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Abstract

The bifurcation structure of a system of two non-linear coupled oscillators is
considered here. This system is motivated by coupled micro-oscillators proposed
for microelectromechanical systems (MEMS) applications. The model starts from
previous work in which the authors considered the bifurcation structure in a pair of
identical coupled, oscillators, each of which is modelled by a third-order nonlinear
system. In the present paper, the case is considered where the two oscillators are
non-identical i.e. detuned from each other. The series of bifurcations obtained is
described in detail. It is seen that the symmetry of the bifurcation structure present
in the identical oscillators is lost in the detuned oscillators. A very surprising
homoclinic bifurcation is seen in one region of the parameter space, and this is
examined in more detail through consideration of a simplified system.

Keywords
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nikov method, numerical continuation

1 Introduction
This work is a direct follow-up to research done by the authors in a recent work [1],
which in turn draws upon their past study [2]. This series of works is motivated by the
application of micron-scale resonators and oscillators used in microelectromechanical
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systems (MEMS). One of the simplest structures, a cantilevered beam has found many
applications. An early use was as micromechanical switches which exhibited much
higher switching speeds compared to the then-conventional reed relay switch circuits
[3]. Ma et. al. [4] have proposed a device where microcantilevers measure the flow rate
and flow direction of a gas. An application of microcantilever as a resonator has been
considered by Pratihar [5]. More recently, MEMS cantilevers have found applications
in biological arena – for example, Dhakane and Patil [6] have proposed a device for
tuberculosis detection in patients. A novel technology for improving the sensitivity of
microcantilever in biological applications has been described by Parsediya et. al. [7]
who propose a variable-width design which achieves greater deflection of the tip for the
same molecular pressure. Ansari and Cho [8] propose an optimized miocrocantilever
sensor for surface stress studies, with applications to the study of physical, chemical
and biological phenomena.

Coupled micro-oscillators have attracted considerable attention in the past. For ex-
ample, as far back as 1999, Smith et. al. [9] observed intermittent chaos in a pair of
pendula coupled by a mechanism which produced a torque proportional to the differ-
ence in their angular velocities. More recently, Yolong and Woafo [10] have considered
a pair of micro-beam oscillators with electrostatic coupling, and observed chaos in this
system. An even more detailed analysis of the chaotic regime in MEMS oscillators
has been done by Amorim et. al. [11]. Whereas a majority of works, including the
present work, feature linear coupling, nonlinear coupling has also been investigated in
literature, for example by Romeo and his co-authors [12, 13] and by Shoshani et. al.
[14].

In Refs. [1, 2, 15], it is seen that the micro-resonator illuminated by a laser satisfies
a third order nonlinear differential equation. The displacement of the beam is governed
by a second order equation while its temperature contributes an additional degree of
freedom which couples to the mechanical dynamics. Such third order dynamical sys-
tems are quite rare compared to second order systems but are not absolutely unheard of.
For example, Leadenham and Erturk [16, 17] have found such an equation in a prob-
lem where a piezoelectric material converts vibrational energy to electrical energy – the
vibrations are governed by a second order equation while the electrical dynamics con-
tribute an additional order. A similar model has been proposed by Garg and Dwivedi
[18]. Kuznetsov et al. have designed a third order oscillator [19, 20] to demonstrate
a quasiperiodic attractor. It is also noteworthy that the dynamic model of a current
source-fed induction motor or a voltage source-fed permanent magnet synchronous
motor is also third order nonlinear, while that of a voltage source-fed induction mo-
tor is fifth order nonlinear [21, 22, 23]. The general theory of stability of third order
nonlinear systems can be found for example in the treatment by Tunc and Atez [24].

In Ref. [1], the dynamics of two coupled, identical micro-oscillators [2] was stud-
ied. In that work the model for a single oscillator takes the form

z̈+ z = T (1a)

Ṫ +T = z2− pz (1b)

where z denotes the non-dimensional displacement of the beam and T denotes its di-
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mensionless temperature. The above model is a simplification of the system presented
in refs. [2, 15]. This system exhibits limit cycle oscillations for p > 0, analogous to the
behavior seen in MEMS devices transduced by laser interference [15].

