scattering (SAXS) (Figure 2c). The scattering
 208 pattern exhibits a strong maximum at $q^* = 0.0378 \text{ \AA}^{-1}$ and a
 209 weak shoulder at $q \triangleq 0.0756 \text{ \AA}^{-1}$ ($\triangleq 2q^*$ as expected for a
 210 lamellar structure). The spacing associated with the primary
 211 peak (16.6 nm) is consistent with the d -spacing determined
 212 from HRTEM. Additional information about the pore
 213 structure was elucidated from the nitrogen adsorption/
 214 desorption isotherms (Supporting Information, SI, Figure
 215 S1a). The adsorption isotherm exhibits rapid adsorption at low
 216 P/P_0 (<0.10) associated with micropores templated by the
 217 etched silica, increased adsorption around $P/P_0 = 0.6$
 218 associated with the mesopores, and further increased


Figure 2. (a) Schematic illustrating the steps involved in the preparation of the OC. Resol, phenolic resin; TEOS, tetraethyl orthosilicate; F127, Pluronic F127; TMB, trimethylbenzene. Structural characterization of the OC material by (b) TEM and (c) SAXS. The inset in part b is HRTEM that illustrates the nanostructure with a common spacing of around 15 nm. This size is consistent with the d -spacing obtained from the primary peak in the SAXS of the OC in part c.

adsorption at $P/P_0 > 0.95$ associated with larger pores formed by the TMB.⁵⁹ The hysteresis loop between adsorption and desorption isotherms is consistent with the mesoporous structure. From the adsorption isotherm, the pore size distribution (SI, Figure S1b) was obtained that revealed a large number of small ($<2 \text{ nm}$) micropores, a relatively narrow mesopore size centered at approximately 10 nm, and the presence of much larger pores. Due to the instrumental sensitivity, the distribution of large pores could not be accurately quantified from N_2 adsorption measurements. The chemical composition of OC was confirmed by XPS where only C and O peaks are observed (SI, Figure S2).

The OC-PVDF film was transferred to the lithium metal film and treated with microwaves as described in the Experimental Section. Figure 3a1,a2 illustrates the difference in the optical appearance of the modified electrode (LiF-OC-Li) and the neat Li electrode, respectively. The optical appearance of OC-PVDF covered lithium metal film did not change appreciably after the microwave treatment. The black color of the LiF-OC-Li therefore was derived from the OC. However, as shown in Figure 3a3, the sample was glowing during the microwave heating. Lithium metal film used in this experiment is a good conductor and does not possess a large surface area; therefore, it is regarded as a bulk metal for the microwave used in the experiments. During the microwave treatment, the bulk metal had a high degree of microwave reflection, accompanied by the induction of surface eddy currents, leading to the arch discharge.^{67,68} The bright light emitted from the sealed reactor confirmed such a process. Both PVDF and OC can efficiently

