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—— Abstract

An augmented metric space (X, dx, fx) is a metric space (X,dx) equipped with a function fx :
X — R. Tt arises commonly in practice, e.g, a point cloud X in R? where each point z € X has a
density function value fx(z) associated to it. Such an augmented metric space naturally gives rise
to a 2-parameter filtration. However, the resulting 2-parameter persistence module could still be of
wild representation type, and may not have simple indecomposables.

In this paper, motivated by the elder-rule for the zeroth homology of a 1-parameter filtration,
we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode the zeroth
homology of the 2-parameter filtration induced by a finite augmented metric space. Specifically,
given a finite (X, dx, fx), its elder-rule-staircode consists of n = |X| number of staircase-like blocks
in the plane. We show that the fibered barcode, the fibered merge tree, and the graded Betti
numbers associated to the zeroth homology of the 2-parameter filtration induced by (X, dx, fx) can
all be efficiently computed once the elder-rule-staircode is given. Furthermore, for certain special
cases, this staircode corresponds exactly to the set of indecomposables of the zeroth homology of
the 2-parameter filtration. Finally, we develop and implement an efficient algorithm to compute the
elder-rule-staircode in O(n?logn) time, which can be improved to O(na(n)) if X is from a fixed
dimensional Euclidean space R?, where a(n) is the inverse Ackermann function.
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1 Introduction

An augmented metric space (X, dx, fx) is a metric space (X, dx) equipped with a function
fx : X — R. It arises commonly in practice: e.g, a point cloud X in R¢ where each point
has a density function value fx associated to it. Studying the hierarchical clustering induced
in this setting has attracted much attention recently [2, 8]. Another example is where X =V
equals to the vertex set of a graph G = (V, E), dx represents certain graph-induced metric
on X (e.g, the diffusion distance induced by G), and fx is some descriptor function (e.g,
discrete Ricci curvature) at graph nodes. This graph setting occurs often in practice for
graph analysis applications, where G can be viewed as a skeleton of a hidden domain. When
summarizing or characterizing GG, one wishes to take into consideration both the metric
structure of this domain and node attributes. Given that persistence-based summaries from
only the edge weights or from only node attributes have already shown promise in graph
classification (e.g, [5, 9, 18, 30]), it would be highly desirable to incorporate (potentially
more informative) summaries encoding both types of information to tackle such tasks. In
brief, we wish to develop topological invariants induced from such augmented metric spaces.
On the other hand, an augmented metric space naturally gives rise to a 2-parameter
filtration (by filtering both via fx and via distance dx; see Definition 4). However, while a
standard (1-parameter) filtration and its induced persistence module has persistence diagram
as a complete discrete invariant, multi-parameter persistence modules do not have such
complete discrete invariant [6, 13]. The 2-parameter persistence module induced from an
augmented metric space may still be of wild representation type, and may not have simple
indecomposables [2]. Several recent work instead consider informative (but not necessarily
complete) invariants for multiparameter persistence modules [15, 19, 24, 26]. In particular,
RIVET [24] provides an interactive visualization of the barcodes of 1-dimensional slices of an
input 2-parameter persistence module M, called the fibered barcode. This interactivity uses
the graded Betti numbers of M, another invariant for the 2-parameter persistence module.

New work. We propose a barcode-like summary, called the elder-rule-staircode, as a way
to encode the zeroth homology of the 2-parameter filtration induced by a finite augmented
metric space. Specifically, given a finite (X, dx, fx), its elder-rule-staircode consists of
n = |X| number of staircase-like blocks of O(n) descriptive complexity in the plane. The
development of the elder-rule-staircode is motivated by the elder-rule behind the construction
of persistence pairing for a 1-parameter filtration [16]. For the 1-parameter case, barcodes [31]
can be obtained by the decomposition of persistence modules in the realm of commutative
algebra, or equivalently, by applying the elder-rule which is flavored with combinatorics or
order theory. As we describe in Section 4, our elder-rule-staircodes are obtained by adapting
the elder-rule for treegrams arisen from 1-parameter filtration.

Interestingly, we show that our elder-rule-staircode encodes much of topological informa-
tion of the 2-parameter filtration induced by (X, dx, fx). In particular, the fibered barcodes,
the fibered treegrams, and the graded Betti numbers associated to the zeroth homology of
the 2-parameter filtration induced by (X, dx, fx) can all be efficiently computed from the
elder-rule-staircodes (see Theorems 8, 19 and 23). Furthermore, for certain special cases,
these staircodes correspond exactly to the set of indecomposables of the zeroth order
2-parameter persistence module induced by (X,dx, fx); see Theorem 17.

Finally, in Section 6, we show that the elder-rule-staircode can be computed in O(n?logn)
time for a finite augmented metric space (X, dx, fx) where n = | X|, and O(n?«a(n)) time if X
is from a fixed dimensional Euclidean space and dx is Euclidean distance. We have software
to compute elder-rule-staircodes and to explore / retrieve information such as fibered barcodes
interactively, which is available at https://github.com/Chen-Cai-0SU/ER-staircode.
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More on related work. The elder-rule is an underlying principle for extracting the persist-
ence diagram from a persistence module induced by a nested family of simplicial complexes [16,
Chapter 7]. Recently this rule has come into the spotlight again for generalizing persistence
diagrams [19, 26, 27] and for addressing inverse problems in TDA [14].

