
Graph Drawing via Gradient Descent, (GD)2

Reyan Ahmed, Felice De Luca, Sabin Devkota, Stephen Kobourov, Mingwei Li

Department of Computer Science, University of Arizona, USA

Abstract. Readability criteria, such as distance or neighborhood preser-
vation, are often used to optimize node-link representations of graphs to
enable the comprehension of the underlying data. With few exceptions,
graph drawing algorithms typically optimize one such criterion, usually
at the expense of others. We propose a layout approach, Graph Drawing
via Gradient Descent, (GD)2, that can handle multiple readability crite-
ria. (GD)2 can optimize any criterion that can be described by a smooth
function. If the criterion cannot be captured by a smooth function, a
non-smooth function for the criterion is combined with another smooth
function, or auto-differentiation tools are used for the optimization. Our
approach is flexible and can be used to optimize several criteria that
have already been considered earlier (e.g., obtaining ideal edge lengths,
stress, neighborhood preservation) as well as other criteria which have
not yet been explicitly optimized in such fashion (e.g., vertex resolution,
angular resolution, aspect ratio). We provide quantitative and qualitative
evidence of the effectiveness of (GD)2 with experimental data and a func-
tional prototype: http://hdc.cs.arizona.edu/~mwli/graph-drawing/.

1 Introduction

Graphs represent relationships between entities and visualization of this infor-
mation is relevant in many domains. Several criteria have been proposed to eval-
uate the readability of graph drawings, including the number of edge crossings,
distance preservation, and neighborhood preservation. Such criteria evaluate dif-
ferent aspects of the drawing and different layout algorithms optimize different
criteria. It is challenging to optimize multiple readability criteria at once and
there are few approaches that can support this. Examples of approaches that
can handle a small number of related criteria include the stress majorization
framework of Wang et al. [34], which optimizes distance preservation via stress
as well as ideal edge length preservation. The Stress Plus X (SPX) framework
of Devkota et al. [12] can minimize the number of crossings, or maximize the
minimum angle of edge crossings. While these frameworks can handle a limited
set of related criteria, it is not clear how to extend them to arbitrary optimiza-
tion goals. The reason for this limitation is that these frameworks are dependent
on a particular mathematical formulation. For example, the SPX framework was
designed for crossing minimization, which can be easily modified to handle cross-
ing angle maximization (by adding a cosine factor to the optimization function).
This “trick” can be applied only to a limited set of criteria but not the majority
of other criteria that are incompatible with the basic formulation.

http://hdc.cs.arizona.edu/~mwli/graph-drawing/

2 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

Fig. 1: Three (GD)2 layouts of the dodecahedron: (a) optimizing the number of
crossings, (b) optimizing uniform edge lengths, and (c) optimizing stress.

In this paper, we propose a general approach, Graph Drawing via Gradient
Descent, (GD)2, that can optimize a large set of drawing criteria, provided that
the corresponding metrics that evaluate the criteria are smooth functions. If the
function is not smooth, (GD)2 either combines it with another smooth function
and partially optimizes based on the desired criterion, or uses modern auto-
differentiation tools to optimize. As a result, the proposed (GD)2 framework
is simple: it only requires a function that captures a desired drawing criterion.
To demonstrate the flexibility of the approach, we consider an initial set of
nine criteria: minimizing stress, maximizing vertex resolution, obtaining ideal
edge lengths, maximizing neighborhood preservation, maximizing crossing an-
gle, optimizing total angular resolution, minimizing aspect ratio, optimizing the
Gabriel graph property, and minimizing edge crossings. A functional prototype
is available on http://hdc.cs.arizona.edu/~mwli/graph-drawing/. This is
an interactive system that allows vertices to be moved manually. Combinations
of criteria can be optimized by selecting a weight for each; see Figure 1.

2 Related Work

Many criteria associated with the readability of graph drawings have been pro-
posed [35]. Most of graph layout algorithms are designed to (explicitly or implic-
itly) optimize a single criterion. For instance, a classic layout criterion is stress
minimization [24], where stress is defined by

∑︁
i<j

wij(|Xi−Xj |−dij)
2. Here, X is

a n×2 matrix containing coordinates for the n nodes, dij is typically the graph-
theoretical distance between two nodes i and j and wij = d−α

ij is a normalization
factor with α equal to 0, 1 or 2. Thus reducing the stress in a layout corresponds
to computing node positions so that the actual distance between pairs of nodes
is proportional to the graph theoretic distance between them. Optimizing stress
can be accomplished by stress minimization, or stress majorization, which can
speed up the computation [20]. In this paper we only consider drawing in the
Euclidean plane, however, stress can be also optimized in other spaces such as
the torus [8].

http://hdc.cs.arizona.edu/~mwli/graph-drawing/

Graph Drawing via Gradient Descent, (GD)2 3

Stress minimization corresponds to optimizing the global structure of the
layout, as the stress metric takes into account all pairwise distances in the graph.
The t-SNET algorithm of Kruiger et al. [25] directly optimizes neighborhood
preservation, which captures the local structure of a graph, as the neighborhood
preservation metric only considers distances between pairs of nodes that are close
to each other. Optimizing local or global distance preservation can be seen as
special cases of the more general dimensionality reduction approaches such as
multi-dimensional scaling [26,32].