The case of two linearly coupled identical oscillators of the form given in equa-
tion (1) was analyzed in detail in prior work [1]. It was found that at higher coupling
strengths, the in-phase (IP) and out-of-phase (OP) modes were both stable. As the
coupling strength was decreased, a complicated sequence of bifurcations led to loss of
stability of the IP mode. The most striking feature of these bifurcations was the sym-
metry of the system. The method of two variable expansion was used on the system and
the slow flow (sometimes known as amplitude equations or averaged equations) was
obtained in terms of three variables r1, r2 and ϕ , denoting respectively the amplitudes
of the two oscillators and the phase difference between them. This flow was found to
be symmetric under the transformation r1→ r2, r2→−r1 and ϕ →−ϕ .

In contrast to the work just described, the current paper treats the case where the
two oscillators are non-identical i.e. their natural frequencies are detuned from each
other. In summary, one finds here a richer bifurcation sequence than in Ref. [1] on
account of the detuning which breaks the symmetry mentioned in the above paragraph.
The most important new feature is an unfolding of the single homoclinic bifurcation of
the symmetric system into three different homoclinic bifurcations. This will be seen in
detail presently.

2 Detuned model and slow flow
The governing equation for two coupled detuned oscillators is

z̈1 + z1 = T1 +α (z2− z1) (2a)

Ṫ1 +T1 = z2
1− pz1 (2b)

z̈2 +(1+ k1)
2z2 = T2 +α (z1− z2) (2c)

Ṫ2 +T2 = z2
2− pz2 (2d)

where k1 is the detuning parameter (difference in natural frequency between the two
oscillators) and α the strength of the coupling between the two oscillators. The param-
eter p, which represents a static displacement of the MEMS oscillator relative to an
experimental baseline, is the driver of the limit cycles. One finds from a linear stability
analysis on (2) that the fixed point at the origin is stable for p < 0 and unstable for
p > 0. At p = 0 the origin undergoes a Hopf bifurcation, which gives rise to the limit
cycle. For the entire work, p will be set to the fixed value 0.1 and its variation will not
be considered further. This is the same as what has been done in Ref. [1].

The method of two-variable expansion [27] is used to obtain a slow flow. We start
by scaling (2) in the following manner:

z̈1 + z1 = εT1 + ε
2
α (z2− z1) (3a)
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Ṫ1 +T1 = z2
1− ε pz1 (3b)

z̈2 +
(
1+ ε

2k1
)2

z2 = εT2 + ε
2
α (z1− z2) (3c)

Ṫ2 +T2 = z2
2− ε pz2 (3d)

where ε is a small parameter. We define three time-scales – regular time ξ , slow
time η and super-slow time ζ . We expand the variables as z1 = z10 + εz11 + ε2z12,
T1 = T10 + εT11 + ε2T12 and so on. Using a computer algebra system, we solve first
the differential equations obtained by considering terms independent of ε . These are
linear and easy to solve. Then, we substitute these solutions into the equations obtained
by collecting terms of order ε . These solutions have resonance terms, which must be
removed to obtain the slow flow. A trivial slow flow is obtained at O(ε), necessitating
the progression to O(ε2). At this stage, the following equations in the super-slow time,
ζ are obtained, where z1 = A(ζ )cosξ +B(ζ )sinξ and z2 =C(ζ )cosξ +D(ζ )sinξ ,

dA
dζ

=
30p(A+B)+60α (B−D)− (27A+31B)

(
A2 +B2

)
120

(4a)

dB
dζ

=
30p(B−A)+60α (C−A)+(31A−27B)

(
A2 +B2

)
120

(4b)

dC
dζ

=
30p(C+D)+60α (D−B)− (27C+31D)

(
C2 +D2

)
+60k1D

120
(4c)

dD
dζ

=
30p(D−C)+60α (A−C)+(31C−27D)

(
C2 +D2

)
−60k1C

120
(4d)

It is noted that since the T -equations have exponentially decaying solutions at the
largest order, they are not characterized by independent dynamical variables. Rather,
the temperatures exhibit limit cycle oscillations which are completely locked to the z-
oscillations [1] and occur at twice the frequency. Specifically, for a single oscillator,
the following has been found in [1]:

T = A2
(

1
2
+

1
5

sin2ωt +
1

10
cos2ωt

)
(5)

where A denotes the amplitude of the z oscillation. Hence the dynamics of T will be
neglected in the subsequent discussion.