The software RIVET and work of [25] can also be used to recover fibered barcodes and
bigraded Betti numbers. However, for the special case of zeroth 2-parameter persistence
modules induced from augmented metric spaces, our elder-rule-staircodes are simpler and more
efficient to achieve these goals: In particular, given an augmented metric space containing
n points, the algorithm of [25] computes the zeroth bigraded Betti numbers in Q(n?) time,
while it takes O(n?logn) time using elder-rule-staircode via Theorem 24. For zeroth fibered
barcodes, RIVET takes O(n®) time to compute a data structure of size O(n°) so as to support
efficient query time of O(logn + |B%|) where |BZ| is the size of the fibered barcode B~ for a
query line L of positive slope. Our algorithm computes elder-rule-staircode of size O(n?) in
O(n?logn) time, after which B” can be computed in O(|B*|logn) time for any query line L.
See the full version of this paper [4] for more detailed comparison. However, it is important
to note that RIVET allows much broader inputs and can work beyond zeroth homology.

2 Persistence modules and their decompositions

First we briefly review the definition of persistence modules. Let P be a poset. We regard
P as the category that has elements of P as objects. Also, for any a,b € P, there exists a
unique morphism a — b if and only if a < b. For d € N, let Z? be the set of d-tuples of
integers equipped with the partial order defined as (a1, as,...,aq) < (b1,ba,...,bq) if and
only if a; < b; for each i = 1,2,...,d. The poset structure on R? is defined in the same way.

We fix a certain field F and every vector space in this paper is over F. Let Vec denote
the category of finite dimensional vector spaces over F.

A (P-indexed) persistence module is a functor M : P — Vec. In other words, to each
a € P, a vector space M(a) is associated, and to each pair a < b in P, a linear map
ou(a,b): M(a) — M(b) is associated. When P = R? or Z%, M is said to be a d-parameter
persistence module. A morphism between M, N : P — Vec is a natural transformation
f: M — N between M and N. That is, f is a collection {fa}acp of linear maps such that
for every pair a < b in P, the following diagram commutes:

M () % 21 (b)

J{fﬂ J{fb

N(a) 2X@R) N,
Two persistence modules M and N are isomorphic, denoted by M = N, if there exists a

natural transformation {fa}acp from M to N where each f, is an isomorphism.
We now review the standard definition of barcodes, following the notations from [3].

» Definition 1 (Intervals). Let P be a poset. An interval J of P is a subset J C P such that:
(1) J is non-empty. (2) Ifa,be J anda <c <b, thence J. (3) For any a,b € J,
there is a sequence a = ag,ay, -+ ,a; = b of elements of J with a; and a;11 comparable for
0<i<i-1.

For J an interval of P, the interval module IV : P — Vec is defined as

F ifaeJ, idp ifa,be J, a<b,
Ij(a): ifaeJ o1 (a,b) = idp ifa J, a
0 otherwise, 0 otherwise.
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Recall that a multiset is a collection in which elements may occur more than once.

» Definition 2 (Interval decomposability and barcodes). A functor M : P — Vec is interval
decomposable if there exists a multiset barc(M) of intervals (Definition 1) of P such that
M = @ scpare(m) I7. We call barc(M) the barcode of M.

By the theorem of Azumaya-Krull-Remak-Schmidt [1], such a decomposition is unique up
to a permutation of the terms in the direct sum. Therefore, the multiset barc(M) is unique if
M is interval decomposable. For d = 1, any M : R¢ (or Z%) — Vec is interval decomposable
and thus barc(M) exists. However, for d > 2, M may not be interval decomposable.

3 Elder-rule-staircodes for augmented metric spaces

Rips bifiltration for an aug-MS. Let (X,dx) be a metric space. For ¢ € R, the Rips
complex R.(X,dx) is the abstract simplicial complex defined as

Re(X,dx)={AC X :forall z,2’ € A, dx(z,2') < ¢e}.

Let Simp be the category of abstract simplicial complexes and simplicial maps. The Rips
filtration is the functor Re(X,dx) : R — Simp defined as

e~ Re(X,dx), and e <&’ — R(X,dx) = R (X,dx).

» Definition 3 (Augmented metric spaces). Let (X,dx) be a metric space and fx : X = R a
function. We call the triple X = (X,dx, fx) an augmented metric space (abbrev. aug-MS).
We say that X is injective if fx : X — R is an injective function.

Throughout this paper, every (augmented) metric space will be assumed to be finite. Let
X = (X,dx, fx) be an aug-MS. For o € R, let X, denote the sublevel set f;l(foo,a] CcX.
Let (X,,dx) denote the restriction of the metric space (X,dx) to the subset X, C X.
Similarly, (X,,dx, fx) is the aug-MS obtained by restricting dx to X, x X, and fx to X,.
The following 2-parameter filtration is considered in [2, 8].

» Definition 4 (Rips bifiltration of an aug-MS). Let X = (X,dx, fx) be an aug-MS. We
define the Rips bifiltration RE'(X) : R?2 — Simp of X as (¢,0) — R-(Xy,dx)-

Applying the k-th homology functor to the Rips bifiltration RYI(X), we have the persist-
ence module M := Hy(RY(X)) : R? — Vec. Let £ denote the set of lines of positive slopes
in R2. Given L € L, the restriction M|y, : L — Vec can be decomposed into the unique
direct sum of interval modules over L and thus we have the barcode barc(M|r) of M|r.
The k-th fibered barcode of X is the L-parametrized collection {barc(M|L)}rec [10, 22, 24].