Purchase et al. [28] showed that the readability of graphs increases if a lay-
out has fewer edge crossings. The underlying optimization problem is NP-hard
and several graph drawing contests have been organized with the objective of
minimizing the number of crossings in the graph drawings [2,7]. Recently several
algorithms that directly minimize crossings have been proposed [29,31].

The negative impact on graph readability due to edge crossings can be miti-
gated if crossing pairs of edges have a large crossings angle [3,13,22,23]. Formally,
the crossing angle of a straight-line drawing of a graph is the minimum angle
between two crossing edges in the layout, and optimizing this property is also
NP-hard. Recent graph drawing contests have been organized with the objective
of maximizing the crossings angle in graph drawings and this has led to several
heuristics for this problem [4,10].

The algorithms above are very effective at optimizing the specific readability
criterion they are designed for, but they cannot be directly used to optimize
additional criteria. This is a desirable goal, since optimizing one criterion often
leads to poor layouts with respect to one or more other criteria: for example,
algorithms that optimize the crossing angle tend to create drawings with high
stress and no neighborhood preservation [12].

Recently, several approaches have been proposed to simultaneously improve
multiple layout criteria. Wang et al. [34] propose a revised formulation of stress
that can be used to specify ideal edge direction in addition to ideal edge lengths
in a graph drawing. Devkota et al. [12] also use a stress-based approach to min-
imize edge crossings and maximize crossing angles. Eades et al. [17] provided a
technique to draw large graphs while optimizing different geometric criteria, in-
cluding the Gabriel graph property. Although the approaches above are designed
to optimize multiple criteria, they cannot be naturally extended to handle other
optimization goals.

Constraint-based layout algorithms such as COLA [15, 16], can be used to
enforce separation constraints on pairs of nodes to support properties such as
customized node ordering or downward pointing edges. The coordinates of two
nodes are related by inequalities in the form of xi ≥ xj + gap for a node pair
(i, j). These kinds of constraints are known as hard constraints and are different
from the soft constrains in our (GD)2 framework.

4 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

Fig. 2: The (GD)2 framework: Given a graph and a set of criteria (with weights),
formulate an objective function based on the selected set of criteria and weights.
Then compute the quality (value) of the objective function of the current layout
of the graph. Next, generate the gradient (analytically or automatically). Using
the gradient information, update the coordinates of the layout. Finally, update
the objective function based on the layout via regular or stochastic gradient
descent. This process is repeated for a fixed number of iterations.

3 The (GD)2 Framework

The (GD)2 framework is a general optimization approach to generate a layout
with any desired set of aesthetic metrics, provided that they can be expressed by
a smooth function. The basic principles underlying this framework are simple.
The first step is to select a set of layout readability criteria and a loss functions
that measures them. Then we define the function to optimize as a linear combi-
nation of the loss functions for each individual criterion. Finally, we iterate the
gradient descent steps, from which we obtain a slightly better drawing at each
iteration. Figure 2 depicts the framework of (GD)2: Given any graph G and read-
ability criterion Q, we find a loss function LQ,G which maps from the current
layout X (i.e. a n × 2 matrix containing the positions of nodes in the draw-
ing) to a real value that quantifies the current drawing. Note that some of the
readability criteria naturally correspond to functions that should be minimized
(e.g., stress, crossings), while others to functions that should be maximized (e.g.,
neighborhood preservation, angular resolution). Given a loss function LQ,G of X
where a lower value is always desirable, at each iteration, a slightly better layout
can be found by taking a small (ϵ) step along the (negative) gradient direction:
X(new) = X − ϵ · ∇X LQ,G.

To optimize multiple quality measures simultaneously, we take a weighted
sum of their loss functions and update the layout by the gradient of the sum.

3.1 Gradient Descent Optimization

There are different kinds of gradient descent algorithms. The standard method
considers all vertices, computes the gradient of the objective function, and up-
dates vertex coordinates based on the gradient. For some objectives, we need

Graph Drawing via Gradient Descent, (GD)2 5

to consider all the vertices in every step. For example, the basic stress formu-
lation [24] falls in this category. On the other hand, there are some problems
where the objective can be optimized only using a subset of vertices. For exam-
ple, consider stress minimization again. If we select a set of vertices randomly
and minimize the stress of the induced graph, the stress of the whole graph is
also minimized [36]. This type of gradient descent is called stochastic gradient
descent. However, not all objective functions are smooth and we cannot compute
the gradient of a non-smooth function. In that scenario, we can compute the sub-
gradient, and update the objective based on the subgradient. Hence, as long as
the function is continuously defined on a connected component in the domain,
we can apply the subgradient descent algorithm. In table 3, we give a list of loss
functions we used to optimize 9 graph drawing properties with gradient descent
variants. In section 4, we specify the loss functions we used in detail.

When a function is not defined in a connected domain, we can introduce a
surrogate loss function to ‘connect the pieces’. For example, when optimizing
neighborhood preservation we maximize the Jaccard similarity between graph
neighbors and nearest neighbors in graph layout. However, Jaccard similarity
is only defined between two binary vectors. To solve this problem we extend
Jaccard similarity to all real vectors by its Lovász extension [5] and apply that to
optimize neighborhood preservation. An essential part of gradient descent based
algorithms is to compute the gradient/subgradient of the objective function. In
practice, it is always not necessary to write down the gradient analytically as it
can be computed automatically via automatic differentiation [21]. Deep learning
packages such as Tensorflow [1] and PyTorch [27] apply automatic differentiation
to compute the gradient of complicated functions.

