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Abstract
An augmented metric space (X, dX , fX) is a metric space (X, dX) equipped with a function fX :
X → R. It arises commonly in practice, e.g, a point cloud X in Rd where each point x ∈ X has a
density function value fX(x) associated to it. Such an augmented metric space naturally gives rise
to a 2-parameter filtration. However, the resulting 2-parameter persistence module could still be of
wild representation type, and may not have simple indecomposables.

In this paper, motivated by the elder-rule for the zeroth homology of a 1-parameter filtration,
we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode the zeroth
homology of the 2-parameter filtration induced by a finite augmented metric space. Specifically,
given a finite (X, dX , fX), its elder-rule-staircode consists of n = |X| number of staircase-like blocks
in the plane. We show that the fibered barcode, the fibered merge tree, and the graded Betti
numbers associated to the zeroth homology of the 2-parameter filtration induced by (X, dX , fX) can
all be efficiently computed once the elder-rule-staircode is given. Furthermore, for certain special
cases, this staircode corresponds exactly to the set of indecomposables of the zeroth homology of
the 2-parameter filtration. Finally, we develop and implement an efficient algorithm to compute the
elder-rule-staircode in O(n2 log n) time, which can be improved to O(n2α(n)) if X is from a fixed
dimensional Euclidean space Rd, where α(n) is the inverse Ackermann function.
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1 Introduction

An augmented metric space (X, dX , fX) is a metric space (X, dX) equipped with a function
fX : X → R. It arises commonly in practice: e.g, a point cloud X in Rd where each point
has a density function value fX associated to it. Studying the hierarchical clustering induced
in this setting has attracted much attention recently [2, 8]. Another example is where X = V

equals to the vertex set of a graph G = (V,E), dX represents certain graph-induced metric
on X (e.g, the diffusion distance induced by G), and fX is some descriptor function (e.g,
discrete Ricci curvature) at graph nodes. This graph setting occurs often in practice for
graph analysis applications, where G can be viewed as a skeleton of a hidden domain. When
summarizing or characterizing G, one wishes to take into consideration both the metric
structure of this domain and node attributes. Given that persistence-based summaries from
only the edge weights or from only node attributes have already shown promise in graph
classification (e.g, [5, 9, 18, 30]), it would be highly desirable to incorporate (potentially
more informative) summaries encoding both types of information to tackle such tasks. In
brief, we wish to develop topological invariants induced from such augmented metric spaces.

On the other hand, an augmented metric space naturally gives rise to a 2-parameter
filtration (by filtering both via fX and via distance dX ; see Definition 4). However, while a
standard (1-parameter) filtration and its induced persistence module has persistence diagram
as a complete discrete invariant, multi-parameter persistence modules do not have such
complete discrete invariant [6, 13]. The 2-parameter persistence module induced from an
augmented metric space may still be of wild representation type, and may not have simple
indecomposables [2]. Several recent work instead consider informative (but not necessarily
complete) invariants for multiparameter persistence modules [15, 19, 24, 26]. In particular,
RIVET [24] provides an interactive visualization of the barcodes of 1-dimensional slices of an
input 2-parameter persistence module M , called the fibered barcode. This interactivity uses
the graded Betti numbers of M , another invariant for the 2-parameter persistence module.

New work. We propose a barcode-like summary, called the elder-rule-staircode, as a way
to encode the zeroth homology of the 2-parameter filtration induced by a finite augmented
metric space. Specifically, given a finite (X, dX , fX), its elder-rule-staircode consists of
n = |X| number of staircase-like blocks of O(n) descriptive complexity in the plane. The
development of the elder-rule-staircode is motivated by the elder-rule behind the construction
of persistence pairing for a 1-parameter filtration [16]. For the 1-parameter case, barcodes [31]
can be obtained by the decomposition of persistence modules in the realm of commutative
algebra, or equivalently, by applying the elder-rule which is flavored with combinatorics or
order theory. As we describe in Section 4, our elder-rule-staircodes are obtained by adapting
the elder-rule for treegrams arisen from 1-parameter filtration.

Interestingly, we show that our elder-rule-staircode encodes much of topological informa-
tion of the 2-parameter filtration induced by (X, dX , fX). In particular, the fibered barcodes,
the fibered treegrams, and the graded Betti numbers associated to the zeroth homology of
the 2-parameter filtration induced by (X, dX , fX) can all be efficiently computed from the
elder-rule-staircodes (see Theorems 8, 19 and 23). Furthermore, for certain special cases,
these staircodes correspond exactly to the set of indecomposables of the zeroth order
2-parameter persistence module induced by (X, dX , fX); see Theorem 17.

Finally, in Section 6, we show that the elder-rule-staircode can be computed in O(n2 log n)
time for a finite augmented metric space (X, dX , fX) where n = |X|, and O(n2α(n)) time if X
is from a fixed dimensional Euclidean space and dX is Euclidean distance. We have software
to compute elder-rule-staircodes and to explore / retrieve information such as fibered barcodes
interactively, which is available at https://github.com/Chen-Cai-OSU/ER-staircode.

https://github.com/Chen-Cai-OSU/ER-staircode
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More on related work. The elder-rule is an underlying principle for extracting the persist-
ence diagram from a persistence module induced by a nested family of simplicial complexes [16,
Chapter 7]. Recently this rule has come into the spotlight again for generalizing persistence
diagrams [19, 26, 27] and for addressing inverse problems in TDA [14].

The software RIVET and work of [25] can also be used to recover fibered barcodes and
bigraded Betti numbers. However, for the special case of zeroth 2-parameter persistence
modules induced from augmented metric spaces, our elder-rule-staircodes are simpler and more
efficient to achieve these goals: In particular, given an augmented metric space containing
n points, the algorithm of [25] computes the zeroth bigraded Betti numbers in Ω(n3) time,
while it takes O(n2 log n) time using elder-rule-staircode via Theorem 24. For zeroth fibered
barcodes, RIVET takes O(n8) time to compute a data structure of size O(n6) so as to support
efficient query time of O(log n+ |BL|) where |BL| is the size of the fibered barcode BL for a
query line L of positive slope. Our algorithm computes elder-rule-staircode of size O(n2) in
O(n2 log n) time, after which BL can be computed in O(|BL| log n) time for any query line L.
See the full version of this paper [4] for more detailed comparison. However, it is important
to note that RIVET allows much broader inputs and can work beyond zeroth homology.

