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Abstract

Characterizing the dynamics of time-evolving data within the framework of topo-
logical data analysis (TDA) has been attracting increasingly more attention. Popular
instances of time-evolving data include flocking/swarming behaviors in animals and
social networks in the human sphere. A natural mathematical model for such collective
behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS).
In this paper we extend the Rips filtration stability result for (static) metric spaces to
the setting of DMSs. We do this by devising a certain three-parameter “spatiotem-
poral” filtration of a DMS. Applying the homology functor to this filtration gives
rise to multidimensional persistence module derived from the DMS. We show that
this multidimensional module enjoys stability under a suitable generalization of the
Gromov—Hausdorff distance which permits metrization of the collection of all DMSs.
On the other hand, it is recognized that, in general, comparing two multidimensional
persistence modules leads to intractable computational problems. For the purpose of
practical comparison of DMSs, we focus on both the rank invariant or the dimension
function of the multidimensional persistence module that is derived from a DMS. We
specifically propose to utilize a certain metric d for comparing these invariants: In our
work this d is either (1) a certain generalization of the erosion distance by Patel, or
(2) a specialized version of the well-known interleaving distance. In either case, the
metric d can be computed in polynomial time.
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1 Introduction

Stability and Tractability of TDA for Studying Metric Spaces. Finite point clouds or
finite metric spaces are amongst the most common data representations considered in
topological data analysis (TDA) [13,29,33]. In particular, the stability of the Single
Linkage Hierarchical Clustering (SLHC) method [16] or the stability of the persistent
homology of filtered Rips complexes built on metric spaces [22,23] motivates adopting
these constructions when studying metric spaces arising in applications.

Whereas there have been extensive applications of TDA to static metric data (thanks
to the aforementioned theoretical underpinnings), there is not much study of dynamic
metric data from the TDA perspective. Our motivation for considering dynamic metric
data stems from the study and characterization of flocking/swarming behaviors of ani-
mals [5,36,37,39,53,57,63,69], convoys [41], moving clusters [43], or mobile groups
[40,70]. In this paper, by extending ideas from [16,22,23,46,47], we aim at establish-
ing a TDA framework for the study of dynamic metric spaces (DMSs) which comes
together with stability theorems. We begin by describing and comparing relevant work
with ours.

Lack of an Adequate Metric for DMSs. In [55], Munch considers vineyards—a certain
notion of time-varying persistence diagrams introduced by Cohen-Steiner et al. [25]—
as signatures for dynamic point clouds. Munch, in particular, shows that vineyards are
stable! [24] under perturbations of the input dynamic point cloud [55, Thm. 17].
However, we will observe below that, for the purpose of comparing two DMSs (which
we regard as models of flocking behaviors), the metrics that directly arise as the
integration of the Hausdorff or Gromov—Hausdorff distance can sometimes fail to be
discriminative enough (see Example 2.4 and Remark 4.6).

In [64], Halverson et al. study aggregation models for biological systems by adopt-
ing ideas from TDA. They show that topological analysis of aggregation reveals
dynamical events which are not captured by classical analysis methods. Specifically,
in order to extract insights about the global behavior of dynamic point clouds obtained
by simulating aggregation models, they employ the so-called CROCKER plot.> This
plot represents the evolution of Betti numbers of Rips complexes over the plane of
time and scale parameters. In [65], Topaz et al. discretize CROCKER plots as matrices
and make use of Frobenius norm for comparing any two such matrices. In [64,65], the
authors do not provide stability results for CROCKER plots derived from biological
aggregation models.

1 Under a certain notion of distance arising from the integration over time of the bottleneck distance between
the instantaneous persistence diagrams.

2 Contour Realization Of Computed k-dimensional hole Evolution in the Rips complex.
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Fig.1 Fixr > 0. The two figures above stand for two dynamic point clouds X (-) and ¥;-(-) in the real line
each consisting of three points x1, x2, x3 and yy, y2, y3, respectively. Each of X (-) and Y (-) contains (1)
two static points located at —r and r respectively (x1, x3 and y1, y3), and (2) one dynamic point with the
time-dependent coordinate either r sint or r [sint|, € R (xp and yp). Observe that in X, () the unique
dynamic point xp meets both of x1 and x; periodically. On the contrary, in Y} (-), the unique dynamic point
yo meets only y3 periodically

Motivation for Introducing a New Metric for DMSs. Consider the two dynamic point
clouds X, (-) and Y, (-) illustrated as in Fig. 1. Let us regard them as instances of DMS
with the time-dependent metrics obtained by restricting the Euclidean metric on R?
at each time r € R.

Observe that for each time ¢ € R, the metric spaces X, (¢) and Y, (¢) are isometric
and hence the Gromov—Hausdorff distance [12, Chap. 7] dgu (X (¢), Y;(¢)) is zero.
This in turn implies that the integral ft er 9o (X, (1), Y- (1)) dt is also zero, implying
that X, (-) and Y, (-) are not distinguished from each other by the integrated Gromov—
Hausdorff distance.’ See Remark 2.16.

However, regarding X, () and Y, () as models of collective behaviors of animals,
vehicles or people, X, () and Y, (-) are clearly distinct from each other. This motivates
us to seek an adequate metric that measures the difference between the dynamics
underlying any two given DMSs. In particular, this metric should not be a mere sum
of instantaneous differences of the given DMSs over time.

In this paper, we adopt dgyn, called the A-slack interleaving distance with A =
2 (Definition 2.10, originally introduced in [46]), as a measure of the behavioral
difference between DMSs. In Sect. 4, we specifically show that the metric dgyn, returns
a positive value for the pair of DMSs X, (-) and Y,(-) in Fig. 1, demonstrating its
sensitivity.

About Stability and Tractability of dgyn. Even though the metric dgy,n is able to
differentiate subtly different DMSs (Theorem 2.11), computing dgyn is not tractable
in general (Remark 2.13). This hinders us from utilizing dgyr in practice. Therefore,
as a pragmatic approach, we adopt the comparison of invariants of DMSs, rather than
directly comparing DMSs. To this end,

(a) the invariants must be stable under perturbations of the input DMS, and
(b) the metric for comparing two invariants extracted from two DMSs must be effi-
ciently computable.

3 In [55], in order to compare two dynamic point clouds, Munch considered the integrated Hausdorff
distance [ dyy over time. Since the metric [ dyy takes account of relative position of two dynamic point
clouds inside an ambient metric space, we do not consider utilizing [ dyy for the purpose of comparing
intrinsic behaviors of two dynamic metric data. Also, Munch considered the integrated bottleneck distance
J dg by computing the Rips filtrations of dynamic point clouds at each time. However, by [22, Thm. 3.1],
the metric [ dp is upper-bounded by (twice) the integrated Gromov-Hausdorff distance, which in this case
vanishes. Therefore, f dp does not discriminate the two dynamic point clouds given as in Fig. 1.

@ Springer



Discrete & Computational Geometry

Contributions. In this work, we achieve both items (a) and (b) above, described as
follows.

With regard to (a), we first extract invariants from a given DMS, where these
invariants are in the form of 3-dimensional persistence modules of sets or vector
spaces. These are obtained from a blend of ideas related to the Rips filtration [22,24,30],
the single linkage hierarchical clustering (SLHC) method [16], and the interlevel set
persistence/categorified Reeb graphs [4,9,15,26].

We are able to prove the stability of these invariants (Theorems 4.1 and 6.17) by
adapting ideas from [16,22,23]. We specifically emphasize that our stability results
are a generalization of the well-known stability theorems for the SLHC method [16]
and the Rips filtration of a metric space [22,23]: Indeed, we show that by restricting
ourselves to the class of constant DMSs, our results reduce to the standard stability
theorems for static metric spaces in [16,22,23].

Next, in regard to item (b) above, we address the issue of computability of the metric
between invariants of DMSs. In [7,8], Bjerkevik and Botnan show that computing the
interleaving distance d [52] between multidimensional persistence modules can in
general be NP-hard. Also, since we are not guaranteed to have interval decomposability
[9,17] of the 3-dimensional modules considered in this paper, we are not in a position
to utilize the bottleneck distance and relevant algorithms developed by Dey and Xin
[28] instead of dj.

This motivates us to further simplify our invariant My associated to a DMS
(X, dx(-)), which is in the form of 3-dimensional persistence module. We focus on
both the dimension function and the rank function. The dimension function dm(My)
of a persistence module My has been studied in various contexts and with various
names such as Betti curve, feature counting function, etc, [2,28,34,35,42,62]. The
rank function rk(Myx) of Mx has also been extensively considered [17,18,51,58,59].
We observe that both of these functions (1) can themselves be computed in polynomial
time, (2) can be compared to each other via the interleaving distance dIZ for integer-
valued functions (see Sect. 3.2), and (3) are stable to perturbations of (X, dx(-)) under
dayn (Theorems 4.4 and 4.5). We also propose a simple algorithm for computing dIZ
in poly-time (Sect. 5). Therefore, we can bound the distance dgyn in poly-time by
computing dIZ and either dm(-) or rk(-).

We in particular emphasize that our method for computing dIZ provides a poly-time
algorithm for bounding from below the interleaving distance between d-dimensional
persistence modules M of vector spaces without any restriction on d or on the structure
of M (even if M is not derived from a DMS).

Other Related Work. Aiming at analyzing/summarizing trajectory data such as the
movement of animals, vehicles, and people, Buchin and et al. introduce the notion
of trajectory grouping structure [11]. This is a summarization, in the form of a
labeled Reeb graph, of a set of points having piecewise linear trajectories with
time-stamped vertices in Euclidean space R?. This work was subsequently enriched
in [50,66-68].

In [46,47], the thread of ideas in [11] is blended with ideas in zigzag persistence
theory [14]. Specifically, particular cases of trajectory grouping structure in [11],
are named formigrams. By clarifying the zigzag persistence structure of formigrams,

@ Springer



Discrete & Computational Geometry

formigrams are further summarized into barcodes. Regarding the barcode as a signa-
ture of a set of trajectory data, the authors of [46,47] utilize these barcodes for carrying
out the classification task of a family of synthetic flocking behaviors [48].

The central results in [46,47] show that barcodes or formigrams from a trajectory
data are stable to perturbations of the input data [47, Thm. 5], [46, Thm. 9.21]. This
work is a sequel to [46,47]. Namely, by considering Rips-like filtrations parametrized
both by time intervals and spatial scale, we obtain novel stability results in every
homological dimension.

Other work utilizing TDA-like ideas in the analysis of dynamic data includes: a
study of time-varying merge trees or time-varying Reeb graphs [31,56]. Also, ideas of
persistent homology are utilized in the study of time-varying graphs [38], discretely
sampled dynamical systems [3,32] or in the study of combinatorial dynamical systems
[27].

Organization. In Sect. 2 we review the notion of DMSs and the metric dg,, on DMSs.
In Sect. 3 we review the interleaving distance. In Sect. 4 we provide an overview
of our new stability results about persistent homology features of DMSs. In Sect. 5
we propose and study an algorithm for computing the interleaving distance between
integer-valued functions. Section 6 contains proofs of statements (theorems, etc.) from
Sect. 4.

In Appendix A we describe how to analyze and compare discrete time series of
metric data. In Appendix B we clarify the relationship between the rank invariants of
DMSs and the CROCKER-plots of DMSs. In Appendix C we compare the interleaving
distance between integer-valued functions with other relevant metrics. In Appendix D
we review the stability of the single linkage hierarchical clustering (SLHC) method
for static metric spaces; results in this section are generalized to those in Sect. 6.4.

2 Dynamic Metric Spaces (DMSs)

Throughout this paper, we fix a certain field [F and only consider vector spaces over
F whenever they arise. Any simplicial homology has coefficients in F. By Z and
R, we denote the set of non-negative integers and the set of non-negative reals,
respectively.

2.1 Definition of DMSs

DMSs. ADMS yx = (X, dx(-)) stands for a pair of finite set X with R-parametrized
metricdy (-): Rx X xX — Ry :foreachr € R, acertain (pseudo-)metricdy (f) : X x
X — R; is obtained:

Definition 2.1 (Dynamic metric spaces [46]) A dynamic metric space is a pair yxy =
(X, dx(-)) where X is a non-empty finite set and dx(-): R x X x X — Ry satisfies:

(1) Foreveryt € R, yx(t) = (X, dx(t)) is a pseudo-metric space.
(ii) For any x,x’ € X with x # x’ the function dx(-)(x,x’): R — Ry is not
identically zero.
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(iii) For fixed x, x’ € X, dx(-)(x, x"): R — R is continuous.
We refer to ¢ as the time parameter.

