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Abstract. A spanner of a graph G is a subgraph H that approximately
preserves shortest path distances in G. Spanners are commonly applied
to compress computation on metric spaces corresponding to weighted
input graphs. Classic spanner constructions can seamlessly handle edge
weights, so long as error is measured multiplicatively. In this work, we
investigate whether one can similarly extend constructions of spanners
with purely additive error to weighted graphs. These extensions are
not immediate, due to a key lemma about the size of shortest path
neighborhoods that fails for weighted graphs. Despite this, we recover a
suitable amortized version, which lets us prove direct extensions of classic
+2 and +4 unweighted spanners (both all-pairs and pairwise) to +2W
and +4W weighted spanners, where W is the maximum edge weight.
Specifically, we show that a weighted graph G contains all-pairs (pairwise)
+2W and +4W weighted spanners of size O(n3/2) and O(n7/5) (O(np1/3)
and O(np2/7)) respectively. For a technical reason, the +6 unweighted
spanner becomes a +8W weighted spanner; closing this error gap is an
interesting remaining open problem. That is, we show that G contains
all-pairs (pairwise) +8W weighted spanners of size O(n4/3) (O(np1/4)).

Keywords: Additive spanner · Pairwise spanner · Shortest-path neigh-
borhood

1 Introduction

An f(·)-spanner of an undirected graph G = (V,E) with |V | = n nodes and
|E| = m edges is a subgraph H which preserves pairwise distances in G up to
some error prescribed by f ; that is,

distH(s, t) ≤ f(distG(s, t)) for all nodes s, t ∈ V.

Spanners were introduced by Peleg and Schäffer [25] in the setting with multi-
plicative error of type f(d) = cd for some positive constant c. This setting was
quickly resolved, with matching upper and lower bounds [4] on the sparsity of
a spanner that can be achieved in general. At the other extreme are (purely)
c-additive spanners (or +c spanners), with error of type f(d) = d + c. More
generally, if f(d) = αd+ β, we say that H is an (α, β)-spanner. Intuitively, addi-
tive error is much stronger than multiplicative error; most applications involve



2 Ahmed et al.

shrinking enormous input graphs that are too large to analyze directly, and so it
is appealing to avoid error that scales with distance.

Additive spanners were thus initially considered perhaps too good to be true,
and they were discovered only for particular classes of input graphs [22]. However,
in a surprise to the area, a seminal paper of Aingworth, Chekuri, Indyk, and
Motwani [3] proved that nontrivial additive spanners actually exist in general :
every n-node undirected unweighted graph has a 2-additive spanner on O(n3/2)
edges. Subsequently, more interesting constructions of additive spanners were
found: there are 4-additive spanners on O(n7/5) edges [7, 11] and 6-additive
spanners on O(n4/3) edges [5, 21]. There are also natural generalizations of these
results to the pairwise setting, where one is given G = (V,E) and a set of demand
pairs P ⊆ V × V , where only distances between node pairs (s, t) ∈ P need to be
approximately preserved in the spanner [6, 8, 10,12,19,20].

Despite the inherent advantages of additive error, multiplicative spanners have
remained the more well-known and well-applied concept elsewhere in computer
science. There seem to be two reasons for this:

1. Abboud and Bodwin [1] (see also [18]) give examples of graphs that have
no c-additive spanner on O(n4/3−ε) edges, for any constants c, ε > 0. Some
applications call for a spanner on a near-linear number of edges, say O(n1+ε),
and hence these must abandon additive error if they need theoretical guar-
antees for every possible input graph. However, there is some evidence that
many graphs of interest bypass this barrier; e.g. graphs with good expansion
or girth properties [5].

2. Spanners are often used to compress metric spaces that correspond to weighted
input graphs. This includes popular applications in robotics [9, 14, 23, 28],
asynchronous protocol design [26], etc., and it incorporates the extremely well-
studied case of Euclidean spaces which have their own suite of applications
(see book [24]). Current constructions of multiplicative spanners can handle
edge weights without issue, but purely additive spanners are known for
unweighted input graphs only.