To facilitate the analysis, the variables in (4) are transformed to polar coordinates
A = r1 cosθ1, B = r1 sinθ1, C = r2 cosθ2 and D = r2 sinθ2. Only the relative phase
ϕ = θ2− θ1 has any significance in the dynamics. The evolution equations for r1, r2
and ϕ are,

dr1

dζ
=

pr1

4
−

9r3
1

40
− α

2
r2 sinϕ (6a)
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dr2

dζ
=

pr2

4
−

9r3
2

40
+

α

2
r1 sinϕ (6b)

dϕ

dζ
=

31
120

(
r2

2− r2
1
)
+

α cosϕ

2

(
r1

r2
− r2

r1

)
− k1

2
(6c)

In the limit of k1 = 0 this agrees with the results of Reference [1].
In what follows we shall analyse (6) to determine various dynamical features such

as equilibria, their stabilities, limit cycles including those born in Hopf bifurcations,
etc. The presence of such features in the slow flow (6) has implications about the
corresponding behaviour in the physical model (2). For example, a stable equilibrium
point in the slow flow corresponds to a periodic motion (a stable limit cycle) in the
original system. A limit cycle in (6) corresponds to a quasiperiodic motion in (2).

3 Structure of the bifurcations
Before describing the details an overview of the bifurcation structure is first described.
A variety of semi-analytical and numerical procedures were used to understand the
bifurcation sequence of the oscillators. The overall bifurcation diagram obtained in
the k1-α plane is shown in Fig. 1. Corresponding to each transition, a curve has been
indicated. The schematic phase portraits of the system, projected onto the r1-r2 plane
in the labelled regions, are as shown in Fig. 2.

Figure 1: Bifurcation curves of the slow flow (5) in the k1-α plane. Note that k1 is
the detuning while α is the coupling. The line separating regions A and B corresponds
to saddle node bifurcations. The lines separating B,C and C,D corespond to Hopf
bifurcations. D-E, E-F and F-G are homoclinic bifurcations, G-H is a saddle node
bifurcation of limit cycles while H-J is again a saddle node. Details will be explained
in the subsequent text.
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Figure 2: Trajectories in the r1-r2 plane in each of the labelled regions shown in Fig. 1.
These represent two-dimensional projections of three-dimensional trajectories, hence
certain unintuitive features, such as intersecting trajectories, are seen in this case. Most
of the diagrams can be explained on the basis of the subsequent text. In H, all trajecto-
ries go to the OP mode which is stable in regions A to G also but is not shown in any
of the previous diagrams for clarity.

The derivation of this diagram shall now be described. For α sufficiently large,
only the in-phase (IP) mode is stable. It is also noted that an exact IP mode is no longer
a solution of the detuned equations (3) and (5) – rather, there exists an IP-like solution
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which features r1 and r2 very close to each other and ϕ very small. Nevertheless,
we shall continue to refer to this solution as the IP mode, trading lexical accuracy for
conciseness of expression. As α is decreased, a complex series of bifurcations occurs
as shown in Fig. 1. The first few of these bifurcations (A, B, and C) were obtained by
using AUTO Bifurcation Software [25] on the slowflow (6). This software performs
numerical continuation and yields the saddle node and Hopf bifurcation transition lines.
The first bifurcation obtained in Reference [1] (based on a symmetric model of two
identical oscillators) was a pitchfork at α = 0.057 which led to the stable IP mode
turning unstable while a new pair of stable fixed points was born. In the present work,
the symmetry of the previous study is broken by the detuning. The pitchfork is replaced
by a saddle node where the two new fixed points are born. One of these becomes the
new IP mode while the original IP mode deviates considerably and becomes the “mirror
image” of the other point born in the saddle node. It turns out that an analytical formula
can be found for the saddle node bifurcation curves - this process is described below.
Due to length of expressions involved, computer algebra is used for this purpose. The
software WXMaxima is employed; the script used is given in the Appendix.