Let (#, dgy) be the collection of all finite (pseudo-)metric spaces equipped with
the Gromov—Hausdorff distance (Definition D.1). Any DMS yx = (X, dx(-)) can be
seen as a continuous curve from R to (.#, dgp).

Example 2.2 [46] Examples of DMSs include:

(i) (Constant DMSs) Given a finite metric space (X, dy), define the DMS yxy =
(X, dg((-)) by declaring thatforallt € R, d%(t) =dyasafunction X x X — Ry.
We refer to such yy as a constant DMS and simply write yx = (X, dx).

(i) (Dynamic point clouds) A family of examples is given by n points moving con-
tinuously inside an ambient metric space (Z, dz) where particles are allowed to
coalesce. If the n trajectories are x1(¢), ..., x,(t) € Z, thenlet X := {1, ..., n}
and define the DMS yx := (X, dx(-)) asfollows: fort € Randi, j € {1,...,n},
let dx (1)@, j) := dz(x; (1), x;(t)). We call yx a dynamic point cloud in Z and
simply write X (-) = {x; (-)}'_, or X(-).

Weak and Strong Isomorphism Between DMSs. We introduce two different notions of
isomorphism between DMSs.

Definition 2.3 (Isomorphism between DMSs) Let yx = (X, dx(-)), yy = (Y,dy(-))
be any two DMSs.

(i) yx and yy are strongly isomorphic if there exists a bijection ¢: X — Y such
that ¢ is an isometry between yx (¢) = (X, dx(¢)) and yy (t) = (Y, dy(¢)) for all
t e R.

(i) yx and yy are weakly isomorphic if for each t € R, yx(t) = (X, dx(t)) is
isometric to yy (t) = (Y, dy(2)).

Any two strongly isomorphic DMSs are weakly isomorphic, but the converse is not
true:

Example 2.4 (Weakly isomorphic DMSs) The dynamic point clouds X, (-) and Y, (-)
described in Fig. 1 are weakly isomorphic, but not strongly isomorphic: Indeed, there
is no bijection between {x1, x2, x3} and {y1, y2, y3} which serves as an isometry for
allr € R.

2.2 The A-Slack Interleaving Distance Between DMSs

We review the extended metric dgyrn, for DMSs, which was introduced in [46, Defn.
9.13] under the name of A-slack interleaving distance, for each A € [0, 00).

Definition 2.5 Let ¢ > 0. Given any map d: X x X — R, by d + ¢ we denote the
map X x X — R defined as (d + ¢)(x, x’) = d(x,x") + & forall (x,x") € X x X.

In order to compare any two DMSs, we will utilize the notion of tripod:
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Int

b

[ t

Fig.2 The collection Int can be graphically represented as the upper-half plane {(¢{, t;) € R2: H <t}
Any closed interval [#1, 2] of R is identified with the point (71, #3) on R2. Observe that if [t1,1n] C [t; s té],
then the point (t{ , té) is located at upper-left of the point (71, #) in the plane

Definition 2.6 (Tripod) Let X and Y be any two non-empty sets. For another set Z,
any pair of surjective maps R : X X Z ELLEN Y is called a tripod between X
and Y.

Given any map d: X x X — R, let Z be any set and let ¢: Z — X be any map.
Then we define (¢*d): Z x Z — R as

(p*d)(z,7) :=d(p(2), 9(), (z,2) € Z x Z.

Definition 2.7 (Comparison of metrics via tripods) Consider any two maps d; : X X

X > Randdy: Y x Y — R. Given a tripod R : X«(p—x ZLYbetweenX
and Y, by

d) <g dy,
we mean (p5d1)(z,2') < (¢pyd2)(z,2) forall (z,2') € Z x Z.

Let Int be the collection of all finite closed intervals of R. See Fig. 2.

Definition 2.8 (Time-interlevel analysis of a DMS) Given a DMS yx = (X, dx(+)),
define the function \/dx: Int x X x X — Ry as

(I,x,x’) — \I/dx(x,x') = Isnei}ldx(s)(?(,x/)-

In words, \/; dx(x, x) stands for the minimum distance between x and x” within
the time interval /. Observe that if / C I’ are both in Int, then \/, dx(x,x") <
\dx(x,x’) forall x,x" € X.

Forany t € R, let [f]® := [t —¢&,t + ¢] € Int.
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Definition 2.9 (Distortion of a tripod) Let yx = (X, dx(-)) and yy = (Y, dy(-)) be
any two DMSs. Let R : X 7 P Ybea tripod between X and Y such that

forallz € R, \/dx <g dy(t)+2¢ and \/dy <g dx(t) + 2¢. (1)
[t] [t]¢

We call any such R an e-tripod between yx and yy. Define the distortion dis®™(R)
of R to be the infimum of ¢ > 0 for which R is an e-tripod.

In Definition 2.9, if R is an e-tripod, then R is also an &’-tripod for any ¢’ > &.

Definition 2.10 (The distance dayn between DMSs) Given any two DMSs
vx = (X,dx() and yy = (¥, dy(-)), we define

dayn (yx, yr) := min dis™(R),

where the minimum ranges over all tripods between X and Y.

We remark that dgyr, is a hybrid between the Gromov—-Hausdorff distance (Defini-
tion D.1) and the interleaving distance [10,21] for Reeb graphs [26]. We also remark
that, in [46], dgyn is introduced under the name of A-slack interleaving distance for
A = 2. We use A = 2 in this paper for ease of notation. This choice is not significant
because different choices of A > 0 yield bilipschitz equivalent metrics for DMSs [46,
Prop. 11.29].

Any DMS yx = (X, dx(-)) is said to be bounded if there exists r € [0, co) such
that for all x, x’ € X and all 7 € R, dx (¢)(x, x") < r. For example, both DMSs given
in Fig. 1 are bounded.

Theorem 2.11 [46, Thm. 9.14] dayn is an extended metric between DMSs modulo
strong isomorphism (Definition 2.3 (1)). In particular, dayr, is a metric between bounded
DMSs modulo strong isomorphism.

Remark 2.12 (dayn generalizes the Gromov—Hausdorff distance [46, Rem. 11.28])
Given any two constant DMSs yx = (X, dyx) and yy = (Y, dy), the metric dgyn
recovers the Gromov—Hausdorff distance between (X, dx) and (Y, dy). Indeed, for
any tripod R between X and Y, condition (1) reduces to

|dx (x, x") — dy(y, y")| < 2e forall (x,y), (x',y) € R.
Therefore,
deu((X,dx), (Y, dy)) = dayn(yx, yv)-
Remark 2.13 From Remark 2.12, we conclude that the computation of dgyn is in

general not tractable: On the class of constant DMSs the metric dg,n reduces to the
Gromov-Hausdorff distance, which leads to NP-hard problems [1,60,61].
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2.3 Variants of dayn

Recall that dgyn denotes the A-slack interleaving distance for A = 2 [46, Defn. 9.13]
and that this distance generalizes the Gromov—Hausdorff distance dgy (Remark 2.12).
In this section we discuss other natural generalizations of dgy. While some of them
can discriminate weakly isomorphic DMSs, others fail to do so.

We begin with a variant of the A-slack interleaving distance which arises from a
slightly different way of incorporating the A parameter:

Definition 2.14 (Multiplicative A-slack interleaving distance) For A € (0, 00), we
define the multiplicative A-slack interleaving distance d; (yx, yy) between two DMSs
yx = (X, dx(-)) and yy = (Y, dy(-)) as the infimum ¢ for which there exists a tripod
R between X and Y such that*

forallr € R, \/dx <gdy(®)+e and \/dy <g dx(t)+e. )

3 3
[£]4 [£]4

Definition 2.15 (dyn-Gromov-Hausdorff distance between DMSs and its relation to
dyp) Let yx and yy be any two DMSs and fix a tripod R between X and Y. For each
t € R, let

dis(R)(r) := inf {¢ € Ry : dx (1) <g dy(t) + € and dy (t) <g dx(t) + ¢}.
Define

A (yx, yy) := minsup dis(R) (1),
R teR

where the minimum is taken over all tripods R between X and Y. We call this distance
the dyn-Gromov—Hausdorff distance between yx and yy.

Note that, for the multiplicative interleaving distance d; in Definition 2.14, we have
. ° dyn
lim d , =d, , .
Jim »(vx, vy) =dgy (vx, vy)

Also, note that dé%n between constant DMSs yx = (X,dx) and yy = (Y, dy)
reduces to twice the Gromov—Hausdorff distance between (X, dx) and (Y, dy). We

4 In [46], the original A-slack interleaving distance d) (yx, yy), A € [0, 00) is defined as the infimum
amount of time ¢ for which there exists a tripod R between X and Y such that

forallt € R, \/dx <pdy(®)+1re and \/dy <g dx(t)+ re.
1) 1)

In this original definition, the units of A is (distance units)/(time units), whereas the units of A for d; is (time
units)/(distance units).
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remark that déy}? is in general not the supremum of the Gromov—Hausdorff distances
dcu(yx (1), yy(¢)) overall times ¢t € R. Specifically, we have the following inequality:

Lo
LG (vx. yy) :=sup dan(yx (1), yy (1)) = 5 - supmin dis(R)(1)
teR

teR
1 . 1
< 5 -mI%n sup dis(R)(¢) = 3 -dG}ﬁl()/X, vr).

teR

The inequality denoted by () above is often strict, as it is to be expected as a result of
swapping the sup min implicit in L(GOI?I) for the min sup in the definition of dgﬁl.s For
instance, for any pair yx, yy of weakly isomorphic but not strongly isomorphic DMSs
(cf. Example 2.4), one has that (1) dgu(yx (¢), yy(¢)) = 0 for every ¢ € R and in turn
sup,ecr dGH(yx (1), Yy (t)) = O; but in contrast (2) dgy;(yx, yy) is strictly positive.

It is possible to give rise to a whole family of pseudo-distances of which Lgﬁ) isa
particular example.

This construction is analogous to the integrated Hausdorff distance between

dynamic point clouds considered in [55].

Remark 2.16 (Weak-LP?-Gromov-Hausdorff distance) Fix any two DMSs yx and yy.
For any fully supported probability measure { on R and p € [1, 00), define

1/p)
Léﬁi,;(yx, yy) == (/ i (deu(yx (1), )/Y(t)))pd§> .
te

It is clear that Lgﬁ ¢ (yx, yy) vanishes whenever yx and yy are weakly isomorphic.

2.4 Persistent Homology Features of a DMS

We extend ideas from persistent homology/single linkage hierarchical clustering
method for metric spaces (Appendix D) to the setting of dynamic metric spaces
(DMSs).

Posets and Their Opposite. Given any poset P = (P, <), we regard P as the category
whose objects are the elements of P, and for p, g € P, there exists a unique morphism
p — q if and only if p < g. Since there exists at most one morphism between any
two elements of P, the category P is called thin. This thinness makes every closed
diagram in P commute. We sometimes consider the opposite category of P, which
will be denoted by P°P. In the category PP, for p, g € P, there exists the unique
morphism p — ¢ if and only if p > ¢.

Example 2.17 (Int) Recall the collection Int of all finite closed intervals of R. We
regard Int as poset, where the order < is the inclusion C. Hence, Int can be seen as
the category of finite closed real intervals whose morphisms are inclusions.

5 The quantity in the LHS allows for picking a different correspondence for each time ¢ whereas the RHS
demands that a single correspondence is adequate for all times.
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Product of Posets. Given any two posets P and Q, we assume by default that their
product P x Q is equipped with the partial order < defined as (p, ¢) < (p’, ¢’) if and
onlyif p < p’inPandg <¢’inQ.

Remark 2.18 In the poset Int x R, we have (I,8) < (I’,8') ifand only if I C I’
and § < §'. See Fig. 3. We will regard Int x R as a subposet of the product poset
R3X := R x R x R via the identification ([, 2], §) <> (f1, 12, 8). Indeed,

(11,121, 8) < ({7}, 1], 8"y inInt x Ry ifand only if (#1,12,8) < (¢],15,8") inR>.

Spatiotemporal Rips Filtration of a DMS. Let Simp be the category of abstract sim-
plicial complexes with simplicial maps. By a (simplicial) filtration we mean a functor
from a poset to Simp. In order to encode multiscale topological features of DMSs into
a single filtration, we define the spatiotemporal Rips filtration of a DMS. Let us begin
by recalling the Rips complex:

Definition 2.19 (The Rips complex) Let (X, dx) be a metric space. For each § € R,
by Zs(X, dx) we mean the abstract simplicial complex on the set X where a subset
o C X belongs to Zs(X, dyx) if and only if dx (x, x") < § for all x, x’ € o. Note that
if § < 0, then Zs(X, dx) is empty.