2 Persistence modules and their decompositions

First we briefly review the definition of persistence modules. Let P be a poset. We regard
P as the category that has elements of P as objects. Also, for any a,b ∈ P, there exists a
unique morphism a → b if and only if a ≤ b. For d ∈ N, let Zd be the set of d-tuples of
integers equipped with the partial order defined as (a1, a2, . . . , ad) ≤ (b1, b2, . . . , bd) if and
only if ai ≤ bi for each i = 1, 2, . . . , d. The poset structure on Rd is defined in the same way.

We fix a certain field F and every vector space in this paper is over F. Let Vec denote
the category of finite dimensional vector spaces over F.

A (P-indexed) persistence module is a functor M : P → Vec. In other words, to each
a ∈ P, a vector space M(a) is associated, and to each pair a ≤ b in P, a linear map
ϕM (a,b) : M(a)→M(b) is associated. When P = Rd or Zd, M is said to be a d-parameter
persistence module. A morphism between M,N : P → Vec is a natural transformation
f : M → N between M and N . That is, f is a collection {fa}a∈P of linear maps such that
for every pair a ≤ b in P, the following diagram commutes:

M(a) M(b)

N(a) N(b).

ϕM (a,b)

fa fb

ϕN (a,b)

Two persistence modules M and N are isomorphic, denoted by M ∼= N , if there exists a
natural transformation {fa}a∈P from M to N where each fa is an isomorphism.

We now review the standard definition of barcodes, following the notations from [3].

I Definition 1 (Intervals). Let P be a poset. An interval J of P is a subset J ⊂ P such that:
(1) J is non-empty. (2) If a,b ∈ J and a ≤ c ≤ b, then c ∈ J . (3) For any a,b ∈ J ,
there is a sequence a = a0,a1, · · · ,al = b of elements of J with ai and ai+1 comparable for
0 ≤ i ≤ l − 1.

For J an interval of P, the interval module IJ : P→ Vec is defined as

IJ (a) =
{
F if a ∈ J ,
0 otherwise,

ϕIJ (a,b) =
{

idF if a,b ∈ J , a ≤ b,
0 otherwise.

SoCG 2020
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Recall that a multiset is a collection in which elements may occur more than once.

I Definition 2 (Interval decomposability and barcodes). A functor M : P→ Vec is interval
decomposable if there exists a multiset barc(M) of intervals (Definition 1) of P such that
M ∼=

⊕
J∈barc(M) I

J . We call barc(M) the barcode of M.

By the theorem of Azumaya-Krull-Remak-Schmidt [1], such a decomposition is unique up
to a permutation of the terms in the direct sum. Therefore, the multiset barc(M) is unique if
M is interval decomposable. For d = 1, any M : Rd (or Zd) → Vec is interval decomposable
and thus barc(M) exists. However, for d ≥ 2, M may not be interval decomposable.

3 Elder-rule-staircodes for augmented metric spaces

Rips bifiltration for an aug-MS. Let (X, dX) be a metric space. For ε ∈ R, the Rips
complex Rε(X, dX) is the abstract simplicial complex defined as

Rε(X, dX) = {A ⊆ X : for all x, x′ ∈ A, dX(x, x′) ≤ ε}.

Let Simp be the category of abstract simplicial complexes and simplicial maps. The Rips
filtration is the functor R•(X, dX) : R→ Simp defined as

ε 7→ Rε(X, dX), and ε ≤ ε′ 7→ Rε(X, dX) ↪→ Rε′(X, dX).

I Definition 3 (Augmented metric spaces). Let (X, dX) be a metric space and fX : X → R a
function. We call the triple X = (X, dX , fX) an augmented metric space (abbrev. aug-MS).

We say that X is injective if fX : X → R is an injective function.

Throughout this paper, every (augmented) metric space will be assumed to be finite. Let
X = (X, dX , fX) be an aug-MS. For σ ∈ R, let Xσ denote the sublevel set f−1

X (−∞, σ] ⊆ X.
Let (Xσ, dX) denote the restriction of the metric space (X, dX) to the subset Xσ ⊆ X.
Similarly, (Xσ, dX , fX) is the aug-MS obtained by restricting dX to Xσ ×Xσ and fX to Xσ.
The following 2-parameter filtration is considered in [2, 8].

I Definition 4 (Rips bifiltration of an aug-MS). Let X = (X, dX , fX) be an aug-MS. We
define the Rips bifiltration Rbi

• (X ) : R2 → Simp of X as (ε, σ) 7→ Rε(Xσ, dX).

Applying the k-th homology functor to the Rips bifiltration Rbi
• (X ), we have the persist-

ence module M := Hk(Rbi
• (X )) : R2 → Vec. Let L denote the set of lines of positive slopes

in R2. Given L ∈ L, the restriction M |L : L → Vec can be decomposed into the unique
direct sum of interval modules over L and thus we have the barcode barc(M |L) of M |L.
The k-th fibered barcode of X is the L-parametrized collection {barc(M |L)}L∈L [10, 22, 24].

Elder-rule-staircode for an aug-MS. Let (X, dX) be a finite metric space. For ε ∈ [0,∞),
an ε-chain between x, x′ ∈ X stands for a sequence x = x1, x2, . . . , x` = x′ of points in X
such that dX(xi, xi+1) ≤ ε for i = 1, . . . , ` − 1. Now given X = (X, dX , fX) and σ ∈ R≥0,
consider a point x ∈ Xσ. Then for any ε ≥ 0, set [x](σ,ε) as the collection of all points x′ ∈ Xσ

that can be connected to x through an ε-chain in Xσ. The function fX : X → R induces an
order on X: Given x, x′ ∈ X, we say that x is older than x′ if and only if fX(x) < fX(x′).