Addressing both of these points, Elkin et al. [16] (following [15]) recently
provided constructions of near-additive spanners for weighted graphs. That is, for
any fixed ε, t > 0, every n-node graph G = (V,E,w) has a (1+ ε,O(W ))-spanner
on O(n1+1/t) edges, where W is the maximum edge weight.3 This extends a
classic unweighted spanner construction of Elkin and Peleg [17] to the weighted
setting. Additionally, while not explicitly stated in their paper, their method can
be adapted to a +2W purely additive spanner on O(n3/2) edges (extending [3]).

The goal of this paper is to investigate whether or not all the other con-
structions of spanners with purely additive error extend similarly to weighted
input graphs. As we will discuss shortly, there is a significant barrier to a direct
extension of the method from [16]. However, we prove that this barrier can be

3 Their result is actually a little stronger: W can be the maximum edge weight on the
shortest path between the nodes being considered.
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Unweighted Weighted

Stretch Size Stretch Size

+2 O(n3/2) [3] +2W O(n3/2) [this paper], [16]

+4 O(n7/5) [7, 11] +4W O(n7/5) [this paper]

+6 O(n4/3) [5, 21,30] +6W ?

+c Ω(n4/3−ε) [1, 18] +8W O(n4/3) [this paper]

Table 1: Table of additive spanner constructions for unweighted and weighted
graphs, where W denotes the maximum edge weight.

overcome with some additional technical effort, thus leading to the following con-
structions. In these theorem statements, all edges have (not necessarily integer)
edge weights in (0,W ]. Let p = |P | denote the number of demand pairs and
n = |V | the number of nodes in G.

Theorem 1. For any G = (V,E,w) and demand pairs P , there is a +2W
pairwise spanner with O(np1/3) edges. In the all-pairs setting P = V × V , the
bound improves to O(n3/2).

Theorem 2. For any G = (V,E,w) and demand pairs P , there is a +4W
pairwise spanner with O(np2/7) edges. In the all-pairs setting P = V × V , the
bound improves to O(n7/5).

These two results exactly match previous ones for unweighted graphs [3,11,
19,20], with +2W (+4W ) in place of +2 (+4). Theorem 1 is partially tight in
the following sense: it implies that O(n3/2) edges are needed for a +2W spanner
when p = O(n3/2), and neither of these values can be unilaterally improved.
Relatedly, Theorem 2 implies that O(n7/5) edges are needed for a +4W spanner
when p = O(n7/5); it may be possible to improve this, but it would likely imply
an improved +4W all-pairs spanner over [11] which will likely be hard to achieve
(see discussion in [7]).

Our next two results are actually a bit weaker than the corresponding un-
weighted ones [13,19,27]: for a technical reason, we take on slightly more error
in the weighted setting (the corresponding unweighted results have +6 and +2
error respectively).

Theorem 3. For any G = (V,E,w) and demand pairs P , there is a +8W
pairwise spanner with O(np1/4) edges. In the all-pairs setting P = V × V , the
bound improves to O(n4/3).

Theorem 4. For any G = (V,E,w) and demand pairs P = S × S, there is a
+4W pairwise spanner with O(n|S|1/2) edges.

We summarize our main results in Table 1, contrasted with known results for
unweighted graphs.
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1.1 Technical Overview: What’s Harder With Weights?

There is a key point of failure in the known constructions of unweighted additive
spanners when one attempts the natural extension to weighted graphs. To explain,
let us give some technical background. Nearly all spanner constructions start
with a clustering or initialization step: taking the latter exposition [21], a d-
initialization of a graph G is a subgraph H obtained by choosing d arbitrary
edges incident to each node, or all incident edges to a node of degree less than
d. After this, many additive spanner constructions leverage the following key
fact (the one notable exception is the +2 all-pairs spanner, which is why one can
recover the corresponding weighted version from prior work):

Lemma 1 ([11,13,19,20], etc.). Let G be an undirected unweighted graph, let
π be a shortest path, and let H be a d-initialization of G. If π is missing ℓ edges
in H, then there are Ω(dℓ) different nodes adjacent to π in H.