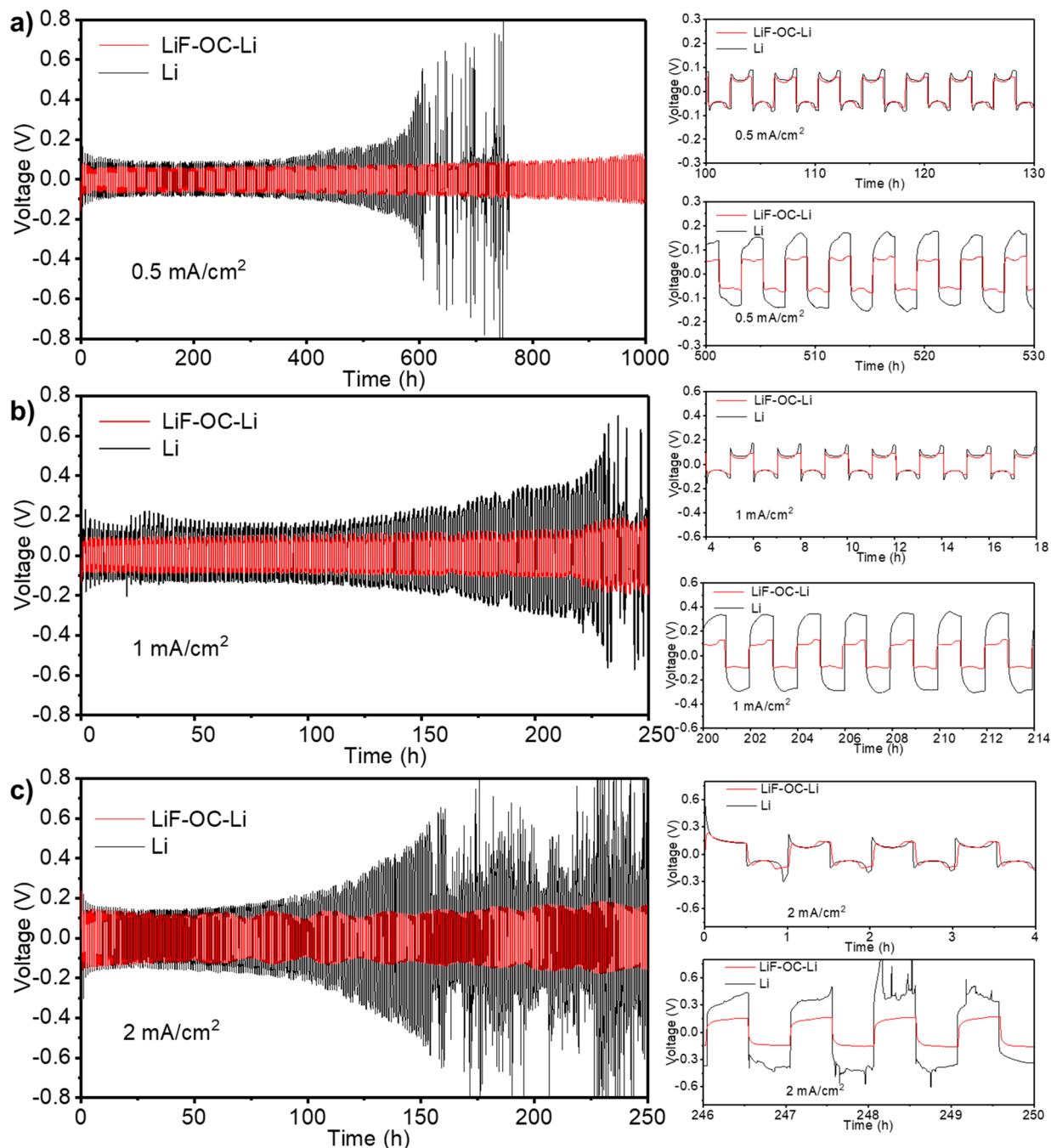

Figure 3. Structural and chemical characterization of the LiF-OC-Li electrode. (a) Optical micrographs of (a1) LiF-OC-Li electrode after microwave treatment, (a2) neat Li chip, and (a3) OC-PVDF film covered Li in the vial during microwave exposure. (b) SEM image of the cross-section of the LiF-OC-Li electrode. The inset shows the thickness of the OC layer ($\approx 30 \mu\text{m}$). (c) SEM image of the surface of the LiF-OC-Li electrode with a higher magnification image shown in the inset. High-resolution XPS spectra of (d) the OC-PVDF film covered Li electrode before the microwave process (F 1s spectrum) and the LiF-OC-Li electrode after microwave treatment for (e) Li 1s and (f) F 1s spectra.

Figure 4. Stability study of the LiF-OC-Li electrode and neat Li metal electrode with impedance spectroscopy. Nyquist plots for (a) LiF-OC-Li and (b) neat Li electrodes at three different resting times demonstrate the influence of the modified layer on the stability of the electrode in 1 M LiPF₆ in EC and DEC (1:1 v/v).

absorb microwaves due to the high dielectric loss tangent of carbon material and polar PVDF molecules.^{68,69} As OC also possesses a high surface area, which will benefit the absorption of microwave energy, it is believed that OC produced heat to decompose PVDF during the microwave treatment as PVDF alone coating on the Li does not decompose under the same microwave conditions. After the microwave treatment, the cross-section of the LiF-OC-Li electrode was examined. As shown in Figure 3b, this modified layer is approximately 30 μm thick and conformally coated on the surface of lithium metal film. The surface morphology of the LiF-OC-Li electrode was studied by SEM imaging (Figure 3c). The surface particulate morphology is consistent with prior characterization of OC alone,⁶⁵ suggesting that the morphology of mesoporous OC remained after the microwave treatment. To understand the chemical changes, X-ray photoelectron spectroscopy (XPS) was utilized to characterize the surface before and after the microwave treatment. Prior to microwave exposure, the surface was predominately covered by carbon with no Li signals (SI, Figure S3a). From the high-resolution scan of F 1s binding

energy (Figure 3d), the fluorine can be attributed to the PVDF component with a peak at 687.7 eV.⁷⁰ After the microwave reaction, Li can clearly be observed in the survey scan (SI, Figure S3b). The bonding state of the Li was examined in detail using the Li 1s spectrum presented in Figure 3e. Besides the expected Li–O (54.9 eV, green band) and Li–Li (54.3 eV, orange band),^{48,71} a clear peak at 55.7 eV (red band) was observed from the deconvoluted spectrum. This peak at 55.7 eV is attributed to Li–F, indicating the formation of LiF during the microwave treatment (Figure 3e).⁶⁴ This change of F atom bonding states from PVDF to LiF was also witnessed by the shift of peak position in the F 1s spectra from 687.7 to 685.5 eV (Figure 3f), which has been widely reported as the F–Li bond.^{47,64} Based on the characterization results, the suggested mechanism is an extremely fast microwave heating process (10 s) close to the upper layer of the lithium film, where OC materials were quickly heated up and decomposed PVDF. The heat flux also melted the lithium, and capillarity drove the Li into the OC layer, reacting with decomposed PVDF and forming a Li composite with a significant amount of LiF.

Figure 5. Galvanostatic cycling performance of the LiF-OC-Li and neat Li electrode. Voltage profiles of stripping and plating in a symmetric cell at current densities of (a) 0.5 mA/cm^2 , (b) 1 mA/cm^2 , and (c) 2 mA/cm^2 . The figures on the right show detailed voltage profiles as indicated.