When optimizing multiple criteria simultaneously, we combine them via a
weighted sum. However, choosing a proper weight for each criterion can be tricky.
Consider, for example, maximizing crossing angles and minimize stress simulta-
neously with a fixed pair of weights. At the very early stage, the initial drawing
may have many crossings and stress minimization often removes most of the
early crossings. As a result, maximizing crossing angles in those early stages can
be harmful as moves nodes in direction that contradict those that come from
stress minimization. Therefore, a well-tailored weight scheduling is needed for a
successful outcome. Continuing with the same example, a better outcome can be
achieved by first optimizing stress until it converges, and later adding weights
for the crossing angle maximization. To explore different ways of scheduling, we
provide an interface that allows manual tuning of the weights.

3.2 Implementation

We implemented the (GD)2 framework in JavaScript. In particular we used
the automatic differentiation tools in tensorflow.js [33] and the drawing library
d3.js [6]. The prototype is available at http://hdc.cs.arizona.edu/~mwli/

graph-drawing/.

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
http://hdc.cs.arizona.edu/~mwli/graph-drawing/

6 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

4 Properties and Measures

In this section we specify the aesthetic goals, definitions, quality measures and
loss functions for each of the 9 graph drawing properties we optimized: stress,
vertex resolution, edge uniformity, neighborhood preservation, crossing angle,
aspect ratio, total angular resolution, Gabriel graph property, and crossing num-
ber. In the following discussion, since only one (arbitrary) graph is considered,
we omit the subscript G in our definitions of loss function LQ,G and write LQ

for short. Other standard graph notation is summarized in Table 1.

Notation Description

G Graph
V The set of nodes in G, indexed by i, j or k
E The set of edges in G, indexed by a pair of nodes (i, j) in V
n = |V | Number of nodes in G
|E| Number of edges in G
Adjn×n and Ai,j Adjacency matrix of G and its (i, j)-th entry
Dn×n and dij Graph-theoretic distances between pairs of nodes and the (i, j)-th entry
Xn×2 2D-coordinates of nodes in the drawing
||Xi −Xj || The Euclidean distance between nodes i and j in the drawing

θi ith crossing angle
φijk Angle between incident edges (i, j) and (j, k)

Table 1: Graph notation used in this paper.

4.1 Stress

We use stress minimization to draw a graph such that the Euclidean distance be-
tween pairs of nodes is proportional to their graph theoretic distance. Following
the ordinary definition of stress [24], we minimize

LST =
∑︂
i<j

wij(|Xi −Xj |2 − dij)
2 (1)

Where dij is the graph-theoretical distance between nodes i and j, Xi and Xj

are the 2D coordinates of nodes i and j in the layout. The normalization factor,
wij = d−2

ij , balances the influence of short and long distances: the longer the
graph theoretic distance, the more tolerance we give to the discrepancy between
two distances. When comparing two drawings of the same graph with respect to
stress, a smaller value (lower bounded by 0) corresponds to a better drawing.

Graph Drawing via Gradient Descent, (GD)2 7

4.2 Ideal Edge Length

When given a set of ideal edge lengths {lij : (i, j) ∈ E} we minimize the average
deviation from the ideal lengths:

LIL =

⌜⃓⃓⎷ 1

|E|
∑︂

(i,j)∈E

(
||Xi −Xj || − lij

lij
)2 (2)

For unweighted graphs, by default we take the average edge length in the current
drawing as the ideal edge length for all edges. lij = lavg = 1

|E|
∑︁

(i,j)∈E

||Xi −

Xj || for all (i, j) ∈ E. The quality measure QIL = LIL is lower bounded by
0 and a lower score yields a better layout.

4.3 Neighborhood Preservation

Neighborhood preservation aims to keep adjacent nodes close to each other in
the layout. Similar to Kruiger et al. [25], the idea is to have the k-nearest (Eu-
clidean) neighbors (k-NN) of node i in the drawing to align with the k near-
est nodes (in terms of graph distance from i). A natural quality measure for
the alignment is the Jaccard index between the two pieces of information. Let,

QNP = JaccardIndex(K,Adj) =
|{(i,j):Kij=1 and Aij=1}|
|{(i,j):Kij=1 or Aij=1}| , where Adj denotes the

adjacency matrix and the i-th row in K denotes the k-nearest neighborhood in-
formation of i: Kij = 1 if j is one of the k-nearest neighbors of i and Kij = 0
otherwise.

To express the Jaccard index as a differentiable minimization problem, first,
we express the neighborhood information in the drawing as a smooth function of
node positions Xi and store it in a matrix K̂. In K̂, a positive entry K̂i,j means
node j is one of the k-nearest neighbors of i, otherwise the entry is negative. Next,
we take a differentiable surrogate function of the Jaccard index, the Lovász hinge
loss (LHL) [5], to make the Jaccard loss optimizable via gradient descent. We
minimize

LNP = LHL(K̂, Adj) (3)

where LHL is given by Berman et al. [5], K̂ denotes the k-nearest neighbor
prediction:

K̂i,j =

{︄
−(||Xi −Xj || −

di,πk
+di,πk+1

2) if i ̸= j
0 if i = j

(4)

where di,πk
is the Euclidean distance between node i and its kth nearest neighbor

and Adj denotes the adjacency matrix. Note that K̂i,j is positive if j is a k-NN
of i, otherwise it is negative, as is required by LHL [5].