Proof. For each missing edge (u, v) ∈ π, by construction both u and v have
degree at least d in H (otherwise, degH(u) < d, in which edge (u, v) is added in
the d-initialization H). By the triangle inequality, any given node is adjacent to
at most three nodes in π. Hence, adding together the ≥ d neighbors of each of
the ℓ missing edges, we count each node at most three times so the number of
nodes adjacent to π is still Ω(dℓ). ⊓⊔

The difficulty of the weighted setting is largely captured by the fact that
Lemma 1 fails when G is edge-weighted. As a counterexample, let π be a shortest
path consisting of ℓ+ 1 nodes and ℓ edges of weight ε. Additionally, consider d
nodes, each connected to every node along π with an edge of weight W > εℓ. A
candidate d-initialization H consists of selecting every edge of weight W . In this
case, all ℓ edges in π are missing in H, but there are still only d ̸= Ω(dℓ) nodes
adjacent to π in H.

d nodes

ℓ+ 1 nodes

W > εℓ

ε ε ε ε ε ε ε ε
π

Fig. 1: A counterexample to Lemma 1 for weighted graphs.

The fix, as it turns out, is simple in construction but involved in proof. We
simply replace initialization with light initialization, where one must specifically
add the lightest d edges incident to each node. With this, the proof of Lemma 1
is still not trivial: it remains possible that an external node can be adjacent to
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arbitrarily many nodes along π, so a direct counting argument fails. However, we
show that such occurrences can essentially be amortized against the rising and
falling pattern of missing edge weights along π. This leads to a proof that on
average an external node is adjacent to O(1) nodes in π, which is good enough
to push the proof through. We consider this weighted extension of Lemma 1 to
be the main technical contribution of this work, and we are hopeful that it may
be of independent interest as a structural fact about shortest paths in weighted
graphs.

2 Neighborhoods of Weighted Shortest Paths

Here we introduce the extension of Lemma 1. Following the technique in [21],
define a d-light initialization of a weighted graph G = (V,E,w) to be a subgraph
H obtained by including the d lightest edges incident to each node (or all edges
incident to a node of degree less than d). Ties between edges of equal weight
are broken arbitrarily; for clarity we assume this occurs in the background so
that we can unambiguously refer to “the lightest d edges” incident to a node. We
prove the weighted analogue of Lemma 1.

Theorem 5. If H is a d-light initialization of an undirected weighted graph G,
and there is a shortest path π in G that is missing ℓ edges in H, then there are
Ω(dℓ) nodes adjacent to π in H.

We give some definitions and notation which will be useful in the proof
of Theorem 5. Let s and t be the endpoints of a shortest path π, and let
M := π \ E(H) be the set of edges in π currently missing in H so that |M | = ℓ.
For convenience we consider these edges to be oriented from s to t, so we write
(u, v) ∈ M to mean that distG(s, u) < distG(s, v) and distG(u, t) > distG(v, t).
Suppose the edges in M are labeled in order e1, e2, . . . , eℓ where ei = (ui, vi),
and let wi denote the weight of edge ei. Given u ∈ V , let N∗(u) denote the
d-neighborhood of u as follows:

N∗(u) := {v ∈ V | (u, v) is one of the lightest d edges incident to u} .

We will show that the size of the union of the d-neighborhoods of the nodes u1,
. . . , uℓ is Ω(dℓ), that is ⏐⏐⏐⏐⏐⏐

⋃
(u,v)∈M

N∗(u)

⏐⏐⏐⏐⏐⏐ = Ω(dℓ)

noting that the above set is a subset of all nodes adjacent to π. In particular,
the above set may not contain nodes v′ connected to u ∈ π by an edge that is 1)
among the d lightest incident to v′, 2) not among the d lightest incident to u.
However, the above set necessarily contains all nodes v′ which are connected to
some ui or vi by an edge among the d lightest incident to ui or vi. We remark
that if the d-neighborhoods N∗(u1), N

∗(u2), . . . , N
∗(uℓ) are pairwise disjoint,
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then |
⋃

(u,v)∈M N∗(u)| = dℓ, which immediately implies there are at least dℓ
nodes adjacent to π in H. Hence for the remainder of the proof, we assume there
exist i and k with 1 ≤ i < k ≤ ℓ such that N∗(ui)∩N∗(uk) is nonempty. We use

the convention that if a and b are integers with b < a, then
∑b

i=a f(i) = 0. The
following lemma holds (see Figure 2):

x

ui uk

ei ei+1 ek−1 ek

s t
π

Fig. 2: Illustration of Lemma 2. The bold dashed curves represent subpaths in H.