Definition 2.20 (The Rips filtration) Let (X, dx) be a metric space. The Rips filtration
of a finite metric space (X, dy) is the functor Z,(X, dx): R — Simp described as
follows: To each § € R, the simplicial complex %Zs(X, dx) is assigned. Also, to any
pair § < &' in R, the inclusion map %Zs(X, dx) — Ry (X, dx) is assigned.

Definition 2.21 (The spatiotemporal Rips filtration of a DMS) Given any DMS yyx =
(X, dx(-)), the simplicial filtration Z'® (yx): Int x R — Simp defined as in Fig. 3
is called the (spatiotemporal) Rips filtration of yx.

Definition 2.21 is based on a blend of ideas related to the Rips filtration [22,24,30]
and the interlevel set persistence/categorified Reeb graphs [4,9,15,26]. The super-index
“lev” in '® (yx) is meant to emphasize the connection to “interlevelset persistence”.

Remark 2.22 (Comprehensiveness of Definition 2.21) We remark the following:

(i) Consider the constant DMS yx = (X, dx) as in Example 2.2 (i). Then the
spatiotemporal Rips filtration of yxy amounts to the Rips filtration of (X, dx):
forall / e Intand 6 € Ry,

B (vx) 1.8 = Bs(X, dy).
(i1) Let yx = (X, dx(-)) be a DMS. For each t € R, we have the Rips filtration
Fe(X,dx(t)): Ry — Simp of the metric space (X, dx (¢)). All those filtrations

are incorporated by %' (yx) in the following sense:

B (X (.0 = Z5(X,dx (1), t €R, 8§ € Ry.
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Int x RJr

R+

I1=[n, 7] 1,8

/ / .w
I'=[t1] o(l,5)

1 o)

Int

7 t

Fig. 3 To each (I, 8) € Int x Ry, we associate the Rips complex X (X, V7 dX) on the metric space*
(X, \/; dx). Provided another interval I’ € Int and scale 8’ € Ry with / C I’ and § < &', we obtain the
inclusion % (X, V1 dX) — Xy (X, \ViZ dX). This construction gives rise to a 3-dimensional simplicial

filtration 'Y (yx) indexed by Int x Ry. * In fact, \/ 7dx: X x X — Ry does not necessarily satisfy
the triangle inequality. However, it does not prevent us from defining the Rips complex on the semi-metric

space (X, \/; dx)

By functoriality of the simplicial homology functor, we can define, foreachk € Z,
the persistence module Hy (%' (yx)) := Int x R;. — Vec.

The Rank Invariant and the Betti-0 Function of a DMS. We consider the rank invariant
[17] of this multidimensional persistence module Hy, (2" (yx)). Let

RO :={(t1.1.8.1].1.8") e R®: [11.n] C [t]. 3] and § < &'} 3)

Definition 2.23 (The rank invariant of a DMS) Let yx be any DMS. For each non-
negative integer k, the k-th rank invariant of yx is a function rky (yx): R® — Z,
defined as

ke (yx) (11, 12, 8, 17, 15, 8")

:=rank | Hy | % | X, \/ dx | = Zs | X, \/ dx

[t1,02] [1].25]

See Fig. 3.

In Appendix B we compare the rank invariant of a DMS with the CROCKER-plots
introduced in [64].

Definition 2.24 (The Betti-0 function of a DMS) Let yx = (X, dx(-)) be a DMS. We
define the Betti-0 function ﬁgx :Int x Ry — Z; of yx by sending each (7, §) €
Int x R, to the dimension of Hy (.%’3 (X, \Vo dx)).

Example 2.25 Consider the DMSs yx and yy given as the dynamic point clouds X, (+)
and Y, () in Fig. 1 respectively. The Betti O-functions of yx and yy are illustrated in
Fig. 4.

It is not difficult to check that if I C I’ inInt and § < §’ in R, then ,3(’)/" 1,8) >
,B(’)’X (I’, 8"). This monotonicity is a special feature of Betti-0 functions, which is not
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On Int x {2r} On Int x {2r}

Intx Ry

OnInt x {0

On Int x {0

) )
4 4

olg

I
—_ o W

@A) Bl ®) B

Fig. 4 (The Betti-0 functions ﬂ(l)’x , gy of the DMSs in Fig. 1) The middle figure represents the domain
Int x Ry (Fig. 3) of ﬂ(l)’X and ﬂ(})/y . (A) and (B) illustrate the value of ﬁgX and ﬁgy respectively on the
horizontal half-planes Int x {0} (bottom) and Int x {2r} (top). In particular, if § € [2r, c0), ,ng 1,86 =1
for all / € Int. The same properties hold for ﬁg Y

shared by other Betti-k functions for k > 1. We will exploit this monotonicity property
to metrize the collection of Betti-0 functions and in turn to obtain a tight lower bound
for dgyn or dgu. Also, we remark that when yyx is a constant DMS (Example 2.2 (i)),
ﬁgx is constant with respect to the first factor.

3 Interleaving Distance

In this section we review the interleaving distance for R¥-indexed functors [9,21,52].
In particular, the interleaving distance between integer-valued functions (Sect. 3.2)
will be utilized for obtaining a computationally tractable lower bound for dgyn.

3.1 Interleaving Distance

Natural Transformations. We recall the notion of natural transformations from cat-
egory theory [54]: Let € and Z be any categories and let F, G: € — 2 be any
two functors. A natural transformation ¢: F = G is a collection of morphisms
¢c: F, — G, in 9 for all objects ¢ € € such that for any morphism f: ¢ — ¢’ in
%, the following diagram commutes:

e
F. 2% R,

l‘ﬁ(' l‘ﬂg’
6. ‘N G,
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Natural transformations ¢ : F — G are considered as morphisms in the category 74
of all functors from € to 2.

The Interleaving Distance Between R®-Indexed Functors. In what follows, for any
e € [0, 00), we will denote the vector (1, ...,1) € R? by e. The dimension d will
be clearly specified in context.

Definition 3.1 (v-shift functor) Let € be any category. For each v € [0, 00)", the
v-shift functor (—)(v): ER! 5 R is defined as follows:

(i) (On objects) Let F': RY - € be any functor. Then the functor F(v): R! > %
is defined as follows: For any a € RY,

F(V)a := Fatv.
Also, for another a’ € RY such that a < a’ we define
F(via<a):=F@+v<a +v).

In particular, if v = ¢ € [0, oo)d, then we simply write F(¢) in lieu of F(¢).

(i) (On morphisms) Given any natural transformation ¢(v): F = G, the natural
transformation ¢ (v): F(v) = G(v) is defined as ¢(V)a = @atv: F(V)a —
G(Vv), foreacha € RY.

For any v € [0, oo)d , let w}: F = F(v) be the natural transformation whose
restriction to each F, is the morphism F(a < a 4+ v) in ¥. When v = &, we denote

@} simply by ¢F,.
Definition 3.2 (v-interleaving between R?-indexed functors) Let € be any category.

Given any two functors F, G: R? — &, we say that they are v-interleaved if there
are natural transformations f: F = G(v) and g: G = F(v) such that

(i) gv)of = 90?,
(i) f(v)og=19g.

In this case, we call (f, g) a v-interleaving pair. Whenv = ¢(1, ..., 1), we simply
call (f, g) e-interleaving pair. The interleaving distance between F and G is defined
as

df)(F,G) == inf {¢ € [0, 00) : F, G are e-interleaved}, )

where we set dfi(F , G) = oo if there is no e-interleaving pair between F' and G for
any ¢ € [0, 00). Then dl(il is an extended pseudo-metric for ¢-valued R?-indexed

functors. We drop the subscript d from dfgd when confusion is unlikely.

Remark 3.3 (i) Let R© denote the poset either of R or R°P. The interleaving distance
dfg is also defined in the similar way for R%-indexed modules, where the poset R?

is equipped with the product partial order R® x R® x --- x R®.
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(ii) Let P be any non-empty upper set of R%: For every p € P, U(p) :={qg € R¢ :
q > p}is contained in P. Then we can define the interleaving distance between
P-indexed modules in the manner described by Definition 3.2.

Full Interleaving. By Sets, we mean the category of sets with set maps as morphisms.
Also, by Vec, we mean the category of vector spaces over a fixed field F, with linear
maps as morphisms.

Let € be either Sets or Vec. Given any F, G: R? — €, suppose that (f, g) is
an ¢-interleaving pair between F and G. For each a € RY, if fa: Fa = Gaqe and
8a: Ga — Fyy are surjective, then we call (f, g) a surjective e-interleaving pair.
If there exists a surjective e-interleaving between F and G, we say that F' and G are
fully e-interleaved. We define

dfd(F, G) :=inf {¢ € [0, 00) : F, G are fully e-interleaved} .

We drop the subscript d from df 4+ When confusion is unlikely. By definition, for
any F, G: R? — €, it is clear that d;"’;(F, G) < dfd(F, G). Also, it is not difficult
to check that dfd is an extended pseudometric on ob(%Rd).

By utilizing the full interleaving distance d?, we obtain a lower bound for dayn as
well as a new lower bound for the Gromov—Hausdorff distance (Theorem 4.5, Remark
4.13 and Theorem 4.14).

3.2 Interleaving Distance Between Integer-Valued Functions

In this section we consider the interleaving distance between monotonic integer-valued
functions by regarding them as functors.

Poset-Valued Maps. Let P and Q be any two posets. Suppose that f: P — Q is
any (monotonically) increasing map, i.e. forany p < g in P, f(p) < f(g). Then
by regarding P, Q as categories, f can be regarded as a functor. On the other hand,
suppose that g: P — Q is any (monotonically) decreasing map, i.e. for any p < g in
P, f(p) > f(g). Then g: P — Q°P can also be called a functor.

The Interleaving Distance Between Integer-Valued Functions. Let d be a positive
integer. Let R be the poset, where a = (ay,...,aq) < b = (b1,...,bg) in R? if
and only if @; < b; foreachi = 1,...,d.Forany e > 0,lete :=¢(1,...,1) € RY.
Consider any non-increasing integer-valued function F: R — Z . Note that F can
be regarded as a functor from the poset category R to the other poset category Zﬂ)rp.
Since ZP is a thin category, given another functor G: RY — ZZ, the interleaving
distance (Definition 3.2) between F and G can be written a

op

d (F,G) =inf [¢ €[0,00) : Va € RY, Fa = Gase, and Ga = Fate).

op
The computational complexity for df 4 is provided in Theorem 5.4. We will use dr 4,
op
or even more simply d] in place of df 7 when confusion is unlikely.
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Remark 3.4 The metric dj is closely related to the erosion distance [58]. See
Remark 6.3.

4 Stability Theorems for Persistent Homology Features of DMSs

In this section we establish the main results of this paper: namely, stability of the
rank invariant and Betti-O function of DMSs (Sect. 4.1). We interpret these stability
theorems as a generalization of the standard stability results for (static) metric spaces
(Sect. 4.2).

4.1 Stability Theorems

Recall the spatiotemporal Rips filtration Int x Ry — Simp of a DMS (Definition
2.21). The poset Int x R can be regarded as an upper set of R3X (Remarks 2.18 and
3.3 (i1)) and thus we can utilize dIV €¢ for comparing (Int x R, )-indexed persistence
modules.

Theorem 4.1 (Stability of spatiotemporal persistence modules induced by DMSs) Let
yx = (X,dx()) and yy = (Y, dy(-)) be any two DMSs. Then for any k € Z+,

dIVec <Hk (gleV(yX))’ Hy (%lev ()’Y))) <2 ddyn(VXv Yy)- &)

In particular, when k = 0, the dIV €€ in the LHS of the above inequality can be promoted
to the full interleaving dyec.

We remark that the promotion of dY¢¢ to dYe¢ for k = 0 is crucial for proving
Theorem 4.5 below. See Sect. 6.2 for the proof of Theorem 4.1. This stability implies
that dIV ¢ between 3-dimensional persistence modules serves as alower bound for dgyn.
Since computing dIV ¢ between 3-dimensional persistence modules is prohibitive [9],
we make use of the rank invariants/Betti-0 functions of DMSs (Definitions 2.23 and
2.24) and the interleaving distance di between integer-valued functions (Sect. 3.2) to
obtain a lower bound for dgyr, as below.

Adapted Rank Invariant of a DMS. The set R® in (3) is not an upper set (Remark 3.3
(ii)) of the poset

RS :=R x R x R® x R® x R xR (©6)

into which (Int x R;)°? x (Int x R, ) can be embedded. In order to ensure that
we are in a position to utilize the metric dj for comparing rank invariants of DMSs,
we extend the domain of the rank invariant of a DMS to the poset Rg. Given any
(vi,v2,13) € R3, we write (vi,v2,v3) € Int x Ry if v; < vy and v3 € R;.