I Definition 5 (Elder-rule-staircode for an aug-MS). Let X = (X, dX , fX) be an injective
aug-MS. For each x ∈ X, we define its staircode as:

Ix : = {(σ, ε) ∈ R2 : x ∈ Xσ and x is the oldest in [x](σ,ε) } (1)

The collection IX := {Ix}x∈X is called the elder-rule-staircode (ER-staircode for short) of X .
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See Figure 1 for an example. The relationship between the ER-staircode and the
classic elder-rule will become clear in Section 4.1. An interval I of R2 (Definition 1) is
a staircase interval (or simply staircase) if there exists (σ0, ε0) ∈ R2 such that either
I = {(σ, ε) ∈ R2 : (σ0, ε0) ≤ (σ, ε)} (i.e. a quadrant) or there is also a stair-like upper
boundary – there exists a non-increasing piecewise constant function u : R→ (ε0,∞) such
that I = {(σ, ε) ∈ R2 : σ ∈ [σ0,∞) and ε ∈ [ε0, u(σ))} (see Figure 4). It turns out that each
Ix ∈ IX is in the form of a staircase interval (proof in the full version of this paper [4]):

I Proposition 6. Each Ix in Definition 5 is a staircase interval of R2.

Staircodes for non-injective case. Even if fX is not injective, we still have the concept of
the ER-staircode. Consider an aug-MS X = (X, dX , fX) such that fX is not injective. To
induce the ER-staircode of X , we pick any order on X which is compatible with fX : An
order < on X is compatible with fX if fX(x) < fX(x′) implies x < x′ for all x, x′ ∈ X. Now
we define I<X = {{I<x : x ∈ X}} where

I<x := {(σ, ε) ∈ R2 : x ∈ Xσ and x = min([x](σ,ε), <)} (2)

(we use double-curly-brackets {{−}} to denote multisets). Regardless of the choice of <, the
collection I<X = {{I<x : x ∈ X}} satisfies all properties / theorems we prove later. Hence, for
any possible compatible order < we will refer to I<X as an ER-staircode of X .

I Example 7 (Constant function case). Let (X, dX) be a metric space of n points. Then,
the barcode of H0(R•(X, dX)) : R → Vec consists of n intervals Ji, i = 1, . . . , n. Let
X = (X, dX , fX) be the aug-MS where fX is constant at c ∈ R. Then, all possible
total orders on X are compatible with fX and all induce the same ER-staircode IX =
{{[c,∞)× Ji : i = 1, . . . , n}}.

In contrast to Example 7, different orders on X in general induce different ER-staircodes
of X = (X, dX , fX) ; see Example 9. Therefore, a single ER-staircode of X is not necessarily
an invariant of X , whereas the collection of all possible ER-staircodes of X can be seen so (see
item 4 in Section 7). This collection, however, is not a complete invariant of X by the following
reasoning: It is not difficult to find two non-isometric metric spaces (X, dX) and (Y, dY )
such that H0(R•(X, dX)) and H0(R•(Y, dY )) have the same barcode. Let fX : X → R and
fY : Y → R be constant at c ∈ R. Then, by Example 7, all the ER-staircodes of (X, dX , fX)
and (Y, dY , fY ) (induced by all possible total orders on X and Y ) are the same.

We can recover the zeroth fibered barcode of an aug-MS X from its ER-staircode: The
proof of the following theorem will be given in Section 4.1.

I Theorem 8. Let X be an aug-MS and let M := H0(Rbi
• (X )). Let IX = {{Ix : x ∈ X}} be

an ER-staircode of X . For each L ∈ L, the barcode barc(M |L) coincides with the multiset
{{L ∩ Ix : x ∈ X}} (up to removal of empty sets, see Figure 2).

I Example 9. If an aug-MS is not injective, then there can be different ER-staircodes w.r.t.
different compatible orders. However, each of them will still be valid to produce the fibered
barcodes. For example, let (X, dX) be the metric space in Figure 1 (A). Define gX : X → R
by sending x1, x2, x3, x4 to 1, 2, 2, 4, respectively. Two orders (x1 < x2 < x3 < x4) and (x1 <

′

x3 <
′ x2 <

′ x4) are compatible with gX , giving two ER-staircodes I<X =
{{
I<xi

: i = 1, 2, 3, 4
}}

and I<
′

X =
{{
I<
′

xi
: i = 1, 2, 3, 4

}}
. While I<xi

= I<
′

xi
for i = 1, 4, the equality does not hold for

i = 2, 3. However, both I<X and I<
′

X satisfy the statement in Theorem 8. See Figure 3.

SoCG 2020
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Figure 1 (A) Consider the triangle with edge lengths 3,4 and 5. Consider the aug-MS X =
(X, dX , fX) where X := {x1, x2, x3, x4}, dX is the Euclidean metric on the plane, and fX is given as
fX(xi) = i for i = 1, 2, 3, 4. (B) The ER-staircode of X .

Figure 2 Left: The stack of Ixi , i = 1, 2, 3, 4 from Figure 1 and a line L ∈ L . Right: The barcode
of M |L. Since L does not intersect Ix4 , only three intervals of L ⊂ R2 appear in the barcode.

Figure 3 Example 9: (A) I<
x2 and I<

x3 . (B) I<′
x2 and I<′

x3 . (C) Stack of I<
x2 and I<

x3 . Stack of I<′
x2

and I<′
x3 look the same. Observe that for any L ∈ L,

{{
L ∩ I<

x2 , L ∩ I
<
x3

}}
=
{{
L ∩ I<′

x2 , L ∩ I
<′
x3

}}
.
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Figure 4 Every corner point of a staircase interval falls into three different types depending on
its neighborhood information, as the pictures above illustrate. Staircase intervals in the first row are
decorated by their corner points (a precise description is in Definition A.2 of the full version [4]).