The electrochemical stability tests of the LiF-OC-Li and neat Li metal electrodes were performed using a symmetric coin cell with 1 M lithium hexafluorophosphate (LiPF_6) solution in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 v/v) as the electrolyte. The evolution in impedance at the open circuit potential over time provides one key measure of stable passivation layer formation on the electrode/electrolyte interfaces. As shown in Figure 4, the initial impedance of the LiF-OC-Li electrode was only 2.8Ω , which is 2 orders of magnitude smaller than that for the fresh neat Li cell. This result suggested that the LiF-OC surface modification improved charge transfer on the interface between the bulk electrode and bulky electrolyte. More

strikingly, the impedance of the LiF-OC-Li only increased slightly as the cell rested. A stable charge transfer resistance was obtained after 1 h of resting without further changes in the following 30 h (Figure 4a). In comparison, the charge transfer resistance of the neat Li electrode increased monotonically (Figure 4b). The LiF-OC acts to protect the Li electrode from side reactions, while a series of side reactions occurred on the neat lithium electrode to form increasing interlayers on the surface of the lithium metal surface.

To confirm the importance of the microwave derived LiF, two control samples were examined. As the OC is highly conductive and porous, this may provide improved electron transport and a tortuous diffusion path that could be beneficial

314 to the performance. Coating the lithium foil with only OC and
 315 treating with the same microwave process as the LiF-OC-Li.
 316 electrode generates a porous carbon modified surface (OC-Li).
 317 **Figure S4** illustrates the electrochemical impedance spectra of
 318 this electrode for the fresh electrode and after aging in the
 319 electrolyte solution for 3 and 30 h. As expected due to the
 320 good conductivity of the OC, the initial impedance is smaller
 321 for the OC-Li than the neat Li electrode (**Figure 4b**), but still
 322 larger than the LiF-OC-Li (**Figure 4a**). The lower impedance
 323 with the LiF-OC-Li is indicative of the improved charge
 324 transport from the LiF between the OC particles on the Li foil.
 325 More importantly, the impedance for the OC-Li increases
 326 dramatically with the aging in the electrolyte, similar to the
 327 neat Li electrode. This suggests that the LiF formed from the
 328 microwave-based decomposition of PVDF is critical to the
 329 stability of these modified electrodes. To illustrate that the
 330 microwave processing was important to achieve the stable
 331 electrode, the lithium electrode was coated with OC-PVDF
 332 without microwave treatment (OC-PVDF-Li). The OC-
 333 PVDF-Li has smaller impedance than the neat Li electrode
 334 (**Figure 4b**), but larger impedance than LiF-OC-Li (**Figure 4a**)
 335 and the OC-Li. The impedance for the OC-PVDF-Li also
 336 increases significantly during aging in the electrolyte, similar to
 337 the neat Li electrode. These results confirm that the *in situ*
 338 formed LiF containing layer acts as a stable SEI layer to protect
 339 the Li electrode.⁷²

340 Lithium plating/stripping measurements were carried out to
 341 evaluate the performance of the LiF-OC-Li electrode in
 342 comparison to the neat Li electrode. Dendrite growth during
 343 Li deposition is known to consume the active Li source while
 344 also decomposing the electrolyte continuously to form an
 345 unstable SEI layer. These effects lead to increased over-
 346 potential and battery impedance.⁷³ Here, examination of the
 347 overpotential during plating and stripping of a fixed quantity of
 348 Li (1 mA h/cm²) at constant current density in symmetric cells
 349 was used to evaluate the stability of the electrode/electrolyte
 350 interfaces. As can be observed in **Figure 5**, the LiF-OC-Li
 351 electrode exhibited a smaller overpotential and less variation in
 352 the overpotential during long galvanostatic cycling when
 353 compared with the neat lithium electrode. At a current density
 354 of 0.5 mA/cm², the overpotential of the LiF-OC-Li electrode
 355 was initially stable around 60 mV and increased to
 356 approximately 95 mV after 1000 h of stripping/plating. In
 357 contrast, the neat Li electrode exhibited a larger overpotential
 358 initially (160 mV) and increased beyond an acceptable value
 359 (550 mV) associated with a cycle life of approximately 600 h
 360 (**Figure 5a**). Similarly at a higher current density of 1 mA/cm²,
 361 larger voltage fluctuations and higher overpotentials were also
 362 observed for the neat Li electrode system with respect to the
 363 LiF-OC-Li electrode (**Figure 5b**). Further increasing the
 364 current density to 2 mA/cm² led to some oscillatory features
 365 for the LiF-OC-Li electrode (**Figure 5c**), but the overpotential
 366 after 250 h remained similar to the initial potential. The neat Li
 367 electrode, however, lost stability after 100 h of stripping/
 368 plating.

369 The electrochemical impedance spectra of neat Li and LiF-
 370 OC-Li were collected after cycles (**Figure S5**). Those data
 371 demonstrate that the impedance for the electrode with the LiF-
 372 OC-Li remains small after 20 cycles. There are several
 373 mechanisms at play, responsible for the increased stability in
 374 the overpotential made evident by the lack of large voltage
 375 fluctuations for the LiF-OC-Li electrodes. The conductive,
 376 nanostructured OC hosted LiF-rich composites provide a

377 stable interface and fast Li-ion diffusion. Previous work have
 378 also reported the increased surface conductivity associated with
 379 the LiF containing layers. There could be secondary effects
 380 from the increased tortuosity on the surface of the lithium
 381 electrode modified by OC particles to promote uniform
 382 deposition of Li. The porous carbon structure may help to
 383 prevent the formation of a large dendritic crystal, leading to a
 384 smoother lithium layer deposition during the cycling tests.⁷⁴

385 These differences were also manifested in the changes of
 386 surface morphology of the electrodes after 250 h of cycling at 1
 387 mA/cm² as shown in **Figure 6**. The morphology of the LiF-
 388