Elder-rule-staircode for an aug-MS. Let (X, dx) be a finite metric space. For ¢ € [0, 00),
an e-chain between z,2’ € X stands for a sequence x = x1,Z2,...,2xy = =’ of points in X
such that dx(z;,z;41) <efori=1,...,0 —1. Now given X = (X,dx, fx) and ¢ € Rx,
consider a point € X,. Then for any € > 0, set [z](,.) as the collection of all points 2’ € X,
that can be connected to x through an e-chain in X,. The function fx : X — R induces an
order on X: Given x,2’ € X, we say that z is older than 2’ if and only if fx(x) < fx(z').

» Definition 5 (Elder-rule-staircode for an aug-MS). Let X = (X,dx, fx) be an injective
aug-MS. For each x € X, we define its staircode as:

I, :={(0,e) e R*: x € X, and x is the oldest in [z](,.) } (1)

The collection Ty := {I,}zex is called the elder-rule-staircode (ER-staircode for short) of X.
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See Figure 1 for an example. The relationship between the ER-staircode and the
classic elder-rule will become clear in Section 4.1. An interval I of R? (Definition 1) is
a staircase interval (or simply staircase) if there exists (00,20) € R? such that either
I = {(0,¢) € R? : (0¢,50) < (0,¢)} (i.e. a quadrant) or there is also a stair-like upper
boundary — there exists a non-increasing piecewise constant function u : R — (g9, 00) such
that I = {(0,e) € R? : 0 € [0¢,0) and ¢ € [eg,u(0))} (see Figure 4). It turns out that each
I, € Ty is in the form of a staircase interval (proof in the full version of this paper [4]):

» Proposition 6. Each I, in Definition 5 is a staircase interval of R2.

Staircodes for non-injective case. Even if fx is not injective, we still have the concept of
the ER-staircode. Consider an aug-MS X = (X, dx, fx) such that fx is not injective. To
induce the ER-staircode of X', we pick any order on X which is compatible with fx: An
order < on X is compatible with fx if fx(z) < fx(z') implies z < 2’ for all z,2" € X. Now
we define 75 = {I5 : € X} where

Iy :={(0,e) €R*:z € X, and = = min([z](4,0), <)} (2)

(we use double-curly-brackets {—J}} to denote multisets). Regardless of the choice of <, the
collection 75 = {I5 : € X }} satisfies all properties / theorems we prove later. Hence, for
any possible compatible order < we will refer to Z5 as an ER-staircode of X.

» Example 7 (Constant function case). Let (X,dx) be a metric space of n points. Then,
the barcode of Hp(Re(X,dx)) : R — Vec consists of n intervals J;, i = 1,...,n. Let
X = (X,dx, fx) be the aug-MS where fx is constant at ¢ € R. Then, all possible
total orders on X are compatible with fx and all induce the same ER-staircode Zy =
{le,00) x Jiii=1,...,n}.

In contrast to Example 7, different orders on X in general induce different ER-staircodes
of X = (X,dx, fx) ; see Example 9. Therefore, a single ER-staircode of X is not necessarily
an invariant of X', whereas the collection of all possible ER-staircodes of X’ can be seen so (see
item 4 in Section 7). This collection, however, is not a complete invariant of X by the following
reasoning: It is not difficult to find two non-isometric metric spaces (X,dx) and (Y, dy)
such that Ho(Re(X,dx)) and Ho(R«(Y,dy)) have the same barcode. Let fx : X — R and
fy 1Y — R be constant at ¢ € R. Then, by Example 7, all the ER-staircodes of (X,dx, fx)
and (Y, dy, fy) (induced by all possible total orders on X and Y') are the same.

We can recover the zeroth fibered barcode of an aug-MS X from its ER-staircode: The
proof of the following theorem will be given in Section 4.1.

» Theorem 8. Let X be an aug-MS and let M := Ho(RE(X)). Let Ty = {1, : v € X} be
an ER-staircode of X. For each L € L, the barcode barc(M|r) coincides with the multiset
{LNI,:xze X} (up to removal of empty sets, see Figure 2).

» Example 9. If an aug-MS is not injective, then there can be different ER-staircodes w.r.t.
different compatible orders. However, each of them will still be valid to produce the fibered
barcodes. For example, let (X, dx) be the metric space in Figure 1 (A). Define gx : X - R
by sending x1, x2, x3, x4 to 1,2, 2,4, respectively. Two orders (z1 < z2 < 23 < x4) and (21 <’
w3 <’ x5 <’ x4) are compatible with gx, giving two ER-staircodes T3 = {1 :i=1,2,3,4}}
and I;l = {{I;il :1=1,2,3, 4}} While I = I;i/ for ¢ = 1,4, the equality does not hold for

i = 2,3. However, both Z5 and Z5  satisfy the statement in Theorem 8. See Figure 3.
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T (3,4)
L2 o5 T4 g5 T3 (263) S
(4,2.5)
3 > - > _. v (4,1.5)
5 — >
°
s %) 2%) (3%) (4,0)
Iml 1332 I:l:g Ia;4
(A) (B)

Figure 1 (A) Consider the triangle with edge lengths 3,4 and 5. Consider the aug-MS X =
(X,dx, fx) where X := {1, z2, 23,24}, dx is the Euclidean metric on the plane, and fx is given as
fx(xs) =i for i =1,2,3,4. (B) The ER-staircode of X.

