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Abstract— This paper investigates a safe learning problem
that satisfies linear temporal logic (LTL) constraints with
persistent adversarial inputs, and quantified performance and
robustness. Via a finite state automaton, the LTL specification
is first decomposed to a sequence of several two point boundary
value problems (TPBVP), each of which has an invariant safety
zone. Then we employ a system transformation that guaran-
tees state, and control safety with logarithmic barrier and
hyperbolic-type functions as well as a worst-case adversarial
input that wants to push the system outside the safety set. A
safe learning method is used to solve the sub-problem, where
the actors (approximators of the optimal control and the worst-
case adversarial inputs) and the critic (approximator of the cost)
are tuned to learn the optimal policies without violating any
safety. Finally, by following a Lyapunov stability analysis we
prove boundedness of the closed-loop system while simulation
results are used to validate the effectiveness.

Index Terms— Linear temporal logic, barrier functions, re-
inforcement learning, formal methods.

I. INTRODUCTION

Reinforcement Learning (RL), which is essentially a trial
and error learning, finds the optimal policy via interactions
with the environment [1]-[6]. Over time, the learning agent
modifies her policy to optimize a long-term reward. Such
approaches have been applied to various applications, in-
cluding systems with discrete and continuous state-action
spaces [7]. However, before the optimal policy is learned,
the agent is highly likely to explore some unsafe regions
as she aims to optimize a given reward. This shortcoming
significantly limits such methods to be applicable to real-
world applications, since this might lead to hardware failures
of physical systems or harm human operators. Consequently,
safe learning focuses on guaranteeing the satisfaction of
safety constraints. Additionally, due to the expressiveness of
Linear Temporal Logic (LTL) in control systems, the LTL
specifications can provide a tool to model complex systems
as mathematical entities. By building a mathematically rig-
orous model of a complex system, it is possible to verify
the system’s properties in a more thorough fashion than
empirical testing.
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Related Work: Existing safe learning algorithms greatly
depend on the design of barrier function methods [8]. Given
the critical role of Lyapunov-based analysis in the controller
design, a barrier Lyapunov function (BLF) method has been
proposed in [9] to potentially satisfies output constraints.
Moreover, the work of [10] presents a neuro-inspired output
feedback BLF, for nonlinear tracking problems. While the
BLF method is further extended to full state constraints, the
authors did not consider actuator constraints. The authors
in [11]-[13] exploited control barrier function (CBF) where
neural networks (NN) and learning are used. But in such
works, the data to train the NN are CBF-certified trajecto-
ries with random priors which allows the CBF controller
to project the raw control input onto the CBF condition.
Furthermore, if the initial condition is not contained in the
feature range of the training data, robustness is fragile. The
work of [14] leverages barrier-certified RL and considers
recovering safety after violations due to non-stationary dy-
namics. While it is true that CBF can guarantee safety
during the learning process given a safe initial state (due
to the forward invariance), the CBF certificate can become
infeasible. The authors of [15], [16] utilize safe learning with
worst-case disturbances for linear systems but they require
a backup of safety controllers that do not guide the learning
process at the cost of exploration efficiency.

Contributions: The contribution of this paper is
twofold. We first decompose the LTL specification to a finite
state automaton (FSA), where each sub-problem is solved as
a TPBVP. The composition of the sub-problems will accom-
plish the whole LTL specification. Moreover, by following
the work of reinforcement learning-based control [17]-[20]
we propose a novel structure to optimally solve the sub-
problems that might have different safety constraints, given
their current state in the FSA.

Structure: The remainder of the paper is structured
as follows. Section II formulates the problem wile also
including backgrounds on: LTL decomposition, systems
transformation, and game theory. Section III provides a
learning mechanism to solve the problem. Finally Section
IV provides a simulation example to validate the efficacy of
the framework while Section V concludes and talks about
future work.

II. PROBLEM FORMULATION
Consider a nonlinear system of the form,
Ty = fi(Ts) + gi(@i)wip,Vi=1,...,n— 1,
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l’(to) = X, t > 0 (1)

where * = [71,...,7,]T € R",u € R, and v € R are
the states, the control inputs and the adversarial inputs,
respectively, and f;(z) : R" — R,g;(x) : R" — R and
d(z) : R" = R, Vi =1,...,n. Moreover, Z; = [z1,...,7;]"
is a subset of the states.