Any elementa = (a1, a, a3, a4, as, ag) € RO, is called admissible, if a is obtained
by concatenating a comparable pair of elements in Int x R, i.e. both (a1, a2, a3) and
(as, as, ag) belong to Int x R and (ay, a», a3) < (aa, as, ag) in Int x R;.. Otherwise,
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a is called non-admissible. In particular, a is called trivially non-admissible, if there
is no admissible b € R® such that b < a in the poset RS (one can check that
a = (ay,ar, a3, aq, as, ag) € RO is trivially non-admissible if and only if (a4, as, ag)
does not belong to Int x Ry, i.e. as > as or ag < 0).

Definition 4.2 (Adapted rank invariant of a DMS) Let yx = (X, dx(-)) be any DMS
and let k € Z,. We define the map rki (yx): R® — Z. U {00}, called the k-th rank

invariant of yx, as follows: For a = (aj, ..., as) € RO,
ki (yx)(a)
rank (Hy (%5(\/; dx) < Zy(\/; dx))). aisadmissible,
= { 00, a is trivially non-admissible,
0, otherwise,

where I = [a1, az], I' = [a4, as], 6 = a3, and &' = ag.

Note that whena € R®isaconcatenation of a repeated pair ([ty, to], o), ([f0, fol, 50)
€ Int x Ry, i.e. a = (%, t9, oo, to, to, 50), then

rko(yx)(a) = dim (Ho (%s, (X, dx (10)))) = B}* (0. 10, 80) (Definition 2.24).

We can regard rky (yx) as a functor R6X — (Z4 U {o0})°P:

Proposition 4.3 Let yx be any DMS. For any a,b € Rg witha < b,

ki (yx)(a) = ki (yx)(b) in Z U {oo}.

See Sect. 6.3 for the proof. By virtue of Proposition 4.3, di can serve as a metric
on the collection of all (adapted) rank invariants of DMSs.

By combining Theorem 4.1 with standard stability results for the rank invariant
(Theorem 6.2) we arrive at:

Theorem 4.4 (Stability of the rank invariant of DMSs) Let yx = (X, dx(-)) and
yy = (Y,dy(:)) be any two DMSs. For any k € 7,

dr 0k (yx), ik () < 2 - dayn(¥x, vy)- @)

Improvement for k = 0. By restricting ourselves to clustering information (i.e. O-th
homology) of DMSs, we obtain a stronger lower bound for the metric dg,r,. Namely, by
regarding the Betti-0 function of a DMS (Definition 2.24) as a functor Int xRy — Z(jrp,
we can compare any two Betti-0 functions of DMSs via the interleaving distance d
and we have:

Theorem 4.5 (Stability of the Betti-O function) Let yx and yy be any two DMSs. Then

di (BY*, BY") <2 dayn(vx. yr). ®)
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X1 X2 X3 1 A V3
*r—o—e ° o—eo
Ro(X.V 5 s dx) (SICAVAREYS

Fig.5 The geometric realization of %o (X, Viz 3, dx) and Zo(Y, Viz dy) for the DMSs yx and
2072 2°72
yy in Example 2.25

We prove Theorem 4.5 in Sect. 6.4. Also, we remark that the LHSs of inequalities
in (7) and (8) are computable in poly-time (Theorem 5.4) using the well-known binary
search algorithm.

Remark 4.6 (Sensitivity of the LHS in (8)) Consider the DMSs yx and yy given as in
Example 2.25. The value d (ﬂg X ﬂg Y) is at least r, as we will see below. This in turn
implies that the metric dj is sensitive enough to discriminate (the Betti-O functions of)

Yx and Yy.

Details about Remark 4.6 Observe that

—_

2, i=1,j=3,
dx (xi, x dy(yi,yj) =312, i=1,j=3,
\/[ x (i, xj) = 0, otherwise, \/[%,37”] v i ;) l J
0, otherwise.

ll
22

Hence, the geometric realization of Rips complexes %O(X \/ (z.3 dx) and

2
Ro(Y, \/[% i) dy) are illustrated in Fig. 5.
By counting the number of connected components of these complexes, we have

B ([5.%].0) = 1and B ([5. 3] 0) = 2. Also, it is not difficult to check that

for any ¢ € [0, r), Z.(Y, \/[% e zn+8] y) =%(Y, \/[% 7 dy), so that

I ([%,%]O):l<2=,3(’)/Y<|:%—8,37n+8},e>.

By the definition of dy, this inequality implies that di(B}*, B}") is at least r.
Next, we show that dl(,B(’)/X, ,Bgy) < 2r.Forany ¢ € [2r, 00) and any I € Int,

By (I, e) =By (I,e) =1,
which is illustrated in Fig. 4. Therefore, for any ([#1, 2], §) € Int x R4,

B (11,12, 8) = BY (Ity —2r, 12 +2r], 8 +2r) = 1,
BYY (11, 11, 8) = By ([t1 — 2r, 10 +2r1,8 +2r) = L.

Therefore, we have di(8}, B}") < 2r. o
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In order to obtain a lower bound for ds,, between two DMSs, computing the
distance between the Betti-0 functions of the DMSs (the LHS of the inequality in (8))
is better than computing the distance between their O-th rank invariants (the LHS of
the inequality in (7)):

Proposition 4.7 For any two DMSs yx = (X, dx(-)) and yy = (Y, dy (")),

dr 6 (tko(yx), tko(yy)) < di3(B5%. By")- C))

Proposition 4.7 is a corollary of Proposition 6.10. The proof relies on the fact that
all inner morphisms of the persistence modules Ho (%' (yx)) and Ho (%' (yy)) are
surjective. In Example 4.16, we consider a concrete example of the bound provided
in Proposition 4.7.

4.2 Relationship with Standard Stability Theorems

The main goal of this section is to explain, when restricting ourselves to the class
of constant DMSs (Example 2.2 (i)), how Theorems 4.1, 4.4 and 4.5 boil down to
the well-known stability theorems for (static) metric spaces. Along the way, we also
identify a new lower bound for the Gromov-Hausdorff distance, which is tighter
than the bottleneck distance between the 0-th persistence diagrams of Rips filtrations
(Remark 4.13 and Theorem 4.14).

Fork € Z., by post-composing the simplicial homology functor Hy : Simp — Vec
(with coefficients in the field ) to the Rips filtration %Z,(X, dx) of a metric space
(X, dx), we obtain the persistence module

Hy o Z4(X,dx): R — Vec.
Let dgm;(Z.(X,dx)) be the k-th persistence diagram of the Rips filtration
Zo(X, dx). Also, let dp be the bottleneck distance (Definition C.1). Recall that dgyn

coincides with dgy on the class of constant DMSs (Remark 2.12).

Remark 4.8 Consider any two constant DMSs yx = (X, dx) and yy = (Y, dy). Then,
for any k € Z, inequality (5) reduces to

dY* (H 0 Zo(X, dx), Hi 0 (Y, dy)) < 2deu((X,dx), (Y.dy)),  (10)
or equivalently to
dp (dgmy (Ze (X, dx)) , dgmy (Ze(Y, dy))) <2 -dgu (X, dx), (Y, dy)), (11)

which are known in [22,23]. In other words, the LHS and the RHS of inequality (5)
are respectively identical to the LHS and the RHS of inequalities (10) or (11).

We define the rank invariant of a finite metric space as follows:
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Definition 4.9 (The rank invariant of a metric space) Let (X, dx) be any finite metric
space and let k € Z... We define the map rk; (X, dx): R> — Z U {00}, called the
k-th rank invariant of (X, dyx), as follows: Fora = (§,¢8’) € R?,

rank (Hy (%Zs(X, dx) < %y (X, dx))), 8§ <6,

ki (X, dx)(a) = .
00, otherwise

(cf. Definition 4.2).
In Definition 4.9, note that we can regard ki (X, dx) as a functor R’ x R — (Z U
{00})°P. Therefore, we can compare the rank invariants of any two finite metric metric

spaces via the interleaving distance dj.

Remark 4.10 Consider any two constant DMSs yx = (X, dx) and yy = (Y, dy).
Then, for any k € Z., inequality (7) reduces to

di(tki (X, dx), 1k (Y, dy)) < 2 dgu((X, dx), (Y, dy)). 12)

Remark 4.11 We also remark that the LHS of (11) is greater than or equal to that of
(12) by Corollary 6.4:

d(tki (X, dx), tki (Y, dy)) < dp (dgmy (Ze(X, dx)) , dgmy (Ze(Y, dy)))
=< 2. dGH((Xv dX)7 (Y7 dY))
Definition 4.12 (The Betti-0 function of a finite metric space) Let (X, dx) be any
finite metric space. We define the Betti-0 function ﬂéx’dx ). Ry — Z, of (X, dx) by
sending each § € Ry to the dimension of Hy(%s (X, dx)) (cf. Definition 2.24).

Since ,Béx’dX) is non-increasing function and Ry is an upper set of R, we can
compare any two Betti-0 functions via dj.

Remark 4.13 (Stability of the Betti-0 function) Consider any two constant DMSs yxy =
(X,dx) and yy = (Y, dy). Then the inequality in (8) reduces to

ar (1, 1) < 2 dgu (X, dx), (X, dy)) (13)

In particular, as a lower bound for 2 - dgy, the LHS of inequality (13) is always as
effective as the LHS of inequality (11) for k = 0:

Theorem 4.14 For any finite metric spaces (X, dx) and (Y, dy),

dy (dgmq (Za(X, dx)) . dgmg (Za(Y . dy)) < dy (B4, 7).
The proof is provided in Sect. 6.5. Example 4.15 below illustrates Theorem 4.14.
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Example 4.15 Let X = {xi, xp}. For any ¢ € [0, 00), we define the two metrics dx
and d§ on X as

dx(x1,x2) =1 and d%(x1,x) =1+e.

By definition of dgy (Definitions D.1) and df (Sect. 3.2), one can check the following:
() 2 dau (X, dx), (X, d5)) =e.
2, §<0,D), K ) _ {2, 5 <[0,1+¢),

.. (X,dy)
8) = and
WO =1 seit, o0 4P I, §ell+e +00).

AlSO7
X,d Y,d
d} (,3(5 X)’ ﬂ(() Y)> = €&.

(iif) dgmg (Z.(X, dx)) = {(0, +00), (0, 1)}, and dgm, (%’ (X, d§ )) = {(0, +00),
(0,14 ¢&)}. Also,

1
dg (dgm (Zs(X, dx)) . dgmy(Za(X. d5))) = min <e, ; 8) .

(iv) Fork > 1,both dgm; (Z.(X, dx)) and dgm; (%, (Y, dy)) are the empty set, and
thus

dp (dgmy (Ze(X. dx)) . dgmy (Za(X. d}))) = 0.

Items (iii) and (iv) indicate that the best lower bound for 2 dgu((X, dx), (X, d %)
obtained by invoking inequality (11) is min (&, 3£). On the other hand, from items

(i) and (ii), we have

e =2 don (X, dx), (X, ) = di (85, 85™).
which is, when ¢ > 1, strictly larger than min (8 1%) This example demonstrates
inequality (13) is a complement to the bottleneck stability of Rips filtration, inequality
(11). Also, items (i) and (ii) show the tightness of inequality (13).

Example 4.16 Define two DMSs yx and yy to be the constant DMSs which are, for
every time ¢ € R, isometric respectively to the metric spaces (X, dy) and (X, d%) in
Example 4.15. Then, invoking Remarks 4.10 and 4.13, one can compute:
/ 5 . l+e¢
dr6 (tko(vx). tko(yy)) = di2 (tko(X, dx), tko(X, d%)) = min €
X d (X.d%)
i (B B ) =i (B By ) =

See below for computational details. When ¢ > 1, this example demonstrates that the
RHS of inequality (9) can be strictly larger.
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(0.1+¢)

I
([T
8 — o

mEE O
mE O

ko (X, dx) rko (X,d%)

Fig.6 The O-th rank invariants of (X, dx) and (X, d§() in Example 4.15

Details about Example 4.16 One can compute rko (X, dx), rko(X, d%): R> - (Z, U
{o0})°P (Definition 4.9) as illustrated in Fig. 6.
From this plot, one can check that

e, e <[0,1],
di o (tko(X, dx), tko(X, d%)) =
1.2 (tko(X, dx), rko(X, d%)) {lzj e e (1,00),

which amounts to

1
di2 (rko(X. dx), tko(X, d%)) = min ( er £ e> .