8 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

4.4 Crossing Number

Reducing the number of edge crossings is one of the classic optimization goals in
graph drawing, known to affect readability [28]. Following Shabbeer et al. [31],
we employ an expectation-maximization (EM)-like algorithm to minimize the
number of crossings. Two edges do not cross if and only if there exists a line
that separate their extreme points. With this in mind, we want to separate
every pair of edges (the M step) and use the decision boundaries to guide the
movement of nodes in the drawing (the E step). Formally, given any two edges
e1 = (i, j), e2 = (k, l) that do not share any nodes (i.e., i, j, k and l are all
distinct), they do not intersect in a drawing (where nodes are drawn at Xi =
(xi, yi), a row vector) if and only if there exists a decision boundary w = w(e1,e2)

(a 2-by-1 column vector) together with a bias b = b(e1,e2) (a scalar) such that:
LCN,(e1,e2) =

∑︁
α=i,j,k or l ReLU(1− tα · (Xαw + b)) = 0.

Here we use (e1, e2) to denote the subgraph of G which only has two edges
e1 and e2, ti = tj = 1 and tk = tl = −1. The loss reaches its minimum at 0 when
the SVM classifier fw,b : x ↦→ xw + b predicts node i and j to be greater than 1
and node k and l to be less than −1. The total loss for the crossing number is
therefore the sum over all possible pairs of edges. Similar to (soft) margin SVM,
we add a term |w(e1,e2)|2 to maximize the margin of the decision boundary:
LCN =

∑︁
e1=(i,j), e2=(k,l)∈E

i, j, k and l all distinct

LCN,(e1,e2) + |w(e1,e2)|2. For the E and M steps, we

used the same loss function LCN to update the boundaries w(e1,e2), b(e1,e2) and
node positions X:

w(new) = w − ϵ∇wLCN (M step 1)

b(new) = b− ϵ∇bLCN (M step 2)

X(new) = X − ϵ∇XLCN (X; w(new), b(new)) (E step)

To evaluate the quality we simply count the number of crossings.

4.5 Crossing Angle Maximization

When edge crossings are unavoidable, the graph drawing can still be easier to
read when edges cross at angles close to 90 degrees [35]. Heuristics such as those
by Demel et al. [10] and Bekos et al. [4] have been proposed and have been
successful in graph drawing challenges [11]. We use an approach similar to the
force-directed algorithm given by Eades et al. [18] and minimize the squared

cosine of crossing angles: LCAM =
∑︁

all crossed edge pairs
(i,j),(k,l)∈E

(
⟨Xi−Xj ,Xk−Xl⟩
|Xi−Xj |·|Xk−Xl|)

2. We

evaluate quality by measuring the worst (normalized) absolute discrepancy be-
tween each crossing angle θ and the target crossing angle (i.e. 90 degrees):
QCAM = maxθ |θ − π

2 |/
π
2 .

Graph Drawing via Gradient Descent, (GD)2 9

4.6 Aspect Ratio

Good use of drawing area is often measured by the aspect ratio [14] of the
bounding box of the drawing, with 1 : 1 as the optimum. We consider multiple
rotations of the current drawing and optimize their bounding boxes simultane-

ously. Let AR = minθ
min(wθ,hθ)
max(wθ,hθ)

, where wθ and hθ denote the width and height

of the bounding box when the drawing is rotated by θ degrees. A naive approach
to optimize aspect ratio, which scales the x and y coordinates of the drawing by
certain factors, may worsen other criteria we wish to optimize and is therefore
not suitable for our purposes. To make aspect ratio differentiable and compatible
with other objectives, we approximate aspect ratio based on 4 (soft) boundaries
(top, bottom, left and right) of the drawing. Next, we turn this approximation
and the target (1 : 1) into a loss function using cross entropy loss. We minimize

LAR =
∑︂

θ∈{ 2πk
N , for k=0,···(N−1)}

crossEntropy([
wθ

wθ + hθ
,

hθ

wθ + hθ
], [0.5, 0.5])

(5)

where N is the number of rotations sampled (e.g., N = 7), and wθ, hθ are the
(approximate) width and height of the bounding box when rotating the drawing
around its center by an angle θ. For any given θ-rotated drawing, wθ is defined
to be the difference between the current (soft) right and left boundaries, wθ =
right − left = ⟨softmax(xθ), xθ⟩ − ⟨softmax(−xθ), xθ⟩, where xθ is a collection
of the x coordinates of all nodes in the θ-rotated drawing, and softmax returns a
vector of weights (. . . wk, . . .) given by softmax(x) = (. . . wk, . . .) =

exk∑︁
i e

xi
. Note

that the approximate right boundary is a weighted sum of the x coordinates
of all nodes and it is designed to be close to the x coordinate of the right-
most node, while keeping other nodes involved. Optimizing aspect ratio with
the softened boundaries will stretch all nodes instead of moving the extreme
points. Similarly, hθ = top− bottom = ⟨softmax(yθ), yθ⟩ − ⟨softmax(−yθ), yθ⟩
Finally, we evaluate the drawing quality by measuring the worst aspect ratio
on a finite set of rotations. The quality score ranges from 0 to 1 (where 1 is

optimal): QAR = minθ∈{ 2πk
N , for k=0,···(N−1)}

min(wθ,hθ)
max(wθ,hθ)