One starts by hunting for the fixed points of the slow flow (5). To do this ana-
lytically, one obtains an expression for sinϕ from (5a) and one for cosϕ from (5c)
and then uses sin2

ϕ + cos2 ϕ = 1. This yields a polynomial equation for r1 and r2.
A second polynomial equation can be obtained in an analogous fashion by using this
trigonometric identity between (5b) and (5c). Thereafter, the variable r2 is eliminated
between these two polynomials to obtain a single equation for r1. This equation is of
the 48th degree. Since a saddle node (or pitchfork) corresponds to a double root, one
has the condition that the derivative of the above polynomial with respect to r1 be also
zero. Eliminating between these two conditions leads to a relation between k1 and α ,
this eliminant taking the form

P14(α,k1) = 0 (7)

where P14 denotes a polynomial of the 14th degree, which is too lengthy to quote in
full.

For k1 = 0, P14(α,0) simplifies considerably and factorizes as

P14(α) = (α−31/540)P13(α) (8)

where P13 has only negative real and complex roots, which are physically meaningless.
Thus, one obtains the critical value α = αcr = 31/540 as the location of the pitchfork.
This matches with what has been obtained in Reference [1]. One then substitutes α =
αcr + δα into P14 and sets this equal to zero. For small values of k1 and δα , the
largest term in this expression which is independent of k1 is δα3 while the largest term
independent of δα is k2

1. To satisfy the equation, these two terms must balance each
other, giving the power law relationship k1∼ δα3/2. The numerical coefficient happens
to evaluate to (1077/4155)1/3 = 0.6376, thus implying that near the critical point,

αcr−α = 0.6376k2/3
1 (9)

In Fig. 3, this curve is shown superposed on the curve of saddle node bifurcations
obtained by AUTO. The agreement is good near αcr and deteriorates as one moves
away from it, as expected given the assumptions leading to this conclusion.
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Figure 3: Black lines show the bifurcation diagram of (5) as plotted by AUTO. The
lines marked as “fold” are where saddle-node bifurcations occur – in the upper half-
plane, a pair of fixed points are born in a saddle node as one crosses the line from
below. The lines marked “Hopf” show the same for Hopf – the fixed points born in the
saddle-node bifurcation lose stability in a Hopf bifurcation as one crosses the line from
the right. The diagram is symmetric with respect to the α-axis. The blue line labelled
“analytical” shows the curve αcr−α = 0.6376k2/3

1 , as described in the text.

In the identical oscillators, the next bifurcation upon decreasing α was a double-
Hopf at α = 0.0468. Both the stable fixed points created in the pitchfork lost stability
in Hopf bifurcations. Here, the two Hopfs do not occur simultaneously but one after the
other. Thus, at a detuning of, for example, k1 = 0.002, the IP-like mode loses stability
prior to the other stable fixed point which was created in the saddle node. In fact, the
Hopf bifurcation actually occurs before the saddle node. At negative detuning on the
other hand, the IP mode retains stability for a longer range than the other fixed point.

The subsequent bifurcation in the identical system was a homoclinic bifurcation
at α = 0.0436 in which the two limit cycles created in the Hopfs crashed into each
other and formed one big limit cycle. In the presence of frequency-detuning, a very
interesting behaviour takes place. The following sequence is found : (i) one of the two
limit cycles born in the Hopf approaches the saddle, crashes into it and vanishes, (ii) the
other limit cycle born in the Hopf approaches closer to the saddle without yet touching
it, (iii) a connection takes place betwen a transient trajectory approaching this limit
cycle and an unstable trajectory leaving the Hopf point, giving rise to a second stable
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limit cycle, which has a figure of eight shape in the r1-r2 plane, (iv) the earlier limit
cycle and the new figure-of-eight cycle coexist stably, (v) the smaller cycle impacts
the saddle and vanishes, leaving only the figure-of-eight cycle. This phenomenon is
illustrated through Figs. 4 to 6, in which the value k1 = 0.002 is taken as a reference.