We already computed ,BéX’dX ) and ﬂéx’dx " in Example 4.15. Observe that the value

min {a € [0, 00) : V5 € [0, 00), AV +00) < B (5,

(X.d%) (X, d

By Yo+ =8 Yol

. S X,dé
is equal to . This implies that d 1 (ﬁ(()x’dX), ,3(() X)) =e. O

5 Computing the Interleaving Distance Between Integer-Valued
Functions

In this section we propose an algorithm for computing the interleaving distance
between integer-valued functors based on ordinary binary search.

For n € N, let [n] := {1, ..., n}. Also, for each d € N, let [n]d c 74 be the
subposet of Z¢. Assume that a = (ay, ..., ag) € [n]%. If there exists i € {1,...,d}
such that a; = n, we refer to a as an upper boundary point of [n]“.
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Let F: [n]? — Z, be any function. Then F can be regarded as an array of non-
negative integers. For each k € {0, ...,n — 1}, the restriction F|[n_k]d of F' is the

lower-left block of F. Symmetrically, we define the upper-right block F|"=K": [n —
k1¢ — Z of F as follows:

.....

In words, F |[”_k]d is the restriction of the array F to its upper-right corner of size
(n — k)d with a re-indexing (in the obvious way).

Given F,G: [n]Y — 7., wewrite F > Gif F > G, foralla € [n]9. Let
F,G:[n]? — Z be any two order-reversing functions with 0 = F, = G, for each
upper boundary point a € [n]¢. Foreach k € {0, ..., n — 1}, we define the k-test for
the pair (F, G):

Algorithm 1 k-test for F, G: [n]¢ — Z.

. —k d —k d
1fl Fllnt—de§ G|["—*1" ana G‘[n—kjd > F|["=*1% then return Yes.
else return No.

Remark 5.1 Let F, G: [n]¢® — Z, be any two order-reversing functions with 0 =
Fa = Gy, for each upper boundary point a € [n]?. Fix k € {0, ..., n — 1}. Then

(i) suppose that the k-test for (F, G) returns “Yes”. Then forany k¥’ € {k, ..., n—1}
the k’-test for (F, G) returns also “Yes”,
(ii) the (n — 1)-test for (F, G) always returns “Yes”.

Example 5.2 We consider two examples.

(A) (d =1) Consider F, G: [4] — Z defined as follows:
F:=(F1, F, F3, Fy) = (5,3,1,0), G :=(G1,G2,G3,Ga) =(4,3,2,0).
Since F 2 G nor G Z F, the O-test for (F, G) returns “No”. However, since
Flp = (53,1 >(3,2,00= G and G353 = 4,3,2) > (3,1,0) = F|I3],
the 1-test for (F, G) returns “Yes”. Also, one can check that for any k € {2, 3},

the k-test returns “Yes” (cf. Remark 5.1 (1)).
(B) (d =2) Consider F, G: RIS Z_ defined as follows:

Fu3)|F23)|Fa3.3 0]0|0 G1,3|G23)|G3,3) 0[0|0
F:=\Fuy|Fey|F32|=[31310, G:=|G1,2|G22|Ga,2|=]2(1]|0|
FanlFal|Fa,s 41310 GanlGa2|Ga,3 2(2|0
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Since G ;é F, the O-test for (F, G) returns “No”. Also, since

211 2
G|[2]2=?_‘=FI[2],

the 1-test returns “No”. Since 4 > 0 and 2 > 0, one can see that the 2-test returns
4£Yes’,-

Recall the poset category Z(f: for any p,q € Z., there exists the unique arrow
p — g if and only if p > q. A function F: NY — Z, can be regarded as a functor
F:N¢ - ZSP if and only if F: N¢ — Z is order-reversing.

By the definition of interleaving distance, we straightforwardly have:

Proposition 5.3 Forn,d € N, let F, G: N¢ — Z(j_p be any two functors with 0 =
Fa = Ga for each upper boundary point a € [n)?. Consider the restrictions F :=
Flye and G := G|pya. Then

dr (f,@) =min{k € {0,1,...,n — 1} : the k-test for (F, G) returns “Yes”} .

Computational Complexity of Computing the Rank Invariant. Let Vec be the category
of vector spaces over a fixed field F with linear maps. Let M : [n]? — Vec be a (finite)
multidimensional module. Let total(M) := ) e[} dim(Mjy). In order to compute the
rank invariant rk (M) : (n]? — 7., one needs O (total(M)®) operations [7, Append.
C], where w is the matrix multiplication exponent.

Proposed Algorithm for Computing dy and its Computational Complexity. Let
F,G: [n]? = Z, be any two order-reversing functions. Based on Proposition 5.3, in
order to find the minimal k € {0, ..., n— 1} for which the k-test for (F, G) (Algorithm
1) returns “Yes”, we carry out binary search.

Letusfixk € {0, ..., n—1}. For carrying out the k-test for (', G), we compare pairs
of integers from the arrays of F' and G. Assume that pairs of integers are compared one
by one. Then, notice that, depending on F and G, the number of comparisons which
are necessary to complete the k-test can vary from 1 to 2(n —k)¢. Under the assumption
that the number of required comparisons is a random variable uniformly distributed
in{l,...,2(n — d)k} one can conclude that M ~ (n— d)k comparisons are
needed on average. Under the preceeding assumptions, by results from [49, Sect. 4],
we directly have:

Theorem 5.4 The expected cost of computing di 4(F, G) is at least o logn). Fur-
thermore, the algorithm based on ordinary binary search has this expected cost.

By Theorem 5.4, the expected costs of computing the LHSs of inequalities in
Theorems 4.4 and 4.5, and Remarks 4.10 and 4.13 are O(nd logn) whered = 6, 3,2
and 1, respectively in order.

In Appendix C we compare d 4 with the matching distance [18,20,51], and with
the dimension distance [28, Sect. 4].
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6 Details About Stability Theorems

The goal of this section is to prove all theorems in Sect. 4 whose proof was not given
therein.

6.1 Interleaving Stability of Rank Invariants and Dimension Functions

The Rank Invariant and Its Stability. For any persistence module M : RY — Vec, the
rank invariant of M is defined as follows [17]:

Definition 6.1 (The rank invariant) For any M : R? — Vec, the map rk(M): R
7 U {00} defined as

tk(gp(a, b)), a<b R,

rk(M)(a,b) := .
00, otherwise

is called the rank invariant of M.

Given any M : RY — Vec, note that foranya’ <a <b < b’ in R?,

em@,b) = gp,b)opy(a,b)opy(@, a).

Hence, we have that rk(M)(a’, b’) < rk(M)(a, b). This means that k(M) is a functor
between its domain and codomain when regarded

(i) the domain R?? as the product poset (R?)°P x R?, and
(ii) the codomain Z U {oo} as the poset (Z U {oo})°P.

We have stability of the rank invariant:

Theorem 6.2 (Stability of the rank invariant [58, Thm. 8.2], [59, Thm. 22]) For any
M,N:R? = Vec,

di 24 (tk (M), tk(N)) < d*(M, N). (14)
Note that Theorem 6.2 together with Theorem 4.1 result in Theorem 4.4. Even though

the proof of Theorem 6.2 is given in [58, Thm. 8.2], [59, Thm. 22] in more general
setting, we provide a brief version of the proof here.

Proof Since we regard rk(M) as a functor from (R¢, >) x (R?, <) to (Z U {o0})°P,
for any ¢ € [0, 00), the e-shift rk(M)(): (R?, >) x (R?, <) — (Zy U {00})P of
rk(M) is defined as

tk(M)(&)@,b) = k(M) @—e,b+te)-
Similarly, the e-shift of rk(/N) is defined.
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Suppose that for some ¢ € [0, 00), the pair (f, g) is an e-interleaving pair
for M, N: R? — Vec (Definition 3.2). We show rk(N)(¢) < rk(M). Pick any
(a,b) € RY x R?. If a £ b in RY, then tk(M)(a, b) = 0o, and thus we trivially
have tk(N)@a—¢ bte) < tk(M)@p). Ifa <bin R?, thena — & < b + ¢, and since

pn(@a—e,b+e)= fropyu(a,b)oga,

we have tk(N)@a—¢ bte) < tk(M)@,p). By symmetry, we also have rk(M)(e) <
rk(N), completing the proof. O

Remark 6.3 In order to compare the rank invariants, the author of [59] makes use of a
generalization of the erosion distance in [58], which is denoted by dg, (see Appendix C).
It can be deduced that for the LHS of inequality (14) coincides with dg (tk(M), tk(N)).

Given § > 0, deciding whether dIV (M, N) < § is in general NP-hard [7,8].

In Theorem 6.2, substituting the comparison of M and N with that of rk(M) and
rk(N) results in doubling of the underlying dimension of the interleaving distance.
This increase of dimension is a price one must pay for substituting the target category
Vec with the poset category (Z4 U {oo})°P. Despite the increase in the underlying
di‘rlnension, as we show in Sect. 5, it turns out that computing dj is easier than computing
d’ec.

: For any interval decomposable modules M, N : R? — Vec, let Z(M) and Z(N)
be the barcode of M and N, respectively. Then, by [9, Prop. 2.13],

dY*¢(M, N) < dg (B(M), B(N)).

Hence, together with Theorem 6.2 ,we straightforwardly have:

Corollary 6.4 Forany interval decomposable M, N : R? — Vec, let B(M) and (N)
be the barcode of M and N, respectively. Then

di,2q(0k(M), k(N)) = d (B(M), Z(N)) .

Monotonicity and Stability of Dimension Functions for Surjective Modules

Definition 6.5 (Surjective persistence modules) Let € be either Sets or Vec and let
M: R? — € be any persistence module. We call M surjective if gy (a, b): My —
My, is surjective for all a < b in RY.

Example 6.6 (The 0-th homology of the Rips filtration) Let (X, dx) be a metric space.
By applying the 0-th (simplicial) homology functor to the Rips filtration of (X, dy),
we obtain surjective persistence module R — Vec.

Definition 6.7 (Dimension function) Let € be either Sets or Vec and let M : R? — ¢
be any persistence module. The dimension function dm(M): R¢ — Z, of M is
defined by sending each a € R to the cardinality of M, (when € = Sets) or the
dimension of the vector spaces M, (when € = Vec).
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Remark 6.8 In Definition 6.7, if M is a surjective persistence module, then we can
regard dm(M) as a functor RY — ZP.

Proposition 6.9 (Interleaving stability of the dimension function) Let € be either Sets
or Vec and let M, N : RY — € be any two surjective persistence modules. Then

(i) di.q (dm(M), dm(N)) < 2-df, (M, N),
(i1) drg (dm(M),dm(N)) < dfd(M, N).

Proof Let us assume that ¥ = Sets. The proof for the case 4 = Vec is similar. We
show (i). Suppose that (f, g) is an e-interleaving pair between M and N. Pick any
a € R?. We have opm (@, a+2¢e) = gateo fa. Since gy (a, a+2e¢) is surjective, we also
have that g, ¢ is surjective. Since ¢y (a, a+¢) is also surjective, the composition ga4©
on(a,a+€): Ny = Myyoe is surjective. This implies that dm(N), > dm(M)a42e.
By symmetry, we also have that dm(M), > dm(N)a42 foreach a € RY. Therefore,
dy (dm(M), dm(N)) < 2e, as desired.

We prove Item (ii). Suppose that there exists a full e-interleaving pair between M
and N. Then this directly implies that for all a € R?, dm(M), > dm(N )ate and
dm(N)a = dm(M)ase. o

Proposition 6.10 Let € be either Sets or Vec and let M, N: R? — € be any two
surjective persistence modules. Then

di,2a (tk(M), 1k(N)) = dy g (dm(M), dm(N)).

Proof Suppose that for some ¢ € [0, 00),d] (dm(M), dm(N)) < e. It suffices to prove
that for all a, b € R? witha < b, and for all ¢ > ¢ in [0, 00),

k(N)(a—¢&’,b+¢&’) <rtk(M)(a,b).

Invoking that M and N are surjective, notice that tk(N)(a—&’, b+¢&’) = dm(N)(b+
¢’) and rk(M)(a, b) = dm(M)(b). By assumption, we readily have that dm(N)(b +
€’') < dm(M)(b), completing the proof. O

Proposition 4.7 is a corollary of Proposition 6.10.

6.2 Proof of Theorem 4.1

Before showing Theorem 4.1, we begin with the remarks below.