Figure 2 Left: The stack of I;, ¢ = 1,2, 3,4 from Figure 1 and a line L € £ . Right: The barcode
of M|r. Since L does not intersect I,,, only three intervals of L C R? appear in the barcode.

(2,4) (2,4)
(2,3) 3 2 9 (09
3 (4,2.5) (4,2.5)
o o
[ ) [ )

(2,0) By (2,0) / (2,0) p

Is s Is) Ig
(A) (B) (C)

Figure 3 Example 9: (A) I, and I, . (B) Ix<2, and Ix<3/. (C) Stack of I, and I,. Stack of Ix<2,
and Ix<3, look the same. Observe that for any L € L, {{L NIy, LNIy5, }} = {{L N I;le, Ln Ia:<3l }}
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* N

T * = () * =
* * * u * =
- — N * *

° ° ° ° e *
* ]
*
0-th type 1-st type 2-nd type

Figure 4 Every corner point of a staircase interval falls into three different types depending on
its neighborhood information, as the pictures above illustrate. Staircase intervals in the first row are
decorated by their corner points (a precise description is in Definition A.2 of the full version [4]).

We close this section with some definitions that will be useful later. Let I be a staircase
interval of R?2. We define the three types of corner points as in Figure 4 (rigorous definition
of these corner points is in Definition A.2 in the full version [4]): Roughly speaking, for each
staircase I, type-0 is the left-bottom point; type-1 corners are those where the boundary
transitions from a vertical segment to a horizontal one, while type-2 are those transitions from
a horizontal one to vertical one. For each j = 0, 1,2 we define the function v;(I) : R? — Z>g

%w@®={

Elder-rule feature functions defined below will be useful in Section 5.

1, ais a j-th type corner point of

0, otherwise.

» Definition 10. Let X' be an aug-MS and let Iy = {I, : © € X} be an ER-staircode of X.
For 7 =0,1,2, we define the j-th elder-rule feature function as the sum ’y]“»Y =D wex Ville).

4 Decorated elder-rule-staircodes and treegrams

In Section 4.1 we prove Theorem 8 and introduce bipersistence treegrams to encode multi-scale
clustering information of aug-MSs. In Section 4.2 we show that an “enriched” ER-staircode
of an aug-MS X can recover the so-called fibered treegram of X, i.e. 1-dimensional slices of
the aforementioned bipersistence treegram. Also, we identify a sufficient condition on X for
its ER-staircode to be the barcode of the 2-parameter persistence module Ho(RE(X)).

4.1 Bipersistence treegrams

Let X be a non-empty finite set. Any partition P of a subset X’ of X is a sub-partition of X;

and we refer to X' as the underlying set of P. Elements of a sub-partition of X are called blocks.

A partition of the empty set is defined as the empty set. By Subpart(X), we denote the set of
all sub-partitions of X, i.e. Subpart(X) :={P :3X’' C X , P is a partition of X'}. Given

P,Q € Subpart(X), P < @ means that P refines @, i.e. for all B € P, there exists C' € @ s.t.

B C C. For example, let X = {x1,22,23}; then P < @ for sub-partitions P := {{x1}, {z2}}
and @ := {{z1, 22}, {z3}}. Treegrams are a generalized notion of dendrograms [29].

26:7
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T
T —
T4
»
§ > R
S1 So Ss

Figure 5 A (1D) treegram 0x over the set X. Notice that 0x(t) = 0 for t € (—o0,S1). Also,
0x(S1) = {{z1}}, 0x(S2) = {{z1}, {z2,x3}}, and Ox (t) = {X} for all t € [S3,00).

» Definition 11 (Treegrams [29]). A treegram over a finite set X is any function x : R —
Subpart(X) such that the following properties hold: (1) if t1 < ta, then Ox(t1) < 0x(t2),
(2) there exists T > 0 such that 0x(t) = {X} fort > T and 0x(t) is empty for t < =T,
and (3) for all t there exists € > 0 s.t. Ox(s) = O0x(t) for s € [t,t + €]. See Figure 5 for an
example. Also, even when the domain R is replaced by any totally ordered set L isomorphic
to R, Ox is said to be a (1-parameter) treegram.

Given a simplicial complex K, let K(©) be the vertex set of K. Let mo(K) be the partition
of the vertex set K(® according to the connected components of K. A functor K : P — Simp
is said to be a filtration of K if K(a) C K for all a € P, every internal map is an inclusion,
and there exists ag € P such that for all a € P with ag < a, K(a) = K.

» Remark 12 (Treegrams induced by simplicial filtrations). Let K be a simplicial complex on
the vertex set X = {x1,29,...,2,} and let K : R — Simp be a filtration of K. Assume
that K consists solely of one connected component, i.e. mo(K) = {X}. Then, the function
m0(K) : R — Subpart(X) defined as ¢ — my(K(¢g)) is a treegram over X.