We close this section with some definitions that will be useful later. Let I be a staircase
interval of R2. We define the three types of corner points as in Figure 4 (rigorous definition
of these corner points is in Definition A.2 in the full version [4]): Roughly speaking, for each
staircase Ix, type-0 is the left-bottom point; type-1 corners are those where the boundary
transitions from a vertical segment to a horizontal one, while type-2 are those transitions from
a horizontal one to vertical one. For each j = 0, 1, 2 we define the function γj(I) : R2 → Z≥0

as γj(I)(a) =
{

1, a is a j-th type corner point of I
0, otherwise.

Elder-rule feature functions defined below will be useful in Section 5.

I Definition 10. Let X be an aug-MS and let IX = {{Ix : x ∈ X}} be an ER-staircode of X .
For j = 0, 1, 2, we define the j-th elder-rule feature function as the sum γXj =

∑
x∈X γj(Ix).

4 Decorated elder-rule-staircodes and treegrams

In Section 4.1 we prove Theorem 8 and introduce bipersistence treegrams to encode multi-scale
clustering information of aug-MSs. In Section 4.2 we show that an “enriched” ER-staircode
of an aug-MS X can recover the so-called fibered treegram of X , i.e. 1-dimensional slices of
the aforementioned bipersistence treegram. Also, we identify a sufficient condition on X for
its ER-staircode to be the barcode of the 2-parameter persistence module H0(Rbi

• (X )).

4.1 Bipersistence treegrams
Let X be a non-empty finite set. Any partition P of a subset X ′ of X is a sub-partition of X;
and we refer toX ′ as the underlying set of P . Elements of a sub-partition ofX are called blocks.
A partition of the empty set is defined as the empty set. By Subpart(X), we denote the set of
all sub-partitions of X, i.e. Subpart(X) := {P : ∃X ′ ⊆ X , P is a partition of X ′} . Given
P,Q ∈ Subpart(X), P ≤ Q means that P refines Q, i.e. for all B ∈ P , there exists C ∈ Q s.t.
B ⊆ C. For example, let X = {x1, x2, x3}; then P ≤ Q for sub-partitions P := {{x1}, {x2}}
and Q := {{x1, x2}, {x3}}. Treegrams are a generalized notion of dendrograms [29].

SoCG 2020
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Figure 5 A (1D) treegram θX over the set X. Notice that θX(t) = ∅ for t ∈ (−∞, S1). Also,
θX(S1) = {{x1}}, θX(S2) = {{x1}, {x2, x3}}, and θX(t) = {X} for all t ∈ [S3,∞).

I Definition 11 (Treegrams [29]). A treegram over a finite set X is any function θX : R→
Subpart(X) such that the following properties hold: (1) if t1 ≤ t2, then θX(t1) ≤ θX(t2),
(2) there exists T > 0 such that θX(t) = {X} for t ≥ T and θX(t) is empty for t ≤ −T ,
and (3) for all t there exists ε > 0 s.t. θX(s) = θX(t) for s ∈ [t, t+ ε]. See Figure 5 for an
example. Also, even when the domain R is replaced by any totally ordered set L isomorphic
to R, θX is said to be a (1-parameter) treegram.

Given a simplicial complex K, let K(0) be the vertex set of K. Let π0(K) be the partition
of the vertex set K(0) according to the connected components of K. A functor K : P→ Simp
is said to be a filtration of K if K(a) ⊆ K for all a ∈ P, every internal map is an inclusion,
and there exists a0 ∈ P such that for all a ∈ P with a0 ≤ a, K(a) = K.
I Remark 12 (Treegrams induced by simplicial filtrations). Let K be a simplicial complex on
the vertex set X = {x1, x2, . . . , xn} and let K : R → Simp be a filtration of K. Assume
that K consists solely of one connected component, i.e. π0(K) = {X}. Then, the function
π0(K) : R→ Subpart(X) defined as ε 7→ π0(K(ε)) is a treegram over X.

The zeroth elder rule for a 1-parameter filtration. Let θX be a treegram over X. We
define the birth time of x as b(x) := min{ε ∈ R : x is in the underlying set of θX(ε)} (by
Definition 11 (2), every x ∈ X has the birth time b(x)). Pick any order < on X such
that b(x) < b(x′) implies x < x′ for all x, x′ ∈ X. For ε ∈ [b(x),∞), we denote the block
to which x belongs in the sub-partition θX(ε) by [x]ε. We define the death time of x as
d<(x) = sup{ε ∈ [b(x),∞] : x = min([x]ε, <)}. As long as < is compatible with the birth
times, the elder-rule-barcode is uniquely defined (which is proved in the full version [4]):

I Definition 13 (Elder-rule-barcode of a treegram). Let θX : R→ Subpart(X) be a treegram
over X. For any order < on X compatible with the birth times, let Jx := [b(x), d<(x)). The
elder-rule-barcode of θX is defined as the multiset barc(θX) := {{Jx : x ∈ X}}.

For the 1-parameter case, the elder-rule-barcode of a treegram can be obtained by
dismantling the treegram into linear pieces w.r.t. the elder rule – see the theorem below.
Even though this result is well-known (e.g, [14]), we include a proof in the full version [4].

I Theorem 14 (Compatibility between the elder rule and algebraic decomposition). Let K and θX
be the filtration and the treegram in Remark 12, respectively. Let barc(θX) = {{Jx : x ∈ X}}
be the elder-rule-barcode of θX . Then, H0(K) ∼=

⊕
x∈X IJx (see Figure 6).