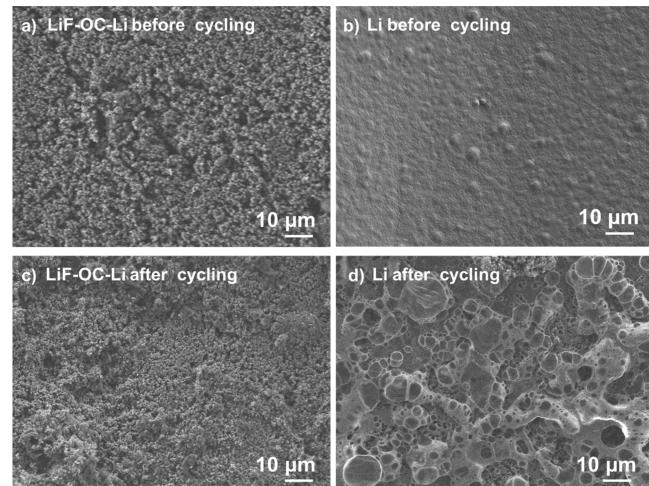


Figure 6. Comparison of the surface morphology of the (a) fresh LiF-OC-Li, (b) fresh Li electrode, (c) LiF-OC-Li, and (d) neat Li after a 250 h stripping/plating test at a current density of 1 mA/cm².

OC-Li electrode surface after cycling (**Figure 6a**) is very similar to the fresh electrode (**Figure 6c**), whereas the neat Li electrode evolved from a relatively featureless surface morphology (**Figure 6b**) to "mossy" Li (**Figure 6d**).²⁰ The cross-section images of the LiF-OC-Li electrode are shown in the SI. As shown in **Figure S6**, the thickness of the LiF-OC layer was not significantly changed as compared with its initial state (**Figure 3b**). However, the cross-section image of the neat lithium electrode showed a rough surface morphology, and the edge of the top surface layer was unclear in the micrograph, indicating the nonuniform structure formed on the surface of the neat Li electrode. The comparison of the galvanostatic cycling results of symmetric LiF-OC-Li/LiF-OC-Li cells and neat Li/Li cells demonstrated the effective promotion of cycle life of the lithium metal anode by LiF-OC coating, revealing that the fast lithium dendrite growth and formation of "dead lithium" were effectively mitigated.

To further quantitatively evaluate the LiF-OC-Li electrode, a Coulombic efficiency test was performed using a thin Li chip with a thickness of 50 μm as the working electrode. The LiF-OC-Li and neat Li were used as counter electrodes. The detailed cell setup and Coulombic efficiency (CE) calculation are described in the SI. A fixed amount of Li (0.5 mA h/cm²) was stripped and plated at a current density of 4 mA/cm². The thin Li chips were assumed to be consumed when the overpotential exceeded 1.2 V, as shown in **Figure S7**. The Coulombic efficiency of the LiF-OC-Li electrode was determined to be 96.5%, while the neat Li electrode was determined with a Coulombic efficiency of 95.9%. The small

417 improvement in CE is demonstrative of the improvement from
418 the LiF-OC protection layer. It should be noted that the thin
419 lithium electrode does not have a LiF-OC protection layer, but
420 the CE calculation will include the efficiency loss of this thin Li
421 electrode; thus, the increased CE with the LiF-OC-Li electrode
422 is a lower bound. The similarity in voltage profiles (SI, Figure
423 S7) in comparison to the profiles from symmetric cells (Figure
424 S5) suggests that the performance for the CE measurement is
425 strongly influenced by the thin Li chip.

4. CONCLUSIONS

426 In this work, an efficient and simple method was developed to
427 fabricate modified Li electrodes (LiF-OC-Li) using microwave
428 treatment to generate LiF from PVDF. Due to the selective
429 heating of microwaves, the mesoporous onionlike carbon was
430 rapidly heated to decompose the surrounding PVDF. Addi-
431 tionally, this heat provided sufficient energy to locally melt Li,
432 and capillary forces drove the lithium metal to the interface.
433 The Li reacted with the decomposition products from PVDF
434 to form a LiF-rich passivation layer on the lithium metal
435 electrode. The curved carbon layers facilitated the ion
436 transport and minimized local potential variations, which in
437 turn reduced the potential for fast dendrite growth.
438 Concurrently, the LiF-rich surface layer provided high
439 electrochemical stability and prevented erosion of the lithium
440 anode through SEI formation. This enhanced stability of the
441 modified Li was demonstrated by the impedance evolution,
442 stable stripping/plating cycles in symmetric cells, as well as
443 improved Coulombic efficiency over neat Li foil. With a
444 stripping/plating capacity of 1 mA h/cm², the LiF-OC-Li
445 electrode can be cycled over 1000 h at a current density of 0.5
446 mA/cm². As a comparison, the neat Li electrode failed after
447 ~600 h. Even under higher current densities of 1 and 2 mA/
448 cm², the LiF-OC-Li electrode can be cycled over 250 h. The
449 neat Li electrode lost stability at ~150 and ~100 h,
450 respectively. This methodology provides a novel, scalable
451 concept for the fabrication of a stabilized lithium metal anode
452 for rechargeable batteries.

453 ■ ASSOCIATED CONTENT

454 ■ Supporting Information

455 The Supporting Information is available free of charge on the
456 ACS Publications website at DOI: [10.1021/acsaelm.9b01416](https://doi.org/10.1021/acsaelm.9b01416).