Figure 4: Region D of Figs. 1-2. The two limit cycles born in the Hopf bifurcations in
the r1− r2 plane at α = 0.0450. Different initial conditions go to the two limit cycles
- two non-specific values have been chosen for the figure. The saddle-like IP mode is
also shown as a X.

Figure 5: Region E. At α = 0.0440, only one of the above two limit cycles exists.
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Figure 6: Region F. Coexistence of the limit cycle from Fig. 5 with a figure-of-eight
limit cycle is seen at α = 0.0427. Recall that the apparent self-intersection is the result
of projection of a three-dimensional dynamics onto the (r1,r2) plane. This rather sur-
prising coexistence has been mentioned by Hubbard and West [26] in the context of a
simpler system.

The next bifurcation is common to both the identical and detuned systems. The
figure-of-eight limit cycle crashes into the separatrix which demarcates the out-of-
phase motions from the in-phase ones, and is lost. Only the OP motion is stable from
this point onwards.

The detuned system has a bifurcation at really small α which does not exist in the
identical system. This is a transition from OP mode to drift. When the coupling is
reduced to less than α = 0.001, the two oscillators start evolving in time independently
of each other. This is illustrated by the time trace of ϕ(t) in Fig.7, showing that the
phases diverge. By solving for the fixed points of the slow flow, it was found that
a saddle-node bifurcation occurs at this point; as α is decreased through the critical
value, the stable OP and unstable IP modes come together and disappear as shown in
Fig. 8.
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Figure 7: Region J. At α = 0.0003, the time traces of r1 and r2 overlap with each going
to a fixed value, while that of ϕ shows continuous increase in time, indicating that the
oscillators are drifting.

Figure 8: ϕ vs. α for the IP and OP modes at fixed k1 = 0.002. It can be seen that
as α approaches about 0.0009 from above, ϕ approaches π/2 for both modes which
coalesce in a saddle-node bifurcation.

Primarily numerical methods were used to obtain the transition curves between
the regions D to J. A detailed diagram of the regions D to H is shown in Fig. 9. To
generate this Figure, at each point in the (α,k1) parameter space, 21 initial conditions
were taken at random from the intervals r1, r2 belonging to [0,0.5] and ϕ belonging to
[0,π/6], and the steady state response of the system was determined.
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Figure 9: Simulation results for the slow flow (6). For each point in this diagram, 21
different initial conditions were chosen at random and the results of numerical integra-
tion with those initial conditions were noted. Since the OP mode is stable throughout,
it is understood that some initial conditions will go to that mode. If ALL initial condi-
tions go to OP, then the point in the parameter space has been marked as yellow. Else,
if the only possibilities are OP mode and a circle-shaped (small) limit cycle in the r1-r2
plane, then the point has been marked as purple. Else, if the only possibilities are OP
mode and figure-of-eight shaped limit cycle, then the point has been marked with blue.
Finally, those regions where both circle and figure-of-eight limit cycles are stable have
been shown in green. Homoclinic bifurcations occur as one transitions from the purple
to the green and green to blue regions. The curves shown in Fig. 1 have been drawn on
the basis of this diagram. The appearance of the irregular regions in the upper right as
well as a purple region to the left of the green region for high k1 is puzzling, and cannot
be accounted for by the simplified model of the following Section.

To gain additional insight into the system dynamics, we investigate whether a sim-
ilar bifurcation structure can be found in a simpler system as well. The analysis is
described in the next Section.
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4 Analysis of a simplified system
As a simpler form of the slowflow (6), the authors considered the second order system

ẍ− x+ x3−bẋ+ ẋ3 +βx2 = 0 (10)

This system was constructed as a pedagogical model to illustrate the homoclinic bi-
furcations occurring in the original system. In this model, one needed the equation
to exhibit two small limit cycles on either side of a saddle point plus one larger limit
cycle (the figure-of-eight). This suggested the double-well oscillator ẍ− x+ x3 as a
starting step. To implement the symmetry breaking (detuning in the original system),
the quadratic term was added, and it was natural to attach it to a variable parameter, β .
Thereafter, one needed the oscillator to exhibit limit cycles, so one needed a negative
damping term with a saturation value. Putting all together, the equation (10) was ar-
rived at. The ultimate justification of (10) as a faithful representation of (6) is that they
both have the features which one intends to demonstrate. The strength b of the negative
damping in the simplified system is analogous to the coupling α in the original, while
the coefficient β of the quadratic term is analogous to the detuning k1.