Proof of Theorem 8. We are now ready to prove Theorem 8. Fix L ∈ L. Since L is
isomorphic to R as a totally ordered set, K = Rbi

• (X )|L : L → Simp can be viewed as a
1-parameter filtration. Consider the treegram θX := π0(K) : L → Subpart(X). By the
definition of Ixs, it is clear that {{L ∩ Ix : x ∈ X}} is the elder-rule-barcode of the treegram
θX (Definition 13). Hence, by Theorem 14, the multiset {{L ∩ Ix : x ∈ X}} is equal to the
barcode of H0 (K). Since H0 (K) = M |L, we have {{L ∩ Ix : x ∈ X}} = barc(M |L). J
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Figure 6 The first row represents a simplicial filtration K. The second row stands for the treegram
π0(K) which encodes the evolution of clusters in K (Remark 12). The third row is the barcode
of H0(K). The persistence module H0(K) can be obtained by applying the linearization functor
(Definition B.2 in the full version [4]) to π0(K). Alternatively, the barcode of H0(K) can also be
obtained by applying the elder rule to π0(K) (Definition 13).

Bipersistence treegrams. We now extend the notion of treegrams to encode the evolution
of clusters of a 2-parameter filtration (similar ideas appear in [20]). A bipersistence treegram
over a finite set X is any function θbi

X : R2 → Subpart(X) such that if a ≤ b in R2, then
θbi
X(a) ≤ θbi

X(b).

I Definition 15 (Rips bipersistence treegrams). Given an aug-MS X = (X, dX , fX), the Rips
bipersistence treegram of X is θbi

X : R2 → Subpart(X) such that (σ, ε) 7→ π0 (Rε(Xσ, dX)).

Observe that x ∈ X belongs to the underlying set of θbi
X (a) if and only if (fX(x), 0) ≤ a,

i.e. (fX(x), 0) is the birth grade of x in θbi
X . Assume that X is injective. Then the birth

grades of elements in X is totally ordered. The ER-staircode of X can be extracted from θbi
X :

Indeed, Ix in equation (1) can be rephrased as Ix = {(σ, ε) ∈ R2 : x is in the underlying set
of θbi

X (σ, ε) and x has the smallest birth grade in its block of θbi
X (σ, ε)}. See Figure 7.

I Definition 16 (Fibered treegrams). Let θbi
X be a Rips bipersistence treegram of an aug-MS

X . The fibered treegram of θbi
X refers to the collection {θbi

X |L}L∈L of treegrams obtained by
restricting θbi

X to positive-slope lines (see Figure 8 for an example).

4.2 Elder-rule-staircodes and fibered treegrams
In this section we identify a sufficient condition on an aug-MS X for its ER-staircode to
coincide with the barcode of the 2-parameter persistence module H0(Rbi

• (X )) (Theorem 17).
Also, in general, all fibered treegrams can be recovered from ER-staircodes (Theorem 19).

Let (X, dX) be a metric space and fix x, x′ ∈ X. Recall that an ε-chain between x and
x′ is a finite sequence x = x1, x2, . . . , x` = x′ in X where each consecutive pair xi, xi+1 is
within distance ε. Define (in fact an ultrametric) uX : X ×X → R≥0 as

uX(x, x′) := min{ε ∈ [0,∞) : there exists an ε-chain between x and x′} (see [7]).

For a metric space (X, dX) and pick any total order < on X. Let x ∈ X be a non-minimal
element of (X,<). A <-conqueror of x is an element x′ ∈ X such that (1) x′ < x, and (2)
for any x′′ ∈ X with x′′ < x, it holds that uX(x, x′) ≤ uX(x, x′′).

SoCG 2020



26:10 Elder-Rule-Staircodes for Augmented Metric Spaces

Figure 7 Consider the aug-MS X defined in Figure 1. Figure (A) and (C) above are identical to
Figure 1 (A) and (B), respectively. (B) The Rips bipersistence treegram of X (Definition 15). The
summarization processes (A)→(B)→(C) are analogous to the processes depicted in Figure 6.

Now consider an aug-MS X = (X, dX , fX). A <-conqueror function cx : [fX(x),∞)→ X

of a non-minimal x ∈ X sends σ ∈ [fX(x),∞) to a conqueror of x in (Xσ, dX). For the
minimum x′ ∈ (X,<), define cx′ : [fX(x′),∞)→ X to be the constant function at x′.

We generalize Theorem 14 and at the same time strengthen Theorem 8 for 2-parameter
persistence modules induced by a special type of aug-MSs:

I Theorem 17 (Compatibility between the ER-staircodes and algebraic decomposition). Let
X = (X, dX , fX) be an aug-MS and fix any order < on X compatible with fX . Assume that
there exists a constant <-conqueror function for each x ∈ X.1 Then, H0

(
Rbi
• (X )

)
is interval

decomposable and its barcode coincides with the ER-staircode I<X .

The proof of Theorem 17 is similar to that of Theorem 14, and is in the full version [4].
Consider the aug-MS X in Figure 1, which satisfies the assumption in Theorem 17. Therefore,
H0
(
Rbi
• (X )

)
is interval decomposable. The following corollary (proof in the full version [4])

gives an example of a class of aug-MSs to which Theorem 17 applies.

1 Observe that if this property holds for the order <, then the same property holds for any other order
<′ that is compatible with fX , and I<

X = I<′

X .
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Figure 8 Consider the bipersistence treegram in Figure 7 (B) and pick a line L of positive slope.
Then, we obtain a treegram over L.

I Corollary 18. Let X = (X, dX , fX) be any aug-MS where dX is an ultrametric, i.e.
dX(x, x′′) ≤ max (dX(x, x′), dX(x′, x′′)) for all x, x′, x′′ ∈ X. Then, H0

(
Rbi
• (X )

)
is interval

decomposable (in fact, its barcode consists solely of infinite rectangular intervals).

We enrich the ER-staircode in order to query the fibered treegram: Given an aug-MS
X = (X, dX , fX), let < be any order on X compatible with fX . For each x, define I∗x as the
pair (Ix, cx) of the set Ix and the <-conqueror function cx. The collection I∗X := {I∗x}x∈X
is said to be the decorated ER-staircode of X . See Figure 9. The following result holds for
general aug-MSs.