4.7 Angular Resolution

Distributing edges adjacent to a node makes it easier to perceive the informa-
tion presented in a node-link diagram [23]. Angular resolution [3], defined as the
minimum angle between incident edges, is one way to quantify this goal. For-
mally, ANR = minj∈V min(i,j),(j,k)∈E φijk, where φijk is the angle formed by
between edges (i, j) and (j, k). Note that for any given graph, an upper bound
of this quantity is 2π

dmax
where dmax is the maximum degree of nodes in the

graph. Therefore in the evaluation, we will use this upper bound to normalize
our quality measure to [0, 1], i.e. QANR = ANR

2π/dmax
. To achieve a better drawing

10 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

quality via gradient descent, we define the angular energy of an angle φ to be
e−s·φ, where s is a constant controlling the sensitivity of angular energy with
respect to the angle (by default s = 1), and minimize the total angular energy
over all incident edges:

LANR =
∑︂

(i,j),(j,k)∈E

e−s·φijk (6)

4.8 Vertex Resolution

Good vertex resolution is associated with the ability to distinguish different
vertices by preventing nodes from occluding each other. Vertex resolution is
typically defined as the minimum Euclidean distance between two vertices in
the drawing [9,30]. However, in order to align with the units in other objectives
such as stress, we normalize the minimum Euclidean distance with respect to a
reference value. Hence we define the vertex resolution to be the ratio between
the shortest and longest distances between pairs of nodes in the drawing, V R =
mini̸=j ||Xi−Xj ||

dmax
, where dmax = maxk,l ||Xk − Xl||. To achieve a certain target

resolution r ∈ [0, 1] by minimizing a loss function, we minimize

LV R =
∑︂

i,j∈V,i̸=j

ReLU(1− ||Xi −Xj ||
r · dmax

) 2 (7)

In practice, we set the target resolution to be r = 1√
|V |

, where |V | is the number

of vertices in the graph. In this way, an optimal drawing will distribute nodes
uniformly in the drawing area. In the evaluation, we report, as a quality measure,
the ratio between the actual and target resolution and cap its value between 0
(worst) and 1 (best).

QV R = min(1.0,
mini,j ||Xi −Xj ||

r · dmax
) (8)

4.9 Gabriel Graph Property

A graph is a Gabriel graph if it can be drawn in such a way that any disk
formed by using an edge in the graph as its diameter contains no other nodes.
Not all graphs are Gabriel graphs, but drawing a graph so that as many of
these edge-based disks are empty of other nodes has been associated with good
readability [17]. This property can be enforced by a repulsive force around the
midpoints of edges. Formally, we establish a repulsive field with radius rij equal
to half of the edge length, around the midpoint cij of each edge (i, j) ∈ E, and
we minimize the total potential energy:

Graph Drawing via Gradient Descent, (GD)2 11

LGA =
∑︂

(i,j)∈E,
k∈V \{i,j}

ReLU(rij − |Xk − cij |) 2 (9)

where cij =
Xi+Xj

2 and rij =
|Xi−Xj |

2 . We use the (normalized) minimum dis-
tance from nodes to centers to characterize the quality of a drawing with respect

to Gabriel graph property: QGA = min(i,j)∈E,k∈V
|Xk−cij |

rij
.

5 Experimental Evaluation

In this section, we describe the experiment we conducted on 10 graphs to assess
the effectiveness and limitations of our approach. The graphs used are depicted
in Figure 3 along with information about each graph. The graphs have been
chosen to represent a variety of graph classes such as trees, cycles, grids, bipartite
graphs, cubic graphs, and symmetric graphs.

In our experiment we compare (GD)2 with neato [19] and sfdp [19], which
are classical implementations of a stress-minimization layout and scalable force-
directed layout. In particular, we focus on 9 readability criteria: stress (ST), ver-
tex resolution (VR), ideal edge lengths (IL), neighbor preservation (NP), crossing
angle (CA), angular resolution (ANR), aspect ratio (AR), Gabriel graph properties
(GG), and crossings (CR). We provide the values of the nine criteria correspond-
ing to the 10 graphs for the layouts computed by by neato, sfdp, random, and 3
runs of (GD)2 initialized with neato, sfdp, and random layouts in Table 2. Bold
values are the best. Green cells show an improvement, yellow cells show a tie,
with respect to the initial values.

In this experiment, we focused on optimizing a single metric. In some applica-
tions, it is desirable to optimize multiple criteria. We can use a similar technique
i.e., take a weighted sum of the metrics and optimize the sum of scores. In the
prototype (http://hdc.cs.arizona.edu/~mwli/graph-drawing/), there is a
slider for each criterion, making it possible to combine different criteria.

6 Limitations

Although (GD)2 is a flexible framework that can optimize a wide range of crite-
ria, it cannot handle the class of constraints where the node coordinates are re-
lated by some inequalities, i.e., the framework does not support hard constraints.
Similarly, this framework does not naturally support shape-based drawing con-
straints such as those in [15, 16, 34]. (GD)2 takes under a minute for the small
graphs considered in this paper. We have not experimented with larger graphs
as the implementation has not been optimized for speed.

http://hdc.cs.arizona.edu/~mwli/graph-drawing/

12 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

Transpose Export

short long

cycle, |V|=10, |E|=10

bipartite, |V|=10, |E|=25

cube, |V|=8, |E|=12

symmetric, |V|=20, |E|=21

block, |V|=25, |E|=55

dodecahedron, |V|=20, |E|=30

tree, |V|=15, |E|=14

grid, |V|=25, |E|=40

spx_teaser, |V|=128, |E|=256

complete, |V|=20, |E|=190

graph random neato sfdp GD2_ST GD2_AR GD2_CAM GD2_ANR

Fig. 3: Drawings from different algorithms: neato, sfdp and (GD)2 with stress
(ST), aspect ratio (AR), crossing angle maximization (CAM) and angular resolu-
tion (ANR) optimization on a set of 10 graphs. Edge color is determined by the
discrepancy between actual and ideal edge length (here all ideal edge lengths are
1); informally, short edges are red and long edges are blue.

