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Abstract
Characterizing the dynamics of time-evolving data within the framework of topo-
logical data analysis (TDA) has been attracting increasingly more attention. Popular
instances of time-evolving data include flocking/swarming behaviors in animals and
social networks in the human sphere. A natural mathematical model for such collective
behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS).
In this paper we extend the Rips filtration stability result for (static) metric spaces to
the setting of DMSs. We do this by devising a certain three-parameter “spatiotem-
poral” filtration of a DMS. Applying the homology functor to this filtration gives
rise to multidimensional persistence module derived from the DMS. We show that
this multidimensional module enjoys stability under a suitable generalization of the
Gromov–Hausdorff distance which permits metrization of the collection of all DMSs.
On the other hand, it is recognized that, in general, comparing two multidimensional
persistence modules leads to intractable computational problems. For the purpose of
practical comparison of DMSs, we focus on both the rank invariant or the dimension
function of the multidimensional persistence module that is derived from a DMS. We
specifically propose to utilize a certain metric d for comparing these invariants: In our
work this d is either (1) a certain generalization of the erosion distance by Patel, or
(2) a specialized version of the well-known interleaving distance. In either case, the
metric d can be computed in polynomial time.
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1 Introduction

Stability and Tractability of TDA for Studying Metric Spaces. Finite point clouds or
finite metric spaces are amongst the most common data representations considered in
topological data analysis (TDA) [13,29,33]. In particular, the stability of the Single
Linkage Hierarchical Clustering (SLHC) method [16] or the stability of the persistent
homology of filteredRips complexes built onmetric spaces [22,23]motivates adopting
these constructions when studying metric spaces arising in applications.

Whereas there have been extensive applications of TDA to staticmetric data (thanks
to the aforementioned theoretical underpinnings), there is not much study of dynamic
metric data from the TDA perspective. Our motivation for considering dynamic metric
data stems from the study and characterization of flocking/swarming behaviors of ani-
mals [5,36,37,39,53,57,63,69], convoys [41], moving clusters [43], or mobile groups
[40,70]. In this paper, by extending ideas from [16,22,23,46,47], we aim at establish-
ing a TDA framework for the study of dynamic metric spaces (DMSs) which comes
together with stability theorems.We begin by describing and comparing relevant work
with ours.

Lack of an Adequate Metric for DMSs. In [55], Munch considers vineyards—a certain
notion of time-varying persistence diagrams introduced by Cohen-Steiner et al. [25]—
as signatures for dynamic point clouds. Munch, in particular, shows that vineyards are
stable1 [24] under perturbations of the input dynamic point cloud [55, Thm. 17].
However, we will observe below that, for the purpose of comparing two DMSs (which
we regard as models of flocking behaviors), the metrics that directly arise as the
integration of the Hausdorff or Gromov–Hausdorff distance can sometimes fail to be
discriminative enough (see Example 2.4 and Remark 4.6).

In [64], Halverson et al. study aggregation models for biological systems by adopt-
ing ideas from TDA. They show that topological analysis of aggregation reveals
dynamical events which are not captured by classical analysis methods. Specifically,
in order to extract insights about the global behavior of dynamic point clouds obtained
by simulating aggregation models, they employ the so-called CROCKER plot.2 This
plot represents the evolution of Betti numbers of Rips complexes over the plane of
time and scale parameters. In [65], Topaz et al. discretize CROCKER plots as matrices
and make use of Frobenius norm for comparing any two such matrices. In [64,65], the
authors do not provide stability results for CROCKER plots derived from biological
aggregation models.

1 Under a certain notion of distance arising from the integration over time of the bottleneck distance between
the instantaneous persistence diagrams.
2 Contour Realization Of Computed k-dimensional hole Evolution in the Rips complex.
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Fig. 1 Fix r > 0. The two figures above stand for two dynamic point clouds Xr (·) and Yr (·) in the real line
each consisting of three points x1, x2, x3 and y1, y2, y3, respectively. Each of Xr (·) and Yr (·) contains (1)
two static points located at −r and r respectively (x1, x3 and y1, y3), and (2) one dynamic point with the
time-dependent coordinate either r sin t or r |sin t |, t ∈ R (x2 and y2). Observe that in Xr (·) the unique
dynamic point x2 meets both of x1 and x2 periodically. On the contrary, in Yr (·), the unique dynamic point
y2 meets only y3 periodically

Motivation for Introducing a New Metric for DMSs. Consider the two dynamic point
clouds Xr (·) and Yr (·) illustrated as in Fig. 1. Let us regard them as instances of DMS
with the time-dependent metrics obtained by restricting the Euclidean metric on R2

at each time t ∈ R.
Observe that for each time t ∈ R, the metric spaces Xr (t) and Yr (t) are isometric

and hence the Gromov–Hausdorff distance [12, Chap. 7] dGH (Xr (t),Yr (t)) is zero.
This in turn implies that the integral

∫
t∈R dGH (Xr (t),Yr (t)) dt is also zero, implying

that Xr (·) and Yr (·) are not distinguished from each other by the integrated Gromov–
Hausdorff distance.3 See Remark 2.16.

However, regarding Xr (·) and Yr (·) as models of collective behaviors of animals,
vehicles or people, Xr (·) and Yr (·) are clearly distinct from each other. This motivates
us to seek an adequate metric that measures the difference between the dynamics
underlying any two given DMSs. In particular, this metric should not be a mere sum
of instantaneous differences of the given DMSs over time.

In this paper, we adopt ddyn, called the λ-slack interleaving distance with λ =
2 (Definition 2.10, originally introduced in [46]), as a measure of the behavioral
difference between DMSs. In Sect. 4, we specifically show that the metric ddyn returns
a positive value for the pair of DMSs Xr (·) and Yr (·) in Fig. 1, demonstrating its
sensitivity.

About Stability and Tractability of ddyn. Even though the metric ddyn is able to
differentiate subtly different DMSs (Theorem 2.11), computing ddyn is not tractable
in general (Remark 2.13). This hinders us from utilizing ddyn in practice. Therefore,
as a pragmatic approach, we adopt the comparison of invariants of DMSs, rather than
directly comparing DMSs. To this end,

(a) the invariants must be stable under perturbations of the input DMS, and
(b) the metric for comparing two invariants extracted from two DMSs must be effi-

ciently computable.

3 In [55], in order to compare two dynamic point clouds, Munch considered the integrated Hausdorff
distance

∫
dH over time. Since the metric

∫
dH takes account of relative position of two dynamic point

clouds inside an ambient metric space, we do not consider utilizing
∫
dH for the purpose of comparing

intrinsic behaviors of two dynamic metric data. Also, Munch considered the integrated bottleneck distance∫
dB by computing the Rips filtrations of dynamic point clouds at each time. However, by [22, Thm. 3.1],

the metric
∫
dB is upper-bounded by (twice) the integrated Gromov–Hausdorff distance, which in this case

vanishes. Therefore,
∫
dB does not discriminate the two dynamic point clouds given as in Fig. 1.
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Contributions. In this work, we achieve both items (a) and (b) above, described as
follows.

With regard to (a), we first extract invariants from a given DMS, where these
invariants are in the form of 3-dimensional persistence modules of sets or vector
spaces. These are obtained fromablendof ideas related to theRipsfiltration [22,24,30],
the single linkage hierarchical clustering (SLHC) method [16], and the interlevel set
persistence/categorified Reeb graphs [4,9,15,26].

We are able to prove the stability of these invariants (Theorems 4.1 and 6.17) by
adapting ideas from [16,22,23]. We specifically emphasize that our stability results
are a generalization of the well-known stability theorems for the SLHC method [16]
and the Rips filtration of a metric space [22,23]: Indeed, we show that by restricting
ourselves to the class of constant DMSs, our results reduce to the standard stability
theorems for static metric spaces in [16,22,23].

Next, in regard to item (b) above, we address the issue of computability of themetric
between invariants of DMSs. In [7,8], Bjerkevik and Botnan show that computing the
interleaving distance dI [52] between multidimensional persistence modules can in
general beNP-hard.Also, sincewe are not guaranteed to have interval decomposability
[9,17] of the 3-dimensional modules considered in this paper, we are not in a position
to utilize the bottleneck distance and relevant algorithms developed by Dey and Xin
[28] instead of dI.

This motivates us to further simplify our invariant MX associated to a DMS
(X , dX (·)), which is in the form of 3-dimensional persistence module. We focus on
both the dimension function and the rank function. The dimension function dm(MX )

of a persistence module MX has been studied in various contexts and with various
names such as Betti curve, feature counting function, etc, [2,28,34,35,42,62]. The
rank function rk(MX ) of MX has also been extensively considered [17,18,51,58,59].
We observe that both of these functions (1) can themselves be computed in polynomial
time, (2) can be compared to each other via the interleaving distance dZI for integer-
valued functions (see Sect. 3.2), and (3) are stable to perturbations of (X , dX (·)) under
ddyn (Theorems 4.4 and 4.5). We also propose a simple algorithm for computing dZI
in poly-time (Sect. 5). Therefore, we can bound the distance ddyn in poly-time by
computing dZI and either dm(·) or rk(·).

We in particular emphasize that our method for computing dZI provides a poly-time
algorithm for bounding from below the interleaving distance between d-dimensional
persistencemodulesM of vector spaceswithout any restriction on d or on the structure
of M (even if M is not derived from a DMS).

Other Related Work. Aiming at analyzing/summarizing trajectory data such as the
movement of animals, vehicles, and people, Buchin and et al. introduce the notion
of trajectory grouping structure [11]. This is a summarization, in the form of a
labeled Reeb graph, of a set of points having piecewise linear trajectories with
time-stamped vertices in Euclidean space Rd . This work was subsequently enriched
in [50,66–68].

In [46,47], the thread of ideas in [11] is blended with ideas in zigzag persistence
theory [14]. Specifically, particular cases of trajectory grouping structure in [11],
are named formigrams. By clarifying the zigzag persistence structure of formigrams,
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formigrams are further summarized into barcodes. Regarding the barcode as a signa-
ture of a set of trajectory data, the authors of [46,47] utilize these barcodes for carrying
out the classification task of a family of synthetic flocking behaviors [48].

The central results in [46,47] show that barcodes or formigrams from a trajectory
data are stable to perturbations of the input data [47, Thm. 5], [46, Thm. 9.21]. This
work is a sequel to [46,47]. Namely, by considering Rips-like filtrations parametrized
both by time intervals and spatial scale, we obtain novel stability results in every
homological dimension.

Other work utilizing TDA-like ideas in the analysis of dynamic data includes: a
study of time-varying merge trees or time-varying Reeb graphs [31,56]. Also, ideas of
persistent homology are utilized in the study of time-varying graphs [38], discretely
sampled dynamical systems [3,32] or in the study of combinatorial dynamical systems
[27].

Organization. In Sect. 2 we review the notion of DMSs and the metric ddyn on DMSs.
In Sect. 3 we review the interleaving distance. In Sect. 4 we provide an overview
of our new stability results about persistent homology features of DMSs. In Sect. 5
we propose and study an algorithm for computing the interleaving distance between
integer-valued functions. Section 6 contains proofs of statements (theorems, etc.) from
Sect. 4.

In Appendix A we describe how to analyze and compare discrete time series of
metric data. In Appendix B we clarify the relationship between the rank invariants of
DMSs and the CROCKER-plots of DMSs. InAppendix Cwe compare the interleaving
distance between integer-valued functions with other relevant metrics. In Appendix D
we review the stability of the single linkage hierarchical clustering (SLHC) method
for static metric spaces; results in this section are generalized to those in Sect. 6.4.

2 Dynamic Metric Spaces (DMSs)

Throughout this paper, we fix a certain field F and only consider vector spaces over
F whenever they arise. Any simplicial homology has coefficients in F. By Z+ and
R+, we denote the set of non-negative integers and the set of non-negative reals,
respectively.

2.1 Definition of DMSs

DMSs. A DMS γX = (X , dX (·)) stands for a pair of finite set X with R-parametrized
metric dX (·) : R×X×X → R+: for each t ∈ R, a certain (pseudo-)metric dX (t) : X×
X → R+ is obtained:

Definition 2.1 (Dynamic metric spaces [46]) A dynamic metric space is a pair γX =
(X , dX (·)) where X is a non-empty finite set and dX (·) : R × X × X → R+ satisfies:

(i) For every t ∈ R, γX (t) = (X , dX (t)) is a pseudo-metric space.
(ii) For any x, x ′ ∈ X with x �= x ′ the function dX (·)(x, x ′) : R → R+ is not

identically zero.
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(iii) For fixed x, x ′ ∈ X , dX (·)(x, x ′) : R → R+ is continuous.

We refer to t as the time parameter.

Let (M , dGH) be the collection of all finite (pseudo-)metric spaces equipped with
the Gromov–Hausdorff distance (Definition D.1). Any DMS γX = (X , dX (·)) can be
seen as a continuous curve from R to (M , dGH).

Example 2.2 [46] Examples of DMSs include:

(i) (Constant DMSs) Given a finite metric space (X , dX ), define the DMS γX =
(X , d ′

X (·)) by declaring that for all t ∈ R, d ′
X (t) = dX as a function X×X → R+.

We refer to such γX as a constant DMS and simply write γX ≡ (X , dX ).
(ii) (Dynamic point clouds) A family of examples is given by n points moving con-

tinuously inside an ambient metric space (Z , dZ ) where particles are allowed to
coalesce. If the n trajectories are x1(t), . . . , xn(t) ∈ Z , then let X := {1, . . . , n}
and define the DMS γX := (X , dX (·)) as follows: for t ∈ R and i, j ∈ {1, . . . , n},
let dX (t)(i, j) := dZ (xi (t), x j (t)). We call γX a dynamic point cloud in Z and
simply write X(·) = {xi (·)}ni=1 or X(·).

Weak and Strong Isomorphism Between DMSs.We introduce two different notions of
isomorphism between DMSs.

Definition 2.3 (Isomorphism between DMSs) Let γX = (X , dX (·)), γY = (Y , dY (·))
be any two DMSs.

(i) γX and γY are strongly isomorphic if there exists a bijection ϕ : X → Y such
that ϕ is an isometry between γX (t) = (X , dX (t)) and γY (t) = (Y , dY (t)) for all
t ∈ R.

(ii) γX and γY are weakly isomorphic if for each t ∈ R, γX (t) = (X , dX (t)) is
isometric to γY (t) = (Y , dY (t)).