I Theorem 19. Given any L ∈ L, the fibered treegram θbi
X |L can be recovered from the

decorated ER-staircode I∗X of the aug-MS X = (X, dX , fX).

5 Elder-rule-staircodes and graded Betti numbers

We now show that we can retrieve the graded Betti numbers of H0(Rbi
• (X )) from the ER-

staircode of an aug-MS X (Theorem 23). Along the way, we obtain a characterization result
for the graded Betti number of H0(Rbi

• (X )) (Theorem 22), which is of independent interest.

Graded Betti numbers. We briefly review the concept of graded Betti numbers [6, 21, 24,
25, 28, 31]. Since our interests are in studying finite aug-MSs, we restrict ourselves to finite
persistence modules – the k-th homology of a filtration of a finite simplicial complex for some
k ∈ Z≥0 [8].

Qa
x =

{
F, if a ≤ x
0, otherwise,

ϕQa(x,y) =
{

idF, if a ≤ x
0, otherwise.

Any F : Zd → Vec is said to be free if there exists a multiset A of elements of Zd such that
F ∼=

⊕
a∈AQ

a. For simplicity, we refer to free persistence modules as free modules.Let M
be a persistence module. An element m ∈ Ma for some a ∈ Zd is called a homogeneous
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Figure 9 Decorated intervals corresponding to the four intervals in Figure 1 (C). For each
i = 2, 3, 4, the upper boundary of Ixi is decorated by the conqueror of xi.

element of M , denoted by gr(m) = a. Let F be a free module. A basis B of F is a minimal
homogeneous set of generators of F (see full version [4] for details). There can exist multiple
bases of F , but the number of elements at each grade a ∈ Zd in a basis of F is an isomorphism
invariant. For a finite M , let IM denote the submodule of M generated by the images of all
linear maps ϕM (a,b), with a < b in Zd. Assume that there is a chain of modules

F • : · · · F 2 F 1 F 0 M 0∂3 ∂2 ∂1 ∂0 0(=:∂−1) (3)

such that (1) each F i is a free module, and (2) im(∂i) = ker(∂i−1), i = 0, 1, 2, · · · . Then
we call F • a resolution of M . The condition (2) is referred to as exactness of F •. We call
the resolution F • minimal if im(∂i) ⊆ IF i−1 for i = 1, 2, · · · . It is a standard fact that a
minimal resolution of M always exists and is unique up to isomorphism [28, Chapter I].

I Definition 20 (Graded Betti numbers). Let M : Zd → Vec be finite. Assume that a minimal
free resolution of M is F • in (3). For i ∈ Z≥0, the i-th graded Betti number βMi : Zd → Z≥0
is defined as βMi (a) = (number of elements at grade a in any basis of F i).

We remark that βMi : Zd → Z≥0 is the zero function for every i > d [17, Theorem 1.13].

The graded Betti numbers of H0(Rbi
• (X )). Henceforth, every aug-MS X = (X, dX , fX)

is assumed to be generic: fX is injective and each pair of elements in X has different distance.
Non-generic aug-MSs can also be easily handled; see the full version [4]. Since X is finite, we
consider Z2-indexed filtration described subsequently as a substitute of Rbi

• (X ):

I Definition 21. Consider an aug-MS X = (X, dX , fX) with X := {x1, . . . , xn} and assume
that fX(x1) < . . . < fX(xn). Define fZX : X → N as xi 7→ i. Define dZX : X ×X → N by
sending each non-trivial pair (xi, xj) (i 6= j) to ` ∈

{
1, . . . ,

(
n
2
)}
, where dX(xi, xj) is the

`-th smallest distance (among non-zero distance values). The restriction of Rbi
• (X, dZX , fZX) :

R2 → Simp to Z2 is the Z2-indexed Rips filtration of X . Also, let γXj denote the j-th
elder-rule feature function of (X, dZX , fZX) for j = 0, 1, 2 in this section.

For Theorem 22, we introduce relevant terminology and notation. Let S be the Z2-indexed
Rips filtration of an aug-MS X and let K be the 1-skeleton of S, i.e. K is another Z2-indexed
filtration where K(a) is the 1-skeleton of S(a) for every a ∈ P.
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Figure 10 Assume that an aug-MS X consists of four staircase intervals as above with
types of corners marked. From these corner types, we can obtain the graded Betti numbers
of M := H0(Rbi

• (X )) via Theorem 23: Let supp(βM
i ) := {a ∈ Z2 : βM

i (a) 6= 0} for i = 0, 1, 2
(the support of βM

i ). By Theorem 23, we have supp(βM
0 ) = {(i, 0) : i = 1, 2, 3, 4}, supp(βM

1 ) =
{(2, 5), (3, 4), (4, 3), (3, 3), (4, 2), (4, 1)} \ {(3, 5), (4, 4), (4, 3)} = {(2, 5), (3, 4), (3, 3), (4, 2), (4, 1)}, and
supp(βM

2 ) = {{(3, 5), (4, 4), (4, 3)}} \ {(2, 5), (3, 4), (4, 3), (3, 3), (4, 2), (4, 1)} = {(3, 5), (4, 4)}. All
graded Betti numbers are 1 on their supports and 0 otherwise. In particular, note that the grade
a = (4, 3) receives both a 1-st type mark (in I2) and a 2-nd type mark (in I3). Thus it contributes
value 1 both to γX1 (a) and γX2 (a), and as a result, it does not appear in the support for βM

1 nor βM
2 .