In the absence of the asymmetry β , the equilibria of the system are -1, 0 and 1.
At b = 0, the -1 and +1 ends are centres while the origin is a saddle. When b is
made positive, the centres turn into unstable foci thereby showing a Hopf bifurcation.
Numerical integration of (6) yields the following features. For β = 0, at sufficiently
small values of b, there are two stable limit cycles, one surrounding each unstable focus.
At b = 0.33 however, the two merge into one big limit cycle which has figure-of-eight
(or more appropriately “peanut”) shape in the phase plane. When β is non-zero, at
sufficiently small b there are two limit cycles surrounding the two unstable foci. Upon
increasing b, the limit cycle on the right first hits the origin and disappears while the left
one remains intact. Upon further increase of b, the peanut shaped limit cycle appears
in coexistence with the left side cycle while still later the left side cycle also hits the
origin and vanishes.

Melnikov’s method [27] is used to analytically generate the bifurcation curves. The
steps shall be shown in detail for the analysis of the limit cycle on the right side of the
phase plane. For this, we first define a new variable y = x− x∗ where x∗ = −β +√

β 2 +4 is the fixed point at positive x. Our ODE then becomes

ÿ+C1y+C2y2 + y3−bẏ+ ẏ3 = 0 (11)

where

C1 = 2+
β

2

(
β −

√
β 2 +4

)
(12a)

C2 =
1
2

(
β −3

√
β 2 +4

)
(12b)

The first four terms in (10) make up a conservative system, while the next two
terms are the perturbation which drives a limit cycle. Following standard Melnikov
procedure, we attach a coefficient of ε to these terms (it is a parameter which is initially
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assumed small, and can later be set to unity) and let P (“momentum”) denote dy/dt.
Thus, we have the structure

ẏ =
∂H
∂P

+ εg1 (13a)

Ṗ =−∂H
∂y

+ εg2 (13b)

where H is the Hamiltonian

H =
1
2

ẏ2 +
C1

2
y2 +

C2

3
y3 +

1
4

y4 (14)

g1 = 0 and g2 = bẏ− ẏ3. The criterion [3] for the occurrence of the homoclinic bifur-
cation is that the time integral of g2(∂H/∂P) over one homoclinic orbit of the unper-
turbed system be identically zero i.e.∮ (

bẏ− ẏ3) ẏdt = 0 (15)

where the integral is to be taken over one homoclinic orbit of the conservative system.
This orbit is the one which passes through the saddle point x = 0 with zero velocity.
Since x = 0 corresponds to y =−x∗, the total energy of the critical orbit is

Ecr =
C1

2
x∗2 +

C2

3
x∗3 +

1
4

x∗4 (16)

and the equation of the homoclinic trajectory is

1
2

(
dy
dt

)2

= Ecr−
C1

2
y2− C2

3
y3− 1

4
y4 (17)

This can readily yield a differential equation for y(t) on the trajectory – although
this equation is separable and can be solved by transferring variables, the resulting
integral has a cumbersome expression. Since numerical quadrature is required anyway
to evaluate (11), the integral (13) was evaluated by computer also. This solution was
then used to evaluate (11). For every fixed value β , (11) was computed, set equal to
zero and solved for b resulting in a curve in the b-β plane. If one computes (11) along a
trajectory which started slightly to the right of the saddle point with zero velocity, then
one obtains the homoclinic bifurcation point of the limit cycle on the right. Similarly,
for the homoclinic bifurcation of the left side limit cycle, one needs to evaluate (11)
along a trajectory which starts slightly left of the saddle with zero velocity. Finally, for
the homoclinic bifurcation of the peanut, one needs to choose a trajectory which passes
the saddle with a very small but non-zero velocity. The three curves obtained thereby
are shown in Fig. 10.
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Figure 10: Melnikov’s method applied to the simplified system (6). Transition curves
in the b-β plane for the left, right and peanut limit cycles (lines marked L, R and P
respectively). These curves partition the region into four sectors, labelled 1, 2, 3 and 4.
The vanishing of the integral only yields the curve without telling one on which side
the limit cycle is present and absent. Numerical integration yielded that the right side
limit cycle exists in region 1, the left side limit cycle exists in regions 1, 2 and 3 and
the peanut exists in regions 3 and 4.