457 Experimental detail, computational detail, supporting
458 analysis of BET, XPS, and a battery test (PDF)

459 ■ AUTHOR INFORMATION

460 Corresponding Authors

461 *E-mail: bdv5051@psu.edu.

462 *E-mail: yu.zhu@uakron.edu.

463 ORCID

464 Bryan D. Vogt: [0000-0003-1916-7145](https://orcid.org/0000-0003-1916-7145)

465 Yu Zhu: [0000-0002-2201-9066](https://orcid.org/0000-0002-2201-9066)

466 Present Address

467 ^{II}B.D.V.: Department of Chemical Engineering, The Pennsyl-
468 vania State University, University Park, PA 16802, USA

469 Author Contributions

470 [§]K.L. and Y.X. contributed equally to this work. All authors
471 have given approval to the final version of the manuscript.

472 Notes

473 The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

475 The authors are grateful for financial support from The
476 University of Akron. The work was partially supported by the
477 National Science Foundation (NSF) under Grants CBET-
478 1706681 and CBET-1510612. This work used the Complex
479 Materials Scattering (CMS/11-BM) beamline, operated by the
480 National Synchrotron Light Source II and the Center for
481 Functional Nanomaterials, which are U.S. Department of
482 Energy (DOE) Office of Science User Facilities operated for
483 the DOE Office of Science by Brookhaven National
484 Laboratory under Contract DE-SC0012704. 484

■ REFERENCES

(1) Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. *Science* **2011**, *334*, 928–935.

(2) Palacin, M. R.; de Gribert, A. Why Do Batteries Fail? *Science* **2016**, *351*, 1253292.

(3) Choi, J. W.; Aurbach, D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. *Nat. Rev. Mater.* **2016**, *1*, 16013.

(4) Evarts, E. C. Lithium Batteries: To the Limits of Lithium. *Nature* **2015**, *526*, S93–S95.

(5) Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. *Nature* **2001**, *414*, 359–367.

(6) Armand, M.; Tarascon, J. M. Building Better Batteries. *Nature* **2008**, *451*, 652–657.

(7) Guo, Y.; Li, H.; Zhai, T. Reviving Lithium–Metal Anodes for Next-Generation High-Energy Batteries. *Adv. Mater.* **2017**, *29*, 1700007.

(8) Lin, D.; Liu, Y.; Cui, Y. Reviving The Lithium Metal Anode for High-Energy Batteries. *Nat. Nanotechnol.* **2017**, *12*, 194–206.

(9) Chan, C. K.; Peng, H.; Liu, G.; McIlwraith, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. *Nat. Nanotechnol.* **2008**, *3*, 31–35.

(10) Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries. *Electrochem. Solid-State Lett.* **1999**, *2*, 547–549.

(11) Chan, C. K.; Zhang, X. F.; Cui, Y. High Capacity Li Ion Battery Anodes Using Ge Nanowires. *Nano Lett.* **2008**, *8*, 307–309.

(12) Poizot, P.; Laruelle, S.; Gruegeon, S.; Dupont, L.; Tarascon, J. M. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. *Nature* **2000**, *407*, 496–499.

(13) Chen, J.; Xu, L.; Li, W.; Gou, X. α -Fe₂O₃ Nanotubes in Gas Sensor and Lithium–Ion Battery Applications. *Adv. Mater.* **2005**, *17*, 516–517.

(14) Mahmood, N.; Zhang, C.; Hou, Y. Nickel Sulfide/Nitrogen-Doped Graphene Composites: Phase-Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. *Small* **2013**, *9*, 1321–1328.

(15) OttakamThotiyil, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. A Stable Cathode for The Aprotic Li–O₂ Battery. *Nat. Mater.* **2013**, *12*, 1050–1056.

(16) Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P. Cycling Li–O₂ Batteries via LiOH Formation and Decomposition. *Science* **2015**, *350*, 530–533.

(17) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O₂ and Li–S Batteries with High Energy Storage. *Nat. Mater.* **2012**, *11*, 19–29.

(18) Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. *Nano Lett.* **2011**, *11*, 2644–2647.

(19) Goodenough, J. B. Rechargeable Batteries: Challenges Old and New. *J. Solid State Electrochem.* **2012**, *16*, 2019–2029.

(20) Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; Meng, Y. S.; Subramanian, V. R.; Toney, M. F.; Viswanathan, V. V.; Whittingham, M. S. *Science* **2016**, *351*, 1253292.

540 M. S.; Xiao, J.; Xu, W.; Yang, J.; Yang, X.-Q.; Zhang, J.-G. Pathways 541 for Practical High-Energy Long-Cycling Lithium Metal Batteries. *Nat. 542 Energy* **2019**, *4*, 180–186.

543 (21) Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; 544 Zhang, Q. Dual-Phase Lithium Metal Anode Containing a 545 Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured 546 Graphene Framework for Lithium–Sulfur Batteries. *ACS Nano* **2015**, 547 *9*, 6373–6382.

548 (22) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe 549 Lithium Metal Anode in Rechargeable Batteries: A Review. *Chem. Rev.* 550 **2017**, *117*, 10403–10473.

551 (23) Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, 552 C.; Huang, J. Q.; Zhang, Q. Highly Stable Lithium Metal Batteries 553 Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous 554 Electrolytes. *Angew. Chem., Int. Ed.* **2018**, *57*, 5301–5305.