Remark 6.11 (Simplicial maps between Rips complexes) For any (semi-)metric spaces®

(X,dx) and (Y, dy), and for some 8,8 > 0, consider the Rips complexes K =
Hs(X,dx)and L = Zy (Y, dy) . By the definition of Rips complex, in order to claim
that a set map p: X — Y induces a simplicial map between (geometric realizations
of) K and L, it suffices to show that whenever x, x’ € X with dx(x, x’) < §, it holds
that dy (p(x), p(x)) < &".

6 We call (X, dy) a semi-metric space if the function dyx: X x X — Ry satisfies: (1) for all x € X,
dy(x,x) =0,and (2) forall x, x’ € X, dy (x, x") =dx (', x).
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ForI =[u,u’] €Intand ¢ € [0, 00), let I® :=[u — &, u’ + €].

Remark 6.12 Let yx = (X,dx(-)) and yy = (Y, dy(-)) be any two DMSs and let

R: X é<¢—X Z (p—y» Y be a e-tripod between yx and yy. Then it is not difficult to
check that for any closed interval / of R,

\/dX <R \/dy+28 and \/dY <R \/dX—l—Ze, (15)
¢ 1 1é 1

which is slightly more general than the condition in (1).

Proof of Theorem 4.1 If dayn (vx, yy) = 00, there is nothing to prove. Suppose that
dayn(vx, yr) < e for some ¢ € (0, 00). Let ¥ := R (yx) and T = Z' (yy)
(Definition 2.21). We regard Int x R as the subposet of R°? x R x R (Fig. 3). Let
v :=e(—1,1,2) € R3. Since v < £(—2,2,2) in R x R x R, in order to prove
inequality (5), it suffices to show that there are natural transformations f: . = 7 (v)
andg: 7 = Y (v) (between the two Int x R, -indexed, Simp-valued functors) such
that for each (7, ) € Int x Ry, the following diagrams commute up to contiguity:

F(U1,8) <% ,5+4e))

Z1.5) (1%, 5+4¢) A1E ,542) .
£(1,5) (1€.542¢)
f(m /g(lé',3+2g) / \
‘Z!&S-ﬁ-Zs) ‘?(1,5) ’?(128,5-‘1-46)'

T((1,8)=(1% ,5+4¢))

Indeed, by functoriality of homology, the existence of such pair (f, g) of natural trans-
formations guarantees the v-interleaving between two (Int x R )-indexed modules
HkoYandeoﬂ.

Px

Suppose that R : X «—— Z 2 Yisan e-tripod between yx and yy (Defi-
nition 2.9), which exists by the assumption dayn (yx, yy) < €. Since ¢x and gy are
surjective, we can take two maps f: X — Y and g: ¥ — X such that

{(x, f(x) :x € X}U{(g(y),y):y€eY}
C{(x,y)eXxY:3z€ Z, x =px(z), and y = ¢y (2)}. (16)

First, let us check that for any (/,5) € Int x Ry, f induces a simplicial map
fi5: U, 8) — T, 8+ 2¢). Fix any (I,8) € Int x Ry. By Remark 6.11,
it suffices to show that whenever x, x’ € X with (\/ 7 dx) (x,x’) < &, it holds that
(\/15 dy) (f(x), f(x")) < 8+2¢. Thisis immediate from the fact that R is an g-tripod,
and the assumption {(x, f(x)) : x € X} C ¢y o go;], and Remark 6.12.
Furthermore, f induces a v-morphism f : . = .7 (v). Indeed, because idy o f =
foidy asasetmap X — Y, forany (/,8) < (J,8') in Int x R, we have:

T (5,8 4+2¢) < (U5, 8" +28) of 15y =fy 505 (.8 <(J,3)).
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By symmetry, itis straightforward that g : ¥ — X alsoinduces a v-morphismg: 7 —
(V).

Next, we show that (f, g) is a v-interleaving pair. By symmetry we only prove
that for any (/,6) € Int x Ry, the simplicial map g s542¢) o f(7,5) is contiguous
to . ((I ) < (1%, 8+ 48)), the simplicial map induced by the identity map on
the vertex set X. Let 0 C X be a simplex in (I, §). We wish to show that there
is a simplex in . (1%, 8 + 4¢) that contains both ¢ and the image im (o) of o by
8¢ ,5+2¢) © fu,5). To this end, we prove that the union o U im(c) has the diameter
that is less than or equal to § + 4¢ in the (semi-)metric space (X, \/ 2c dx). Invoking
Remark 6.12, we consider the following three different cases of choosing any two
elements in 0 U im(o):

(i) Take any x, x" € o. Since o is a simplex in the Rips complex .7 (1, §) =
%’3(X, \V&' dx), we have

\dx | (x.x) < (\/dx> (x,x') <8 < 8+ 4e.
J2€ 1
Let R := {(x, f(x)):x e X}U{(g(y),y):y € Y} (see the inclusion in (16)).

(ii) Take x € o and x’ € im(o). Then x’ = g o f(x”) for some x” € o. Since

(x, FOO), (&, £(x)), (", f(x")) € R,

Vdx | (x,x) < (\/ dy) (f @), F(") + 26

12 I¢

= <\/dx> (x,x") +4e < 8 +4e.
1

(iii) Take any x, x" € im(o). Then there are x”, x”” € o which are sent to x, x" via go
f, respectively. Since (x, f(x")), ', fF(x"), ", f(x"), X", f(x"")) € R,

\dx | (x.x) < (\/ dy> (f &), f(")) + 26

J2e Ie

< (\/ dx> (", x") +4e < & + 4e. o
1

6.3 Proof of Proposition 4.3

Lemma 6.13 (Convexity of admissible vectors) Suppose thata, b € R6X are admissible
witha <b. Then any ¢ € Rg such that a < ¢ < b is also admissible.

Proof Leta := (al-)?:l and b := (b,')f’:1 and ¢ = (ci)?zl. From the assumptions that

a < ¢ < b and that a, b are admissible, one can see that
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by <cs<as<a <c1 <b <by<cy<ay=<as=<c5=<bs, and

0<b3=<c3=<az=<as=ce =< bg.

Therefore, ¢ is admissible. O

Proof of Proposition 4.3 Pick a,b € Rg such that a < b. We consider the following
cases:

(i) Both a and b are admissible.

(i1) a is admissible and b is non-admissible.
(iii) a is non-admissible and b is admissible.
(iv) Both a and b are non-admissible.

In case (i), let a = (a1, a2, a3, a4, as, ag) and b = (by.by, b3, by, bs, bg). Then we
have the inclusions

il
Ty [ X\ dx | = %ay [ X. \/ dx
[b1,b3] [ay.az2]

S R [ X\ dx | S % [ X\ dx
[as,as] [b4,bs]

By applying Hy to the above inclusions, we obtain the diagram of vector spaces and
linear maps

Hy (i Hy (i Hy (i
) g, )y,

Notice that rk (a) is the rank of Hy (i2), whereas rkg (b) is the rank of Hy (i3) oHg (i2) o
Hy(i1). This implies that rki(a) > rki(b). In case (ii), b cannot be trivially non-
admissible by definition. Therefore, ki (yx)(b) = 0. In case (iii), by Lemma 6.13,
a must be trivially non-admissible and hence rki(yx)(a) = oo. In case (iv), by
the definition of trivially non-admissible, it is not possible that a is non-trivially
non-admissible with b being trivially non-admissible. Therefore, we always have
ki (yx) (@) > rki (yx) (b). o

6.4 Spatiotemporal Dendrogram of a DMS and Proof of Theorem 4.5

Overview of the Proof. The Betti-0 function of a DMS yx can be obtained by the
two steps: First, adapting the ideas of the SLHC method (Appendix D.2), we induce
the spatiotemporal SLHC dendrogram 0(yx) of yx. Then the dimension function
dm (6 (yx)) (Definition 6.7) of 6 (yx) coincides with the Betti-O function of yx given
in Definition 2.24. Therefore, by proving that each of the successive associations
yx — 0(yx) — dm (6(yy)) is stable, we can show Theorem 4.5.

Partition Category and Dendrograms. Let X be a non-empty finite set. Given any two
partitions P, Q of X, we write P < Q if P refines Q, i.e. for all B € P, there exists
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a (unique) C € Q such that B C C. In this case, the surjective map P — Q sending
each B € P to the unique block C € Q such that B C C is called the natural map
from P to Q.

Definition 6.14 (Part(X) and its structure) Let X be a non-empty finite set. By
Part(X), we mean the subcategory of Sets described as follows:

(i) Objects: All partitions of X.
(i) Morphisms: For any two partitions P, Q of X with P < Q, the unique morphism
P — Q is the natural map.

We remark that any partition P of X has the corresponding equivalence relation ~ on
X.Namely, P = X/ ~,where x ~ x’if and only if x, x” belong to the same block of P.

Definition 6.15 (Dendrogram) Let X be a non-empty finite set and let P be any poset.
We will call any functor P — Part(X) a P-indexed dendrogram over X or simply a
dendrogram.

The Spatiotemporal SLHC Dendrogram of a DMS. We aim at encoding multiscale
clustering features of a DMS into a single dendrogram (Definition 6.16). Since we
take into account both temporal and spatial parameters, this dendrogram will have a
multidimensional indexing poset, in contrast to its counterpart for a static metric space
(Definition D.2). We prove that this dendrogram is stable under perturbation of the
input DMS (Theorem 6.17).

Letyx = (X,dx(-))beaDMS.For ! € Intand § € R, we define the equivalence

relation ~§( son X as follows:

x ~§(’5 xX' & Ax=xp,x1,...,x, =x"in X s.t. (\/dx> (xi, Xip1) <6.
I

Observe that, for any pair (1, §) < (J, 8’) in Int x R, the relation ~§(’ 5 is contained
in NJJM, and hence

(X/ ~§(’5) < (X/ “fw)- (17)

By this monotonicity in (17), we can extend the notion of SLHC dendrogram for
static metric spaces (Definition D.2) to the spatiotemporal SLHC dendrogram of a
DMS:

Definition 6.16 (The spatiotemporal SLHC dendrogram of a DMS) Given any DMS
yx = (X,dx(-)), we define the spatiotemporal SLHC dendrogram 6(yx): Int x
R — Part(X) of yx as follows:
(i) To each (/, §) € Int x Ry, assign the partition X / ~§(’5 of X.
(ii) To each pair (1,8) < (J,8) in Int x R, assign the natural map (Definition
6.14)

I
X/ ~x s> X/ N!{,a’ .
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In order to prove Theorem 4.5, we need:

Theorem 6.17 (Stability of the spatiotemporal SLHC dendrogram)

dISetS(Q(VX), Oy (yy)) <2 -dayn(yx, yy).

The proof of Theorem 4.5 will be straightforward by re-interpreting Definition 2.24:

Definition 6.18 (Another interpretation of Definition 2.24) Let yx = (X, dx(-)) be a
DMS. We define the Betti-0 function ,ng : Int x Ry — Z of yx as the dimension
function of the spatiotemporal dendrogram 6 (yx): Int x Ry — Part(X) of yx. In
other words, ,ng sends each (7, §) € Int x R to the number of blocks in the partition

0(yx), 6).

Proof of Theorem 4.5 Invoking that ﬂg * and ,Bg " are the dimension functions of 0 (yx)
and 6 (yy), respectively, the proof straightforwardly follows from Proposition 6.9 and
Theorem 6.17. O

Proof of Theorem 6.17 Let M := 6(yx): Int x Ry — Part(X)(— Sets) and N :=
O0(yy): Int x Ry — Part(Y)(— Sets). For each (I, §) € Int x Ry, consider the
equivalence relation Nf 5 on X defined, for any x, x' € X,as x Nf 5 x' if and only if
there is a sequence x = xq, X1, ..., x; = x” in X such that \/; dx (x;, xj+1) < & for
eachi =0, ...,/ — 1. Similarly, define the equivalence relation ~{ s on Y. Note that,
by definition of M and N,

M = X/ ’\'{5 and N = Y/ ’\'{5 .

For x € X, let [x]f(l’ 5) be the block containing x in the partition M sy. Then,
for any (I,98),(J,8") € Int x Ry with (I,8) < (J,8'), the internal morphism
om((I,8),(J,8)) of M sends [x]gfl’s) to [x]gfj!a,) for each x € X. We can describe
the internal morphisms of N in the same way.