Any two strongly isomorphic DMSs are weakly isomorphic, but the converse is not
true:

Example 2.4 (Weakly isomorphic DMSs) The dynamic point clouds Xr (·) and Yr (·)
described in Fig. 1 are weakly isomorphic, but not strongly isomorphic: Indeed, there
is no bijection between {x1, x2, x3} and {y1, y2, y3} which serves as an isometry for
all t ∈ R.

2.2 The �-Slack Interleaving Distance Between DMSs

We review the extended metric ddyn for DMSs, which was introduced in [46, Defn.
9.13] under the name of λ-slack interleaving distance, for each λ ∈ [0,∞).

Definition 2.5 Let ε ≥ 0. Given any map d : X × X → R, by d + ε we denote the
map X × X → R defined as (d + ε)(x, x ′) = d(x, x ′) + ε for all (x, x ′) ∈ X × X .

In order to compare any two DMSs, we will utilize the notion of tripod:
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Int

t2

t2

t 1 t1

Fig. 2 The collection Int can be graphically represented as the upper-half plane {(t1, t2) ∈ R2 : t1 ≤ t2}:
Any closed interval [t1, t2] ofR is identified with the point (t1, t2) onR2. Observe that if [t1, t2] ⊂ [t ′1, t ′2],
then the point (t ′1, t ′2) is located at upper-left of the point (t1, t2) in the plane

Definition 2.6 (Tripod) Let X and Y be any two non-empty sets. For another set Z ,

any pair of surjective maps R : X
ϕX�−−− Z

ϕY−−−� Y is called a tripod between X
and Y .

Given any map d : X × X → R, let Z be any set and let ϕ : Z → X be any map.
Then we define (ϕ∗d) : Z × Z → R as

(ϕ∗d)(z, z′) := d(ϕ(z), ϕ(z′)), (z, z′) ∈ Z × Z .

Definition 2.7 (Comparison of metrics via tripods) Consider any two maps d1 : X ×
X → R and d2 : Y × Y → R. Given a tripod R : X

ϕX�−−− Z
ϕY−−−� Y between X

and Y , by

d1 ≤R d2,

we mean (ϕ∗
Xd1)(z, z

′) ≤ (ϕ∗
Y d2)(z, z

′) for all (z, z′) ∈ Z × Z .

Let Int be the collection of all finite closed intervals of R. See Fig. 2.

Definition 2.8 (Time-interlevel analysis of a DMS) Given a DMS γX = (X , dX (·)),
define the function

∨
dX : Int × X × X → R+ as

(
I , x, x ′) �→

∨

I

dX (x, x ′) := min
s∈I dX (s)(x, x ′).

In words,
∨

I dX (x, x ′) stands for the minimum distance between x and x ′ within
the time interval I . Observe that if I ⊂ I ′ are both in Int, then

∨
I ′ dX (x, x ′) ≤∨

I dX (x, x ′) for all x, x ′ ∈ X .
For any t ∈ R, let [t]ε := [t − ε, t + ε] ∈ Int.
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Definition 2.9 (Distortion of a tripod) Let γX = (X , dX (·)) and γY = (Y , dY (·)) be
any two DMSs. Let R : X

ϕX�−−− Z
ϕY−−−� Y be a tripod between X and Y such that

for all t ∈ R,
∨

[t]ε
dX ≤R dY (t) + 2ε and

∨

[t]ε
dY ≤R dX (t) + 2ε. (1)

We call any such R an ε-tripod between γX and γY . Define the distortion disdyn(R)

of R to be the infimum of ε ≥ 0 for which R is an ε-tripod.

In Definition 2.9, if R is an ε-tripod, then R is also an ε′-tripod for any ε′ ≥ ε.

Definition 2.10 (The distance ddyn between DMSs) Given any two DMSs
γX = (X , dX (·)) and γY = (Y , dY (·)), we define

ddyn(γX , γY ) := min
R

disdyn(R),

where the minimum ranges over all tripods between X and Y .

We remark that ddyn is a hybrid between the Gromov–Hausdorff distance (Defini-
tion D.1) and the interleaving distance [10,21] for Reeb graphs [26]. We also remark
that, in [46], ddyn is introduced under the name of λ-slack interleaving distance for
λ = 2. We use λ = 2 in this paper for ease of notation. This choice is not significant
because different choices of λ > 0 yield bilipschitz equivalent metrics for DMSs [46,
Prop. 11.29].

Any DMS γX = (X , dX (·)) is said to be bounded if there exists r ∈ [0,∞) such
that for all x, x ′ ∈ X and all t ∈ R, dX (t)(x, x ′) ≤ r . For example, both DMSs given
in Fig. 1 are bounded.

Theorem 2.11 [46, Thm. 9.14] ddyn is an extended metric between DMSs modulo
strong isomorphism (Definition2.3 (i)). In particular, ddyn is ametric betweenbounded
DMSs modulo strong isomorphism.

Remark 2.12 (ddyn generalizes the Gromov–Hausdorff distance [46, Rem. 11.28])
Given any two constant DMSs γX ≡ (X , dX ) and γY ≡ (Y , dY ), the metric ddyn
recovers the Gromov–Hausdorff distance between (X , dX ) and (Y , dY ). Indeed, for
any tripod R between X and Y , condition (1) reduces to

∣
∣dX (x, x ′) − dY (y, y′)

∣
∣ ≤ 2ε for all (x, y), (x ′, y′) ∈ R.

Therefore,

dGH((X , dX ), (Y , dY )) = ddyn(γX , γY ).

Remark 2.13 From Remark 2.12, we conclude that the computation of ddyn is in
general not tractable: On the class of constant DMSs the metric ddyn reduces to the
Gromov–Hausdorff distance, which leads to NP-hard problems [1,60,61].
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2.3 Variants of ddyn

Recall that ddyn denotes the λ-slack interleaving distance for λ = 2 [46, Defn. 9.13]
and that this distance generalizes the Gromov–Hausdorff distance dGH (Remark 2.12).
In this section we discuss other natural generalizations of dGH. While some of them
can discriminate weakly isomorphic DMSs, others fail to do so.

We begin with a variant of the λ-slack interleaving distance which arises from a
slightly different way of incorporating the λ parameter:

Definition 2.14 (Multiplicative λ-slack interleaving distance) For λ ∈ (0,∞), we
define themultiplicative λ-slack interleaving distance d•

λ(γX , γY ) between two DMSs
γX = (X , dX (·)) and γY = (Y , dY (·)) as the infimum ε for which there exists a tripod
R between X and Y such that4

for all t ∈ R,
∨

[t] ε
λ

dX ≤R dY (t) + ε and
∨

[t] ε
λ

dY ≤R dX (t) + ε. (2)

Definition 2.15 (dyn-Gromov–Hausdorff distance between DMSs and its relation to
d•
λ) Let γX and γY be any two DMSs and fix a tripod R between X and Y . For each
t ∈ R, let

dis(R)(t) := inf
{
ε ∈ R+ : dX (t) ≤R dY (t) + ε and dY (t) ≤R dX (t) + ε

}
.

Define

ddynGH (γX , γY ) := min
R

sup
t∈R

dis(R)(t),

where the minimum is taken over all tripods R between X and Y . We call this distance
the dyn-Gromov–Hausdorff distance between γX and γY .

Note that, for the multiplicative interleaving distance d•
λ in Definition 2.14, we have

lim
λ→∞ d•

λ(γX , γY ) = ddynGH (γX , γY ).

Also, note that ddynGH between constant DMSs γX ≡ (X , dX ) and γY ≡ (Y , dY )

reduces to twice the Gromov–Hausdorff distance between (X , dX ) and (Y , dY ). We

4 In [46], the original λ-slack interleaving distance dλ(γX , γY ), λ ∈ [0,∞) is defined as the infimum
amount of time ε for which there exists a tripod R between X and Y such that

for all t ∈ R,
∨

[t]ε
dX ≤R dY (t) + λε and

∨

[t]ε
dY ≤R dX (t) + λε.

In this original definition, the units of λ is (distance units)/(time units), whereas the units of λ for d•
λ is (time

units)/(distance units).
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remark that ddynGH is in general not the supremum of the Gromov–Hausdorff distances
dGH(γX (t), γY (t)) over all times t ∈ R. Specifically, we have the following inequality:

L(∞)
GH (γX , γY ) := sup

t∈R
dGH(γX (t), γY (t)) = 1

2
· sup
t∈R

min
R

dis(R)(t)

(∗)≤ 1

2
· min

R
sup
t∈R

dis(R)(t) = 1

2
· ddynGH (γX , γY ).

The inequality denoted by (∗) above is often strict, as it is to be expected as a result of
swapping the supmin implicit in L(∞)

GH for the min sup in the definition of ddynGH .5 For
instance, for any pair γX , γY of weakly isomorphic but not strongly isomorphic DMSs
(cf. Example 2.4), one has that (1) dGH(γX (t), γY (t)) = 0 for every t ∈ R and in turn
supt∈R dGH(γX (t), γY (t)) = 0; but in contrast (2) ddynGH (γX , γY ) is strictly positive.

It is possible to give rise to a whole family of pseudo-distances of which L(∞)
GH is a

particular example.
This construction is analogous to the integrated Hausdorff distance between

dynamic point clouds considered in [55].

Remark 2.16 (Weak-L p-Gromov–Hausdorff distance) Fix any two DMSs γX and γY .
For any fully supported probability measure ζ on R and p ∈ [1,∞), define

L(p)
GH,ζ (γX , γY ) :=

(∫

t∈R
(
dGH(γX (t), γY (t))

)p
dζ

)(1/p)

.

It is clear that L(p)
GH,ζ (γX , γY ) vanishes whenever γX and γY are weakly isomorphic.

2.4 Persistent Homology Features of a DMS

We extend ideas from persistent homology/single linkage hierarchical clustering
method for metric spaces (Appendix D) to the setting of dynamic metric spaces
(DMSs).

Posets and Their Opposite. Given any poset P = (P,≤), we regard P as the category
whose objects are the elements of P, and for p, q ∈ P, there exists a unique morphism
p → q if and only if p ≤ q. Since there exists at most one morphism between any
two elements of P, the category P is called thin. This thinness makes every closed
diagram in P commute. We sometimes consider the opposite category of P, which
will be denoted by Pop. In the category Pop, for p, q ∈ P, there exists the unique
morphism p → q if and only if p ≥ q.

Example 2.17 (Int) Recall the collection Int of all finite closed intervals of R. We
regard Int as poset, where the order ≤ is the inclusion ⊆. Hence, Int can be seen as
the category of finite closed real intervals whose morphisms are inclusions.

5 The quantity in the LHS allows for picking a different correspondence for each time t whereas the RHS
demands that a single correspondence is adequate for all times.
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Product of Posets. Given any two posets P and Q, we assume by default that their
product P×Q is equipped with the partial order ≤ defined as (p, q) ≤ (p′, q ′) if and
only if p ≤ p′ in P and q ≤ q ′ in Q.

Remark 2.18 In the poset Int × R+, we have (I , δ) ≤ (I ′, δ′) if and only if I ⊂ I ′
and δ ≤ δ′. See Fig. 3. We will regard Int × R+ as a subposet of the product poset
R3× := Rop × R × R via the identification ([t1, t2], δ) ↔ (t1, t2, δ). Indeed,

([t1, t2], δ) ≤ ([t ′1, t ′2], δ′) in Int × R+ if and only if (t1, t2, δ) ≤ (t ′1, t ′2, δ′) in R3×.

Spatiotemporal Rips Filtration of a DMS. Let Simp be the category of abstract sim-
plicial complexes with simplicial maps. By a (simplicial) filtration we mean a functor
from a poset to Simp. In order to encode multiscale topological features ofDMSs into
a single filtration, we define the spatiotemporal Rips filtration of a DMS. Let us begin
by recalling the Rips complex:

Definition 2.19 (The Rips complex) Let (X , dX ) be a metric space. For each δ ∈ R,
by Rδ(X , dX ) we mean the abstract simplicial complex on the set X where a subset
σ ⊂ X belongs toRδ(X , dX ) if and only if dX (x, x ′) ≤ δ for all x, x ′ ∈ σ . Note that
if δ < 0, then Rδ(X , dX ) is empty.

Definition 2.20 (The Rips filtration) Let (X , dX ) be a metric space. The Rips filtration
of a finite metric space (X , dX ) is the functor R•(X , dX ) : R → Simp described as
follows: To each δ ∈ R, the simplicial complex Rδ(X , dX ) is assigned. Also, to any
pair δ ≤ δ′ in R, the inclusion map Rδ(X , dX ) ↪→ Rδ′(X , dX ) is assigned.

Definition 2.21 (The spatiotemporal Rips filtration of a DMS) Given any DMS γX =
(X , dX (·)), the simplicial filtrationRlev(γX ) : Int×R+ → Simp defined as in Fig. 3
is called the (spatiotemporal) Rips filtration of γX .

Definition 2.21 is based on a blend of ideas related to the Rips filtration [22,24,30]
and the interlevel set persistence/categorifiedReebgraphs [4,9,15,26]. The super-index
“lev” inRlev(γX ) is meant to emphasize the connection to “interlevelset persistence”.

Remark 2.22 (Comprehensiveness of Definition 2.21) We remark the following:

(i) Consider the constant DMS γX ≡ (X , dX ) as in Example 2.2 (i). Then the
spatiotemporal Rips filtration of γX amounts to the Rips filtration of (X , dX ):
for all I ∈ Int and δ ∈ R+,

Rlev(γX )(I ,δ) = Rδ(X , dX ).

(ii) Let γX = (X , dX (·)) be a DMS. For each t ∈ R, we have the Rips filtration
R•(X , dX (t)) : R+ → Simp of the metric space (X , dX (t)). All those filtrations
are incorporated byRlev(γX ) in the following sense:

Rlev(γX )([t,t],δ) = Rδ(X , dX (t)), t ∈ R, δ ∈ R+.
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Fig. 3 To each
(
I , δ

) ∈ Int × R+, we associate the Rips complex Rδ

(
X ,
∨

I dX
)
on the metric space*(

X ,
∨

I dX
)
. Provided another interval I ′ ∈ Int and scale δ′ ∈ R+ with I ⊂ I ′ and δ ≤ δ′, we obtain the

inclusion Rδ

(
X ,
∨

I dX
)

↪→ Rδ′
(
X ,
∨

I ′ dX
)
. This construction gives rise to a 3-dimensional simplicial

filtration Rlev(γX ) indexed by Int × R+. * In fact,
∨

I dX : X × X → R+ does not necessarily satisfy
the triangle inequality. However, it does not prevent us from defining the Rips complex on the semi-metric
space

(
X ,
∨

I dX
)

By functoriality of the simplicial homology functor, we can define, for each k ∈ Z+,
the persistence module Hk

(
Rlev(γX )

) := Int × R+ → Vec.