A. Temporal Logic Syntax and Semantics

A TL formula defines predicates of the form (b < p(z) =
aTz+7 < ub, where p(z) = R™ — R is a linear combination
of the states with ¢ € R™",7 € R and Ib € R, ub € R. For
predicates with only lower bound constraints, we can always
trivially add large enough upper bounds; and vice-versa for
the absence of lower bounds. With predicates p; and po, a
TL specification has the following syntax,

p E T| O p1|Op1|—p1|Opi|p1 A p2|p1 V pa|
p1 = p2|p1UUpa|pi T pe, (2)

where T is the true Boolean constant, ()(next), (] (always),
¢ (eventually), U (until), 7 (then) are the temporal operators,
and —(negation/not), A (conjunction/and), and V (disjunc-
tion/or) are the Boolean connectives. Consider an example
formula of the form p = Op1 A Op2 A Ops which denotes
that the trajectory of the state will eventually satisfy p; and
p2 while always satisfying ps.

Problem 1: For the system given in (1), find a control
policy such that the closed-loop system has a stable equilib-
rium point, while the control input satisfies ||u|| < Ay, the
adversarial input satisfies ||v|| < Aq, and the states satisfy
LTL safety constraints given by p.

In the following, we will discuss the satisfaction of a TL
specification.

B. Decomposition of LTL

Given that the TL specification is related to the time evo-
lution, the concrete safety constraint in a given time interval
varies. As a result, via the use of FSA, we manually divided
Problem 1 into a series of sequential sub-problems, that each
satisfies a certain safety constraint. Consequently, the original
TL safety constraint is eventually satisfied. Consider now the
LTL p = Opa A (—p2Upi) A O-ps, whose FSA is shown in
Figure 1. Given that p; and ps are disjoint, the only path from
the initial FSA state TO_init to the final state accept_SO is:
TO_init — TO_S2 — accept_SO, where the state accept_SO
means the LTL p is satisfied. Thus, there are two TPBVP sub-
problems, with different safety constraints. For the first one
(TO_init — TO_S2), the boundary conditions are the initial
states and p; while the safety zone is outside of ps U ps.
Similarly, for the second sub-problem (TO_S2 — accept_S0),
the boundary conditions are p; and po while the safety zone
is outside of p3. However, systematically for an LTL formula
with a complex FSA, it is not straightforward to get the path
from an initial FSA state to a final FSA state. Hence, we can
view the FSA as a directed graph and approximately estimate
the edge weights, i.e., distance, and then cast it as a shortest
path problem. So far, we have finished decomposing complex

LTL specifications into sequential sub-problems, that as a
whole will eventually satisfy the original LTL constraint.

@D (1(pL)) && (1(p2)) && (1(p3)))

((pl) && (1(p2)) && (!(p3)))

Fig. 1.  Finite state automaton generated by formula p = Op2 A
(=p2Up1) N O-ps.

C. Sub-Problems as TPBVPs

In a TPBVP sub-problem, with the predicates as ¢; < p; =
a;x +1r; < C; with i = 1,...,m, the safety constraints are
defined as,

c< Az +r<(_C

with A = [al;al;.. ;al T € R™ " r=[r,...;1n), c=
[c1,...,¢m), and C = [C1,...,Cp) € R™.

Problem 2: (sub-problem) For the system given by (1),
find a control policy such that the system reaches a certain
terminal condition x7 given an initial condition xg, while
the control input satisfies ||u| < A;, the adversarial input
satisfies [[v|| < A2, and the states satisfy ¢ < Az +r < C.
As a sub-problem of Problem 1, the Problem 2 translates
a temporal logic constraint p to a more detailed and time-
invariant constraint in the current time interval.

In order to deal with the safety constraint, a barrier
function is defined by,

Co co —
b(p, o, Co) = log (> F—F

‘o Co—p

)7vp € (00700)7 (3)

where ¢y < 0 < Cp. This does not lose any generality
since we can always satisfy this via adjusting r;. Moreover,
b(p, co, Cy) is invertible in the interval (co, Cp) as follows

Nfe

Y —
€z —e

bil(ya Co, OO) = COCO v 7\V/y € Ra (4)

coe? — Cye
with dynamics,
dbil(y, Co, 00) _ C()C% — C()Cg (5)
dy ey —2¢9Co + Cle ¥’

A system transformation of (1) that accounts for safety
can be written as,

si = b(pi(z),ci,Ci)
pi(x) b~ (si,¢:,Ci) (6)
pi(z) = ax+r,Vi=1,...,m.
Through the use of the chain rule, we have that,
dp;(z) . db (s, ¢, C;) ds;
Tar T ds; dt’
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which yields,

% = W“Tﬂf (7)
We can thus write in a compact form,
i = f(2) + g(@)u + d()o
z(to) = o, ®)
with f(z) = [fi(@i) + 9i(Z)zis1, -, fam1(@n—1) +

gnfl(i'nfl)x'ru fn(i‘n)]Ta 9(90) [Oa cee 703 gn(jn)] and
d(xz) = [0,...,0,d,(Z,)]. Additionally, from equation (6),

we have that,

Az +r=>b"Y(s,c0), 9

with b= (s,¢,C) = [b7Y(s1,¢1,C1)5 -+, b7 (Smy €y O)] T

R™.
It also follows that,

r=(ATA) AT (b (s,c,C) — 7).