Suppose that 2 dayn (¥x, ¥y) < ¢ for some ¢ € (0, 00). Then there exists an

(e/2)-tripod R : X X Z ELLEN Y between yx and yy (Definitions 2.9 and 2.10).
Since two maps ¢x: Z — X and ¢y: Z — Y are surjective, we can take two
maps f: X — Y and g: Y — X such that

{&, f(x)) :x € XJU{(g(y), y) sy €Y}
C{(x,y) e XxY:3z€Z, x=9x(2), andy = ¢y (2)}. (18)
We will show that f, g induce a full e-interleaving pair between M and N. For any
I = [u,u'] € Int and any « € [0, 00), let I* := [u — o, u’ + «]. For each (1, 8) €

Int x Ry, we define f(; 5): M(;,5) — N(i¢ 54¢) as

[x](XI,S) g [f('x)]g/lﬁ,ﬁ-',—g) y X € X

Similarly, we define g(; s): N5y — M s+¢). It suffices to show that for each
(1,8) € Int x R4,
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@) f(l,g) (resp. g(1,5)) is a well-defined set map from M(; sy to N(je s4¢) (resp. from

N1.6) to Mze s+¢)),
(1) fa.8): Mu,5) = Nue,s+e) and gy 5): N5y — M(ss s54¢) are surjective,
(iii) when (1, 38) < (J,8) inInt x R,

on (I, 8 +¢), (J°, 8" + &) o fusy = fu.syoem(,8),(J,8)),
om (I, 8+¢€), (J*, 8" +¢€)ogus =8u.snoen((1,8),(J,8)),

(V) §uesve) © fuey = om((1,8), (I*,8 + 2¢)), and fire 546 © &1.5) =
oN((1,8), (1%, 5+ 2¢)).

We prove (i). Fix (1, 8) € Int x R,. Suppose that x" € [x]gg’g). It suffices to show

that f(x") € [f(x)]{lggﬂg). By assumption, there exist x = xg,...,x; = x’ in X

such that \/1 dx(xi,xiy1) <6,i =1,...,1 — 1. Then invoking R is an (¢/2)-tripod
between yx and yy (see (1)), together with assumption (18) and Remark 6.12,

\/ dv(f @), f@irD) < \/ dv (@), fxizD) <8 +efori=1,....1—1.

I¢ (/D)

This directly implies that f(x") € [f (x)]{lg’ Ste)” In a similar way, it can be proved
that g(; s) is well-defined.

Now we show (ii). Fix (1, §) € Int x R;. We only prove that f_(ly,g): M5 —
N(i¢ 5+¢) 1s surjective. Pick any [y]{,e’a_m € N(j¢,54¢)- Since gy : Z — Y is surjec-
tive, there exists z € Z such that ¢y (z) = y. Let x := ¢x(z). Then invoking R is an
(¢/2)-tripod between yx and yy, together with assumption (18) and Remark 6.12,

Vv, fe) < \/dv(y, f(0)) < \/dx(x,x) + e =0+6 <5 +e.

I¢ 1¢/2 I

This 1mphes that [f(x)]z/lf,(ws) = [y]{1575+8)- AISO, by definition of f(l,(?)a ['x]i(l,é) is
sent to [y]z/1£75+8) via f(.s). Since [y]{la,gﬂ) € N(¢ 5+¢) Was arbitrary chosen, we

have shown the surjectivity of f(7.s).
Next we prove (iii). Fix (1, 8) < (J, §) in Int x R. We only show

on (5,8 +¢), (JE, 8 + &) o fu.s) = fu.syoem((1,8),(J,8)).
By the definition of maps @ (-, -), (-, ), f(... and g(...y, for any [x]f(l,é) € M),
on (I8 42), (I8 + o)) o fusy (1K1 5) = en (%5 +0), (%8 +e) (Lf Ol s

= [f e 5o »
Joan 0 om((,8), (1,80 (1x1.5)) = Fu (05.5) = PN e sy -
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Finally, we prove (iv). Fix (1, §) € Int x Ry. We only show
guesve) © fus) = om (U, 8), (I, 8 4 2)).

Take any [x]gfl)s) € M 5. Then, by g s4¢) © J;(I,é)’ the block [x]f(m) is sent to
[go f(x)]gflzg 5126)" By invoking that R is an (¢/2)-tripod between yx and yy and
(18) and Remark 6.12, we also have

\dx (x, g0 f(0)) < \/ dx (x, g0 f(x))
12¢ 1€/2)

\/dY(f(x)sf(X))-i-E:O-i-s§3+28.
I

IA

This implies that [x]g( e =80 f (x)]g( 1 2¢» completing the proof. O
For t € R, consider [t, t] € Int.

Remark 6.19 (Comprehensiveness of Definition 6.16) We remark the following (see
Fig. 7):

(i) Consider the constant DMS yx = (X, dx) asin Example 2.2. Then the spatiotem-
poral SLHC dendrogram of yx is amount to the SLHC dendrogram (Definition
D.2) of (X,dx): forall I € Int and § € R,

O(yx)u,5) = 0(X,dx)s.

(i1) Let yx = (X, dx(-)) be a DMS. For each ¢t € R, we have the SLHC dendrogram
0(X,dx()): Ry — Part(X) of the metric space (X, dx(t)) (Definition D.2).
All those dendrograms are incorporated by 6(yx) in the following sense:

Ox (vx)(r,11,8) = 0(X,dx(t))s, t €R, § e Ry.

Remark 6.20 (Connection to [46]) Let yx = (X, dx(-)) be a DMS and fix §y € R;.
The map 9;3( : R — Part(X) defined as

0 (1) = X/~ forallr e R

is the formigram induced from yx with respect to the connectivity parameter § [46].

6.5 Proof of Theorem 4.14

Proof of Theorem 4.14 We utilize {-} instead of {-} to denote multisets. Let m := | X|,
n := |Y|, and without loss of generality assume that m < n. Then, for some a; <
- <am-1,and by <--- < b,_1 in Ry, we have
o = dgmy (Ze(X, dx)) \ {0, +00)} = {(0, a)}/"7".

P = dgmgy (Ze (Y, dy)) \ {(0, +00)} = {(0, bj)};l';}'
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((1.0,0)

u x
Fig.7 Consider a DMS yx = (X,dx(-)). (1) If yx = (X, dy), then the SLHC dendrogram 6 (X, dy) is
encoded along any vertical ray, such as blue or red rays in the figure (Remark 6.19 (i)). (2) For each r € R,
the SLHC dendrogram 6 (X, dx (1)) of (X, dx (¢)) is recorded along the red ray (Remark 6.19(ii)) (3) Along
the green horizontal line at height 8¢ over the diagonal plane y = x, the formigram induced from yx with
respect to the connectivity parameter & is encoded

Then

dp (dgmg (Ze(X,dx)) ,dgmg (Z.(Y, dy))) = dp(</, B).
LetA={aj,...,a,_,}and B = {b, ..., b,_1}, where A consists of n — m zeros at
the beginning, followed by the sequence ay, ay, ..., a,—1. Then notice that

-1
dp(, B) < r’_%lalx }a; — b,-] )
i=
Therefore, it suffices to show that

fax[a] — bi| < di (85, 55 (19)

i=1
Lete = d| (lgéX,dx)’ ﬂéY,dy)) ie.,

foralls e Ry, B +e) < pl(s),
and B (5 +¢) < B (6). (20)

Observe the following:

6))] ﬂ(()x’dx ), ﬁéy’d” ) are monotonically decreasing as maps from Ry to Z .
(i) For0 <8 <aj =d/,_,,,,. we have 85X (8) = m.
(iii) Forintegersk =1,...,m—1, wehavea, , = min {8 € Ry : ﬂéX’dX)(S) = k}.

(iv) Forintegersk =1,...,n — 1, we have by,_x = min {§ € Ry : ﬂ(()y’dY)(S) = k}.
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In order to show inequality (19), first we show that |alf —bil<eforl <i<n-—m.
By construction we have a; = a) = - -- = a;,_,, = 0, and thus it suffices to show that
b; < eforl <i <n — m. By the assumption in (20) and item (ii), we have

By o) = B O = m.

Also, by items (i) and (iv), we have b,,_,, < e.Since by < by < --- < by_,_1 <
b, _m, we have shown that b; < e for1 <i <n — m, as desired.

Now we show that |a; —b;| < efori =n—m+1,n—m+2,...,n—1. By
re-indexing it suffices to prove that |a;sz —by—y| <efork=1,...,m— 1. Notice
that, fork = 1, ..., m — 1, by the assumption in (20) and item (iv), we have

B bk + ) < B3 (i) = .

Then by items (i) and (iii), we have that a,;_ ¢ < byp—i + €. Similarly, one can prove
that for k = 1,...,m — 1, it holds that b,,_; < a;;—k + &. Therefore, we have
la,_, —bpi| <efork=1,...,m— 1, as desired. O

7 Discussion

The primary contribution of this paper is to construct multiparameter persistent homol-
ogy groups from dynamic metric data. Not only are these persistent homology groups
stable to perturbations of the input, but also this stability result turns out to be a gen-
eralization of a fundamental stability theorem in topological data analysis. A second
practical contribution of our paper is to propose a polynomial time algorithm that can
be carried out for quantifying the behavioral difference between two dynamic metric
data sets.

Appendix A: Discretization of DMSs

In order to compute the lower bound for the distance dgyr, given in Theorems 4.4 and
4.5 in practice, we need to discretize DMSs, i.e. turn DMSs into a locally constant
DMS:s. This discretization depends on the resolution parameter « € (0, 00), described
as below. We will show that, if « is small and DMSs yx and yy satisfy a mild assump-
tion, then the lower bounds for dgyn(yx, yy) given in Theorems 4.4 and 4.5 can be
well-approximated using the a-discretized DMSs associated to yx and yy.

We call any map i : Z¢ — R grid-like if i is an strictly injective poset morphism,
ie.

(1) for any paira = (ay,...,aq) <b = (b1,...,bg) witha; < b;,i =1,...,d

in Z4, for i(a) = (a},...,a}) and i(b) = (b},..., b)), we have a] < b,
i=1,...,d.
(ii) Foralle = (cy, ...,cq) € RY, there are a, b € Z4 such that i (a) < ¢ < i(b).
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Given a grid-like i : Z¢ — RY, for any a € RY, define la]; to be the maximum
element in the image of Z¢ by i which does not exceed a.

Definition A.1 (Discrete persistence modules) We call a persistence module M : R? —
€ discrete if there exists a grid-like map i : Z¢ — R such that for each a € R¢, the
morphism @y (la];, a): M|aj, — Mj, is an isomorphism.

Leta € (0,00). Forany ¢ € R, let | ], € «Z be the greatest element in «Z which
does not exceed . Given any DMS yx = (X, dx(-)), we define the «-discretization
of yx:

Definition A.2 (Discretization of a DMS) Let yx = (X, dx(-)) be any DMS and
let « € (0, 00). The a-discretization of yx is the R-parametrized family of finite
(pseudo-)metric spaces yy = {(X , d‘j‘(z(t)) it e R}, where

d¥%(t) ;= dx([t]s): X x X — R4

Notice that the discretization yy of yx does not necessarily satisfy Definition 2.1 (ii)
and (iii) and hence yy does not deserve to be called a DMS. However, for convenience,
we will call y¥ the a-discretized DMS of yx or simply the discretized DMS.

We can regard dgyrn, as an extended pseudometric on a collection containing both
all DMSs and all discretized DMSs: Indeed, items (ii) and (iii) in Definition 2.1 are
not necessary to claim that dgyr, satisfies the triangle inequality (see the proof of [46,
Thm. 9.14] in [46, Sect. 11.4.2]).

A DMS yx = (X,dx(-)) is said to be [-Lipschitz if dx(-)(x,x"): R — Ry is
I-Lipschitz for every x, x’ € X. Assuming that yy is [-Lipschitz, the smaller the
resolution parameter « is, the closer the discretized DMS y¥ to yy is:

Proposition A.3 Ler yx = (X, dx(-)) be any [-Lipschitz DMS. Then

ddyn (VXv V}%) <lo.

Note that for the discretized DMS y¥, we can define the rank invariant and the
Betti-0 function of y¥ in the same way as in Definitions 2.23 and 2.24, respectively.
Furthermore, in a bounded time interval / C R, it is not difficult to check that both the

Betti-0 function ﬂg X and the rank invariant rky (y), k € Z are discrete (Definition
A.1). Therefore, one can straightforwardly utilize the results in Sect. 5 for computing
dr.

Proposition A.4 (Approximating dg,, from below with discretized DMSs) Let yx =
(X,dx (")) and yy = (Y, dy(-)) be any two l-Lipschitz DMSs.

di (B By ) —4la = 2-dagn(yx. yy) and
di (tk (), ki (yy)) — 4l < 2-dayn(yx, vr). k € Z.