Lemma 2. Let π be a shortest path, let x ∈ V be a node such that x ∈ N∗(ui)∩
N∗(uk) for some 1 ≤ i < k ≤ ℓ, and consider the edges ei, . . . , ek ∈ M with
weights wi, . . . , wk. Then

wk ≥
k−1∑

i′=i+1

wi′ .

Proof. Consider the subpath of π from ui to uk, denoted π[ui ⇝ uk]. We have

k−1∑
i′=i

wi′ ≤ length (π[ui ⇝ uk])

≤ w(ui, x) + w(x, uk) (π[ui ⇝ uk] is a shortest path)

≤ wi + wk

where the last inequality follows from the fact that edges (ui, x), (x, uk) are among
the d lightest edges incident to ui and uk respectively (since x ∈ N∗(ui)∩N∗(uk)),
but ei and ek are not, since they are omitted from H. Lemma 2 follows by
subtracting wi from both sides of the above inequality. ⊓⊔

For the next part, for edge e ∈ M , say that e is pre-heavy if its weight is
strictly greater than the preceding edge in M , and/or post-heavy if its weight is
strictly greater than the following edge in M . For notational convenience, if an
edge is not pre-heavy, we say the edge is pre-light. Similarly, if an edge is not
post-heavy, we say the edge is post-light. By convention, the first edge e1 ∈ M is
pre-light and the last edge eℓ ∈ M is post-light. We state the following simple
lemma; recall that |M | = ℓ.

Lemma 3. Either more than
ℓ

2
edges in M are pre-light, or more than

ℓ

2
edges

in M are post-light.
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Proof. Let S1 be the set of edges in M which are pre-light, and let S2 be the set
of edges in M which are post-light. Note that e1 ∈ S1 and eℓ ∈ S2. For each of
the ℓ− 1 pairs of consecutive edges (ei, ei+1) in M where i = 1, . . . , ℓ− 1, it is
immediate by definition that either ei ∈ S2 or ei+1 ∈ S1 (or both if wi = wi+1).
These statements imply |S1| + |S2| ≥ ℓ + 1, so at least one of S1 or S2 has
cardinality at least ℓ+1

2 > ℓ
2 . ⊓⊔

In the sequel, we assume without loss of generality that more than ℓ
2 edges

in M are pre-light; the other case is symmetric by exchanging the endpoints s
and t of π. We can now say the point of the previous two lemmas: together, they
imply that most edges (u, v) ∈ M have mostly non-overlapping d-neighborhoods
N∗(u). That is:

Lemma 4. Let π be a shortest path. For any node x ∈ V , there exist at most
three nodes u along π such that x ∈ N∗(u) and edge (u, v) ∈ M is pre-light.

Proof. Suppose for sake of contradiction there exist four nodes ui, ua, ub, uk

with 1 ≤ i < a < b < k ≤ ℓ such that x belongs to the d-neighborhoods of ui, ua,
ub, and uk, and the edges (ui, vi), (ua, va), (ub, vb), and (uk, vk) are pre-light. In
particular, we have k ≥ i+ 3 and x ∈ N∗(ui) ∩N∗(uk). By Lemma 2 and the
above observation, we have

wk ≥
k−1∑

i′=i+1

w′
i = wi+1 + . . .+ wk−1 ≥ wi+1 + wk−1

By assumption, ek = (uk, vk) is pre-light, so wk−1 ≥ wk, and the above inequality
implies wk ≥ wi+1 + wk−1 ≥ wi+1 + wk, or wi+1 = 0. Since edge weights are
strictly positive, we have contradiction, proving Lemma 4. ⊓⊔

Finally, define set X∗ as follows:

X∗ :=
⋃

(u,v)∈M
is pre-light

N∗(u).