555 (24) Ren, X.; Zhang, Y.; Engelhard, M. H.; Li, Q.; Zhang, J. G.; Xu, 556 W. Guided Lithium Metal Deposition and Improved Lithium 557 Coulombic Efficiency through Synergistic Effects of LiAsF₆ and 558 Cyclic Carbonate Additives. *ACS Energy Lett.* **2018**, *3*, 14–19.

559 (25) Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; 560 Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. An Armored Mixed 561 Conductor Interphase on a Dendrite-Free Lithium-Metal Anode. *Adv. 562 Mater.* **2018**, *30*, 1804461.

563 (26) Lopez, C. M.; Vaughney, J. T.; Dees, D. W. Morphological 564 Transitions on Lithium Metal Anodes. *J. Electrochem. Soc.* **2009**, *156*, 565 A726–A729.

566 (27) Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; 567 Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. 568 A.; Bhattacharya, P.; Liu, J.; Xiao, J. Failure Mechanism for 569 Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. *Adv. 570 Energy Mater.* **2015**, *5*, 1400993.

571 (28) Zuo, T. T.; Yin, Y. X.; Wang, S. H.; Wang, P. F.; Yang, X.; Liu, 572 J.; Yang, C. P.; Guo, Y. G. Trapping Lithium into Hollow Silica 573 Microspheres with a Carbon Nanotube Core for Dendrite-Free 574 Lithium Metal Anodes. *Nano Lett.* **2018**, *18*, 297–301.

575 (29) Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; 576 Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar Lithium Metal Anodes. 577 *Angew. Chem., Int. Ed.* **2017**, *56*, 14207–14211.

578 (30) Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. 579 Uniform Lithium Nucleation/Growth Induced by Lightweight 580 Nitrogen-Doped Graphitic Carbon Foams for High-Performance 581 Lithium Metal Anodes. *Adv. Mater.* **2018**, *30*, 1706216.

582 (31) Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. 583 Suppression of Lithium Dendrite Growth Using Cross-Linked 584 Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach 585 for Practical Lithium-Metal Polymer Batteries. *J. Am. Chem. Soc.* **2014**, 586 *136*, 7395–7402.

587 (32) Tu, Z. Y.; Nath, P.; Lu, Y. Y.; Tikekar, M. D.; Archer, L. A. 588 Nanostructured Electrolytes for Stable Lithium Electrodeposition in 589 Secondary Batteries. *Acc. Chem. Res.* **2015**, *48*, 2947–2956.

590 (33) Ko, J.; Yoon, Y. S. Recent Progress in LiF Materials for Safe 591 Lithium Metal Anode of Rechargeable Batteries: Is LiF The Key to 592 Commercializing Li Metal Batteries? *Ceram. Int.* **2019**, *45*, 30–49.

593 (34) Jia, W.; Fan, C.; Wang, L.; Wang, Q.; Zhao, M.; Zhou, A.; Li, J. 594 Extremely Accessible Potassium Nitrate (KNO₃) as the Highly 595 Efficient Electrolyte Additive in Lithium Battery. *ACS Appl. Mater. 596 Interfaces* **2016**, *8*, 15399–15405.

597 (35) Wu, F.; Qian, J.; Chen, R.; Lu, J.; Li, L.; Wu, H.; Chen, J.; 598 Zhao, T.; Ye, Y.; Amine, K. An Effective Approach To Protect 599 Lithium Anode and Improve Cycle Performance for Li–S Batteries. 600 *ACS Appl. Mater. Interfaces* **2014**, *6*, 15542–15549.

601 (36) Xiang, H.; Shi, P.; Bhattacharya, P.; Chen, X.; Mei, D.; Bowden, 602 M. E.; Zheng, J.; Zhang, J.-G.; Xu, W. Enhanced Charging Capability 603 of Lithium Metal Batteries Based on Lithium Bis-(trifluoromethanesulfonyl)imide-lithium Bis(oxalato)borate Dual- 604 Salt Electrolytes. *J. Power Sources* **2016**, *318*, 170–177.

605 (37) Ye, H.; Yin, Y.-X.; Zhang, S.-F.; Shi, Y.; Liu, L.; Zeng, X.-X.; 606 Wen, R.; Guo, Y.-G.; Wan, L.-J. Synergism of Al-containing Solid 607 Electrolyte Interphase Layer and Al-based Colloidal Particles for 608 Stable Lithium Anode. *Nano Energy* **2017**, *36*, 411–417.

609 (38) Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; 610 Cui, Y. The Synergetic Effect of Lithium Polysulfide and Lithium 611 Nitrate to Prevent Lithium Dendrite Growth. *Nat. Commun.* **2015**, *6*, 612 7436.

613 (39) Zhao, C.-Z.; Cheng, X.-B.; Zhang, R.; Peng, H.-J.; Huang, J.-Q.; 614 Ran, R.; Huang, Z.-H.; Wei, F.; Zhang, Q. Li₂S₅ Based Ternary-Salt 615 Electrolyte for Robust Lithium Metal Anode. *Energy Storage Mater.* **2016**, *3*, 77–84.

616 (40) Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; 618 Zhang, Q. Lithium Metal Protection Through *In-Situ* Formed Solid 619 Electrolyte Interphase in Lithium-Sulfur Batteries: The Role of 620 Polysulfides on Lithium Anode. *J. Power Sources* **2016**, *327*, 212–220.