The Rank Invariant and the Betti-0 Function of a DMS.We consider the rank invariant
[17] of this multidimensional persistence module Hk(Rlev(γX )). Let

R6 := {(t1, t2, δ, t ′1, t ′2, δ′) ∈ R6 : [t1, t2] ⊂ [t ′1, t ′2] and δ ≤ δ′}. (3)

Definition 2.23 (The rank invariant of a DMS) Let γX be any DMS. For each non-
negative integer k, the k-th rank invariant of γX is a function rkk(γX ) : R6 → Z+
defined as

rkk(γX )
(
t1, t2, δ, t

′
1, t

′
2, δ

′)

:= rank

⎛

⎝Hk

⎛

⎝Rδ

⎛

⎝X ,
∨

[t1,t2]
dX

⎞

⎠ ↪→ Rδ′

⎛

⎝X ,
∨

[t ′1,t ′2]
dX

⎞

⎠

⎞

⎠

⎞

⎠ .

See Fig. 3.

In Appendix B we compare the rank invariant of a DMS with the CROCKER-plots
introduced in [64].

Definition 2.24 (The Betti-0 function of a DMS) Let γX = (X , dX (·)) be a DMS. We
define the Betti-0 function β

γX
0 : Int × R+ → Z+ of γX by sending each (I , δ) ∈

Int × R+ to the dimension of H0
(
Rδ

(
X ,
∨

I dX
))
.

Example 2.25 Consider the DMSs γX and γY given as the dynamic point clouds Xr (·)
and Yr (·) in Fig. 1 respectively. The Betti 0-functions of γX and γY are illustrated in
Fig. 4.

It is not difficult to check that if I ⊂ I ′ in Int and δ ≤ δ′ in R+, then β
γX
0 (I , δ) ≥

β
γX
0 (I ′, δ′). This monotonicity is a special feature of Betti-0 functions, which is not
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Fig. 4 (The Betti-0 functions β
γX
0 , β

γY
0 of the DMSs in Fig. 1) The middle figure represents the domain

Int × R+ (Fig. 3) of β
γX
0 and β

γY
0 . (A) and (B) illustrate the value of β

γX
0 and β

γY
0 respectively on the

horizontal half-planes Int×{0} (bottom) and Int×{2r} (top). In particular, if δ ∈ [2r , ∞), βγX
0 (I , δ) = 1

for all I ∈ Int. The same properties hold for β
γY
0

shared by other Betti-k functions for k ≥ 1.Wewill exploit this monotonicity property
to metrize the collection of Betti-0 functions and in turn to obtain a tight lower bound
for ddyn or dGH. Also, we remark that when γX is a constant DMS (Example 2.2 (i)),
β

γX
0 is constant with respect to the first factor.

3 Interleaving Distance

In this section we review the interleaving distance for Rd -indexed functors [9,21,52].
In particular, the interleaving distance between integer-valued functions (Sect. 3.2)
will be utilized for obtaining a computationally tractable lower bound for ddyn.

3.1 Interleaving Distance

Natural Transformations. We recall the notion of natural transformations from cat-
egory theory [54]: Let C and D be any categories and let F,G : C → D be any
two functors. A natural transformation ϕ : F ⇒ G is a collection of morphisms
ϕc : Fc → Gc in D for all objects c ∈ C such that for any morphism f : c → c′ in
C , the following diagram commutes:

Fc Fc′

Gc Gc′ .

F( f )

ϕc ϕc′
G( f )
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Natural transformations ϕ : F → G are considered as morphisms in the categoryDC

of all functors from C to D .

The Interleaving Distance Between Rd -Indexed Functors. In what follows, for any
ε ∈ [0,∞), we will denote the vector ε(1, . . . , 1) ∈ Rd by ε. The dimension d will
be clearly specified in context.

Definition 3.1 (v-shift functor) Let C be any category. For each v ∈ [0,∞)n , the
v-shift functor (−)(v) : C Rd → C Rd

is defined as follows:

(i) (On objects) Let F : Rd → C be any functor. Then the functor F(v) : Rd → C
is defined as follows: For any a ∈ Rd ,

F(v)a := Fa+v.

Also, for another a′ ∈ Rd such that a ≤ a′ we define

F(v)(a ≤ a′) := F(a + v ≤ a′ + v).

In particular, if v = ε ∈ [0,∞)d , then we simply write F(ε) in lieu of F(ε).
(ii) (On morphisms) Given any natural transformation ϕ(v) : F ⇒ G, the natural

transformation ϕ(v) : F(v) ⇒ G(v) is defined as ϕ(v)a = ϕa+v : F(v)a →
G(v)a for each a ∈ Rd .

For any v ∈ [0,∞)d , let ϕv
F : F ⇒ F(v) be the natural transformation whose

restriction to each Fa is the morphism F(a ≤ a + v) in C . When v = ε, we denote
ϕv
F simply by ϕε

F .

Definition 3.2 (v-interleaving between Rd -indexed functors) Let C be any category.
Given any two functors F,G : Rd → C , we say that they are v-interleaved if there
are natural transformations f : F ⇒ G(v) and g : G ⇒ F(v) such that

(i) g(v) ◦ f = ϕ2v
F ,

(ii) f (v) ◦ g = ϕ2v
G .

In this case, we call ( f , g) a v-interleaving pair. When v = ε(1, . . . , 1), we simply
call ( f , g) ε-interleaving pair. The interleaving distance between F and G is defined
as

dCI,d(F,G) := inf {ε ∈ [0,∞) : F,G are ε-interleaved}, (4)

where we set dCI,d(F,G) = ∞ if there is no ε-interleaving pair between F and G for

any ε ∈ [0,∞). Then dCI,d is an extended pseudo-metric for C -valued Rd -indexed

functors. We drop the subscript d from dCI,d when confusion is unlikely.

Remark 3.3 (i) LetR♦ denote the poset either ofR orRop. The interleaving distance
dCI is also defined in the similar way forRd -indexed modules, where the posetRd

is equipped with the product partial order R♦ × R♦ × · · · × R♦.
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(ii) Let P be any non-empty upper set of Rd : For every p ∈ P, U (p) := {q ∈ Rd :
q ≥ p} is contained in P. Then we can define the interleaving distance between
P-indexed modules in the manner described by Definition 3.2.

Full Interleaving. By Sets, we mean the category of sets with set maps as morphisms.
Also, by Vec, we mean the category of vector spaces over a fixed field F, with linear
maps as morphisms.

Let C be either Sets or Vec. Given any F,G : Rd → C , suppose that ( f , g) is
an ε-interleaving pair between F and G. For each a ∈ Rd , if fa : Fa → Ga+ε and
ga : Ga → Fa+ε are surjective, then we call ( f , g) a surjective ε-interleaving pair.
If there exists a surjective ε-interleaving between F and G, we say that F and G are
fully ε-interleaved. We define

dCI,d(F,G) := inf {ε ∈ [0,∞) : F,G are fully ε-interleaved} .

We drop the subscript d from dCI,d when confusion is unlikely. By definition, for

any F,G : Rd → C , it is clear that dCI,d(F,G) ≤ dCI,d(F,G). Also, it is not difficult

to check that dCI,d is an extended pseudometric on ob(C Rd
).

By utilizing the full interleaving distance dCI , we obtain a lower bound for ddyn as
well as a new lower bound for the Gromov–Hausdorff distance (Theorem 4.5, Remark
4.13 and Theorem 4.14).

3.2 Interleaving Distance Between Integer-Valued Functions

In this sectionwe consider the interleaving distance betweenmonotonic integer-valued
functions by regarding them as functors.

Poset-Valued Maps. Let P and Q be any two posets. Suppose that f : P → Q is
any (monotonically) increasing map, i.e. for any p ≤ q in P, f (p) ≤ f (q). Then
by regarding P,Q as categories, f can be regarded as a functor. On the other hand,
suppose that g : P → Q is any (monotonically) decreasing map, i.e. for any p ≤ q in
P, f (p) ≥ f (q). Then g : P → Qop can also be called a functor.

The Interleaving Distance Between Integer-Valued Functions. Let d be a positive
integer. Let Rd be the poset, where a = (a1, . . . , ad) ≤ b = (b1, . . . , bd) in Rd if
and only if ai ≤ bi for each i = 1, . . . , d. For any ε > 0, let ε := ε(1, . . . , 1) ∈ Rd .
Consider any non-increasing integer-valued function F : Rd → Z+. Note that F can
be regarded as a functor from the poset category Rd to the other poset category Zop

+ .
Since Zop

+ is a thin category, given another functor G : Rd → Zop
+ , the interleaving

distance (Definition 3.2) between F and G can be written a

d
Zop

+
I,d (F,G) = inf

{
ε ∈ [0,∞) : ∀a ∈ Rd , Fa ≥ Ga+ε, and Ga ≥ Fa+ε

}
.

The computational complexity for d
Zop

+
I,d is provided in Theorem 5.4. We will use dI,d ,

or even more simply dI in place of d
Zop

+
I,d when confusion is unlikely.
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Remark 3.4 The metric dI is closely related to the erosion distance [58]. See
Remark 6.3.

4 Stability Theorems for Persistent Homology Features of DMSs

In this section we establish the main results of this paper: namely, stability of the
rank invariant and Betti-0 function of DMSs (Sect. 4.1). We interpret these stability
theorems as a generalization of the standard stability results for (static) metric spaces
(Sect. 4.2).

4.1 Stability Theorems

Recall the spatiotemporal Rips filtration Int × R+ → Simp of a DMS (Definition
2.21). The poset Int × R+ can be regarded as an upper set of R3× (Remarks 2.18 and
3.3 (ii)) and thus we can utilize dVecI for comparing (Int × R+)-indexed persistence
modules.

Theorem 4.1 (Stability of spatiotemporal persistence modules induced by DMSs) Let
γX = (X , dX (·)) and γY = (Y , dY (·)) be any two DMSs. Then for any k ∈ Z+,

dVecI

(
Hk(R

lev(γX )),Hk(R
lev(γY ))

)
≤ 2 · ddyn(γX , γY ). (5)

In particular, when k = 0, the dVecI in the LHS of the above inequality can be promoted
to the full interleaving dVecI .

We remark that the promotion of dVecI to dVecI for k = 0 is crucial for proving
Theorem 4.5 below. See Sect. 6.2 for the proof of Theorem 4.1. This stability implies
that dVecI between 3-dimensional persistencemodules serves as a lower bound for ddyn.
Since computing dVecI between 3-dimensional persistence modules is prohibitive [9],
we make use of the rank invariants/Betti-0 functions of DMSs (Definitions 2.23 and
2.24) and the interleaving distance dI between integer-valued functions (Sect. 3.2) to
obtain a lower bound for ddyn as below.

Adapted Rank Invariant of a DMS. The set R6 in (3) is not an upper set (Remark 3.3
(ii)) of the poset

R6× := R × Rop × Rop × Rop × R × R (6)

into which (Int × R+)op × (Int × R+) can be embedded. In order to ensure that
we are in a position to utilize the metric dI for comparing rank invariants of DMSs,
we extend the domain of the rank invariant of a DMS to the poset R6×. Given any
(v1, v2, v3) ∈ R3, we write (v1, v2, v3) ∈ Int × R+ if v1 ≤ v2 and v3 ∈ R+.

Any element a = (a1, a2, a3, a4, a5, a6) ∈ R6, is called admissible, if a is obtained
by concatenating a comparable pair of elements in Int×R+, i.e. both (a1, a2, a3) and
(a4, a5, a6) belong to Int×R+ and (a1, a2, a3) ≤ (a4, a5, a6) in Int×R+. Otherwise,
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a is called non-admissible. In particular, a is called trivially non-admissible, if there
is no admissible b ∈ R6 such that b < a in the poset R6× (one can check that
a = (a1, a2, a3, a4, a5, a6) ∈ R6 is trivially non-admissible if and only if (a4, a5, a6)
does not belong to Int × R+, i.e. a4 > a5 or a6 < 0).

Definition 4.2 (Adapted rank invariant of a DMS) Let γX = (X , dX (·)) be any DMS
and let k ∈ Z+. We define the map rkk(γX ) : R6 → Z+ ∪ {∞}, called the k-th rank
invariant of γX , as follows: For a = (a1, . . . , a6) ∈ R6,

rkk(γX )(a)

:=

⎧
⎪⎨

⎪⎩

rank
(
Hk
(
Rδ

(∨
I dX

)
↪→ Rδ′

(∨
I ′ dX

)))
, a is admissible,

∞, a is trivially non-admissible,

0, otherwise,

where I = [a1, a2], I ′ = [a4, a5], δ = a3 , and δ′ = a6.

Note thatwhena ∈ R6 is a concatenationof a repeated pair ([t0, t0], δ0), ([t0, t0], δ0)
∈ Int × R+, i.e. a = (t0, t0, δ0, t0, t0, δ0), then

rk0(γX )(a) = dim
(
H0
(
Rδ0(X , dX (t0))

)) = β
γX
0 (t0, t0, δ0) (Definition 2.24).

We can regard rkk(γX ) as a functor R6× → (Z+ ∪ {∞})op:
Proposition 4.3 Let γX be any DMS. For any a,b ∈ R6× with a ≤ b,

rkk(γX )(a) ≥ rkk(γX )(b) in Z+ ∪ {∞}.

See Sect. 6.3 for the proof. By virtue of Proposition 4.3, dI can serve as a metric
on the collection of all (adapted) rank invariants of DMSs.

By combining Theorem 4.1 with standard stability results for the rank invariant
(Theorem 6.2) we arrive at:

Theorem 4.4 (Stability of the rank invariant of DMSs) Let γX = (X , dX (·)) and
γY = (Y , dY (·)) be any two DMSs. For any k ∈ Z+,

dI (rkk(γX ), rkk(γY )) ≤ 2 · ddyn(γX , γY ). (7)

Improvement for k = 0. By restricting ourselves to clustering information (i.e. 0-th
homology) ofDMSs,we obtain a stronger lower bound for themetric ddyn. Namely, by
regarding theBetti-0 function of aDMS(Definition 2.24) as a functor Int×R+ → Zop

+ ,
we can compare any two Betti-0 functions of DMSs via the interleaving distance dI
and we have:

Theorem 4.5 (Stability of the Betti-0 function) Let γX and γY be any twoDMSs. Then

dI
(
β

γX
0 , β

γY
0

) ≤ 2 · ddyn(γX , γY ). (8)
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R0(X, π
2
, 3π
2

dX ) R0(Y, π
2
, 3π
2

dY)

x1 x2 x3 y1 2y y3

[ ] [ ]

Fig. 5 The geometric realization ofR0
(
X ,
∨

[ π
2 , 3π2 ] dX

)
andR0

(
Y ,
∨

[ π
2 , 3π2 ] dY

)
for the DMSs γX and

γY in Example 2.25

We prove Theorem 4.5 in Sect. 6.4. Also, we remark that the LHSs of inequalities
in (7) and (8) are computable in poly-time (Theorem 5.4) using the well-known binary
search algorithm.