By Lemma 3 and the above pre-heavy assumption, there are more than
ℓ
2 pre-light edges (u, v), so the multiset containing all d-neighborhoods N∗(u)

contains more than dℓ
2 nodes. By Lemma 4, any given node is contained in at

most three of these d-neighborhoods, implying |X∗| > dℓ

6
. Since X∗ is a subset

of |
⋃

(u,v)∈M N∗(u)|, we conclude that there are Ω(dℓ) nodes adjacent to π in H.
proving Theorem 5.

3 Spanner Constructions

We show how Theorem 5 can be used to construct additive spanners on edge-
weighted graphs. These constructions are not significant departures from prior
work; the main difference is applying Theorem 5 in the right place.
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3.1 Subset and Pairwise Spanners

Definition 1 (Pairwise/Subset Additive Spanners). Given a graph G =
(V,E,w) and a set of demand pairs P ⊆ V × V , a subgraph H = (V,EH ⊆ E,w)
is a +c pairwise spanner of G,P if

distH(s, t) ≤ distG(s, t) + c for all (s, t) ∈ P.

When P = S×S for some S ⊆ V , we say that H is a +c subset spanner of G,S.

In the following results, all graphs G are undirected and connected with (not
necessarily integer) edge weights in the interval (0,W ], where W is the maximum
edge weight. Let |V | = n, let p = |P | denote the number of demand pairs (for
pairwise spanners), and let σ = |S| denote the number of sources (for subset
spanners).

Theorem 6. Any n-node graph G = (V,E,w) with source nodes S ⊆ V has a
+4W subset spanner with O(nσ1/2) edges.

Proof. The construction of the +4W subset spanner H is as follows, essentially
following [21]. Let d be a parameter of the construction, and let H be a d-light
initialization of G. Then, while there are nodes s, t ∈ S such that distH(s, t) >
distG(s, t) + 4W , choose any s ⇝ t shortest path π(s, t) in G and add all its
edges to H. It is immediate that this algorithm terminates with H a +4W subset
spanner of G, so we now analyze the number of edges |EH | in the final subgraph
H.

At any point in the algorithm, say that an ordered pair of nodes (s, v) ∈ S×V
is near-connected if there exists v′ adjacent to v in H such that distH(s, v′) =
distG(s, v

′). We then have the following observation

distH(s, v) ≤ distH(s, v′) +W = distG(s, v
′) +W. (1)

When nodes s, t ∈ S with shortest path π(s, t) are considered in the construction,
there are two cases:

1. If there are two nodes v′, v′′ adjacent in H to a node v ∈ π(s, t), and the
pairs (s, v) and (t, v) are near-connected, then we have by triangle inequality
and (1):

distH(s, t) ≤ distH(s, v) + distH(t, v)

≤ (distG(s, v
′) +W ) + (distG(t, v

′′) +W )

= distG(s, v
′) + distG(t, v

′′) + 2W

≤ distG(s, v) + distG(t, v) + 4W

= distG(s, t) + 4W.

where the last equality follows from the optimal substructure property of
shortest paths. In this case, the path π(s, t) is not added to H.
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2. Otherwise, suppose there is no node v′ adjacent in H to a node v ∈ π(s, t)
where (s, v) and (t, v) are near-connected. After adding the path π(s, t) to
H, every such node v′ becomes near-connected to both s and t. If there
are ℓ edges in π(s, t) currently missing in H, then by Theorem 5 we have
Ω(ℓd) nodes adjacent to π(s, t), so Ω(ℓd) node pairs in S × V go from not
near-connected to near-connected. Since there are σn node pairs in S × V ,
we add a total of O(σn/d) edges to H in this case.

Putting these together, the final size of H is |EH | = O
(
nd+ σn

d

)
. Setting

d :=
√
σ proves Theorem 6. ⊓⊔

We now give our constructions for pairwise spanners. The following lemma
will be useful:

Lemma 5 ([7]). Let a, b > 0 be absolute constants, and suppose there is an algo-
rithm that, on input G,P , produces a subgraph H on O(na|P |b) edges satisfying

distH(s, t) ≤ distG(s, t) + c

for at least a constant fraction of the demand pairs (s, t) ∈ P . Then there is a
+c pairwise spanner H ′ of G,P on O(na|P |b) edges.