The zeroth elder rule for a 1-parameter filtration. Let 0x be a treegram over X. We
define the birth time of z as b(x) := min{e € R : z is in the underlying set of Ox ()} (by
Definition 11 (2), every € X has the birth time b(z)). Pick any order < on X such
that b(z) < b(2’) implies z < 2’ for all z,2’ € X. For ¢ € [b(x),c0), we denote the block
to which z belongs in the sub-partition 6x(¢) by [z].. We define the death time of x as
d<(z) = sup{e € [b(z), 0] : = min([z]., <)}. As long as < is compatible with the birth
times, the elder-rule-barcode is uniquely defined (which is proved in the full version [4]):

» Definition 13 (Elder-rule-barcode of a treegram). Let 0x : R — Subpart(X) be a treegram
over X. For any order < on X compatible with the birth times, let J, := [b(x),d<(x)). The
elder-rule-barcode of 0x is defined as the multiset barc(0x) := {J, : x € X}.

For the 1-parameter case, the elder-rule-barcode of a treegram can be obtained by
dismantling the treegram into linear pieces w.r.t. the elder rule — see the theorem below.
Even though this result is well-known (e.g, [14]), we include a proof in the full version [4].

» Theorem 14 (Compatibility between the elder rule and algebraic decomposition). Let K and 0x
be the filtration and the treegram in Remark 12, respectively. Let barc(0x) = {J, : z € X}
be the elder-rule-barcode of Ox. Then, Ho(K) = @, x I+ (see Figure 6).

Proof of Theorem 8. We are now ready to prove Theorem 8. Fix L € L. Since L is
isomorphic to R as a totally ordered set, KX = RE(X)|. : L — Simp can be viewed as a
1-parameter filtration. Consider the treegram 0x := my(K) : L — Subpart(X). By the
definition of I,s, it is clear that {L NI, : x € X} is the elder-rule-barcode of the treegram
0x (Definition 13). Hence, by Theorem 14, the multiset {L NI, : z € X} is equal to the
barcode of Hy (K). Since Hy () = M|, we have {L NI, :z € X} = barc(M|). <
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. B S N R A S I

s .
Ho mo(K) . |

" -

Ho(K) ——

Figure 6 The first row represents a simplicial filtration K. The second row stands for the treegram
7o (KC) which encodes the evolution of clusters in K (Remark 12). The third row is the barcode
of Hyo(K). The persistence module Ho(K) can be obtained by applying the linearization functor
(Definition B.2 in the full version [4]) to mo(K). Alternatively, the barcode of Ho(K) can also be
obtained by applying the elder rule to mo(K) (Definition 13).

Bipersistence treegrams. We now extend the notion of treegrams to encode the evolution
of clusters of a 2-parameter filtration (similar ideas appear in [20]). A bipersistence treegram
over a finite set X is any function 6§ : R? — Subpart(X) such that if a < b in R?, then
6% (a) < 6% (b).

» Definition 15 (Rips bipersistence treegrams). Given an aug-MS X = (X, dx, fx), the Rips
bipersistence treegram of X is 0% : R? — Subpart(X) such that (0,¢) — 7o (Re(Xo,dx)).

Observe that # € X belongs to the underlying set of 6%i(a) if and only if (fx(z),0) < a,
ie. (fx(z),0) is the birth grade of x in 6%. Assume that X is injective. Then the birth
grades of elements in X is totally ordered. The ER-staircode of X' can be extracted from 6%}
Indeed, I, in equation (1) can be rephrased as I, = {(0,¢) € R? : z is in the underlying set
of #%(0,€) and x has the smallest birth grade in its block of 6%i(,¢)}. See Figure 7.

» Definition 16 (Fibered treegrams). Let 65! be a Rips bipersistence treegram of an aug-MS
X. The fibered treegram of 05! refers to the collection {0%|1} e of treegrams obtained by
restricting 0% to positive-slope lines (see Figure 8 for an ezample).

4.2 Elder-rule-staircodes and fibered treegrams

In this section we identify a sufficient condition on an aug-MS X for its ER-staircode to

coincide with the barcode of the 2-parameter persistence module Ho(RE! (X)) (Theorem 17).

Also, in general, all fibered treegrams can be recovered from ER-staircodes (Theorem 19).

Let (X, dx) be a metric space and fix z,z’ € X. Recall that an e-chain between x and
2’ is a finite sequence x = x1,xa,...,2, = ' in X where each consecutive pair x;, x; 11 is
within distance . Define (in fact an ultrametric) ux : X x X — R as

ux (z,2") ;= min{e € [0, 00) : there exists an e-chain between x and z’} (see [7]).

For a metric space (X, dx) and pick any total order < on X. Let z € X be a non-minimal
element of (X, <). A <-conqueror of x is an element 2’ € X such that (1) 2’ < z, and (2)
for any " € X with 2" < x, it holds that ux (x,z') < ux(x,z").
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Figure 7 Consider the aug-MS X defined in Figure 1. Figure (A) and (C) above are identical to
Figure 1 (A) and (B), respectively. (B) The Rips bipersistence treegram of X (Definition 15). The
summarization processes (A)—(B)—(C) are analogous to the processes depicted in Figure 6.

Now consider an aug-MS X = (X, dx, fx). A <-conqueror function ¢, : [fx(z),00) = X
of a non-minimal z € X sends o € [fx(z),00) to a conqueror of z in (X,,dx). For the
minimum 2’ € (X, <), define ¢, : [fx(2’),00) = X to be the constant function at z’.