7 Conclusions and Future Work

We introduced the graph drawing framework (GD)2 and showed how this ap-
proach can be used to optimize different graph drawing criteria and combinations
thereof. The framework is flexible and natural directions for future work include
adding further drawing criteria and better ways to combine them. To compute
the layout of large graphs, a multi-level algorithmic model might be needed.

Graph Drawing via Gradient Descent, (GD)2 13

Crossings

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 6.0 6.0 79.0 6.0 6.0 10.0

cycle 0.0 0.0 11.0 0.0 0.0 0.0

tree 0.0 0.0 31.0 0.0 0.0 0.0

block 23.0 16.0 297.0 23.0 16.0 25.0

compl. 3454 3571 3572 3454 3571 3572

cube 2.0 2.0 18.0 2.0 2.0 2.0

symme. 1.0 0.0 77.0 1.0 0.0 0.0

bipar. 40.0 52.0 40.0 40.0 40.0 40.0

grid 0.0 0.0 190.0 0.0 0.0 0.0

spx t. 73.0 71.0 7254.0 73.0 71.0 76.0

Ideal edge length

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.14 0.15 0.53 0.1 0.15 0.08

cycle 0.0 0.0 0.42 0.0 0.0 0.0

tree 0.03 0.13 0.31 0.03 0.04 0.09

block 0.31 0.43 0.5 0.25 0.33 0.31

compl. 0.42 0.41 0.45 0.41 0.41 0.41

cube 0.08 0.12 0.29 0.03 0.0 0.12

symme. 0.08 0.19 0.46 0.07 0.05 0.04

bipar. 0.31 0.26 0.44 0.16 0.13 0.1

grid 0.01 0.09 0.41 0.0 0.0 0.01

spx t. 0.4 0.32 0.45 0.3 0.2 0.32

Stress

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 21.4 17.58 111.05 17.45 17.58 17.6

cycle 0.77 0.77 30.24 0.77 0.77 0.77

tree 2.11 2.7 98.49 2.11 2.62 5.5

block 26.79 28.22 203.31 12.72 23.71 11.2

compl. 33.54 31.58 37.87 31.53 31.49 31.47

cube 2.75 2.71 11.69 2.66 2.69 2.65

symme. 9.88 5.38 180.48 9.88 3.36 3.97

bipar. 9.25 8.5 12.48 8.52 8.5 9.6

grid 6.77 7.38 221.66 6.77 6.78 6.77

spx t. 674.8 418.4 9794 227.1 235.3 227.2

Angular resolution

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.39 0.39 0.01 0.6 0.39 0.6

cycle 0.8 0.8 0.05 0.8 0.8 0.8

tree 0.61 0.56 0.04 0.78 0.83 0.88

block 0.05 0.01 0.0 0.36 0.02 0.29

compl. 0.0 0.01 0.0 0.0 0.01 0.0

cube 0.28 0.3 0.01 0.46 0.44 0.4

symme. 0.66 0.6 0.03 0.68 0.76 0.77

bipar. 0.01 0.03 0.01 0.02 0.04 0.11

grid 0.52 0.54 0.0 0.52 0.54 0.52

spx t. 0.02 0.0 0.0 0.03 0.0 0.0

Neighbor preservation

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.32 0.3 0.1 0.5 0.3 0.5

cycle 1.0 1.0 0.08 1.0 1.0 1.0

tree 1.0 1.0 0.02 1.0 1.0 1.0

block 0.57 0.93 0.12 0.83 0.93 1.0

compl. 1.0 1.0 1.0 1.0 1.0 1.0

cube 0.5 0.5 0.12 0.5 0.5 0.5

symme. 0.75 0.95 0.05 0.75 1.0 1.0

bipar. 0.47 0.47 0.43 0.47 0.47 0.43

grid 1.0 1.0 0.05 1.0 1.0 1.0

spx t. 0.36 0.44 0.03 0.49 0.46 0.53

Gabriel graph property

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.16 0.64 0.07 0.32 0.64 0.32

cycle 1.0 1.0 0.29 1.0 1.0 1.0

tree 1.0 1.0 0.05 1.0 1.0 1.0

block 0.16 0.03 0.04 0.57 0.14 0.59

compl. 0.0 0.01 0.02 0.04 0.01 0.07

cube 0.43 0.51 0.01 0.75 0.8 0.71

symme. 0.54 1.0 0.15 0.7 1.0 1.0

bipar. 0.08 0.11 0.25 0.48 0.64 0.74

grid 1.0 1.0 0.03 1.0 1.0 1.0

spx t. 0.04 0.0 0.02 0.06 0.08 0.08

Vertex resolution

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.52 0.54 0.07 0.7 0.81 0.68

cycle 0.98 0.98 0.32 0.98 0.98 0.98

tree 0.68 0.57 0.23 0.69 0.68 0.68

block 0.66 0.38 0.1 0.72 0.59 0.51

compl. 0.8 1.0 0.18 0.84 1.0 0.91

cube 0.66 0.82 0.11 0.66 0.82 0.67

symme. 0.35 0.43 0.06 0.38 0.51 0.6

bipar. 0.83 0.87 0.21 0.83 0.87 0.35

grid 0.87 0.8 0.08 0.88 0.88 0.88

spx t. 0.47 0.48 0.05 0.47 0.48 0.32

Aspect ratio

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.92 0.91 0.88 0.96 0.96 0.96