Using the slack to satisfy only a constant fraction of the demand pairs, we
have the following proofs.

Theorem 7. Any graph G with demand pairs P has a +2W pairwise spanner
with O(np1/3) edges.

Proof. Let d and ℓ be parameters of the construction, and let H be a d-light
initialization of G. For each demand pair (s, t) ∈ P whose shortest path π(s, t) is
missing at most ℓ edges in H, add all edges in π(s, t) to H. By Theorem 5, any
remaining demand pair (s, t) ∈ P has Ω(dℓ) nodes adjacent to π(s, t). Let R be
a random sample of nodes obtained by including each one independently with
probability 1/(ℓd); thus, with constant probability or higher, there exists r ∈ R
and v ∈ π(s, t) such that nodes r and v are adjacent in H. Add to H a shortest
path tree rooted at each r ∈ R. We then compute:

distH(s, t) ≤ distH(s, r) + distH(r, t)

= distG(s, r) + distG(r, t)

≤ distG(s, v) + distG(v, t) + 2W

= distG(s, t) + 2W.

The distance for each pair (s, t) ∈ P is approximately preserved in H with at
least a constant probability, which is sufficient for Lemma 5. The number of
edges in the final subgraph H is

|E(H)| = O(nd+ ℓp+ n2/(ℓd));

setting ℓ = n/p2/3 and d = p1/3 proves Theorem 7. ⊓⊔
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Theorem 8. Any graph G with demand pairs P has a +4W pairwise spanner
with O(np2/7) edges.

Proof. Let d and ℓ be parameters of the construction, and let H be a d-light
initialization of G. For each demand pair (s, t) ∈ P whose shortest path π(s, t)
is missing at most ℓ edges in H, add all edges in π(s, t) to H. To handle each
(s, t) ∈ P whose shortest path π(s, t) is missing at least n/d2 edges in H, we let
R1 be a random sample of nodes obtained by including each node independently
with probability d2/n, then add a shortest path tree rooted at each r ∈ R1 to
H. By an identical analysis to Theorem 7, for each such pair, with constant
probability or higher we have

distH(s, t) ≤ distG(s, t) + 2W.

Finally, we consider the “intermediate” pairs (s, t) ∈ P whose shortest path
π(s, t) is missing more than ℓ but fewer than n/d2 edges in H. We add the first
and last ℓ missing edges in π(s, t) to the spanner; we will refer to the prefix (resp.
suffix ) of π(s, t) to mean the shortest prefix (suffix) containing these ℓ missing
edges. By Theorem 5, there are Ω(ℓd) nodes adjacent to the prefix and Ω(ℓd)
nodes adjacent to the suffix. Let R2 be a random sample of nodes obtained by
including each node with probability 1/(ℓd), and for each pair r, r′ ∈ R2, add to
H all edges in the shortest r ⇝ r′ path in G among the paths that are missing
at most n/d2 edges (ignore any pair r, r′ if no such path exists). With constant
probability or higher, we sample r, r′ adjacent to nodes v, v′ in the prefix, suffix
respectively, in which case we have:

distH(s, t) ≤ distH(s, v) + distH(v, v′) + distH(v′, t)

= distG(s, v) + distH(v, v′) + distG(v
′, t)

≤ distG(s, v) + distH(r, r′) + 2W + distG(v
′, t).

Notice that distH(r, r′) ≤ 2W + distG(v, v
′), due to the existence of the path

r ◦ π(s, t)[v, v′] ◦ r′ which is indeed missing ≤ n/d2 edges. Thus we may continue:

≤ distG(s, v) + distG(v, v
′) + 4W + distG(v

′, t)

= distG(s, t) + 4W.

The distance for each pair (s, t) ∈ P is approximately preserved in H with at
least constant probability, which again suffices by Lemma 5, and the number of
edges in H is

|E(H)| = O
(
nd+ pℓ+ n3/(ℓ2d4)

)
.

Setting ℓ = n/p5/7 and d = p2/7 completes the proof of Theorem 8. ⊓⊔

Theorem 9. Any graph G with demand pairs P has a +8W pairwise spanner
containing O(np1/4) edges.