We generalize Theorem 14 and at the same time strengthen Theorem 8 for 2-parameter
persistence modules induced by a special type of aug-MSs:

» Theorem 17 (Compatibility between the ER-staircodes and algebraic decomposition). Let
X = (X,dx, fx) be an aug-MS and fix any order < on X compatible with fx. Assume that
there exists a constant <-conqueror function for each x € X.! Then, Hy (RE"(X)) is interval
decomposable and its barcode coincides with the ER-staircode T .

The proof of Theorem 17 is similar to that of Theorem 14, and is in the full version [4].
Consider the aug-MS X in Figure 1, which satisfies the assumption in Theorem 17. Therefore,
Hy (RY(X)) is interval decomposable. The following corollary (proof in the full version [4])
gives an example of a class of aug-MSs to which Theorem 17 applies.

L Observe that if this property holds for the order <, then the same property holds for any other order
<’ that is compatible with fx, and Z5 =Z% .
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Figure 8 Consider the bipersistence treegram in Figure 7 (B) and pick a line L of positive slope.
Then, we obtain a treegram over L.

» Corollary 18. Let X = (X,dx, fx) be any aug-MS where dx is an ultrametric, i.e.
dx(z,z") < max (dx (z,2'),dx (z/,2")) for all v,2’,2" € X. Then, Hy (R2(X)) is interval
decomposable (in fact, its barcode consists solely of infinite rectangular intervals).

We enrich the ER-staircode in order to query the fibered treegram: Given an aug-MS
X = (X,dx, fx), let < be any order on X compatible with fx. For each x, define I’} as the
pair (I;,c;) of the set I, and the <-conqueror function c¢,. The collection % := {I}},ex
is said to be the decorated ER-staircode of X. See Figure 9. The following result holds for
general aug-MSs.

» Theorem 19. Given any L € L, the fibered treegram 0%i|1 can be recovered from the
decorated ER-staircode T% of the aug-MS X = (X,dx, fx).

5 Elder-rule-staircodes and graded Betti numbers

We now show that we can retrieve the graded Betti numbers of Ho(RE (X)) from the ER-
staircode of an aug-MS X (Theorem 23). Along the way, we obtain a characterization result
for the graded Betti number of Ho(RY (X)) (Theorem 22), which is of independent interest.

Graded Betti numbers. We briefly review the concept of graded Betti numbers [6, 21, 24,
25, 28, 31]. Since our interests are in studying finite aug-MSs, we restrict ourselves to finite
persistence modules — the k-th homology of a filtration of a finite simplicial complex for some
ke Zzo [8]

a F, ifa<x idp, ifa<x
Qx = . PQ= (Xv y) = .
0, otherwise, 0, otherwise.

Any F : Z% — Vec is said to be free if there exists a multiset A of elements of Z¢ such that
F=@,.,Q* For simplicity, we refer to free persistence modules as free modules.Let M
be a persistence module. An element m € M, for some a € Z% is called a homogeneous
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Figure 9 Decorated intervals corresponding to the four intervals in Figure 1 (C). For each
1 = 2, 3,4, the upper boundary of I, is decorated by the conqueror of ;.

element of M, denoted by gr(m) = a. Let F be a free module. A basis B of F is a minimal
homogeneous set of generators of F' (see full version [4] for details). There can exist multiple
bases of F', but the number of elements at each grade a € Z% in a basis of F is an isomorphism
invariant. For a finite M, let IM denote the submodule of M generated by the images of all
linear maps ¢ys(a,b), with a < b in Z?. Assume that there is a chain of modules

03 02 o1 9o 0(=:0-1)

F* . F? F! FO

0 3)

such that (1) each F* is a free module, and (2) im(9%) = ker(9*~1), i = 0,1,2,--- . Then
we call F'* a resolution of M. The condition (2) is referred to as ezactness of F'*. We call
the resolution F'* minimal if im(0%) C TF*~! for i = 1,2,---. It is a standard fact that a
minimal resolution of M always exists and is unique up to isomorphism [28, Chapter IJ.

» Definition 20 (Graded Betti numbers). Let M : Z? — Vec be finite. Assume that a minimal
free resolution of M is F'® in (3). For i € Zx>q, the i-th graded Betti number BM .74 — Z>g
is defined as M (a) = (number of elements at grade a in any basis of F*).

We remark that M : Z¢ — Zs is the zero function for every i > d [17, Theorem 1.13].

The graded Betti numbers of Ho(RP1(X)). Henceforth, every aug-MS X = (X, dx, fx)
is assumed to be generic: fx is injective and each pair of elements in X has different distance.
Non-generic aug-MSs can also be easily handled; see the full version [4]. Since X is finite, we
consider Z2-indexed filtration described subsequently as a substitute of RE'(X):

» Definition 21. Consider an aug-MS X = (X,dx, fx) with X :={x1,...,2,} and assume
that fx (1) < ... < fx(v,). Define f%: X — N as x; + i. Define d% : X x X — N by
sending each non-trivial pair (x;,x;) (1 # j) to £ € {1, el (Z)}, where dx (z;,x;) is the
0-th smallest distance (among non-zero distance values). The restriction of RY(X,d%, %) :
R? — Simp to Z? is the Z*-indexed Rips filtration of X. Also, let 'yf denote the j-th
elder-rule feature function of (X,d%, f%) for j =0,1,2 in this section.