Note that K is 1-critical : every simplex that appears in K has a unique birth index. Let
e be an edge that appears in K whose birth index is b(e) = (b1, b2) ∈ Z2. We say that
the edge e is negative if the number of connected components in K(b1, b2) is strictly less
than that of K(b1, b2 − 1). Otherwise, the edge e is positive.
Given a simplicial complex K and k ∈ Z≥0, let Ck(K) be the k-th chain group of K. For
k ∈ Z≥0, let ∂k : Ck(K) → Ck−1(K) be the boundary map, and Zk(K) := ker(∂k) the
k-th cycle group of K.
Let K : Z2 → Simp be a filtration. For each k ∈ Z≥0, let Ck(K) : Z2 → Vec be the
module defined as Ck(K)(a) := Ck(K(a)), where the internal maps ϕK(a,b) are the
canonical inclusion maps Ck(K(a)) ↪→ Ck(K(b)). In particular, if K is 1-critical, then
Ck(K) is the free module whose basis elements one-to-one correspond to all the k-th
simplices in S. More specifically, the birth of a simplex σ ∈ S in K at a ∈ Zd corresponds
to a generator of Ck(K) at a.

I Theorem 22. Let K be the 1-skeleton of the Z2-indexed Rips filtration of an aug-MS. Let
K− be the filtration of K that is obtained by removing all positive edges in K. Then,
(i) The following sequence of persistence modules is exact:

0 −→ Z1(K−) i−→ C1(K−) ∂1−→ C0(K−) p−→ H0(K) −→ 0, (4)

where i is the canonical inclusion, ∂1 is the boundary map, p is the canonical projection.
(ii) The sequence in (4) is a minimal free resolution of H0(K).2

Theorem 22 is proved in the full version [4].
Given any two functions α, α′ : Z2 → Z≥0, we define α− α′ : Z2 → Z≥0 as

(α− α′)(x) = max(α(x)− α′(x), 0), for x ∈ Z2.

For any aug-MS X , we can compute the graded Betti numbers of the zeroth homology of
Rbi
• (X ) from the ER-staircode of X , as specified by the following result.

2 This means that F 0 = C0(K−), F 1 = C1(K−), F 2 = Z1(K−) and F i = 0 for i > 2 in the chain of (3).
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I Theorem 23. Let K be the Z2-indexed Rips filtration of an aug-MS X and let M := H0(K).
Let βMi be the i-th grade Betti number of M . Then,

βM0 = γX0 , βM1 = γX1 − γX2 , βM2 = γX2 − γX1 . (5)

In particular, we note that the elder-rule feature functions γXj are easy to compute, as
one only needs to compute and aggregate the type of each corner in staircase intervals in the
ER-staircode of X . Once γXj s are known, one can easily compute the graded Betti number
of H0(Rbi

• (X )) by Theorem 23. See Figure 10 for an example. We also remark that Koszul
homology formulae [25, Proposition 5.1] are in a similar form to those in (5). However, Koszul
homology formulae do not directly imply those in (5) nor vice versa.

Sketch of proof of Theorem 23. Let X := (X, dX , fX) with X = {x1, . . . , xn}, and assume
that fX(x1) < . . . < fX(xn). By the construction of K and γXi , it suffices to show the
equalities in (5) hold on A := {1, 2, . . . , n} × {0, 1, . . . ,

(
n
2
)
} ⊂ Z2 (βMi and γXi vanish

outside A for i = 0, 1, 2). By Theorem 22 and the construction of γX0 , both of βM0 and γX0
have values 1 on A|y=0 = {(1, 0), (2, 0), (3, 0) . . . , (n, 0)} and zero outside A|y=0, implying
that βM0 = γX0 . Note that when i = 1, 2, the supports of βMi and γXi are contained in
A|y>0 = {1, 2, . . . , n} × {1, . . . ,

(
n
2
)
}. Using induction on x-coordinate of Z2, we will prove

that βM1 = γX1 − γX2 and βM2 = γX2 − γX1 on the horizontal line A|y=1 = {1, 2, . . . , n} × {1}.
Note that K(1, b) = {{x1}} for all 1 ≤ b ≤

(
n
2
)
, and thus again by Theorem 22 and the

construction of γXi , i = 1, 2,

for 1 ≤ b ≤
(
n
2
)
, βM1 (1, b) = γX1 (1, b) = 0, and βM2 (1, b) = γX2 (1, b) = 0. (6)

Specifically, we have βM1 (1, 1) = γX1 (1, 1) = γX1 (1, 1)− γX2 (1, 1) and βM2 (1, 1) = γX2 (1, 1) =
γX2 (1, 1) − γX1 (1, 1). Fix a natural number m > 2 and assume that βM1 (a, 1) = γX1 (a, 1) −
γX2 (a, 1) and βM2 (a, 1) = γX2 (a, 1)−γX1 (a, 1) for 1 ≤ a ≤ m−1. By Theorem A.5 and Theorem
C.1 in the full version [4], we have:

∑
x≤(m,1)

∑2
i=0(−1)iβMi (x) (∗)=

∑
x≤(m,1)

∑2
i=0(−1)iγXi (x).

Since (1) βM0 = γX0 on the entire Z2, and (2) βMi , γXi vanish outside A for i = 1, 2, the
induction hypothesis reduces equality (∗) to

−βM1 (m, 1) + βM2 (m, 1) = −γX1 (m, 1) + γX2 (m, 1).

By Lemma C.4 in the full version [4], three cases are possible: (Case 1) βM1 (m, 1) = 1 and
βM2 (m, 1) = 0, (Case 2) βM1 (m, 1) = 0 and βM2 (m, 1) = 1, or (Case 3) βM1 (m, 1) = 0 and
βM2 (m, 1) = 0. Invoking that γX1 (m, 1) and γX2 (m, 1) are non-negative, in all cases, we have

βM1 (m, 1) = γX1 (m, 1)− γX2 (m, 1), βM2 (m, 1) = γX2 (m, 1)− γX1 (m, 1),

completing the proof of βM1 = γX1 − γX2 and βM2 = γX2 − γX1 on A|y=1. We next apply the
same strategy to the horizontal lines y = 2, . . . , y =

(
n
2
)
in order, completing the proof. J

6 Computation and Algorithms

I Theorem 24. Let (X, dX , fX) be a finite aug-MS with n = |X|.
(a) We can compute the ER-staircode IX = {{Ix : x ∈ X}} in O(n2 log n) time. If X ⊂ Rd

for a fixed d and dX the Euclidean distance, the time can be improved to O(n2α(n)),
where α(n) is the inverse Ackermann function.