Remark 4.6 (Sensitivity of the LHS in (8)) Consider the DMSs γX and γY given as in
Example 2.25. The value dI

(
β

γX
0 , β

γY
0

)
is at least r , as we will see below. This in turn

implies that the metric dI is sensitive enough to discriminate (the Betti-0 functions of)
γX and γY .

Details about Remark 4.6 Observe that

∨

[ π
2 , 3π2 ] dX (xi , x j ) =

{
2, i = 1, j = 3,

0, otherwise,

∨

[ π
2 , 3π2 ] dY (yi , y j ) =

⎧
⎪⎨

⎪⎩

1, i = 1, j = 2,

2, i = 1, j = 3,

0, otherwise.

Hence, the geometric realization of Rips complexes R0
(
X ,
∨

[ π
2 , 3π2 ] dX

)
and

R0
(
Y ,
∨

[ π
2 , 3π2 ] dY

)
are illustrated in Fig. 5.

By counting the number of connected components of these complexes, we have
β

γX
0

([
π
2 , 3π

2

]
, 0
) = 1 and β

γY
0

([
π
2 , 3π

2

]
, 0
) = 2. Also, it is not difficult to check that

for any ε ∈ [0, r),Rε

(
Y ,
∨

[ π
2 −ε, 3π2 +ε] dY

) = R0
(
Y ,
∨

[ π
2 , 3π2 ] dY

)
, so that

β
γX
0

([
π

2
,
3π

2

]

, 0

)

= 1 < 2 = β
γY
0

([
π

2
− ε,

3π

2
+ ε

]

, ε

)

.

By the definition of dI, this inequality implies that dI(β
γX
0 , β

γY
0 ) is at least r .

Next, we show that dI(β
γX
0 , β

γY
0 ) ≤ 2r . For any ε ∈ [2r ,∞) and any I ∈ Int,

β
γX
0 (I , ε) = β

γY
0 (I , ε) = 1,

which is illustrated in Fig. 4. Therefore, for any ([t1, t2], δ) ∈ Int × R+,

β
γX
0 ([t1, t2], δ) ≥ β

γY
0 ([t1 − 2r , t2 + 2r ], δ + 2r) = 1,

β
γY
0 ([t1, t2], δ) ≥ β

γX
0 ([t1 − 2r , t2 + 2r ], δ + 2r) = 1.

Therefore, we have dI(β
γX
0 , β

γY
0 ) ≤ 2r . ��
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In order to obtain a lower bound for ddyn between two DMSs, computing the
distance between the Betti-0 functions of the DMSs (the LHS of the inequality in (8))
is better than computing the distance between their 0-th rank invariants (the LHS of
the inequality in (7)):

Proposition 4.7 For any two DMSs γX = (X , dX (·)) and γY = (Y , dY (·)),

dI,6 (rk0(γX ), rk0(γY )) ≤ dI,3(β
γX
0 , β

γY
0 ). (9)

Proposition 4.7 is a corollary of Proposition 6.10. The proof relies on the fact that
all inner morphisms of the persistence modules H0

(
Rlev(γX )

)
and H0

(
Rlev(γY )

)
are

surjective. In Example 4.16, we consider a concrete example of the bound provided
in Proposition 4.7.

4.2 Relationship with Standard Stability Theorems

The main goal of this section is to explain, when restricting ourselves to the class
of constant DMSs (Example 2.2 (i)), how Theorems 4.1, 4.4 and 4.5 boil down to
the well-known stability theorems for (static) metric spaces. Along the way, we also
identify a new lower bound for the Gromov–Hausdorff distance, which is tighter
than the bottleneck distance between the 0-th persistence diagrams of Rips filtrations
(Remark 4.13 and Theorem 4.14).

For k ∈ Z+, by post-composing the simplicial homology functorHk : Simp → Vec
(with coefficients in the field F) to the Rips filtration R•(X , dX ) of a metric space
(X , dX ), we obtain the persistence module

Hk ◦ R•(X , dX ) : R → Vec.

Let dgmk(R•(X , dX )) be the k-th persistence diagram of the Rips filtration
R•(X , dX ). Also, let dB be the bottleneck distance (Definition C.1). Recall that ddyn
coincides with dGH on the class of constant DMSs (Remark 2.12).

Remark 4.8 Consider any two constant DMSs γX ≡ (X , dX ) and γY ≡ (Y , dY ). Then,
for any k ∈ Z+, inequality (5) reduces to

dVecI

(
Hk ◦ R•(X , dX ),Hk ◦ R•(Y , dY )

) ≤ 2 dGH((X , dX ), (Y , dY )), (10)

or equivalently to

dB
(
dgmk (R•(X , dX )) , dgmk (R•(Y , dY ))

) ≤ 2 · dGH ((X , dX ), (Y , dY )) , (11)

which are known in [22,23]. In other words, the LHS and the RHS of inequality (5)
are respectively identical to the LHS and the RHS of inequalities (10) or (11).

We define the rank invariant of a finite metric space as follows:
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Definition 4.9 (The rank invariant of a metric space) Let (X , dX ) be any finite metric
space and let k ∈ Z+. We define the map rkk(X , dX ) : R2 → Z+ ∪ {∞}, called the
k-th rank invariant of (X , dX ), as follows: For a = (δ, δ′) ∈ R2,

rkk(X , dX )(a) =
{
rank (Hk (Rδ(X , dX ) ↪→ Rδ′(X , dX ))) , δ ≤ δ′,
∞, otherwise

(cf. Definition 4.2).

In Definition 4.9, note that we can regard rkk(X , dX ) as a functor Rop ×R → (Z+ ∪
{∞})op. Therefore, we can compare the rank invariants of any two finite metric metric
spaces via the interleaving distance dI.

Remark 4.10 Consider any two constant DMSs γX ≡ (X , dX ) and γY ≡ (Y , dY ).
Then, for any k ∈ Z+, inequality (7) reduces to

dI(rkk(X , dX ), rkk(Y , dY )) ≤ 2 dGH((X , dX ), (Y , dY )). (12)

Remark 4.11 We also remark that the LHS of (11) is greater than or equal to that of
(12) by Corollary 6.4:

dI(rkk(X , dX ), rkk(Y , dY )) ≤ dB
(
dgmk (R•(X , dX )) , dgmk (R•(Y , dY ))

)

≤ 2 · dGH((X , dX ), (Y , dY )).

Definition 4.12 (The Betti-0 function of a finite metric space) Let (X , dX ) be any
finite metric space. We define the Betti-0 function β

(X ,dX )
0 : R+ → Z+ of (X , dX ) by

sending each δ ∈ R+ to the dimension of H0(Rδ(X , dX )) (cf. Definition 2.24).

Since β
(X ,dX )
0 is non-increasing function and R+ is an upper set of R, we can

compare any two Betti-0 functions via dI.

Remark 4.13 (Stability of the Betti-0 function) Consider any two constant DMSs γX ≡
(X , dX ) and γY ≡ (Y , dY ). Then the inequality in (8) reduces to

dI
(
β

(X ,dX )
0 , β

(Y ,dY )
0

)
≤ 2 dGH ((X , dX ), (X , dY )) . (13)

In particular, as a lower bound for 2 · dGH, the LHS of inequality (13) is always as
effective as the LHS of inequality (11) for k = 0:

Theorem 4.14 For any finite metric spaces (X , dX ) and (Y , dY ),

dB
(
dgm0 (R•(X , dX )) , dgm0 (R•(Y , dY ))

) ≤ dI
(
β

(X ,dX )
0 , β

(Y ,dY )
0

)
.

The proof is provided in Sect. 6.5. Example 4.15 below illustrates Theorem 4.14.
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Example 4.15 Let X = {x1, x2}. For any ε ∈ [0,∞), we define the two metrics dX
and dε

X on X as

dX (x1, x2) = 1 and dε
X (x1, x2) = 1 + ε.

By definition of dGH (Definitions D.1) and dI (Sect. 3.2), one can check the following:

(i) 2 dGH
(
(X , dX ), (X , dε

X )
) = ε.

(ii) β
(X ,dX )
0 (δ) =

{
2, δ < [0, 1),
1, δ ∈ [1,+∞)

and β
(X ,dε

X )

0 (δ) =
{
2, δ < [0, 1 + ε),

1, δ ∈ [1 + ε,+∞).

Also,

dI
(
β

(X ,dX )
0 , β

(Y ,dY )
0

)
= ε.

(iii) dgm0 (R•(X , dX )) = {(0,+∞), (0, 1)}, and dgm0
(
R•(X , dε

X )
) = {(0,+∞),

(0, 1 + ε)}. Also,

dB
(
dgm0 (R•(X , dX )) , dgm0(R•(X , dε

X ))
) = min

(

ε,
1 + ε

2

)

.

(iv) For k ≥ 1, both dgmk (R•(X , dX )) and dgmk (R•(Y , dY )) are the empty set, and
thus

dB
(
dgmk (R•(X , dX )) , dgmk(R•(X , dε

X ))
) = 0.

Items (iii) and (iv) indicate that the best lower bound for 2 dGH((X , dX ), (X , dε
X ))

obtained by invoking inequality (11) is min
(
ε, 1+ε

2

)
. On the other hand, from items

(i) and (ii), we have

ε = 2 dGH
(
(X , dX ), (X , dε

X )
) = dI

(
β

(X ,dX )
0 , β

(Y ,dY )
0

)
,

which is, when ε > 1, strictly larger than min
(
ε, 1+ε

2

)
. This example demonstrates

inequality (13) is a complement to the bottleneck stability of Rips filtration, inequality
(11). Also, items (i) and (ii) show the tightness of inequality (13).

Example 4.16 Define two DMSs γX and γ ′
X to be the constant DMSs which are, for

every time t ∈ R, isometric respectively to the metric spaces (X , dX ) and (X , dε
X ) in

Example 4.15. Then, invoking Remarks 4.10 and 4.13, one can compute:

dI,6
(
rk0(γX ), rk0(γ

′
X )
) = dI,2

(
rk0(X , dX ), rk0(X , dε

X )
) = min

(
1 + ε

2
, ε

)

,

dI,3
(
β

γX
0 , β

γ ′
X

0

)
= dI,1

(
β

(X ,dX )
0 , β

(X ,dε
X )

0

)
= ε.

See below for computational details. When ε > 1, this example demonstrates that the
RHS of inequality (9) can be strictly larger.
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0
1
2

(0,1)

(0,0)

0
1
2

(0,0)

(0,1 ε
∞ ∞

rk0 rk0(X,dX ) (X,dX )
ε

Fig. 6 The 0-th rank invariants of (X , dX ) and (X , dε
X ) in Example 4.15

Details about Example 4.16 One can compute rk0(X , dX ), rk0(X , dε
X ) : R2 → (Z+ ∪

{∞})op (Definition 4.9) as illustrated in Fig. 6.
From this plot, one can check that

dI,2
(
rk0(X , dX ), rk0(X , dε

X )
) =

{
ε, ε ≤ [0, 1],
1+ε
2 , ε ∈ (1,∞),

which amounts to

dI,2
(
rk0(X , dX ), rk0(X , dε

X )
) = min

(
1 + ε

2
, ε

)

.

We already computed β
(X ,dX )
0 and β

(X ,dε
X )

0 in Example 4.15. Observe that the value

min
{
α ∈ [0,∞) : ∀δ ∈ [0,∞), β

(X ,dX )
0 (δ + α) ≤ β

(X ,dε
X )

0 (δ),

β
(X ,dε

X )

0 (δ + α) ≤ β
(X ,dε

X )

0 (δ)
}

is equal to ε. This implies that dI,1
(
β

(X ,dX )
0 , β

(X ,dε
X )

0

)
= ε. ��

5 Computing the Interleaving Distance Between Integer-Valued
Functions

In this section we propose an algorithm for computing the interleaving distance
between integer-valued functors based on ordinary binary search.

For n ∈ N, let [n] := {1, . . . , n}. Also, for each d ∈ N, let [n]d ⊂ Zd be the
subposet of Zd . Assume that a = (a1, . . . , ad) ∈ [n]d . If there exists i ∈ {1, . . . , d}
such that ai = n, we refer to a as an upper boundary point of [n]d .
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Let F : [n]d → Z+ be any function. Then F can be regarded as an array of non-
negative integers. For each k ∈ {0, . . . , n − 1}, the restriction F |[n−k]d of F is the

lower-left block of F . Symmetrically, we define the upper-right block F |[n−k]d : [n −
k]d → Z+ of F as follows:

(
F |[n−k]d )

a = Fa+k(1,...,1) for a ∈ [n − k]d .

In words, F |[n−k]d is the restriction of the array F to its upper-right corner of size
(n − k)d with a re-indexing (in the obvious way).

Given F,G : [n]d → Z+, we write F ≥ G if Fa ≥ Ga for all a ∈ [n]d . Let
F,G : [n]d → Z+ be any two order-reversing functions with 0 = Fa = Ga for each
upper boundary point a ∈ [n]d . For each k ∈ {0, . . . , n − 1}, we define the k-test for
the pair (F,G):

Algorithm 1 k-test for F,G : [n]d → Z+.
if F |[n−k]d ≥ G|[n−k]d and G|[n−k]d ≥ F |[n−k]d then return Yes.
else return No.

Remark 5.1 Let F,G : [n]d → Z+ be any two order-reversing functions with 0 =
Fa = Ga for each upper boundary point a ∈ [n]d . Fix k ∈ {0, . . . , n − 1}. Then
(i) suppose that the k-test for (F,G) returns “Yes”. Then for any k′ ∈ {k, . . . , n−1}

the k′-test for (F,G) returns also “Yes”,
(ii) the (n − 1)-test for (F,G) always returns “Yes”.

Example 5.2 We consider two examples.