For Theorem 22, we introduce relevant terminology and notation. Let S be the Z2-indexed
Rips filtration of an aug-MS X and let K be the 1-skeleton of S, i.e. K is another Z2-indexed
filtration where KC(a) is the 1-skeleton of S(a) for every a € P.
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Figure 10 Assume that an aug-MS X consists of four staircase intervals as above with
types of corners marked. From these corner types, we can obtain the graded Betti numbers
of M := Ho(RE(X)) via Theorem 23: Let supp(8?) := {a € Z? : gM(a) # 0} for i = 0,1,2
(the support of B}). By Theorem 23, we have supp(8}) = {(4,0) : i = 1,2,3,4}, supp(8{) =
{(2,5), (3,4), (4,3), (3,3), (4,2), (4, D} \ {(3,5), (4,4), (4,3)} = {(2,5), (3,4), (3,3), (4,2), (4, 1)}, and
supp( éVI) = {{(37 5),(4,4), (4, 3)}} \ {(27 5),(3,4),(4,3),(3,3), (4,2), (4, 1)} = {(37 5), (4, 4)} All
graded Betti numbers are 1 on their supports and 0 otherwise. In particular, note that the grade
a = (4, 3) receives both a 1-st type mark (in I>) and a 2-nd type mark (in I3). Thus it contributes
value 1 both to 7{* (a) and ~5° (a), and as a result, it does not appear in the support for 8 nor 53%.

Note that K is 1-critical: every simplex that appears in I has a unique birth index. Let
e be an edge that appears in K whose birth index is b(e) = (b1, bs) € Z?. We say that
the edge e is negative if the number of connected components in K(by,bs) is strictly less
than that of K(b1,be — 1). Otherwise, the edge e is positive.

Given a simplicial complex K and k € Z>o, let Ci(K) be the k-th chain group of K. For
k € Z>o, let Oy : Cx(K) — Cr_1(K) be the boundary map, and Zj(K) := ker(d) the
k-th cycle group of K.

Let K : Z? — Simp be a filtration. For each k € Z>o, let Cx(K) : Z* — Vec be the
module defined as Cj(K)(a) := Cr(K(a)), where the internal maps px(a,b) are the
canonical inclusion maps Ci(K(a)) — Cy(K(b)). In particular, if £ is 1-critical, then
Ck(K) is the free module whose basis elements one-to-one correspond to all the k-th
simplices in S. More specifically, the birth of a simplex o € S in K at a € Z? corresponds
to a generator of Cj(K) at a.

» Theorem 22. Let KC be the 1-skeleton of the Z2-indexed Rips filtration of an aug-MS. Let
K~ be the filtration of K that is obtained by removing all positive edges in K. Then,
(i) The following sequence of persistence modules is exact:

0= Z1(K7) 5 0 (k) 25 Co(k™) & Ho(K) — 0, (4)

where i is the canonical inclusion, 0y is the boundary map, p is the canonical projection.

(ii) The sequence in (4) is a minimal free resolution of Ho(K).2

Theorem 22 is proved in the full version [4].
Given any two functions a, o/ : Z? — Z>q, we define a — o' : Z? — Z>q as

(a — a')(x) = max(a(x) — o/(x),0), for x € Z2.

For any aug-MS X, we can compute the graded Betti numbers of the zeroth homology of
REY(X) from the ER-staircode of X, as specified by the following result.

2 This means that F* = Co(K™), F!' = C1(K™), F? = Z1(K ™) and F* = 0 for 4 > 2 in the chain of (3).
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» Theorem 23. Let K be the Z*-indexed Rips filtration of an aug-MS X and let M := Ho(K).
Let BM be the i-th grade Betti number of M. Then,

M X M X X M X X
By =7 > L= oY, B = —ore (5)

In particular, we note that the elder-rule feature functions 'ij are easy to compute, as
one only needs to compute and aggregate the type of each corner in staircase intervals in the
ER-staircode of X. Once ’y]“»Y s are known, one can easily compute the graded Betti number
of Ho(RY(X)) by Theorem 23. See Figure 10 for an example. We also remark that Koszul
homology formulae [25, Proposition 5.1] are in a similar form to those in (5). However, Koszul
homology formulae do not directly imply those in (5) nor vice versa.

Sketch of proof of Theorem 23. Let X := (X, dx, fx) with X = {z1,...,2,}, and assume
that fx(r1) < ... < fx(x,). By the construction of K and ~;*, it suffices to show the
equalities in (5) hold on A := {1,2,...,n} x {0,1,...,(3)} € Z* (B and +;* vanish
outside A for i = 0,1,2). By Theorem 22 and the construction of g, both of 8! and ~*
have values 1 on Al,—o = {(1,0),(2,0),(3,0)...,(n,0)} and zero outside A|y—o, implying
that 837 = ~g. Note that when i = 1,2, the supports of M and 4 are contained in
Alyso =1{1,2,...,n} x {1,..., (g)} Using induction on 2-coordinate of Z?, we will prove
that BM = ¥ — 45" and B3 =~ — ¥ on the horizontal line Aly—1 = {1,2,...,n} x {1}.
Note that K(1,b) = {{z1}} forall 1 <b < (}), and thus again by Theorem 22 and the
construction of %X, 1=1,2,

for 1<b<(3), BY(1,0) =~¥(1,b) =0, and 837(1,b) = 75 (1,b) = 0. (6)

Specifically, we have SM(1,1) = 4*(1,1) = v (1,1) — 45 (1,1) and B34(1,1) = 75 (1,1) =
75t (1,1) — 4:¥(1,1). Fix a natural number m > 2 and assume that 8} (a,1) = 77 (a,1) —
vt (a, 1) and BM (a, 1) = v (a,1) =7t (a, 1) for 1 < a < m—1. By Theorem A.5 and Theorem
C.1in the full version [4], we have: 37, 1) 7 (1) BM (x) © > < (m.1) 7 (1) (x).
Since (1) BM = 47 on the entire Z2, and (2) BM,~* vanish outside A for i = 1,2, the
induction hypothesis reduces equality (*) to

=B (m, 1) + B3 (m, 1) = =" (m, 1) + 73 (m, 1).