This curve shows strong similarity with the results of direct numerical integration
of the system. Indeed, one can find the counter-intuitive coexistence of limit cycles
which was seen in the original system also. A schematic representations of the phase
portraits associated with the various regions of parameter space is shown in Fig. 11.
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Figure 11: Schematic representation of the phase portraits of the system (6) in the
various regions and transition curves shown in Fig. 10. The region/curve is labelled
under each plot. Some of the portraits are self-explanatory. In “P”, a coalescence [26]
has occurred between the lines going forward and backward from the saddle in “2”. In
“3”, the two stable limit cycles are separated by a homoclinic connection, which acts
as the “separatrix” or boundary between the two basins of attraction.
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In Fig. 12, the transition curves between the various regions are plotted numeri-
cally, using a process similar to that used for drawing Fig. 9. The similarity with the
curves obtained from the Melnikov method is noteworthy.

Figure 12: Simulation results for the simplified equation (6). Green indicates coexis-
tence of the left and right side limit cycles, purple indicates left limit cycle alone, aqua
denotes peanut orbit alone while yellow shows coexistence of the left side limit cycle
and the peanut orbit. The similarities with Fig. 9 are apparent if one takes into account
the extra complexity arising in the third order system.

A summary is now given of how the simplified system (6) relates to the original
one (2). In the original system, reducing α causes supercritical Hopf bifurcations of
the two heretofore stable equilibria. Here, increasing b through zero causes the same
bifurcations. Hence it can be said that b is the equivalent of α . The quadratic term β

introduces asymmetry – in the absence of asymmetry the two limit cycles are identical
and undergo the homoclinic bifurcation simultaneously into a figure of eight. This is
analogous to the two identical oscillators of Reference [1]. Increasing β in the sim-
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plified system is equivalent to increasing the detuning on the actual system hence we
can say that β is the equivalent of k1. For a fixed β (respectively k1), increasing b
(decreasing α) causes the homoclinic bifurcations, first of one limit cycle and then of
the other.

The similarities between Figs. 9 (left side) and 12 may also be noted in this regard.
For example, in Fig. 9 consider the fixed value k = 0.002 and move leftward along this
horizontal line. In region E, at about α = 0.0435 one has a small limit cycle on either
side of the saddle (IP). At α = 0.0429 approximately, the large limit cycle (figure-of-
eight) is born and coexists with the small cycle. At α = 0.0425, the small limit cycle
disappears. Similarly in Fig. 12, consider the fixed value β = 0.1 and move rightwards
along the graph. At α = 0.32 approximately, one has one small limit cycle; the peanut
appears at about 0.36 coexisting with the small cycle while the latter disappears at
about α = 0.37.

5 Summary of bifurcations, conclusion
The dynamics of two MEMS-inspired detuned oscillators has been considered in this
work. A very rich bifurcation sequence is observed, with the symmetry of the structures
being broken by the detuning. This bifurcation sequence is shown in a schematic form
in Fig. 13. A new schematic representation is employed here, which was invented by
the authors in a recent work [29]. Each diagram only enumerates the various objects
present without attempting to describe their location. Fixed points are shown as dots
and limit cycles as ellipses. The special figure-of-eight limit cycle is shown as an ’8’.
Any object which is stable is surrounded by a red box whereas an unstable object does
not have this box.
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Figure 13: Schematic representation of the sequence of bifurcations occurring in the
slow flow (5) as the coupling α is reduced from a high value (about 0.06) to a low
value (close to zero). The detuning k1 is taken to be constant at about 0.002. After
reading one line left to right, reader to proceed to the next line. It is noteworthy how
the initially simple structure becomes more complicated before again returning to a
simple structure. Note also that the figure-of-eight limit cycle is denoted by LC8 and
indicated by an ’8’. ’Sep’ denotes the separatrix between the IP and OP modes.