cycle 0.96 0.95 0.67 0.96 0.95 0.96

tree 0.73 0.67 0.88 0.86 0.76 0.88

block 0.9 0.74 0.7 0.96 0.9 0.96

compl. 0.89 0.97 0.91 0.98 0.98 0.98

cube 0.76 0.79 0.57 0.87 0.79 0.88

symme. 0.58 0.67 0.89 0.6 0.67 0.89

bipar. 0.82 0.9 0.91 0.82 0.9 0.91

grid 1.0 1.0 0.82 1.0 1.0 1.0

spx t. 0.98 0.86 0.88 0.99 0.99 0.99

Crossing angle

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.06 0.12 0.24 0.06 0.09 0.15

cycle 0.0 0.0 0.19 0.0 0.0 0.0

tree 0.0 0.0 0.23 0.0 0.0 0.0

block 0.11 0.1 0.24 0.05 0.06 0.09

compl. 0.25 0.24 0.24 0.24 0.24 0.24

cube 0.03 0.03 0.21 0.03 0.03 0.04

symme. 0.03 0.0 0.24 0.03 0.0 0.0

bipar. 0.16 0.17 0.23 0.16 0.17 0.19

grid 0.0 0.0 0.23 0.0 0.0 0.0

spx t. 0.16 0.22 0.25 0.16 0.15 0.21

Table 2: The values of the nine criteria corresponding to the 10 graphs for the
layouts computed by neato, sfdp, random, and 3 runs of (GD)2 initialized with
neato, sfdp, and random layouts. Bold values are the best. Green cells show an
improvement, yellow cells show a tie, with respect to the initial values.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine

14 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

learning. In: 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’16). pp. 265–283 (2016)

2. Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing num-
ber of kn: Closing in (or are we?). Thirty Essays on Geometric Graph Theory
(2012)

3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of
graphs. In: Proceedings of the 18th International Conference on Graph Drawing.
pp. 62–67. Springer (2011)

4. Bekos, M.A., Förster, H., Geckeler, C., Holländer, L., Kaufmann, M., Spallek,
A.M., Splett, J.: A heuristic approach towards drawings of graphs with high cross-
ing resolution. In: Proceedings of the 26th International Symposium on Graph
Drawing and Network Visualization. pp. 271–285. Springer (2018)

5. Berman, M., Rannen Triki, A., Blaschko, M.B.: The lovász-softmax loss: a tractable
surrogate for the optimization of the intersection-over-union measure in neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4413–4421 (2018)

6. Bostock, M., Ogievetsky, V., Heer, J.: D3: Data-driven documents. IEEE transac-
tions on visualization and computer graphics 17(12), 2301–2309 (2011)

7. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and
planarization. Handbook of Graph Drawing and Visualization pp. 43–85 (2013)

8. Chen, K.T., Dwyer, T., Marriott, K., Bach, B.: Doughnets: Visualising networks
using torus wrapping. In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. pp. 1–11 (2020)

9. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and
three dimensions. In: Proceedings of the 12th annual symposium on Computational
geometry. pp. 319–328 (1996)

10. Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, M., Wulf, L.: A greedy
heuristic for crossing-angle maximization. In: Proceedings of the 26th International
Symposium on Graph Drawing and Network Visualization. pp. 286–299. Springer
(2018)

11. Devanny, W., Kindermann, P., Löffler, M., Rutter, I.: Graph drawing contest re-
port. In: Proceedings of the 25th International Symposium on Graph Drawing and
Network Visualization. pp. 575–582. Springer (2017)

12. Devkota, S., Ahmed, R., De Luca, F., Isaacs, K.E., Kobourov, S.: Stress-plus-x
(spx) graph layout. In: Proceedings of the 27th International Symposium on Graph
Drawing and Network Visualization. pp. 291–304. Springer (2019)

13. Didimo, W., Liotta, G.: The crossing-angle resolution in graph drawing. Thirty
Essays on Geometric Graph Theory (2014)

14. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Balanced aspect ratio trees and
their use for drawing very large graphs. In: Proceedings of the 6th International
Symposium on Graph Drawing. pp. 111–124. Springer (1998)

15. Dwyer, T.: Scalable, versatile and simple constrained graph layout. Comput.
Graph. Forum 28, 991–998 (2009)

16. Dwyer, T., Koren, Y., Marriott, K.: Ipsep-cola: An incremental procedure for sep-
aration constraint layout of graphs. IEEE transactions on visualization and com-
puter graphics 12, 821–8 (2006)

17. Eades, P., Hong, S.H., Klein, K., Nguyen, A.: Shape-based quality metrics for large
graph visualization. In: Proceedings of the 23rd International Conference on Graph
Drawing and Network Visualization. pp. 502–514. Springer (2015)

18. Eades, P., Huang, W., Hong, S.H.: A force-directed method for large crossing angle
graph drawing. arXiv preprint arXiv:1012.4559 (2010)