Remark 3: It is worth noting that in order to make ATA €
S™ invertible, it will be necessary for A to be full column
rank, i.e., m > n. That is not restricted since we can always
add sufficiently large trivial bounds on the states, such as
—M < xy <M with M > 0.

Now combining (7), (8), and (10), one has,

dSi 1 .
E = db—1(s;,¢;,C4) @iz

ds;

1
W (oo Y (f(@) + g(z)u+ h(z)v),

dSi
with z = (ATA)=tAT(b=1(s,¢,C) — r). For notational
convenience, the system (11) will be rewritten in a compact
form as

(10)

(1)

$=F(s)+ G(s)u+ H(s)v. (12)

In Problem 2, the terminal condition is required to
be xp. Correspondingly, in 12 the terminal condition
is b(p(zr),c,C) [b(s1,¢1,C1);s -, b(Sm, Cm, Cn)] L.
Through some algebra, the TPBVP is transformed now,
from b(p(xo), ¢, C) to b(p(zr), ¢, C). Then a new equivalent
problem is defined as follows.

Problem 4: For the system (12), find a policy u such
that the system reaches the terminal condition b(p(zr), ¢, C)
from the initial condition b(p(zo), ¢, C') such that the perfor-
mance

T(s0) :/ (Q(s) + O(u) — B(v))dt
to

is minimized by u and maximized by v subject to the
dynamics given by (12), [jul| < Ai,|lv|l < A2, where
A1 > 0,22 >0, Q(s) is positive definite and monotonically
increasing with regards to ||s||, and O(u), is a positive
definite integrand function. For notational simplicity, we shall
define U(s, u,v) := Q(s)+0O(u) —P®(v). Note now that, v is
treated as the worst-case perturbation rather than a random
one.

Lemma 5: (sub-problem) Suppose that u*, v* solve the

optimization Problem 4. Then u*, v* also solve Problem 2
with zq satisfying ¢ < Azg+b < C.
Proof: The proof is given in [9]. [ |
In order to satisfy the safety constraint on u, v, i.e.,
[lu]l < A, llv]] < A2, ©(uw) and ®(v) has the following
form adopted from [21],

_ “ -1(*
O(u) —2/0 Aitanh (Al)vldz

v
B(v) = 2/ Agtanh~! (i)vgdz (13)
0 A2
where tanh ! (+) denotes the inverse of the hyperbolic tangent
function. One also needs to note that the states s and control
€ v are not coupled in the safety constraints.
We are interested to find a saddle-point solution, which is
equivalent to,

J(sg,u*,v) < J(sg,u”,v*) < J(so,u,v*). (14)

As a result, the ultimate goal is to find the following
optimal value function,

V*(s;) = min max /tOO(Q(s) + O(u) — ®(v))dt Vs, t > 0.

u v

Given an admissible pair of policies u, v, the Hamiltonian
function is,

ov*

OzH(s,u,v,E) = (15)
<68‘;*) [F(s) +G(s)u+ H(s)v| +U(s,u,v).

Consequently, we can apply the stationary condition to

(15) i.e., %—IZ = 0 and %—f = 0, and for the minimizer
(control input), we can get
OH ov*  90(u)
—=G"T =0. 16
ou (s) 0s ou (16)
Combining %i") = 2\tanh ™! (%)"/1, (16) leads to
ov*
* = —\; tanh T(s)——). 17
u 1 tan <2)\1le )5 ) (17

In a similar way, the worst-case adversarial input (maxi-
mizer) v* is

ov*
"= o tanh (5 H" . 18
vt = Aatanh (g ()% (18)
Given (17) and (18), and plugging «* and ov* into
H(s,u*,v*, aaxg ) one has,
ov™ T 2 2 *
0= F(s)+ Q(s) + Aim In (1 — tanh (DQ))
Js
A4, ln (1 - tanhz(D{)), (19)
. * av* * av*
with D} = 551--G"(5) %~ and D3 = 55— H"(s) %~
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III. SAFE LEARNING

Based on the transformed system, we will use two actors.
One will approximate the control input (17) and one will
approximate the worst-case adversarial input (18). Finally we
will use a critic network to approximate the value (14). All
approximators will be updated synchronously. A schematic
representation of the framework is shown in Figure 2.