(A) (d = 1) Consider F,G : [4] → Z+ defined as follows:

F := (F1, F2, F3, F4) = (5, 3, 1, 0), G := (G1,G2,G3,G4) = (4, 3, 2, 0).

Since F � G nor G � F , the 0-test for (F,G) returns “No”. However, since

F |[3] = (5, 3, 1) ≥ (3, 2, 0) = G|[3], and G|[3] = (4, 3, 2) ≥ (3, 1, 0) = F |[3],

the 1-test for (F,G) returns “Yes”. Also, one can check that for any k ∈ {2, 3},
the k-test returns “Yes” (cf. Remark 5.1 (i)).

(B) (d = 2) Consider F,G : [3]2 → Z+ defined as follows:

F :=
F(1,3) F(2,3) F(3,3)

F(1,2) F(2,2) F(3,2)

F(1,1) F(1,2) F(1,3)

=
0 0 0
3 3 0
4 3 0

, G :=
G(1,3) G(2,3) G(3,3)

G(1,2) G(2,2) G(3,2)

G(1,1) G(1,2) G(1,3)

=
0 0 0
2 1 0
2 2 0

.
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Since G � F , the 0-test for (F,G) returns “No”. Also, since

G|[2]2 = 2 1
2 2

�
0 0
3 0

= F |[2]2 ,

the 1-test returns “No”. Since 4 ≥ 0 and 2 ≥ 0, one can see that the 2-test returns
“Yes”.

Recall the poset category Zop
+ : for any p, q ∈ Z+, there exists the unique arrow

p → q if and only if p ≥ q. A function F : Nd → Z+ can be regarded as a functor
F : Nd → Zop

+ if and only if F : Nd → Z+ is order-reversing.
By the definition of interleaving distance, we straightforwardly have:

Proposition 5.3 For n, d ∈ N, let F,G : Nd → Zop
+ be any two functors with 0 =

Fa = Ga for each upper boundary point a ∈ [n]d . Consider the restrictions F :=
F |[n]d and G := G|[n]d . Then

dI
(
F,G

) = min {k ∈ {0, 1, . . . , n − 1} : the k-test for (F,G) returns “Yes”} .

Computational Complexity of Computing the Rank Invariant. Let Vec be the category
of vector spaces over a fixed field Fwith linear maps. Let M : [n]d → Vec be a (finite)
multidimensional module. Let total(M) := ∑

a∈[n]d dim(Ma). In order to compute the
rank invariant rk(M) : [n]d → Z+, one needs O(total(M)ω) operations [7, Append.
C], where ω is the matrix multiplication exponent.

Proposed Algorithm for Computing dI and its Computational Complexity. Let
F,G : [n]d → Z+ be any two order-reversing functions. Based on Proposition 5.3, in
order to find theminimal k ∈ {0, . . . , n−1} for which the k-test for (F,G) (Algorithm
1) returns “Yes”, we carry out binary search.

Let us fix k ∈ {0, . . . , n−1}. For carryingout the k-test for (F,G),we compare pairs
of integers from the arrays of F andG.Assume that pairs of integers are compared one
by one. Then, notice that, depending on F and G, the number of comparisons which
are necessary to complete the k-test can vary from1 to 2(n−k)d . Under the assumption
that the number of required comparisons is a random variable uniformly distributed

in {1, . . . , 2(n − d)k} one can conclude that 1+2(n−d)k

2 ≈ (n − d)k comparisons are
needed on average. Under the preceeding assumptions, by results from [49, Sect. 4],
we directly have:

Theorem 5.4 The expected cost of computing dI,d(F,G) is at least O(nd log n). Fur-
thermore, the algorithm based on ordinary binary search has this expected cost.

By Theorem 5.4, the expected costs of computing the LHSs of inequalities in
Theorems 4.4 and 4.5, and Remarks 4.10 and 4.13 are O(nd log n) where d = 6, 3, 2
and 1, respectively in order.

In Appendix C we compare dI,d with the matching distance [18,20,51], and with
the dimension distance [28, Sect. 4].
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6 Details About Stability Theorems

The goal of this section is to prove all theorems in Sect. 4 whose proof was not given
therein.

6.1 Interleaving Stability of Rank Invariants and Dimension Functions

The Rank Invariant and Its Stability. For any persistence module M : Rd → Vec, the
rank invariant of M is defined as follows [17]:

Definition 6.1 (The rank invariant) For any M : Rd → Vec, the map rk(M) : R2d →
Z+ ∪ {∞} defined as

rk(M)(a,b) :=
{
rk(ϕM (a,b)), a ≤ b ∈ Rd ,

∞, otherwise

is called the rank invariant of M .

Given any M : Rd → Vec, note that for any a′ ≤ a ≤ b ≤ b′ in Rd ,

ϕM (a′,b′) = ϕM (b,b′) ◦ ϕM (a,b) ◦ ϕM (a′, a).

Hence, we have that rk(M)(a′,b′) ≤ rk(M)(a,b). This means that rk(M) is a functor
between its domain and codomain when regarded

(i) the domain R2d as the product poset (Rd)op × Rd , and
(ii) the codomain Z+ ∪ {∞} as the poset (Z+ ∪ {∞})op.
We have stability of the rank invariant:

Theorem 6.2 (Stability of the rank invariant [58, Thm. 8.2], [59, Thm. 22]) For any
M, N : Rd → Vec,

dI,2d(rk(M), rk(N )) ≤ dVecI (M, N ). (14)

Note that Theorem 6.2 together with Theorem 4.1 result in Theorem 4.4. Even though
the proof of Theorem 6.2 is given in [58, Thm. 8.2], [59, Thm. 22] in more general
setting, we provide a brief version of the proof here.

Proof Since we regard rk(M) as a functor from (Rd ,≥) × (Rd ,≤) to (Z+ ∪ {∞})op,
for any ε ∈ [0,∞), the ε-shift rk(M)(ε) : (Rd ,≥) × (Rd ,≤) → (Z+ ∪ {∞})op of
rk(M) is defined as

rk(M)(ε)(a,b) = rk(M)(a−ε,b+ε).

Similarly, the ε-shift of rk(N ) is defined.

123



Discrete & Computational Geometry

Suppose that for some ε ∈ [0,∞), the pair ( f , g) is an ε-interleaving pair
for M, N : Rd → Vec (Definition 3.2). We show rk(N )(ε) ≤ rk(M). Pick any
(a,b) ∈ Rd × Rd . If a � b in Rd , then rk(M)(a,b) = ∞, and thus we trivially
have rk(N )(a−ε,b+ε) ≤ rk(M)(a,b). If a ≤ b in Rd , then a − ε ≤ b + ε, and since

ϕN (a − ε,b + ε) = fb ◦ ϕM (a,b) ◦ ga,

we have rk(N )(a−ε,b+ε) ≤ rk(M)(a,b). By symmetry, we also have rk(M)(ε) ≤
rk(N ), completing the proof. ��
Remark 6.3 In order to compare the rank invariants, the author of [59] makes use of a
generalization of the erosion distance in [58],which is denoted bydE (seeAppendixC).
It can be deduced that for the LHS of inequality (14) coincideswith dE(rk(M), rk(N )).

Given δ > 0, deciding whether dVecI (M, N ) ≤ δ is in general NP-hard [7,8].
In Theorem 6.2, substituting the comparison of M and N with that of rk(M) and

rk(N ) results in doubling of the underlying dimension of the interleaving distance.
This increase of dimension is a price one must pay for substituting the target category
Vec with the poset category (Z+ ∪ {∞})op. Despite the increase in the underlying
dimension, aswe show inSect. 5, it turns out that computing dI is easier than computing
dVecI .

For any interval decomposable modules M, N : Rd → Vec, let B(M) and B(N )

be the barcode of M and N , respectively. Then, by [9, Prop. 2.13],

dVecI (M, N ) ≤ dB (B(M),B(N )) .

Hence, together with Theorem 6.2 ,we straightforwardly have:

Corollary 6.4 For any interval decomposable M, N : Rd → Vec, letB(M)andB(N )

be the barcode of M and N, respectively. Then

dI,2d(rk(M), rk(N )) ≤ dB (B(M),B(N )) .

Monotonicity and Stability of Dimension Functions for Surjective Modules

Definition 6.5 (Surjective persistence modules) Let C be either Sets or Vec and let
M : Rd → C be any persistence module. We call M surjective if ϕM (a,b) : Ma →
Mb is surjective for all a ≤ b in Rd .

Example 6.6 (The 0-th homology of the Rips filtration) Let (X , dX ) be a metric space.
By applying the 0-th (simplicial) homology functor to the Rips filtration of (X , dX ),
we obtain surjective persistence module R → Vec.

Definition 6.7 (Dimension function) Let C be either Sets orVec and let M : Rd → C
be any persistence module. The dimension function dm(M) : Rd → Z+ of M is
defined by sending each a ∈ Rd to the cardinality of Ma (when C = Sets) or the
dimension of the vector spaces Ma (when C = Vec).
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Remark 6.8 In Definition 6.7, if M is a surjective persistence module, then we can
regard dm(M) as a functor Rd → Zop

+ .

Proposition 6.9 (Interleaving stability of the dimension function) LetC be either Sets
or Vec and let M, N : Rd → C be any two surjective persistence modules. Then

(i) dI,d (dm(M), dm(N )) ≤ 2 · dCI,d(M, N ),

(ii) dI,d (dm(M), dm(N )) ≤ dCI,d(M, N ).

Proof Let us assume that C = Sets. The proof for the case C = Vec is similar. We
show (i). Suppose that ( f , g) is an ε-interleaving pair between M and N . Pick any
a ∈ Rd .We haveϕM (a, a+2ε) = ga+ε◦ fa. SinceϕM (a, a+2ε) is surjective, we also
have that ga+ε is surjective. SinceϕN (a, a+ε) is also surjective, the composition ga+ε◦
ϕN (a, a + ε) : Na → Ma+2ε is surjective. This implies that dm(N )a ≥ dm(M)a+2ε.
By symmetry, we also have that dm(M)a ≥ dm(N )a+2ε for each a ∈ Rd . Therefore,
dI (dm(M), dm(N )) ≤ 2ε, as desired.

We prove Item (ii). Suppose that there exists a full ε-interleaving pair between M
and N . Then this directly implies that for all a ∈ Rd , dm(M)a ≥ dm(N )a+ε and
dm(N )a ≥ dm(M)a+ε. ��
Proposition 6.10 Let C be either Sets or Vec and let M, N : Rd → C be any two
surjective persistence modules. Then

dI,2d (rk(M), rk(N )) ≤ dI,d (dm(M), dm(N )) .

Proof Suppose that for some ε ∈ [0,∞), dI (dm(M), dm(N )) < ε. It suffices to prove
that for all a,b ∈ Rd with a ≤ b, and for all ε′ > ε in [0,∞),

rk(N )(a − ε′,b + ε′) ≤ rk(M)(a,b).

Invoking that M and N are surjective, notice that rk(N )(a−ε′,b+ε′) = dm(N )(b+
ε′) and rk(M)(a,b) = dm(M)(b). By assumption, we readily have that dm(N )(b +
ε′) ≤ dm(M)(b), completing the proof. ��
Proposition 4.7 is a corollary of Proposition 6.10.

6.2 Proof of Theorem 4.1

Before showing Theorem 4.1, we begin with the remarks below.

Remark 6.11 (Simplicialmaps betweenRips complexes) For any (semi-)metric spaces6

(X , dX ) and (Y , dY ), and for some δ, δ′ ≥ 0, consider the Rips complexes K =
Rδ(X , dX ) and L = Rδ′(Y , dY ) . By the definition of Rips complex, in order to claim
that a set map p : X → Y induces a simplicial map between (geometric realizations
of) K and L , it suffices to show that whenever x, x ′ ∈ X with dX (x, x ′) ≤ δ, it holds
that dY (p(x), p(x ′)) ≤ δ′.

6 We call (X , dX ) a semi-metric space if the function dX : X × X → R+ satisfies: (1) for all x ∈ X ,
dX (x, x) = 0, and (2) for all x, x ′ ∈ X , dX (x, x ′) = dX (x ′, x).
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For I = [u, u′] ∈ Int and ε ∈ [0,∞), let I ε := [u − ε, u′ + ε].
Remark 6.12 Let γX = (X , dX (·)) and γY = (Y , dY (·)) be any two DMSs and let

R : X
ϕX�−−− Z

ϕY−−−� Y be a ε-tripod between γX and γY . Then it is not difficult to
check that for any closed interval I of R,

∨

I ε

dX ≤R

∨

I

dY + 2ε and
∨

I ε

dY ≤R

∨

I

dX + 2ε, (15)

which is slightly more general than the condition in (1).

Proof of Theorem 4.1 If ddyn(γX , γY ) = ∞, there is nothing to prove. Suppose that
ddyn(γX , γY ) < ε for some ε ∈ (0,∞). Let S := Rlev(γX ) and T := Rlev(γY )

(Definition 2.21). We regard Int × R+ as the subposet of Rop × R × R (Fig. 3). Let
v := ε(−1, 1, 2) ∈ R3. Since v ≤ ε(−2, 2, 2) in Rop × R × R, in order to prove
inequality (5), it suffices to show that there are natural transformations f : S ⇒ T (v)
and g : T ⇒ S (v) (between the two Int×R+-indexed, Simp-valued functors) such
that for each (I , δ) ∈ Int × R+, the following diagrams commute up to contiguity:

S(I ,δ) S(I 2ε,δ+4ε)

T(I ε,δ+2ε)

f(I ,δ)

S
(
(I ,δ)≤(I 2ε ,δ+4ε)

)

g(Iε,δ+2ε)

S(I ε,δ+2ε)

T(I ,δ) T(I 2ε,δ+4ε).

f(Iε,δ+2ε)g(I ,δ)

T
(
(I ,δ)≤(I 2ε ,δ+4ε)

)

Indeed, by functoriality of homology, the existence of such pair (f, g) of natural trans-
formations guarantees the v-interleaving between two (Int × R+)-indexed modules
Hk ◦ S and Hk ◦ T .