A summary list of the bifurcations taking place in the above Figure is given below:

• Region A is high α where there are only the stable IP and OP modes and an
unstable limit cycle (separatrix) separating the two.

• A saddle-node bifurcation occurs from A to B giving rise to a new pair of stable
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fixed points, while destroying the stability of the IP mode.

• From B to C, IP1 loses stability in a Hopf bifurcation.

• From C to D, IP2 loses stability in a Hopf bifurcation.

• The first of the homoclinic bifurcations occurs from D to E - LC2 collides with
the saddle-like IP mode and vanishes.

• The most interesting bifurcation of this Article occurs from E to F - a trajec-
tory emanating from IP2 collies in a homoclinic bifurcation with a trajectory
approaching LC1, giving rise to the stable LC8 which coexists with LC1.

• A third homoclinic bifurcation occurs from F to G - LC1 collides with IP and
vanishes.

• From G to H, a saddle node bifurcation of cycles causes LC8 to collide with the
separatrix.

• From H to J, a saddle node bifurcation causes IP and OP modes to coalesce.
From this point onwards, the two oscillators drift with respect to each other.

In conclusion, a simplified second order model of the system has also been con-
structed, and its analysis has yielded important information regarding the bifurcation
structure in the original system. Specifically, it has been found that a peanut or figure-
of-eight shaped limit cycle is born in a homoclinic bifurcation off the approach path to
a more conventionally shaped limit cycle, and this leads to coexistence of the circular
and figure-of-eight limit cycles in some region of the parameter space.

The various kinds of coexisting motions at the same point in parameter space have
important practical consequences. For example, one may want a situation where one
can switch between IP and OP modes in the same system, or a situation where one can
switch between small and large limit cycles. It appears that to achieve these switches in
the present system, one need not adjust the parameters but only has to adjust the initial
conditions with which the system is started. In subsequent works it is hoped to obtain
results for many coupled oscillators, which may reasonably be expected to support
multiple coexisting modes and display a very complicated sequence of bifurcations.
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7 Appendix
The WXMaxima code used for obtaining analytical formula for the saddle node bifur-
cation curves is given below.

kill(all);

eqs:[’diff(r1,zeta,1) = (-(alpha*sin(phi)*r2)/2)-(9*r1^3)/40+(p*r1)/4,

’diff(r2,zeta,1) = (-(9*r2^3)/40)+(p*r2)/4+(alpha*sin(phi)*r1)/2,

’diff(phi,zeta,1) = (31*r2^2)/120-(alpha*cos(phi)*r2)/(2*r1)

+(alpha*cos(phi)*r1)/(2*r2)-(31*r1^2)/120

-k1/2];

p:1/10;

foo1:solve(part(eqs,1,2),sin(phi));

foo2:solve(part(eqs,2,2),sin(phi));

foo3:solve(part(eqs,3,2),cos(phi));

foo4:sin(phi)^2+cos(phi)^2-1,foo1,foo3;

foo5:sin(phi)^2+cos(phi)^2-1,foo2,foo3;

foo6:num(ratsimp(foo4));

foo7:num(ratsimp(foo5));

foo8:eliminate([foo6,foo7],[r2]);

foo9:factor(%);

foo10:first(last(last(foo9)));

foo11:foo10,k1=0;

foo12:factor(%);

foo13:diff(foo10,r1);

/* double root */

eliminate([foo10,foo13],[r1]);

factor(%);

goo1:part(%,1);

goo2:part(%,6,1);

/* choose power of k1 s.t. there is a distinguished limit */

goo2,alpha=31/540+k1^(2/3)*beta;

expand(%);

coeff(%,k1,2);

solve(%,beta);

alpha=31/540+k1^(2/3)*beta,last(%);
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%,k1=.002,numer;

/* fold corresponding to pitchfork at k1=0 */

dummy;
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