System and
LTL constraint
x(t)
LTL decomposition:
TPBVP Subproblems

Barrier function
transformation

!
L New system [

ri Critic error
< Control input

LS

S error R u(t)
RN Adversary input g,

I R Y

error

v(t)
Actor two |—
"

Fig. 2. The flowchart of the framework. The critic learning, control input
actor and adversarial input learning are driven by the errors (25), (35) and
(37), respectively.

Assumption 6: There exists a positive definite and differ-
entiable V' (z) to (15). Also, there exists an approximator
such that the value function V' (s) and its gradient VV'(s) :=

a\ggs) can be uniformly approximated in 2 € R" as
Vi(s) = WTo(s) +e(s)
VV*(s) [Vo(s)]"W + Ve(s) 20)

where W € RY is the critic weight, ¢(s) : R" — RY
is the critic basis, €(s) and Ve(s) are approximation errors
bounded as ||e(s)|| < be and || Ve(s)|| < bge. Moreover, it is
assumed that ||¢(s)|| < by and |[V¢(s)|| for all s € Q.

Given the control policy ©* and the worst-case adversarial
input v*, the approximation error of the Bellman equation
(15) is

ep = U(s,u*,v*) + W'o, 1)

with o = Vo(s)(F(s) + G(s)u* + H(s)v*). Moreover,
multiplying [F'(s) + G(s)u* 4+ H(s)v*] at both sides of the
VYV (s) approximation in (20), and combining the Bellman
equation (15), then (21) can be written as

ep = —[Ve(s)]'[F(s) + G(s)u* + H(s)v"],

with ||GB|| < bpg.
Furthermore, the approximation error of the HIB equation
(19) is

ews(s) = WIVo(s)F(s) + Q(s)

A2y; In (1 — tanh2(D1)) —Xnyln (1 - tanhQ(Dz)),

where Di = 53 =-GT(s)[Vo(s)|"W and D5 :=

x5, 17 (5)[Vo(s)]"W. It is further assumed that approxi-
mator (20) can guarantee that the HIB approximation error

is also bounded as ||eqsp(s)|| < buss.

A. Value Function Approximation
The ideal weights W, which best approximate the value
function V*(s) in (20) are unknown. Hence, we will use an
estimation of W namely, W, to write,
Wea(s)
[Vo(s)] We.

Vis) =

VV(s) = (22)

Then the residual of the Bellman equation (15) expressed via
W, is

ec(t) = U(s(t), ult), v(t)) + Wio(t). (23)
Then the critic weight approximation error is
W, =W — W,. (24)

After combining equations (21), (23), and (24), one has,

€. =€p — WCTJ. (25)

Subject to the worst-case adversarial input, the policy
evaluation of the admissible control u can be formulated to
continuously adapt W, such as that the following error index
is minimized [19]

_ 1 [ec(t)]?
201+ 0T0)?
Then via chain rule and the definition of e. in (23), a
gradient descent algorithm is used to minimize E. as,
4 0F,
W, =—a.—
oW,
o(t) ( 7T
=—ap— (U (s(t),u(t),v(t)) + W, t).

(26)

27)

Definition 7: (Persistency of Excitation (PE)) A vector
signal y(t) € R? is exciting in the interval [t,t+T],VT > 0,
if there exists 31, 32 € R™ such that

t+T
Bilpxp < y(m)y" (1) < Balpup, V. (28)

Theorem 8: Fc§r any admissible policy, let the critic net-
work (22) be updated according to (27). Suppose that the
signal o(t)/(1 + o™ (t)o(t)) satisfies the PE condition, then
W, is uniformly ultimately bounded.

Proof: Combining (23), (24), (25) together with (27),
it yields that

o a(t)ot(t)
Wc = —CQ¢ (1 T UT(t)a(t))2] Wc (29)
o(t)
e (1+UT(t)a(t))2]€B(t)'
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The dynamics of W, can be viewed as a linear time-
varying system with ep(t) as the control input and write
W, as

T
sufficient large basis with, Y, > M“2M“, and Y,; >

where M, = V¢GA;[tanh(kD,) — tanh(D,)] and My =
VoHNstanh(kDy) — tanh(Dg)].
Proof: Omitted here due to space limit. Interested