Proof. Let ℓ, d be parameters of the construction and let H be a d-light initial-
ization of G. For each (s, t) ∈ P whose shortest path π(s, t) is missing ≤ ℓ edges
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in H, add all edges in π(s, t) to H. Otherwise, like before, we add the first and
last ℓ missing edges of π(s, t) to H (prefix and suffix). Then, randomly sample a
set R by including each node with probability 1/(ℓd), and use Theorem 6 to add
a +4W subset spanner on the nodes in R. By Theorem 5, the prefix and suffix
each have Ω(ℓd) adjacent nodes. Thus, with constant probability or higher, we
sample r, r′ ∈ R adjacent to v, v′ in the added prefix and suffix respectively. We
then compute:

distH(s, t) ≤ distH(s, v) + distH(v, v′) + distH(v′, t)

≤ distG(s, v) + distH(v, v′) + distG(v
′, t)

≤ distG(s, v) + distH(r, r′) + 2W + distG(v
′, t)

≤ distG(s, v) + distG(r, r
′) + 6W + distG(v

′, t)

≤ distG(s, v) + distG(v, v
′) + 8W + distG(v

′, t)

= distG(s, t) + 8W.

Again, the distance for each pair (s, t) ∈ P is approximately preserved in H with
at least constant probability, which suffices by Lemma 5. The number of edges in
H is

|E(H)| = O
(
nd+ pℓ+ n3/2/

√
ℓd
)
.

Setting ℓ = n/p3/4 and d = p1/4 completes the proof of Theorem 9. ⊓⊔

4 All-pairs Additive Spanners

We now turn to the all-pairs setting, i.e., demand pairs P = V × V . We use the
following lemma from [7]:

Lemma 6 ([7]). Let G be a graph, and suppose one can choose a function π that
associates each node pair to a path between them with the following properties:

– for all (s, t) the length of the path π(s, t) (i.e., the sum of its edge weights) is
≤ distG(s, t) + k,

– π depends only on the input graph G and the number of demand pairs |P |
(but not otherwise on the contents of P ), and

– for some parameter p∗ and any |P | ≥ p∗ demand pairs, we have⏐⏐⏐⏐⏐⏐
⋃

(s,t)∈P

π(s, t)

⏐⏐⏐⏐⏐⏐ < |P |.

Then there is an all-pairs k-additive spanner of G containing ≤ p∗ edges.

Notice that all the above pairwise spanner constructions are demand-oblivious
– that is, the approximate shortest paths analyzed in order to preserve each
demand pair in the spanner depend on the random bits of the construction, which
in turn depend on the number of demand pairs |P |, but they do not otherwise
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depend on the contents of P . See [7] for more discussion of this property. Thus
we may apply Lemma 6 as follows. For the +2W pairwise bound of O(np1/3)
provided in Theorem 7, we note that the bound is < p for p = Ω(n3/2) demand
pairs (and a sufficiently large constant in the Ω). Hence, taking p∗ = Θ(n3/2),
Lemma 6 says:

Theorem 10. Every graph has a +2W spanner on O(n3/2) edges.

Identical logic applied to Theorems 8 and 9 gives:

Theorem 11. Every n-node graph has a +4W spanner on O(n7/5) edges.

Theorem 12. Every n-node graph has a +8W additive spanner on O(n4/3)
edges.

5 Conclusions and Open Problems

We have shown that most important unweighted additive spanner constructions
have natural weighted analogues. At present, the exceptions are the +4W subset
spanner on O(n|S|1/2) edges (which should probably have only +2W error) and
the +8W all-pairs/pairwise spanners (which should probably have only +6W
error). Closing these error gaps is an interesting open problem. It would also be
interesting to obtain weighted analogues of related concepts, most notably, the
Thorup-Zwick emulators [29], which are optimal [2] in essentially the same way
that the 6-additive spanner on O(n4/3) edges is optimal.

Finally, as mentioned earlier, it would be interesting to find constructions
of purely additive spanners parametrized by some other statistic besides the
maximum edge weight W ; a natural parameter is W (u, v), the maximum edge
weight along a shortest u-v path.
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