@ Springer



Discrete & Computational Geometry

Proof of Proposition A.3 For ease of notation, we prove the statement assuming that
a = 1, without loss of generality. Consider the tripod R : X x X dx
X (Definition 2.6). We prove that R is a [-tripod between yx and y}o(‘z (Definition
29). Fixt € R.Since |t] e [t —1,t + 1] = [t]', it is clear that \/[t]' dx <gr
d% (t) and hence \/[,]1 dx <g d;"(z(t) + 2[. It remains to show that \/[l]l dg‘(z <R
dx(t) + 2I. Observe that, for any x,x’ € X, (\/[,]1 dg‘(z) (x, x") is the minimum
among dx (|| — 1)(x, x"), dx([t])(x, x") and dx (|¢] + 1)(x, x"). Also, observe that
allof [1] —1, |¢], [£] + 1 belong to the closed interval [¢]*> = [t — 2, 1 +2]. Therefore,
invoking that yy is [-Lipschitz, for any x, x" € X,

V di | e x) < dx @@, x") +21.
(]!

This implies that \/[,]1 d)Z( <g dx(t) + 2l, as desired. O

Proof of Proposition A.4 'We have

dayn(v%, vy) < dayn(yy, vx) +dayn(yx, vy) + dayn(yy, vy)
(by the triangle inequality),
<2la +dayn(yx.yy) (by PropositionA.3).

Also, by Theorem 4.5, we obtain dj (,ng , ﬁg") < 2 - dayn(y¥, y{), and in turn
the first inequality in the statement. The second inequality can be proved in a
similar way. O

Appendix B: Relationship Between the Rank Invariant and
CROCKER-Plot

We relate the rank invariant of a DMS to the CROCKER plot of [64]:

Definition B.1 (The CROCKER plots of a DMS [64]) Let yx = (X, dx(-)) be a DMS.
For k € Z, the k-th CROCKER plot Ci(yx) of yx isamap R x Ry — Z, sending
(t,8) € R x Ry to the dimension of the vector space Hy (%5(X, dx(1))).

Letyy = (X, dx(-)) be any DMS. Note that for any time #y € R and scale §p € Ry,
the value of rki(yy) associated to the repeated pair ([ty, to], d0), ([70, to], S0) €
Int x R is identical to the dimension of the vector space Hy (%s,(X, dx(t))), i.e.
Cr(yx)(to, 80). This implies that rky (yx) is an enriched version of the k-th CROCKER
plot Cy (yx) of yX.7 Therefore, Theorem 4.4 can be interpreted somehow as establish-
ing the stability of the CROCKER plots of a DMS.

Recall Definition 2.24, the Betti-0 function of a DMS.

7 To illustrate this, the 0-th CROCKER plot Cp(yx) is obtained by restricting ﬁgX to the front diagonal
vertical plane {[#,¢] : € R} x Ry C Int x Ry, which is colored brown in the middle picture of Fig. 4.
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Remark B.2 (Comparison between the Betti-0 function and the 0-th CROCKER plot)
Consider the DMSs yx and yy in Fig. 1. Since the two metric spaces yx () and yy ()
are isometric at each time t € R, the two CROCKER plots Cy(yx) and Co(yy) are
identical. On the other hand, the Betti-0 function ,Bg X is distinct from ,B())/ " asillustrated
in Fig. 4. This implies that, in comparison with the O-th CROCKER plot, the Betti-0
function is more sensitive invariant of a DMS.

Appendix C: Other Relevant Metrics

Bottleneck Distance. Let us define:
- R:=RU {400, —00},
- U :={(u,ur) € R2:u < us}, which is the upper-half plane above the line
y = x in R%.
— U = {(u,u2) € ﬁz 1 u1 < up}, which is the upper-half plane above the line
y = x in the extended plane Ez.
Foru = (u1,uz), v= (v, 1) € U, let

lu — v|ls :=max (lu; — vi|, luz — v2|).

Let X and X3 be multisets of points. Let o : X1 - X7 be a matching, i.e. a partial
injection. By dom(«) and im(«), we denote the points in X1 and X» respectively,
which are matched by «.

Definition C.1 (The bottleneck distance [24]) Let X1, X, be multisets of points in U.
Leto: X1 - X7 be a matching. We call « an g-matching if

(i) forall u € dom(w), |lu — a(u)| s <&,
@i1) forallu = (uy, us) € X1 \ dom(w), up — u; < 2e,
(iii) forall v = (v, v2) € X3 \ im(&), v — v; < 2e.
Their bottleneck distance dg(X1, X») is defined as the infimum of ¢ € [0, co) for
which there exists an e-matching « : X1 - X».

Erosion Distance. Recently, Patel generalized the notion of persistence diagrams and
proposed a new metric, the erosion distance, for comparing generalized persistence
diagrams [58]. We review a particular case of the erosion distance. Let P and Q be
any two posets. Given any two maps f, g: P — Q, we write f < gif f(p) < g(p)
forall p € P.

Let U := {(x,y) € R*> : x < y} equipped with the partial order inherited from
R x R. For any ¢ € [0, 00), let & := (—¢,¢) € U. Given any map Y: U — Z,
and ¢ € [0, 00), define another map V.Y : U — Z as V,Y(I) ;==Y (I +¢). If Y is
order-reversing, it is clear that V,Y < Y.

Definition C.2 (Erosion distance [58]) Let Y1,Y>: U — Z, be any two order-
reversing maps. The erosion distance between Y7 and Y is defined as

deg (Y1, Y2) ;= inf {8 €[0,00): V. Y; <Y, fori, je{l, 2}},
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with the convention that dg(Y1, Y2) = oo when there is no ¢ € [0, 00) satisfying the
condition in the above set.

Note that since U is a subposet of R°P? x R, we can regard df is a particular case
of di 2 from Sect. 3.2. The erosion distance is further generalized in [59].

Matching Distance [18,51]. In brief, the matching distance dmach compares rank
invariants via one-dimensional reduction along lines. Namely, for any M, N: R? —
Vec, the matching distance between rk(M) and rk(N) is defined as

dmatch (tk(M), tk(N)) :=  sup bm*dB(%(MlL),%(NIL)), (21)
L:u=sm+

where L varies in the set of all the lines parametrized by u = sm + b, with m* :=
min; m; > 0, max; m; = 1, Y} b; = 0. Specifically, dmaich is upper bounded by dIVec
[51]. We briefly discuss about the algorithms for dmaich and their computational cost:

— For d = 1, the RHS of equation (21) reduces to the bottleneck distance between
the barcodes of M and N. The bottleneck distance can be computed in time
on'? logn) where n is the total cardinality of the two barcodes [45]. See also
[19].

— For d = 2, dpnaich can be computed exactly in time O(n”) where n is the size of
finite presentations of M and N [44].

— For d > 2, algorithms for approximating dmaich Within any threshold ¢ > 0 are
proposed in [6,20]. In particular, for the case d > 3 which is of our interest, the

running time for the proposed algorithm is proportional to (g)d in the worst case
[20, Sect. 3.1].

Dimension Distance [28, Sect. 4]. Let M, N: R? — Vec be any two persistence
modules. If M, N are nice®, then the dimension distance dop between dm(M) and
dm(N) serves as a lower bound for dlvec(M, N) [28, Thm. 39]. A strength of dj is
the computational efficiency. Let M’, N': [n]¢ — Vec be any two finite persistence
modules. The entire computation for dy(dm(M’), dm(N’)) takes only O (n? logn)
[28, Sect. 4.2].

If a persistence module M is obtained by applying the 0-th homology functor to
the spatiotemporal Rips filtration of a DMS yx (Definition 2.21), then every internal
morphim ¢y (-, -) is surjective, and hence M is nice. Specifically, dm(M) coincides
with the Betti-O function ﬂgx (Definition 2.24). Therefore, one can utilize dy for
comparing Betti-0 functions of DMSs and for obtaining a lower bound of dgyn (by
virtue of Theorem 4.1).

On the other hand, for k > 1, a persistence module M obtained by applying the k-th
homology functor to the spatiotemporal Rips filtration of a DMS does not necessarily
satisfy the “nice” condition. This prevents us from freely utilizing dy in order to obtain
a lower bound for dgyn.

8 A persistence module M : RY — Vec is nice if there exists a value go € Ry such that for every ¢ < ¢,
each internal morphism ¢4 (a, a + ¢) is either injective or surjective (or both).
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Appendix D: Stability of the Single Linkage Hierarchical Clustering
Method

We review the single linkage hierarchical clustering (SLHC) method and its stability
under the Gromov—Hausdorff distance. We begin by reviewing the Gromov—Hausdorff
distance.

Appendix D.1: The Gromov-Hausdorff Distance

The Gromov-Hausdorff distance dgyg (Definition D.1) measures how far two metric

spaces are from being isometric.

Let (X, dx) and (Y, dy) be any two metric spaces andlet R : X PG Z ELCEN Y

be a tripod between X and Y. Then the distortion of R is defined as
dis(R) := sup |dx (¢x(2), ¢x (&) — dy (pr (), pr ()]

z,7€Z

Definition D.1 (Gromov-Hausdorf{fdistance [12,Sect.7.3.3]) Let (X, dx) and (Y, dy)
be any two metric spaces. Then

1
don (X, dx), (Y, dy)) = Zinf dis(R),

where the infimum is taken over all tripods R between X and Y. In particular, any
tripod R between X and Y with dis(R) < ¢ is said to be an e-tripod between (X, dx)
and (Y, dy).

The computation cost of dgy leads to NP-hard problem, even for metric spaces of
simple structure [1,61]. Therefore, one of practical approaches for estimating dgy is
to search for tractable lower bounds.

Appendix D.2: Single Linkage Hierarchical Clustering (SLHC) Method

Let (X, dx) be a finite metric space. For each 6 € R, we define the equivalence
relation ~5 on X as

x ~s x"if and only if Ix = xp, ..., x, in X s.t. dx (x;, xi11) < 6.
Observe that for any § < &’ in R, the inclusion ~5 C ~ holds, leading to (X/ ~s)
< (X/ ~g) in Part(X) (Definition 6.14).

Definition D.2 (The dendrogram from the SLHC) Let (X, dx) be a finite metric space.
The dendrogram 6 (X, dx): Ry — Part(X) defined by sending § € Ry to X/ ~5 is
called the SLHC dendrogram of (X, dx). O

The Ultrametric Induced by the Single Linkage Hierarchical Clustering Method [16].
An ultrametric space (X, u x ) is ametric space satisfying the strong triangle inequality:

forall x, x’, x”" € X, ux(x, x’) < max {ux(x,x”), ux(x”,x’)}.
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Let (X,dx) be a finite metric space and consider its SLHC dendrogram
0(X,dx): Ry — Part(X). For any x, x’ € X, define

ux(x,x") :==min{s € [0, 00) : x, x" belong to the same block of X/ ~s}.

It is not difficult to check that ux : X x X — Ry is a ultrametric and that uy (x, x') <
d(x,x"), forall x,x" € X.

Definition D.3 (The ultrametrics induced by the single linkage hierarchical clustering
[16]) Given any finite metric space (X, dx), the ultrametric space (X, ux) defined as
above is said to be the ultrametric space induced by the SLHC on (X, dx) and we
write (X, ux) = S5L(X, dy).

The assignment (X, dx) — SL(X, dy) is known to be 1-Lipschitz with respect to
the Gromov—Hausdorff distance:

Theorem D.4 (Stability of the SLHC [16]) For any two finite metric spaces (X, dx)
and (Y, dy), let (X, ux) and (Y, uy) be the ultrametric spaces induced from (X, dx)
and (Y, dy) by the SLHC method. Then

dou((X, ux), (Y, uy)) < deu((X,dx), (Y,dy)). (22)

Remark D.5 The term dg((X, ux), (Y, uy)) in (22) cannot be approximated within
any factor less than 3 in polynomial time, unless P = NP [47, Thm. 3]. Therefore, in
a practical viewpoint, it is desirable to find another lower bound for dgy.

The Gromov—Hausdorff distance can be bounded from below by the bottleneck
distance between persistence diagrams associated to Rips filtrations: see inequality
(11). Computing the LHS of inequality (11) can be carried out in polynomial time
[45].

Remark D.6 Observe that both of the LHSs of the inequalities in (22) and (11) with
k = 0 measure the difference between clustering features of (X, dx) and (Y, dy).
In fact, for any two finite metric spaces (X, dx) and (Y, dy), the persistence mod-
ules Hy (Zo (X, dx)) and Hy (Z.(Y, dy)) are isomorphic to Hy (Z.(X, ux)) and
Ho (Z.(Y, uy)), respectively. Therefore,

dp (dgmg (Ze(X, dx)) , dgmg (Ze(Y , dy)))
= dGH ((X’ MX)’ (Y’ MY)) = 2. dGH ((Xv dX)9 (Yy dY)) .
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