621 (41) Zu, C.; Dolocan, A.; Xiao, P.; Stauffer, S.; Henkelman, G.; 622 Manthiram, A. Breaking Down the Crystallinity: The Path for 623 Advanced Lithium Batteries. *Adv. Energy Mater.* **2016**, *6*, 1501933.

624 (42) Zu, C.; Manthiram, A. High-Performance Li–S Batteries with 625 an Ultra-lightweight MWCNT-Coated Separator. *J. Phys. Chem. Lett.* **2014**, *5*, 2522–2527.

626 (43) Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion 628 Conduction in Garnet-Type Li₇La₃Zr₂O₁₂. *Angew. Chem., Int. Ed.* **2007**, *46*, 7778–7781.

629 (44) Yan, X.; Li, Z.; Wen, Z.; Han, W. Li/Li₇La₃Zr₂O₁₂/LiFePO₄ 631 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. *J. 632 Phys. Chem. C* **2017**, *121*, 1431–1435.

633 (45) Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Solid-State 634 Polymer Electrolytes with In-Built Fast Interfacial Transport for 635 Secondary Lithium Batteries. *Nat. Energy* **2019**, *4*, 365–373.

636 (46) Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; 637 Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; Mallouk, T. E.; Wang, D. 638 Polymer-Inorganic Solid-Electrolyte Interphase for Stable Lithium 639 Metal Batteries Under Lean Electrolyte Conditions. *Nat. Mater.* **2019**, *18*, 384–389.

640 (47) Li, S.; Chen, Y.-M.; Liang, W.; Shao, Y.; Liu, K.; Nikolov, Z.; 642 Zhu, Y. A Superionic Conductive, Electrochemically Stable Dual-Salt 643 Polymer Electrolyte. *Joule* **2018**, *2*, 1838–1856.

644 (48) Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; 645 Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; Liu, N.; Adams, B. D.; Ma, C.; 646 Liu, J.; Zhang, J.-G.; Xu, W. Stable Cycling of High-Voltage Lithium 647 Metal Batteries in Ether Electrolytes. *Nat. Energy* **2018**, *3*, 739–746.

648 (49) Yamada, Y.; Yamada, A. Review—Superconcentrated Electro- 649 lytes for Lithium Batteries. *J. Electrochem. Soc.* **2015**, *162*, A2406– 650 A2423.

651 (50) Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J. 652 Research Progress towards Understanding the Unique Interfaces 653 between Concentrated Electrolytes and Electrodes for Energy Storage 654 Applications. *Adv. Sci.* **2017**, *4*, 1700032.

655 (51) Ma, Q.; Fang, Z.; Liu, P.; Ma, J.; Qi, X.; Feng, W.; Nie, J.; Hu, 656 Y.-S.; Li, H.; Huang, X.; Chen, L.; Zhou, Z. Improved Cycling 657 Stability of Lithium–Metal Anode with Concentrated Electrolytes 658 Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. 659 *ChemElectroChem* **2016**, *3*, 531–536.

660 (52) Zhamu, A.; Chen, G.; Liu, C.; Neff, D.; Fang, Q.; Yu, Z.; Xiong, 661 W.; Wang, Y.; Wang, X.; Jang, B. Z. Reviving Rechargeable Lithium 662 Metal Batteries: Enabling Next-Generation High-Energy and High- 663 Power Cells. *Energy Environ. Sci.* **2012**, *5*, 5701–5707.

664 (53) Zhang, Y.-J.; Xia, X.-H.; Wang, D.-H.; Wang, X.-L.; Gu, C.-D.; 665 Tu, J.-P. Integrated Reduced Graphene Oxide Multilayer/Li 666 Composite Anode for Rechargeable Lithium Metal Batteries. *RSC 667 Adv.* **2016**, *6*, 11657–11664.

668 (54) Cheng, X.-B.; Hou, T.-Z.; Zhang, R.; Peng, H.-J.; Zhao, C.-Z.; 669 Huang, J.-Q.; Zhang, Q. Dendrite-Free Lithium Deposition Induced 670 by Uniformly Distributed Lithium Ions for Efficient Lithium Metal 671 Batteries. *Adv. Mater.* **2016**, *28*, 2888–2895.

672 (55) Raji, A.-R. O.; Salvatierra, R. V.; Kim, N. D.; Fan, X.; Li, Y.; 673 Silva, G. A. L.; Sha, J.; Tour, J. M. Lithium Batteries with Nearly 674 Maximum Metal Storage. *ACS Nano* **2017**, *11*, 6362–6369.

675

676 (56) Hou, T.-Z.; Chen, X.; Peng, H.-J.; Huang, J.-Q.; Li, B.-Q.;
677 Zhang, Q.; Li, B. Design Principles for Heteroatom-Doped
678 Nanocarbon to Achieve Strong Anchoring of Polysulfides for
679 Lithium–Sulfur Batteries. *Small* **2016**, *12*, 3283–3291.

680 (57) Kang, H.-K.; Woo, S.-G.; Kim, J.-H.; Lee, S.-R.; Kim, Y.-J.
681 Conductive Porous Carbon Film as a Lithium Metal Storage Medium.
682 *Electrochim. Acta* **2015**, *176*, 172–178.

683 (58) Yan, Z.; Wang, E.; Jiang, L.; Sun, G. Integrated Reduced
684 Graphene Oxide Multilayer/Li Composite Anode for Rechargeable
685 Lithium Metal Batteries. *RSC Adv.* **2015**, *5*, 83781–83787.