Suppose that R : X
ϕX�−−− Z

ϕY−−−� Y is an ε-tripod between γX and γY (Defi-
nition 2.9), which exists by the assumption ddyn(γX , γY ) < ε. Since ϕX and ϕY are
surjective, we can take two maps f : X → Y and g : Y → X such that

{(x, f (x)) : x ∈ X} ∪ {(g(y), y) : y ∈ Y }
⊂ {(x, y) ∈ X × Y : ∃z ∈ Z , x = ϕX (z), and y = ϕY (z)}. (16)

First, let us check that for any (I , δ) ∈ Int × R+, f induces a simplicial map
f(I ,δ) : S (I , δ) → T (I ε, δ + 2ε). Fix any (I , δ) ∈ Int × R+. By Remark 6.11,
it suffices to show that whenever x, x ′ ∈ X with

(∨
I dX

)
(x, x ′) ≤ δ, it holds that(∨

I ε dY
)
( f (x), f (x ′)) ≤ δ+2ε.This is immediate from the fact that R is an ε-tripod,

and the assumption {(x, f (x)) : x ∈ X} ⊂ ϕY ◦ ϕ−1
X , and Remark 6.12.

Furthermore, f induces a v-morphism f : S ⇒ T (v). Indeed, because idY ◦ f =
f ◦ idX as a set map X → Y , for any (I , δ) ≤ (J , δ′) in Int × R+, we have:

T
(
(I ε, δ + 2ε) ≤ (J ε, δ′ + 2ε)

) ◦ f(I ,δ) = f(J ,δ′) ◦ S
(
(I , δ) ≤ (J , δ′)

)
.
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Bysymmetry, it is straightforward that g : Y → X also induces av-morphismg : T →
S (v).

Next, we show that (f, g) is a v-interleaving pair. By symmetry we only prove
that for any (I , δ) ∈ Int × R+, the simplicial map g(I ε,δ+2ε) ◦ f(I ,δ) is contiguous
to S

(
(I , δ) ≤ (I 2ε, δ + 4ε)

)
, the simplicial map induced by the identity map on

the vertex set X . Let σ ⊂ X be a simplex in S (I , δ). We wish to show that there
is a simplex in S (I 2ε, δ + 4ε) that contains both σ and the image im(σ ) of σ by
g(I ε,δ+2ε) ◦ f(I ,δ). To this end, we prove that the union σ ∪ im(σ ) has the diameter
that is less than or equal to δ + 4ε in the (semi-)metric space (X ,

∨
I 2ε dX ). Invoking

Remark 6.12, we consider the following three different cases of choosing any two
elements in σ ∪ im(σ ):

(i) Take any x, x ′ ∈ σ . Since σ is a simplex in the Rips complex S (I , δ) =
Rδ

(
X ,
∨

I dX
)
, we have

⎛

⎝
∨

I 2ε

dX

⎞

⎠ (x, x ′) ≤
(
∨

I

dX

)

(x, x ′) ≤ δ < δ + 4ε.

Let R̃ := {(x, f (x)) : x ∈ X} ∪ {(g(y), y) : y ∈ Y } (see the inclusion in (16)).

(ii) Take x ∈ σ and x ′ ∈ im(σ ). Then x ′ = g ◦ f (x ′′) for some x ′′ ∈ σ . Since
(x, f (x)), (x ′, f (x ′′)), (x ′′, f (x ′′)) ∈ R̃,

⎛

⎝
∨

I 2ε

dX

⎞

⎠ (x, x ′) ≤
(
∨

I ε

dY

)

( f (x), f (x ′′)) + 2ε

≤
(
∨

I

dX

)

(x, x ′′) + 4ε ≤ δ + 4ε.

(iii) Take any x, x ′ ∈ im(σ ). Then there are x ′′, x ′′′ ∈ σ which are sent to x, x ′ via g ◦
f , respectively. Since (x, f (x ′′)), (x ′, f (x ′′′)), (x ′′, f (x ′′)), (x ′′′, f (x ′′′)) ∈ R̃,

⎛

⎝
∨

I 2ε

dX

⎞

⎠ (x, x ′) ≤
(
∨

I ε

dY

)

( f (x ′′), f (x ′′′)) + 2ε

≤
(
∨

I

dX

)

(x ′′, x ′′′) + 4ε ≤ δ + 4ε. ��

6.3 Proof of Proposition 4.3

Lemma 6.13 (Convexity of admissible vectors)Suppose thata,b ∈ R6× areadmissible
with a ≤ b. Then any c ∈ R6× such that a ≤ c ≤ b is also admissible.

Proof Let a := (ai )6i=1 and b := (bi )6i=1 and c = (ci )6i=1. From the assumptions that
a ≤ c ≤ b and that a,b are admissible, one can see that
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b4 ≤ c4 ≤ a4 ≤ a1 ≤ c1 ≤ b1 ≤ b2 ≤ c2 ≤ a2 ≤ a5 ≤ c5 ≤ b5, and

0 ≤ b3 ≤ c3 ≤ a3 ≤ a6 ≤ c6 ≤ b6.

Therefore, c is admissible. ��
Proof of Proposition 4.3 Pick a,b ∈ R6× such that a ≤ b. We consider the following
cases:

(i) Both a and b are admissible.
(ii) a is admissible and b is non-admissible.
(iii) a is non-admissible and b is admissible.
(iv) Both a and b are non-admissible.

In case (i), let a = (a1, a2, a3, a4, a5, a6) and b = (b1.b2, b3, b4, b5, b6). Then we
have the inclusions

Rb3

⎛

⎝X ,
∨

[b1,b2]
dX

⎞

⎠ i1
↪→ Ra3

⎛

⎝X ,
∨

[a1,a2]
dX

⎞

⎠

i2
↪→ Ra6

⎛

⎝X ,
∨

[a4,a5]
dX

⎞

⎠ i3
↪→ Rb6

⎛

⎝X ,
∨

[b4,b5]
dX

⎞

⎠ .

By applying Hk to the above inclusions, we obtain the diagram of vector spaces and
linear maps

V1
Hk (i1)−→ V2

Hk (i2)−→ V3
Hk (i3)−→ V4.

Notice that rkk(a) is the rank of Hk(i2), whereas rkk(b) is the rank of Hk(i3)◦Hk(i2)◦
Hk(i1). This implies that rkk(a) ≥ rkk(b). In case (ii), b cannot be trivially non-
admissible by definition. Therefore, rkk(γX )(b) = 0. In case (iii), by Lemma 6.13,
a must be trivially non-admissible and hence rkk(γX )(a) = ∞. In case (iv), by
the definition of trivially non-admissible, it is not possible that a is non-trivially
non-admissible with b being trivially non-admissible. Therefore, we always have
rkk(γX )(a) ≥ rkk(γX )(b). ��

6.4 Spatiotemporal Dendrogram of a DMS and Proof of Theorem 4.5

Overview of the Proof. The Betti-0 function of a DMS γX can be obtained by the
two steps: First, adapting the ideas of the SLHC method (Appendix D.2), we induce
the spatiotemporal SLHC dendrogram θ(γX ) of γX . Then the dimension function
dm (θ(γX )) (Definition 6.7) of θ(γX ) coincides with the Betti-0 function of γX given
in Definition 2.24. Therefore, by proving that each of the successive associations
γX �→ θ(γX ) �→ dm (θ(γX )) is stable, we can show Theorem 4.5.

Partition Category and Dendrograms. Let X be a non-empty finite set. Given any two
partitions P, Q of X , we write P ≤ Q if P refines Q, i.e. for all B ∈ P , there exists
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a (unique) C ∈ Q such that B ⊂ C . In this case, the surjective map P � Q sending
each B ∈ P to the unique block C ∈ Q such that B ⊂ C is called the natural map
from P to Q.

Definition 6.14 (Part(X) and its structure) Let X be a non-empty finite set. By
Part(X), we mean the subcategory of Sets described as follows:

(i) Objects: All partitions of X .
(ii) Morphisms: For any two partitions P, Q of X with P ≤ Q, the unique morphism

P � Q is the natural map.

We remark that any partition P of X has the corresponding equivalence relation ∼ on
X . Namely, P = X/ ∼, where x ∼ x ′ if and only if x, x ′ belong to the sameblock of P .

Definition 6.15 (Dendrogram) Let X be a non-empty finite set and let P be any poset.
We will call any functor P → Part(X) a P-indexed dendrogram over X or simply a
dendrogram.

The Spatiotemporal SLHC Dendrogram of a DMS. We aim at encoding multiscale
clustering features of a DMS into a single dendrogram (Definition 6.16). Since we
take into account both temporal and spatial parameters, this dendrogram will have a
multidimensional indexing poset, in contrast to its counterpart for a static metric space
(Definition D.2). We prove that this dendrogram is stable under perturbation of the
input DMS (Theorem 6.17).

Let γX = (X , dX (·)) be a DMS. For I ∈ Int and δ ∈ R+, we define the equivalence
relation ∼I

X ,δ on X as follows:

x ∼I
X ,δ x ′ ⇔ ∃x = x0, x1, . . . , xn = x ′ in X s.t.

(
∨

I

dX

)

(xi , xi+1) ≤ δ.

Observe that, for any pair (I , δ) ≤ (J , δ′) in Int×R+, the relation ∼I
X ,δ is contained

in ∼J
X ,δ′ and hence

(
X/ ∼I

X ,δ

)
≤
(
X/ ∼J

X ,δ′
)

. (17)

By this monotonicity in (17), we can extend the notion of SLHC dendrogram for
static metric spaces (Definition D.2) to the spatiotemporal SLHC dendrogram of a
DMS:

Definition 6.16 (The spatiotemporal SLHC dendrogram of a DMS) Given any DMS
γX = (X , dX (·)), we define the spatiotemporal SLHC dendrogram θ(γX ) : Int ×
R+ → Part(X) of γX as follows:

(i) To each (I , δ) ∈ Int × R+, assign the partition X/ ∼I
X ,δ of X .

(ii) To each pair (I , δ) ≤ (J , δ′) in Int × R+, assign the natural map (Definition
6.14)

X/ ∼I
X ,δ� X/ ∼J

X ,δ′ .
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In order to prove Theorem 4.5, we need:

Theorem 6.17 (Stability of the spatiotemporal SLHC dendrogram)

dSetsI (θ(γX ), θY (γY )) ≤ 2 · ddyn(γX , γY ).

The proof of Theorem 4.5 will be straightforward by re-interpreting Definition 2.24:

Definition 6.18 (Another interpretation of Definition 2.24) Let γX = (X , dX (·)) be a
DMS. We define the Betti-0 function β

γX
0 : Int × R+ → Z+ of γX as the dimension

function of the spatiotemporal dendrogram θ(γX ) : Int × R+ → Part(X) of γX . In
other words, βγX

0 sends each (I , δ) ∈ Int×R+ to the number of blocks in the partition
θ(γX )(I , δ).

Proof of Theorem 4.5 Invoking that βγX
0 and β

γY
0 are the dimension functions of θ(γX )

and θ(γY ), respectively, the proof straightforwardly follows from Proposition 6.9 and
Theorem 6.17. ��
Proof of Theorem 6.17 Let M := θ(γX ) : Int × R+ → Part(X)(↪→ Sets) and N :=
θ(γY ) : Int × R+ → Part(Y )(↪→ Sets). For each (I , δ) ∈ Int × R+, consider the
equivalence relation ∼X

I ,δ on X defined, for any x, x ′ ∈ X , as x ∼X
I ,δ x ′ if and only if

there is a sequence x = x0, x1, . . . , xl = x ′ in X such that
∨

I dX (xi , xi+1) ≤ δ for
each i = 0, . . . , l − 1. Similarly, define the equivalence relation ∼Y

I ,δ on Y . Note that,
by definition of M and N ,

M(I ,δ) = X
/ ∼X

I ,δ and N(I ,δ) = Y
/ ∼Y

I ,δ .

For x ∈ X , let [x]X(I ,δ) be the block containing x in the partition M(I ,δ). Then,
for any (I , δ), (J , δ′) ∈ Int × R+ with (I , δ) ≤ (J , δ′), the internal morphism
ϕM ((I , δ), (J , δ′)) of M sends [x]X(I ,δ) to [x]X

(J ,δ′) for each x ∈ X . We can describe
the internal morphisms of N in the same way.

Suppose that 2 ddyn (γX , γY ) < ε for some ε ∈ (0,∞). Then there exists an

(ε/2)-tripod R : X
ϕX�−−− Z

ϕY−−−� Y between γX and γY (Definitions 2.9 and 2.10).
Since two maps ϕX : Z → X and ϕY : Z → Y are surjective, we can take two

maps f : X → Y and g : Y → X such that

{(x, f (x)) : x ∈ X} ∪ {(g(y), y) : y ∈ Y }
⊂ {(x, y) ∈ X × Y : ∃z ∈ Z , x = ϕX (z), and y = ϕY (z)}. (18)

We will show that f , g induce a full ε-interleaving pair between M and N . For any
I = [u, u′] ∈ Int and any α ∈ [0,∞), let I α := [u − α, u′ + α]. For each (I , δ) ∈
Int × R+, we define f̄(I ,δ) : M(I ,δ) → N(I ε,δ+ε) as

[x]X(I ,δ) �→ [ f (x)]Y(I ε,δ+ε) , x ∈ X .

Similarly, we define ḡ(I ,δ) : N(I ,δ) → M(I ε,δ+ε). It suffices to show that for each
(I , δ) ∈ Int × R+,
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(i) f̄(I ,δ) (resp. ḡ(I ,δ)) is a well-defined set map from M(I ,δ) to N(I ε,δ+ε) (resp. from
N(I ,δ) to M(I ε,δ+ε)),

(ii) f̄(I ,δ) : M(I ,δ) → N(I ε,δ+ε) and ḡ(I ,δ) : N(I ,δ) → M(I ε,δ+ε) are surjective,
(iii) when (I , δ) ≤ (J , δ′) in Int × R+,

ϕN ((I ε, δ + ε), (J ε, δ′ + ε)) ◦ f̄(I ,δ) = f̄(J ,δ′) ◦ ϕM ((I , δ), (J , δ′)),
ϕM ((I ε, δ + ε), (J ε, δ′ + ε)) ◦ ḡ(I ,δ) = ḡ(J ,δ′) ◦ ϕN ((I , δ), (J , δ′)),

(iv) ḡ(I ε,δ+ε) ◦ f̄(I ,δ) = ϕM ((I , δ), (I 2ε, δ + 2ε)), and f̄(I ε,δ+ε) ◦ ḡ(I ,δ) =
ϕN ((I , δ), (I 2ε, δ + 2ε)).