MM}

t
- ~ aco(T)ep(T . .
We(t) = o(t, to)Welto) + /t 0 ol(t, T)MCT(T()T)E;((T))]QdT’ readers are referred to our long version preprint. ]
(30) IV. SIMULATION
where the state transition matrix is defined as To validate that our algorithm solves Problem 1, we
dp(t, to) o(t)o(t) apply our learning algorithm on the controlled Van-der-Pol
" = e g Pt to), et t) = I i i
ot (1 + ot (t)a (1)) oscillator given as

Moreover, as it is assumed that the signal o(t)/(1 +
ol (t)o(t)) satisfies the PE condition, there exist p1, p2 €
R™ such that

IWe(t)] =
pre W (1) +
P2

€2y
les()]]-

[1+ ot (t)a(t)]

It is thus easy to conclude that ||[W,(¢)|| is uniformly ulti-
mately bounded given e (¢). [ |

B. Actor Learning

The control policy is,
u(s) = —Ap tanh(Dy),

with Dy = 51 =G (s)[Vo|"W...

However, this policy improvement will not guarantee the
stability of the equilibrium point of the closed-loop system.
As a result, the policy that is going to be implement in a

form of an actor network as follows,

(32)

ua(s) = —Ap tanh(Dy,) (33)
with D, = ﬁGT(s)[ng]TWa. Similarly, for the adver-
sarial input, we have

va(s) = Ag tanh(Dy) 34)
with Dy = 55— H"()[V | Wy,
To minimize the error function,
B, = %Heung. (35)

where e,, = u, — u, = A1[tanh(D,) — tanh(D;)]. In order
to minimize (35) we will use a gradient-based rule to write,

Wy = —au[VéGe, — VoG tanh?(Dy)en + YaWa]. (36)
Similarly, for the adversarial actor, we have
Wy = —aq[VéHe, — VOH tanh®(Dy)e, + YaWal. (37)

with e, = vg — v, = Ag[tanh(Dy) — tanh(Ds)] with Dy =
2>\1’Y2 H(s)[Vo]"W...

Theorem 9: Consider the system given in (12). Let the
control input and the worst-case adversarial input be given
by (33) and (34), respectively. Moreover, the critic learning
is given by (27) and the tuning laws for the control input and
adversarial input are (36) and (37), respectively. Suppose that
the signal o/(1 + 0% o) satisfies the PE condition, then the
closed-loop system is uniformly ultimately bounded for a

. T2 0 0
= —x1 4+ 0.5(1 — x%)xg] * [xl] v+ L"J v (3%)
We set g(z) = h(z), and v is considered to be the
perturbation of the control u. The LTL specification is given
as p = Op1 AOpa A Ops, with p; and po and ps denotes
the regions 21, 25 and (23, respectively. Specifically, 3 is
a polygon defined by ¢ < Az +r < C with A =10,1;4,1],
¢ =1]-0.2;—1.9] and C = [0.5;0.2]. The FSA of p is shown
in Figure 3. We use polynomials up to the 6th order as
our basis functions ¢. The path we choose to satisfy the
LTL is TO_init — TO_S3 — accept_S0. The converse HIB
method [22] cannot guarantee the safety and the presence of
the adversarial input worsens it. Then we apply our algorithm
described in Theorem 9 and the phase plot is demonstrated
in Figures 4 and 5, respectively. It can be seen that there
are multiple times that the adversarial input tries to get the
trajectory out of the safety zone but eventually the control
input prevails to keep safety while the LTL specification is
satisfied.

A(!(p1)) && (1(p2)) && (p3))

((1(p1)) && (p2) && (p3)) ((pl) && (1(p2)) && (p3))

(!(pl)l&&([ﬁ)l (!(pzn&&(pan

((pl) && (p3)) ((p2) && (p3))

((p1) && (p2) && (p3))

Fig. 3. Finite state automaton generated from formula p = Op1 AOp2 A
Ops.

V. CONCLUSION

We propose a learning method to address the safe learning
problem satisfying an LTL specification in adversarial envi-
ronments. Via a finite state automaton, we first decompose
the LTL specification into a sequence of TPBVPs. Then a
system transformation is employed to guarantee safety. Then
we use a learning method to solve the sub-problem safely.
Two actors are used to approximate the control input and the
adversarial input while a critic is used to approximate cost
and proper tuning laws are.

Future work will focus on extending the work to automatic
satisfaction of the state constraint, with a more general
structure that works also in stochastic settings.
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Fig. 4. Evolution of the phase plane. ;1 and 22 are the cyan and [13]
green disks respectively and 9 is the polygon. Blue circles denote the
initial/terminal states of a sub-problem and the blue solid line is the overall
trajectory. [14]
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Fig. 5. Evolution of the phase plane in s space.
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