(b) Each Ix ∈ IX has complexity O(n). Given IX , we can compute zeroth fibered barcode BL
for any line L with positive slope in O(|BL| log n) time where |BL| is the size of BL.

(c) Given IX , we can compute the zeroth graded Betti numbers in O(n2) time.
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Below we sketch the proof of the above theorem, with missing details in [4].
Consider a function value σ ∈ R, and recall that Xσ consists of all points in X with

fX value at most σ. Let Kσ = R•(Xσ, dX) denote the Rips filtration of (Xσ, dX) (recall
Remark 12). The corresponding 1-parameter treegram (dendrogram) is θσ := π0(Kσ). On
the other hand, for any σ, we can consider the complete weighted graph Gσ = (Vσ = Xσ, Eσ)
with edge weight w(x, x′) = dX(x, x′) for any x, x′ ∈ Xσ. It is folklore that the treegram θσ
can be computed from the minimum spanning tree (MST) Tσ of Gσ.

Assume all points in X are ordered x1, x2, . . . , xn such that fX(xi) ≤ fX(xj) whenever
i < j, and set σi = f(xi) for i ∈ [1, n]. Note that as σ varies, Xσ only changes at σi. For
simplicity, we set θi := θσi = π0(Kσi), Gi := Gσi and Ti := MST (Gi) is the minimum
spanning tree (MST) for the weighted graph Gi. Our algorithm depends on the following
lemma, the proof of which is in the full version [4].

I Lemma 25. A decorated ER-staircode for the finite aug-MS (X, dX , fX) can be computed
from the collection of treegrams {θi, i ∈ [1, n]} in O(n2) time.

In light of the above result, the algorithm to compute ER-staircode is rather simple:
(Step 1): We start with T0 = empty tree. At the i-th iteration,

(Step 1-a) we update Ti−1 (already computed) to obtain Ti; and
(Step 1-b) compute θi from Ti and θi−1.

(Step 2): We use the approach described in the proof of Lemma 25 to compute the ER-
staircode in O(n2) time.

For (Step 1-a), note that Gi is obtained by inserting vertex xi, as well as all i− 1 edges
between (xi, xj), j ∈ [1, i − 1], into graph Gi−1. By [12], one can update the minimum
spanning tree Ti−1 of Gi−1 to obtain the MST Ti of Gi in O(n) time.

For (Step 1-b), once all i − 1 edges spanning i vertices in Ti are sorted, then we can
easily build the treegram θi in O(iα(i)) = O(nα(n)) time, by using union-find data structure
(see Figure 14 in the full version [4]). Sorting edges in Ti takes O(i log i) = O(n log n) time.
Hence the total time spent on (Step 1-b) for all i ∈ [1, n] is O(n2 log n).

Knowing the order of all edges in Ti−1 does not appear to help, as compared to Ti−1, Ti
may have Ω(i) different edges newly introduced, and these new edges still need to be sorted.
Nevertheless, we show in the full version [4] that if X ⊂ Rd for a fixed dimension d, then each
Ti will only have constant number of different edges compared to Ti−1, and we can sort all
edges in Ti in O(n) time by inserting the new edges to the sorted list of edges in Ti−1. Hence
θi can be computed in O(nα(n)) +O(n) = O(nα(n)) time for this case. Putting everything
together, Theorem 24 (a) follows. See the full version [4] for the proofs of (b) and (c).

7 Discussion

Some open questions and conjectures are as follows:

1. Barcodes and elder-rule-staircodes. We conjecture that if the zeroth homology of
the Rips bifiltration of an augmented metric space is interval decomposable, then the
barcode must coincide with the elder-rule-staircode. Also, we suspect the sufficient
condition for X to be interval decomposable given in Theorem 17 is actually also a
necessary condition. Note that Theorem 17 and these conjectures are closely related to
questions raised in [2].
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2. Extension to d-augmented metric spaces. Can we generalize our results to the
setting of more than two parameters? Namely, for d-augmented metric spaces X d :=
(X, dX , f1, f2, . . . , fd), fi : X → R, i = 1, . . . , d, can we recover the zeroth homological
information of the d+ 1-parameter filtration induced by X d by devising “an elder-rule-
staircode” of X d? Note that, under the assumption the set {(fi(x))di=1 ∈ Rd : x ∈ X}
is totally ordered in the poset Rd, a straightforward generalization of the elder-rule
staircode is conceivable. But it is not clear how to define elder-rule staircode without the
assumption.

3. Extension to higher-order homology. The ambiguity mentioned in the previous
paragraph also arises when trying to devise an “elder-rule-staircode” for higher-order
homology of a multiparameter filtration; namely, when k ≥ 1, the birth indices of k-cycles
are not necessarily totally ordered in the multiparameter setting, and thus determining
which cycle is older than another is not clear in general.

4. Metrics and stability. Recall that the collection E(X ) of all possible ER-staircodes of
an aug-MS X is an invariant of X (the paragraph after Example 7). One possible metric
between two collections of ER-staircodes is the Hausdorff distance dbH in the metric space
of barcodes over R2 with the generalized bottleneck distance db [3]. On the other hand,
there exists a metric d1

GH which measures the difference between aug-MSs [11] and let
dI be the interleaving distance between 2-parameter persistence modules [23]. Are there
constants α, β > 0 such that for all aug-MSs X and Y, the inequalities below hold?

α · dI
(
H0
(
Rbi
• (X )

)
,H0

(
Rbi
• (Y)

))
≤ dbH(E(X ), E(Y)) ≤ β · d1

GH(X ,Y).

5. Completeness. Recall that the collection E(X ) of all the elder-rule-staircodes of an
aug-MS X is not a complete invariant (the paragraph after Example 7). How faithful is
this collection in general? Is there any class of aug-MSs X such that E(X ) completely
characterizes X ?
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