686 (59) Chi, S.-S.; Liu, Y.; Song, W.-L.; Fan, L.-Z.; Zhang, Q. Prestoring
687 Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium
688 Metal Anode. *Adv. Funct. Mater.* **2017**, *27*, 1700348.

689 (60) Zhang, X.; Wang, W.; Wang, A.; Huang, Y.; Yuan, K.; Yu, Z.;
690 Qiu, J.; Yang, Y. Improved Cycle Stability and High Security of Li-B
691 Alloy Anode for Lithium–Sulfur Battery. *J. Mater. Chem. A* **2014**, *2*,
692 11660–11665.

693 (61) Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Wei, F.; Zhang, Q.
694 Dendrite-Free Nanostructured Anode: Entrapment of Lithium in a
695 3D Fibrous Matrix for Ultra-Stable Lithium–Sulfur Batteries. *Small*
696 **2014**, *10*, 4257–4263.

697 (62) Peng, Z.; Zhao, N.; Zhang, Z.; Wan, H.; Lin, H.; Liu, M.; Shen,
698 C.; He, H.; Guo, X.; Zhang, J.-G.; Wang, D. Stabilizing Li/Electrolyte
699 Interface with a Transplantable Protective Layer Based on Nanoscale
700 LiF Domains. *Nano Energy* **2017**, *39*, 662–672.

701 (63) Xie, J.; Liao, L.; Gong, Y.; Li, Y.; Shi, F.; Pei, A.; Sun, J.; Zhang,
702 R.; Kong, B.; Subbaraman, R.; Christensen, J.; Cui, Y. Stitching h-BN
703 by Atomic Layer Deposition of LiF as a Stable Interface for Lithium
704 Metal Anode. *Sci. Adv.* **2017**, *3*, No. eaao3170.

705 (64) Zhao, J.; Liao, L.; Shi, F.; Lei, T.; Chen, G.; Pei, A.; Sun, J.;
706 Yan, K.; Zhou, G.; Xie, J.; Liu, C.; Li, Y.; Liang, Z.; Bao, Z.; Cui, Y.
707 Surface Fluorination of Reactive Battery Anode Materials for
708 Enhanced Stability. *J. Am. Chem. Soc.* **2017**, *139*, 11550–11558.

709 (65) Gu, D.; Bongard, H.; Deng, Y. H.; Feng, D.; Wu, Z. X.; Fang,
710 Y.; Mao, J. J.; Tu, B.; Schuth, F.; Zhao, D. Y. An Aqueous Emulsion
711 Route to Synthesize Mesoporous Carbon Vesicles and Their
712 Nanocomposites. *Adv. Mater.* **2010**, *22*, 833–837.

713 (66) Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu,
714 Z.; Chen, Z.; Wan, Y. A.; Stein, Y.; Zhao, D. A Family of Highly
715 Ordered Mesoporous Polymer Resin and Carbon Structures from
716 Organic–Organic Self-Assembly. *Chem. Mater.* **2006**, *18*, 4447–4464.

717 (67) Yoshikawa, N. Fundamentals and Applications of Microwave
718 Heating of Metals. *J. Microw. Power and Electromagn. Energy* **2010**, *44*,
719 4–13.

720 (68) Menéndez, J. A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.;
721 Zubizarreta, L.; Calvo, E. G.; Bermúdez, J. M. Microwave Heating
722 Processes Involving Carbon Materials. *Fuel Process. Technol.* **2010**, *91*,
723 1–8.

724 (69) Meng, X.-M.; Zhang, X.-J.; Lu, C.; Pan, Y.-F.; Wang, G.-S.
725 Enhanced Absorbing Properties of Three-Phase Composites Based on
726 a Thermoplastic-Ceramic Matrix (BaTiO_3 + PVDF) and Carbon
727 Black Nanoparticles. *J. Mater. Chem. A* **2014**, *2*, 18725–18730.

728 (70) Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The
729 Solid Electrolyte Interphase a Key Parameter of The High
730 Performance of Sb in Sodium-Ion Batteries: Comparative X-ray
731 Photoelectron Spectroscopy Study of Sb/Na-Ion and Sb/Li-Ion
732 Batteries. *J. Power Sources* **2015**, *273*, 14–24.

733 (71) Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C.;
734 Santhanagopalan, S.; Lee, S.-H.; Teeter, G. Operando X-Ray
735 Photoelectron Spectroscopy of Solid Electrolyte Interphase For-
736 mation and Evolution in $\text{Li}_2\text{S}-\text{P}_2\text{S}_5$ solid-state electrolytes. *Nat. Commun.* **2018**, *9*, 2490.

738 (72) Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y.
739 Conformal Lithium Fluoride Protection Layer on Three-Dimensional
740 Lithium by Nonhazardous Gaseous Reagent Freon. *Nano Lett.* **2017**,
741 *17*, 3731–3737.

742 (73) Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe
743 Lithium Metal Anode in Rechargeable Batteries: A Review. *Chem. Rev.*
744 **2017**, *117*, 10403–10473.

(74) Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J. Stable 745
Li Plating/Stripping Electrochemistry Realized by a Hybrid Li 746
Reservoir in Spherical Carbon Granules with 3D Conducting 747
Skeletons. *J. Am. Chem. Soc.* **2017**, *139*, 5916–5922. 748