Graph Drawing via Gradient Descent, (GD)2 15

19. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open
source graph drawing tools. In: Proceedings of the 9th International Symposium
on Graph Drawing. pp. 483–484. Springer (2001)

20. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
International Symposium on Graph Drawing. pp. 239–250. Springer (2004)

21. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of
algorithmic differentiation, vol. 105. SIAM (2008)

22. Huang, W., Eades, P., Hong, S.H.: Larger crossing angles make graphs easier to
read. Journal of Visual Languages & Computing 25(4), 452–465 (2014)

23. Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving multiple aesthetics pro-
duces better graph drawings. Journal of Visual Languages & Computing 24(4),
262 – 272 (2013)

24. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. In-
formation Processing Letters 31(1), 7 – 15 (1989)

25. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-sne. Comput. Graph. Forum 36(3), 283–294 (2017)

26. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in Neural Information Processing
Systems. pp. 8024–8035 (2019)

28. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
Proceedings of the 5th International Symposium on Graph Drawing. pp. 248–261.
Springer (1997)

29. Radermacher, M., Reichard, K., Rutter, I., Wagner, D.: A geometric heuristic for
rectilinear crossing minimization. In: The 20th Workshop on Algorithm Engineer-
ing and Experiments. p. 129–138 (2018)

30. Schulz, A.: Drawing 3-polytopes with good vertex resolution. J. Graph Algorithms
Appl. 15(1), 33–52 (2011)

31. Shabbeer, A., Ozcaglar, C., Gonzalez, M., Bennett, K.P.: Optimal embedding of
heterogeneous graph data with edge crossing constraints. In: NIPS Workshop on
Challenges of Data Visualization (2010)

32. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an un-
known distance function. Psychometrika 27(2), 125–140 (1962)

33. Smilkov, D., Thorat, N., Assogba, Y., Nicholson, C., Kreeger, N., Yu, P., Cai,
S., Nielsen, E., Soegel, D., Bileschi, S., Terry, M., Yuan, A., Zhang, K., Gupta,
S., Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., Viegas, F., Wattenberg,
M.M.: Tensorflow.js: Machine learning for the web and beyond. In: Proceedings of
Machine Learning and Systems 2019, pp. 309–321 (2019)

34. Wang, Y., Wang, Y., Sun, Y., Zhu, L., Lu, K., Fu, C.W., Sedlmair, M., Deussen,
O., Chen, B.: Revisiting stress majorization as a unified framework for interactive
constrained graph visualization. IEEE transactions on visualization and computer
graphics 24(1), 489–499 (2017)

35. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Information visualization 1(2), 103–110 (2002)

36. Zheng, J.X., Pawar, S., Goodman, D.F.: Graph drawing by stochastic gradient
descent. IEEE transactions on visualization and computer graphics 25(9), 2738–
2748 (2018)

16 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

8 Appendix

The following table summarizes the objective functions used to optimize the nine
drawing criteria via different optimization methods.

Property Gradient Descent Subgradient Descent Stochastic Gradient Descent

Stress
∑︁
i<j

wij(|Xi −Xj |2 − dij)
2 ∑︁

i<j

wij(|Xi −Xj |2 − dij)
2 wij(|Xi − Xj |2 − dij)

2 for a
random pair of nodes i, j ∈
V

Ideal
Edge Length

√︃
1

|E|
∑︁

(i,j)∈E

(
||Xi−Xj ||−lij

lij
)2

(Eq. 2)

1
|E|

∑︁
(i,j)∈E

| ||Xi−Xj ||−lij
lij

| | ||Xi−Xj ||−lij
lij

| for a random

edge (i, j) ∈ E

Crossing
Angle

∑︁
i

cos(θi)
2 ∑︁

i

|cos(θi)| |cos(θi)| for a random cross-
ing i

Neighborhood
Preservation

Lovász softmax [5] be-
tween neighborhood predic-
tion (Eq.4) and adjacency
matrix Adj

Lovász hinge [5] between
neighborhood prediction
(Eq.4) and adjacency
matrix Adj

Lovász softmax or
hinge [5] on a random
node. (i.e. Jaccard loss be-
tween a random row of K in
Eq. 4 and the corresponding
row in the adjacency matrix
Adj)

Crossing
Number

Shabbeer et al. [31] Shabbeer et al. [31] Shabbeer et al. [31]

Angular
Resolution

∑︁
(i,j),(j,k)∈E

e−φijk
∑︁
v∈E

e−φijk
e−φijk

for random (i, j), (j, k) ∈ E

Vertex
Resolution

∑︁
i,j∈V,i̸=j

ReLU(1− ||Xi−Xj ||
dmax·r)2

(Eq. 7)

∑︁
i,j∈V,i̸=j

ReLU(1− ||Xi−Xj ||
dmax·r)

ReLU(1− ||Xi−Xj ||
dmax·r) for ran-

dom i, j ∈ V, i ̸= j

Gabriel
Graph

∑︁
(i,j)∈E,k∈V \{i,j}

ReLU(rij − |Xk − cij |) 2

(Eq. 9)

∑︁
(i,j)∈E,k∈V \{i,j}

ReLU(rij − |Xk − cij |)
ReLU(rij − |Xk − cij |) for
random (i, j) ∈ E and k ∈
V \ {i, j}

Aspect Ratio Eq. 5 Eq. 5 Eq. 5

Table 3: Summary of the objective functions via different optimization methods.

	Graph Drawing via Gradient Descent, (GD)2