We prove (i). Fix (I , δ) ∈ Int ×R+. Suppose that x ′ ∈ [x]X(I ,δ). It suffices to show
that f (x ′) ∈ [ f (x)]Y(I ε,δ+ε). By assumption, there exist x = x0, . . . , xl = x ′ in X
such that

∨
I dX (xi , xi+1) ≤ δ, i = 1, . . . , l − 1. Then invoking R is an (ε/2)-tripod

between γX and γY (see (1)), together with assumption (18) and Remark 6.12,

∨

I ε

dY ( f (xi ), f (xi+1)) ≤
∨

I (ε/2)

dY ( f (xi ), f (xi+1)) ≤ δ + ε for i = 1, . . . , l − 1.

This directly implies that f (x ′) ∈ [ f (x)]Y(I ε,δ+ε). In a similar way, it can be proved
that ḡ(I ,δ) is well-defined.

Now we show (ii). Fix (I , δ) ∈ Int × R+. We only prove that f̄(I ,δ) : M(I ,δ) →
N(I ε,δ+ε) is surjective. Pick any [y]Y(I ε,δ+ε) ∈ N(I ε,δ+ε). Since ϕY : Z → Y is surjec-
tive, there exists z ∈ Z such that ϕY (z) = y. Let x := ϕX (z). Then invoking R is an
(ε/2)-tripod between γX and γY , together with assumption (18) and Remark 6.12,

∨

I ε

dY (y, f (x)) ≤
∨

I ε/2

dY (y, f (x)) ≤
∨

I

dX (x, x) + ε = 0 + ε ≤ δ + ε.

This implies that [ f (x)]Y(I ε,δ+ε) = [y]Y(I ε,δ+ε). Also, by definition of f̄(I ,δ), [x]X(I ,δ) is
sent to [y]Y(I ε,δ+ε) via f̄(I ,δ). Since [y]Y(I ε,δ+ε) ∈ N(I ε,δ+ε) was arbitrary chosen, we

have shown the surjectivity of f̄(I ,δ).
Next we prove (iii). Fix (I , δ) ≤ (J , δ′) in Int × R+. We only show

ϕN ((I ε, δ + ε), (J ε, δ′ + ε)) ◦ f̄(I ,δ) = f̄(J ,δ′) ◦ ϕM ((I , δ), (J , δ′)).

By the definition of maps ϕM (·, ·), ϕN (·, ·), f̄(·,·) and ḡ(·,·), for any [x]X(I ,δ) ∈ M(I ,δ),

ϕN ((I ε, δ + ε), (J ε, δ′ + ε)) ◦ f̄(I ,δ)
(
[x]X(I ,δ)

)
= ϕN ((I ε, δ + ε), (J ε, δ′ + ε))

(
[ f (x)]Y(I ε,δ+ε)

)

= [ f (x)]Y(J ε,δ′+ε) ,

f̄(J ,δ′) ◦ ϕM ((I , δ), (J , δ′))
(
[x]X(I ,δ)

)
= f̄(J ,δ′)

(
[x]X(J ,δ′)

)
= [ f (x)]Y(J ε,δ′+ε) .
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Finally, we prove (iv). Fix (I , δ) ∈ Int × R+. We only show

ḡ(I ε,δ+ε) ◦ f̄(I ,δ) = ϕM ((I , δ), (I 2ε, δ + 2ε)).

Take any [x]X(I ,δ) ∈ M(I ,δ). Then, by ḡ(I ε,δ+ε) ◦ f̄(I ,δ), the block [x]X(I ,δ) is sent to
[g ◦ f (x)]X

(I 2ε,δ+2ε)
. By invoking that R is an (ε/2)-tripod between γX and γY and

(18) and Remark 6.12, we also have
∨

I 2ε

dX (x, g ◦ f (x)) ≤
∨

I (ε/2)

dX (x, g ◦ f (x))

≤
∨

I

dY ( f (x), f (x)) + ε = 0 + ε ≤ δ + 2ε.

This implies that [x]Xδ+2ε = [g ◦ f (x)]Xδ+2ε, completing the proof. ��
For t ∈ R, consider [t, t] ∈ Int.

Remark 6.19 (Comprehensiveness of Definition 6.16) We remark the following (see
Fig. 7):

(i) Consider the constantDMS γX ≡ (X , dX ) as in Example 2.2. Then the spatiotem-
poral SLHC dendrogram of γX is amount to the SLHC dendrogram (Definition
D.2) of (X , dX ): for all I ∈ Int and δ ∈ R+,

θ(γX )(I ,δ) = θ(X , dX )δ.

(ii) Let γX = (X , dX (·)) be a DMS. For each t ∈ R, we have the SLHC dendrogram
θ(X , dX (t)) : R+ → Part(X) of the metric space (X , dX (t)) (Definition D.2).
All those dendrograms are incorporated by θ(γX ) in the following sense:

θX (γX )([t,t],δ) = θ(X , dX (t))δ, t ∈ R, δ ∈ R+.

Remark 6.20 (Connection to [46]) Let γX = (X , dX (·)) be a DMS and fix δ0 ∈ R+.
The map θδ

X : R → Part(X) defined as

θ
δ0
X (t) = X/ ∼[t,t]

X ,δ0
for all t ∈ R

is the formigram induced from γX with respect to the connectivity parameter δ [46].

6.5 Proof of Theorem 4.14

Proof of Theorem 4.14 We utilize {{·}} instead of {·} to denote multisets. Let m := |X |,
n := |Y |, and without loss of generality assume that m ≤ n. Then, for some a1 ≤
· · · ≤ am−1, and b1 ≤ · · · ≤ bn−1 in R+, we have

A := dgm0 (R•(X , dX )) \ {{(0,+∞)}} = {{(0, ai )}}m−1
i=1 ,

B := dgm0 (R•(Y , dY )) \ {{(0,+∞)}} = {{(0, b j )}}n−1
j=1.

123



Discrete & Computational Geometry

((t,t),0)

x

y

u1

u2

z

δ 0

Fig. 7 Consider a DMS γX = (X , dX (·)). (1) If γX ≡ (X , dX ), then the SLHC dendrogram θ(X , dX ) is
encoded along any vertical ray, such as blue or red rays in the figure (Remark 6.19 (i)). (2) For each t ∈ R,
the SLHC dendrogram θ(X , dX (t)) of (X , dX (t)) is recorded along the red ray (Remark 6.19(ii)) (3) Along
the green horizontal line at height δ0 over the diagonal plane y = x , the formigram induced from γX with
respect to the connectivity parameter δ0 is encoded

Then

dB
(
dgm0 (R•(X , dX )) , dgm0 (R•(Y , dY ))

) = dB(A ,B).

Let A = {{a′
1, . . . , a

′
n−1}} and B = {{b1, . . . , bn−1}}, where A consists of n −m zeros at

the beginning, followed by the sequence a1, a2, . . . , am−1. Then notice that

dB(A ,B) ≤ n−1
max
i=1

∣
∣a′

i − bi
∣
∣ .

Therefore, it suffices to show that

n−1
max
i=1

∣
∣a′

i − bi
∣
∣ ≤ dI

(
β

(X ,dX )
0 , β

(Y ,dY )
0

)
. (19)

Let ε := dI
(
β

(X ,dX )
0 , β

(Y ,dY )
0

)
, i.e.,

for all δ ∈ R+, β
(X ,dX )
0 (δ + ε) ≤ β

(Y ,dY )
0 (δ),

and β
(Y ,dY )
0 (δ + ε) ≤ β

(X ,dX )
0 (δ). (20)

Observe the following:

(i) β
(X ,dX )
0 , β

(Y ,dY )
0 are monotonically decreasing as maps from R+ to Z+.

(ii) For 0 ≤ δ < a1 = a′
n−m+1, we have β

(X ,dX )
0 (δ) = m.

(iii) For integers k = 1, . . . ,m−1, we have a′
n−k = min

{
δ ∈ R+ : β

(X ,dX )
0 (δ) = k

}
.

(iv) For integers k = 1, . . . , n − 1, we have bn−k = min
{
δ ∈ R+ : β

(Y ,dY )
0 (δ) = k

}
.

123



Discrete & Computational Geometry

In order to show inequality (19), first we show that |a′
i − bi | ≤ ε for 1 ≤ i ≤ n − m.

By construction we have a′
1 = a′

2 = · · · = a′
n−m = 0, and thus it suffices to show that

bi ≤ ε for 1 ≤ i ≤ n − m. By the assumption in (20) and item (ii), we have

β
(Y ,dY )
0 (ε) ≤ β

(X ,dX )
0 (0) = m.

Also, by items (i) and (iv), we have bn−m ≤ ε. Since b1 ≤ b2 ≤ · · · ≤ bn−m−1 ≤
bn−m , we have shown that bi ≤ ε for 1 ≤ i ≤ n − m, as desired.

Now we show that |a′
i − bi | ≤ ε for i = n − m + 1, n − m + 2, . . . , n − 1. By

re-indexing it suffices to prove that |a′
n−k − bn−k | ≤ ε for k = 1, . . . ,m − 1. Notice

that, for k = 1, . . . ,m − 1, by the assumption in (20) and item (iv), we have

β
(X ,dX )
0 (bn−k + ε) ≤ β

(Y ,dY )
0 (bn−k) = k.

Then by items (i) and (iii), we have that a′
n−k ≤ bn−k + ε. Similarly, one can prove

that for k = 1, . . . ,m − 1, it holds that bn−k ≤ a′
n−k + ε. Therefore, we have

|a′
n−k − bn−k | ≤ ε for k = 1, . . . ,m − 1, as desired. ��

7 Discussion

The primary contribution of this paper is to constructmultiparameter persistent homol-
ogy groups from dynamic metric data. Not only are these persistent homology groups
stable to perturbations of the input, but also this stability result turns out to be a gen-
eralization of a fundamental stability theorem in topological data analysis. A second
practical contribution of our paper is to propose a polynomial time algorithm that can
be carried out for quantifying the behavioral difference between two dynamic metric
data sets.

Appendix A: Discretization of DMSs

In order to compute the lower bound for the distance ddyn given in Theorems 4.4 and
4.5 in practice, we need to discretize DMSs, i.e. turn DMSs into a locally constant
DMSs. This discretization depends on the resolution parameter α ∈ (0,∞), described
as below. We will show that, if α is small and DMSs γX and γY satisfy a mild assump-
tion, then the lower bounds for ddyn(γX , γY ) given in Theorems 4.4 and 4.5 can be
well-approximated using the α-discretized DMSs associated to γX and γY .

We call any map i : Zd → Rd grid-like if i is an strictly injective poset morphism,
i.e.

(i) for any pair a = (a1, . . . , ad) < b = (b1, . . . , bd) with ai < bi , i = 1, . . . , d
in Zd , for i(a) = (a′

1, . . . , a
′
d) and i(b) = (b′

1, . . . , b
′
d), we have a′

i < b′
i ,

i = 1, . . . , d.
(ii) For all c = (c1, . . . , cd) ∈ Rd , there are a,b ∈ Zd such that i(a) ≤ c ≤ i(b).

123



Discrete & Computational Geometry

Given a grid-like i : Zd → Rd , for any a ∈ Rd , define �a�i to be the maximum
element in the image of Zd by i which does not exceed a.

Definition A.1 (Discrete persistencemodules)Wecall a persistencemoduleM : Rd →
C discrete if there exists a grid-like map i : Zd → Rd such that for each a ∈ Rd , the
morphism ϕM (�a�i , a) : M�a�i → Ma is an isomorphism.

Let α ∈ (0,∞). For any t ∈ R, let �t�α ∈ αZ be the greatest element in αZ which
does not exceed t . Given any DMS γX = (X , dX (·)), we define the α-discretization
of γX :

Definition A.2 (Discretization of a DMS) Let γX = (X , dX (·)) be any DMS and
let α ∈ (0,∞). The α-discretization of γX is the R-parametrized family of finite
(pseudo-)metric spaces γ α

X := {(
X , dαZ

X (t)
) : t ∈ R

}
, where

dαZ
X (t) := dX (�t�α) : X × X → R+.

Notice that the discretization γ α
X of γX does not necessarily satisfyDefinition 2.1 (ii)

and (iii) and hence γ α
X does not deserve to be called a DMS. However, for convenience,

we will call γ α
X the α-discretized DMS of γX or simply the discretized DMS.

We can regard ddyn as an extended pseudometric on a collection containing both
all DMSs and all discretized DMSs: Indeed, items (ii) and (iii) in Definition 2.1 are
not necessary to claim that ddyn satisfies the triangle inequality (see the proof of [46,
Thm. 9.14] in [46, Sect. 11.4.2]).

A DMS γX = (X , dX (·)) is said to be l-Lipschitz if dX (·)(x, x ′) : R → R+ is
l-Lipschitz for every x, x ′ ∈ X . Assuming that γX is l-Lipschitz, the smaller the
resolution parameter α is, the closer the discretized DMS γ α

X to γX is:

Proposition A.3 Let γX = (X , dX (·)) be any l-Lipschitz DMS. Then

ddyn
(
γX , γ α

X

) ≤ lα.

Note that for the discretized DMS γ α
X , we can define the rank invariant and the

Betti-0 function of γ α
X in the same way as in Definitions 2.23 and 2.24, respectively.

Furthermore, in a bounded time interval I ⊂ R, it is not difficult to check that both the
Betti-0 function β

γ α
X

0 and the rank invariant rkk(γ α
X ), k ∈ Z+ are discrete (Definition

A.1). Therefore, one can straightforwardly utilize the results in Sect. 5 for computing
dI.

Proposition A.4 (Approximating ddyn from below with discretized DMSs) Let γX =
(X , dX (·)) and γY = (Y , dY (·)) be any two l-Lipschitz DMSs.

dI
(
β

γ α
X

0 , β
γ α
Y

0

)
− 4lα ≤ 2 · ddyn(γX , γY ) and

dI
(
rkk(γ

α
X ), rkk(γ

α
Y )
)− 4lα ≤ 2 · ddyn(γX , γY ), k ∈ Z+.
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Proof of Proposition A.3 For ease of notation, we prove the statement assuming that

α = 1, without loss of generality. Consider the tripod R : X
idX�−−−− X

idX−−−−�
X (Definition 2.6). We prove that R is a l-tripod between γX and γ αZ

X (Definition
2.9). Fix t ∈ R. Since �t� ∈ [t − 1, t + 1] = [t]1, it is clear that

∨
[t]1 dX ≤R

dα
X (t) and hence

∨
[t]1 dX ≤R dαZ

X (t) + 2l. It remains to show that
∨

[t]1 dαZ
X ≤R

dX (t) + 2l. Observe that, for any x, x ′ ∈ X ,
(∨

[t]1 dαZ
X

)
(x, x ′) is the minimum

among dX (�t� − 1)(x, x ′), dX (�t�)(x, x ′) and dX (�t� + 1)(x, x ′). Also, observe that
all of �t�−1, �t�, �t�+1 belong to the closed interval [t]2 = [t−2, t+2]. Therefore,
invoking that γX is l-Lipschitz, for any x, x ′ ∈ X ,

⎛

⎝
∨

[t]1
dαZ
X

⎞

⎠ (x, x ′) ≤ dX (t)(x, x ′) + 2l.