By Lemma C.4 in the full version [4], three cases are possible: (Case 1) M (m,1) = 1 and
B3 (m,1) = 0, (Case 2) M (m,1) = 0 and 531 (m,1) = 1, or (Case 3) i (m,1) = 0 and
B3 (m,1) = 0. Invoking that ;¥ (m, 1) and 73 (m, 1) are non-negative, in all cases, we have

B (m, 1) = ¥ (m, 1) — 75 (m, 1), B (m,1) =75 (m, 1) — 7 (m, 1),

completing the proof of M = ¥ — 5 and B = g — ¥ on A|,—1. We next apply the
same strategy to the horizontal lines y =2,..., y = (72’) in order, completing the proof. <«

6 Computation and Algorithms

» Theorem 24. Let (X,dx, fx) be a finite aug-MS with n = | X|.

(a) We can compute the ER-staircode Ix = {1, : x € X} in O(n?logn) time. If X C R¢
for a fized d and dx the Euclidean distance, the time can be improved to O(n?a(n)),
where a(n) is the inverse Ackermann function.

(b) Each I, € Ix has complexity O(n). Given Ix, we can compute zeroth fibered barcode B*
for any line L with positive slope in O(|B¥|logn) time where |B¥| is the size of B.

(c) Given Ix, we can compute the zeroth graded Betti numbers in O(n?) time.
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Below we sketch the proof of the above theorem, with missing details in [4].

Consider a function value ¢ € R, and recall that X, consists of all points in X with
fx value at most 0. Let K, = Re¢(X,,dx) denote the Rips filtration of (X,,dx) (recall
Remark 12). The corresponding 1-parameter treegram (dendrogram) is 6, := mo(Ky). On
the other hand, for any o, we can consider the complete weighted graph G, = (V, = X4, E)
with edge weight w(z,2’) = dx(x,2’) for any z,2’ € X,. It is folklore that the treegram 6,
can be computed from the minimum spanning tree (MST) T, of G,.

Assume all points in X are ordered x1, 2, ..., %, such that fx(x;) < fx(z;) whenever
i < j, and set o; = f(z;) for i € [1,n]. Note that as o varies, X, only changes at ¢;. For
simplicity, we set 0; := 0,, = 7(Ks,), G; == Go, and T; := MST(G;) is the minimum
spanning tree (MST) for the weighted graph G;. Our algorithm depends on the following
lemma, the proof of which is in the full version [4].

» Lemma 25. A decorated ER-staircode for the finite aug-MS (X,dx, fx) can be computed
from the collection of treegrams {0;,i € [1,n]} in O(n?) time.

In light of the above result, the algorithm to compute ER-staircode is rather simple:
(Step 1): We start with Ty = empty tree. At the i-th iteration,
(Step 1-a) we update T;_; (already computed) to obtain T;; and
(Step 1-b) compute 6; from T; and 6;_;.
(Step 2): We use the approach described in the proof of Lemma 25 to compute the ER-
staircode in O(n?) time.

For (Step 1-a), note that G; is obtained by inserting vertex x;, as well as all i — 1 edges
between (x;,z;), j € [1,i — 1], into graph G;_1. By [12], one can update the minimum
spanning tree T;_1 of G;_1 to obtain the MST T; of G; in O(n) time.

For (Step 1-b), once all ¢ — 1 edges spanning ¢ vertices in T; are sorted, then we can
easily build the treegram 6; in O(i(i)) = O(na(n)) time, by using union-find data structure

(see Figure 14 in the full version [4]). Sorting edges in 7T; takes O(ilogi) = O(nlogn) time.

Hence the total time spent on (Step 1-b) for all i € [1,n] is O(n? logn).

Knowing the order of all edges in T;_1 does not appear to help, as compared to T;_1, T;
may have Q(7) different edges newly introduced, and these new edges still need to be sorted.
Nevertheless, we show in the full version [4] that if X C R? for a fixed dimension d, then each
T; will only have constant number of different edges compared to T;_1, and we can sort all
edges in T; in O(n) time by inserting the new edges to the sorted list of edges in T;_;. Hence
0; can be computed in O(na(n)) + O(n) = O(na(n)) time for this case. Putting everything
together, Theorem 24 (a) follows. See the full version [4] for the proofs of (b) and (c).

7 Discussion

Some open questions and conjectures are as follows:

1. Barcodes and elder-rule-staircodes. We conjecture that if the zeroth homology of
the Rips bifiltration of an augmented metric space is interval decomposable, then the
barcode must coincide with the elder-rule-staircode. Also, we suspect the sufficient
condition for X to be interval decomposable given in Theorem 17 is actually also a
necessary condition. Note that Theorem 17 and these conjectures are closely related to
questions raised in [2].
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