This implies that
∨

[t]1 dZX ≤R dX (t) + 2l, as desired. ��
Proof of Proposition A.4 We have

ddyn(γ α
X , γ α

Y ) ≤ ddyn(γ α
X , γX ) + ddyn(γX , γY ) + ddyn(γY , γ α

Y )

(by the triangle inequality),

≤ 2lα + ddyn(γX , γY ) (by PropositionA.3).

Also, by Theorem 4.5, we obtain dI
(
β

γ α
X

0 , β
γ α
Y

0

) ≤ 2 · ddyn(γ α
X , γ α

Y ), and in turn
the first inequality in the statement. The second inequality can be proved in a
similar way. ��

Appendix B: Relationship Between the Rank Invariant and
CROCKER-Plot

We relate the rank invariant of a DMS to the CROCKER plot of [64]:

Definition B.1 (The CROCKER plots of a DMS [64]) Let γX = (X , dX (·)) be a DMS.
For k ∈ Z+, the k-th CROCKER plot Ck(γX ) of γX is a map R×R+ → Z+ sending
(t, δ) ∈ R × R+ to the dimension of the vector space Hk (Rδ(X , dX (t))).

Let γX = (X , dX (·)) be anyDMS. Note that for any time t0 ∈ R and scale δ0 ∈ R+,
the value of rkk(γX ) associated to the repeated pair ([t0, t0], δ0), ([t0, t0], δ0) ∈
Int × R+ is identical to the dimension of the vector space Hk(Rδ0(X , dX (t0))), i.e.
Ck(γX )(t0, δ0). This implies that rkk(γX ) is an enriched version of the k-th CROCKER
plotCk(γX ) of γX .7 Therefore, Theorem 4.4 can be interpreted somehow as establish-
ing the stability of the CROCKER plots of a DMS.

Recall Definition 2.24, the Betti-0 function of a DMS.

7 To illustrate this, the 0-th CROCKER plot C0(γX ) is obtained by restricting β
γX
0 to the front diagonal

vertical plane {[t, t] : t ∈ R} × R+ ⊂ Int × R+, which is colored brown in the middle picture of Fig. 4.
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Remark B.2 (Comparison between the Betti-0 function and the 0-th CROCKER plot)
Consider the DMSs γX and γY in Fig. 1. Since the two metric spaces γX (t) and γY (t)
are isometric at each time t ∈ R, the two CROCKER plots C0(γX ) and C0(γY ) are
identical. On the other hand, the Betti-0 function β

γX
0 is distinct from β

γY
0 as illustrated

in Fig. 4. This implies that, in comparison with the 0-th CROCKER plot, the Betti-0
function is more sensitive invariant of a DMS.

Appendix C: Other Relevant Metrics

Bottleneck Distance. Let us define:

– R := R ∪ {+∞,−∞},
– U := {(u1, u2) ∈ R2 : u1 ≤ u2}, which is the upper-half plane above the line

y = x in R2.

– U := {(u1, u2) ∈ R
2 : u1 ≤ u2}, which is the upper-half plane above the line

y = x in the extended plane R
2
.

For u = (u1, u2), v = (v1, v2) ∈ U, let

‖u − v‖∞ := max (|u1 − v1| , |u2 − v2|) .

Let X1 and X2 be multisets of points. Let α : X1 � X2 be a matching, i.e. a partial
injection. By dom(α) and im(α), we denote the points in X1 and X2 respectively,
which are matched by α.

Definition C.1 (The bottleneck distance [24]) Let X1, X2 be multisets of points in U.
Let α : X1 � X2 be a matching. We call α an ε-matching if

(i) for all u ∈ dom(α), ‖u − α(u)‖∞ ≤ ε,
(ii) for all u = (u1, u2) ∈ X1 \ dom(α), u2 − u1 ≤ 2ε,
(iii) for all v = (v1, v2) ∈ X2 \ im(α), v2 − v1 ≤ 2ε.

Their bottleneck distance dB(X1, X2) is defined as the infimum of ε ∈ [0,∞) for
which there exists an ε-matching α : X1 � X2.

Erosion Distance. Recently, Patel generalized the notion of persistence diagrams and
proposed a new metric, the erosion distance, for comparing generalized persistence
diagrams [58]. We review a particular case of the erosion distance. Let P and Q be
any two posets. Given any two maps f , g : P → Q, we write f ≤ g if f (p) ≤ g(p)
for all p ∈ P.

Let U := {(x, y) ∈ R2 : x ≤ y} equipped with the partial order inherited from
Rop × R. For any ε ∈ [0,∞), let ε := (−ε, ε) ∈ U. Given any map Y : U → Z+
and ε ∈ [0,∞), define another map ∇εY : U → Z+ as ∇εY (I ) := Y (I + ε). If Y is
order-reversing, it is clear that ∇εY ≤ Y .

Definition C.2 (Erosion distance [58]) Let Y1,Y2 : U → Z+ be any two order-
reversing maps. The erosion distance between Y1 and Y2 is defined as

dE(Y1,Y2) := inf
{
ε ∈ [0,∞) : ∇εYi ≤ Y j , for i, j ∈ {1, 2}} ,
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with the convention that dE(Y1,Y2) = ∞ when there is no ε ∈ [0,∞) satisfying the
condition in the above set.

Note that since U is a subposet of Rop × R, we can regard dE is a particular case
of dI,2 from Sect. 3.2. The erosion distance is further generalized in [59].

Matching Distance [18,51]. In brief, the matching distance dmatch compares rank
invariants via one-dimensional reduction along lines. Namely, for any M, N : Rd →
Vec, the matching distance between rk(M) and rk(N ) is defined as

dmatch(rk(M), rk(N )) := sup
L:u=sm+b

m∗dB(B(M |L),B(N |L)), (21)

where L varies in the set of all the lines parametrized by u = sm + b, with m∗ :=
mini mi > 0, maxi mi = 1,

∑n
i bi = 0. Specifically, dmatch is upper bounded by dVecI

[51]. We briefly discuss about the algorithms for dmatch and their computational cost:

– For d = 1, the RHS of equation (21) reduces to the bottleneck distance between
the barcodes of M and N . The bottleneck distance can be computed in time
O(n1.5 log n) where n is the total cardinality of the two barcodes [45]. See also
[19].

– For d = 2, dmatch can be computed exactly in time O(n11) where n is the size of
finite presentations of M and N [44].

– For d ≥ 2, algorithms for approximating dmatch within any threshold ε > 0 are
proposed in [6,20]. In particular, for the case d ≥ 3 which is of our interest, the

running time for the proposed algorithm is proportional to
( d

ε

)d
in the worst case

[20, Sect. 3.1].

Dimension Distance [28, Sect. 4]. Let M, N : Rd → Vec be any two persistence
modules. If M, N are nice8, then the dimension distance d0 between dm(M) and
dm(N ) serves as a lower bound for dVecI (M, N ) [28, Thm. 39]. A strength of d0 is
the computational efficiency. Let M ′, N ′ : [n]d → Vec be any two finite persistence
modules. The entire computation for d0(dm(M ′), dm(N ′)) takes only O(n2 log n)

[28, Sect. 4.2].
If a persistence module M is obtained by applying the 0-th homology functor to

the spatiotemporal Rips filtration of a DMS γX (Definition 2.21), then every internal
morphim ϕM (·, ·) is surjective, and hence M is nice. Specifically, dm(M) coincides
with the Betti-0 function β

γX
0 (Definition 2.24). Therefore, one can utilize d0 for

comparing Betti-0 functions of DMSs and for obtaining a lower bound of ddyn (by
virtue of Theorem 4.1).

On the other hand, for k ≥ 1, a persistence module M obtained by applying the k-th
homology functor to the spatiotemporal Rips filtration of a DMS does not necessarily
satisfy the “nice” condition. This prevents us from freely utilizing d0 in order to obtain
a lower bound for ddyn.

8 A persistence module M : Rd → Vec is nice if there exists a value ε0 ∈ R+ such that for every ε < ε0,
each internal morphism ϕM (a, a + ε) is either injective or surjective (or both).
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Appendix D: Stability of the Single Linkage Hierarchical Clustering
Method

We review the single linkage hierarchical clustering (SLHC) method and its stability
under theGromov–Hausdorff distance.We begin by reviewing theGromov–Hausdorff
distance.

Appendix D.1: The Gromov–Hausdorff Distance

The Gromov–Hausdorff distance dGH (Definition D.1) measures how far two metric
spaces are from being isometric.

Let (X , dX ) and (Y , dY ) be any twometric spaces and let R : X
ϕX�−−− Z

ϕY−−−� Y
be a tripod between X and Y . Then the distortion of R is defined as

dis(R) := sup
z,z′∈Z

∣
∣dX

(
ϕX (z), ϕX (z′)

)− dY
(
ϕY (z), ϕY (z′)

)∣∣ .

Definition D.1 (Gromov–Hausdorff distance [12, Sect. 7.3.3]) Let (X , dX ) and (Y , dY )

be any two metric spaces. Then

dGH ((X , dX ), (Y , dY )) = 1

2
inf
R

dis(R),

where the infimum is taken over all tripods R between X and Y . In particular, any
tripod R between X and Y with dis(R) ≤ ε is said to be an ε-tripod between (X , dX )

and (Y , dY ).

The computation cost of dGH leads to NP-hard problem, even for metric spaces of
simple structure [1,61]. Therefore, one of practical approaches for estimating dGH is
to search for tractable lower bounds.

Appendix D.2: Single Linkage Hierarchical Clustering (SLHC) Method

Let (X , dX ) be a finite metric space. For each δ ∈ R+, we define the equivalence
relation ∼δ on X as

x ∼δ x ′ if and only if ∃x = x0, . . . , xn in X s.t. dX (xi , xi+1) ≤ δ.

Observe that for any δ ≤ δ′ in R+, the inclusion ∼δ ⊂ ∼δ′ holds, leading to (X/ ∼δ)

≤ (X/ ∼δ′) in Part(X) (Definition 6.14).

Definition D.2 (The dendrogram from the SLHC) Let (X , dX ) be a finite metric space.
The dendrogram θ(X , dX ) : R+ → Part(X) defined by sending δ ∈ R+ to X/ ∼δ is
called the SLHC dendrogram of (X , dX ). ��

The Ultrametric Induced by the Single Linkage Hierarchical Clustering Method [16].
Anultrametric space (X , uX ) is ametric space satisfying the strong triangle inequality:
for all x, x ′, x ′′ ∈ X , uX (x, x ′) ≤ max

{
uX (x, x ′′), uX (x ′′, x ′)

}
.
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Let (X , dX ) be a finite metric space and consider its SLHC dendrogram
θ(X , dX ) : R+ → Part(X). For any x, x ′ ∈ X , define

uX (x, x ′) := min{δ ∈ [0,∞) : x, x ′ belong to the same block of X/ ∼δ}.

It is not difficult to check that uX : X × X → R+ is a ultrametric and that uX (x, x ′) ≤
d(x, x ′), for all x, x ′ ∈ X .

Definition D.3 (The ultrametrics induced by the single linkage hierarchical clustering
[16]) Given any finite metric space (X , dX ), the ultrametric space (X , uX ) defined as
above is said to be the ultrametric space induced by the SLHC on (X , dX ) and we
write (X , uX ) = H SL(X , dX ).

The assignment (X , dX ) �→ H SL(X , dX ) is known to be 1-Lipschitz with respect to
the Gromov–Hausdorff distance:

Theorem D.4 (Stability of the SLHC [16]) For any two finite metric spaces (X , dX )

and (Y , dY ), let (X , uX ) and (Y , uY ) be the ultrametric spaces induced from (X , dX )

and (Y , dY ) by the SLHC method. Then

dGH((X , uX ), (Y , uY )) ≤ dGH((X , dX ), (Y , dY )). (22)

Remark D.5 The term dGH((X , uX ), (Y , uY )) in (22) cannot be approximated within
any factor less than 3 in polynomial time, unless P = NP [47, Thm. 3]. Therefore, in
a practical viewpoint, it is desirable to find another lower bound for dGH.

The Gromov–Hausdorff distance can be bounded from below by the bottleneck
distance between persistence diagrams associated to Rips filtrations: see inequality
(11). Computing the LHS of inequality (11) can be carried out in polynomial time
[45].

Remark D.6 Observe that both of the LHSs of the inequalities in (22) and (11) with
k = 0 measure the difference between clustering features of (X , dX ) and (Y , dY ).
In fact, for any two finite metric spaces (X , dX ) and (Y , dY ), the persistence mod-
ules H0 (R•(X , dX )) and H0 (R•(Y , dY )) are isomorphic to H0 (R•(X , uX )) and
H0 (R•(Y , uY )), respectively. Therefore,

dB
(
dgm0 (R•(X , dX )) , dgm0 (R•(Y , dY ))

)

≤ dGH ((X , uX ), (Y , uY )) ≤ 2 · dGH ((X , dX ), (Y , dY )) .
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19. Cerri, A., Di Fabio, B., Jabłoński, G.,Medri, F.: Comparing shapes throughmulti-scale approximations

of the matching distance. Comput. Vis. Image Understand. 121, 43–56 (2014)
20. Cerri, A., Frosini, P.: A new approximation algorithm for the matching distance in multidimensional

persistence. (2011)
21. Chazal, F., Cohen-Steiner, D., Glisse,M., Guibas, L.J., Oudot, S.: Proximity of persistencemodules and

their diagrams. In: Proceeding of 25th ACM Symposium on Computational Geometry, pp. 237–246
(2009)

22. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov–Hausdorff stable signa-
tures for shapes using persistence. In: Proceedings of SGP (2009)

23. Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata
173(1), 193–214 (2014)

24. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput.
Geom. 37(1), 103–120 (2007)

25. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in
linear time. In: Proceedings of the 22nd Annual Symposium on Computational Geometry, pp. 119–
126. ACM (2006)

26. De Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Discrete Comput. Geom. 55(4), 854–906
(2016)

27. Dey, T.K., Juda, M., Kapela, T., Kubica, J., Lipiński, M., Mrozek, M.: Persistent homology of morse
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