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Abstract— This paper investigates a safe learning problem
that satisfies linear temporal logic (LTL) constraints with
persistent adversarial inputs, and quantified performance and
robustness. Via a finite state automaton, the LTL specification
is first decomposed to a sequence of several two point boundary
value problems (TPBVP), each of which has an invariant safety
zone. Then we employ a system transformation that guaran-
tees state, and control safety with logarithmic barrier and
hyperbolic-type functions as well as a worst-case adversarial
input that wants to push the system outside the safety set. A
safe learning method is used to solve the sub-problem, where
the actors (approximators of the optimal control and the worst-
case adversarial inputs) and the critic (approximator of the cost)
are tuned to learn the optimal policies without violating any
safety. Finally, by following a Lyapunov stability analysis we
prove boundedness of the closed-loop system while simulation
results are used to validate the effectiveness.

Index Terms— Linear temporal logic, barrier functions, re-
inforcement learning, formal methods.

I. INTRODUCTION

Reinforcement Learning (RL), which is essentially a trial

and error learning, finds the optimal policy via interactions

with the environment [1]–[6]. Over time, the learning agent

modifies her policy to optimize a long-term reward. Such

approaches have been applied to various applications, in-

cluding systems with discrete and continuous state-action

spaces [7]. However, before the optimal policy is learned,

the agent is highly likely to explore some unsafe regions

as she aims to optimize a given reward. This shortcoming

significantly limits such methods to be applicable to real-

world applications, since this might lead to hardware failures

of physical systems or harm human operators. Consequently,

safe learning focuses on guaranteeing the satisfaction of

safety constraints. Additionally, due to the expressiveness of

Linear Temporal Logic (LTL) in control systems, the LTL

specifications can provide a tool to model complex systems

as mathematical entities. By building a mathematically rig-

orous model of a complex system, it is possible to verify

the system’s properties in a more thorough fashion than

empirical testing.
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Related Work: Existing safe learning algorithms greatly

depend on the design of barrier function methods [8]. Given

the critical role of Lyapunov-based analysis in the controller

design, a barrier Lyapunov function (BLF) method has been

proposed in [9] to potentially satisfies output constraints.

Moreover, the work of [10] presents a neuro-inspired output

feedback BLF, for nonlinear tracking problems. While the

BLF method is further extended to full state constraints, the

authors did not consider actuator constraints. The authors

in [11]–[13] exploited control barrier function (CBF) where

neural networks (NN) and learning are used. But in such

works, the data to train the NN are CBF-certified trajecto-

ries with random priors which allows the CBF controller

to project the raw control input onto the CBF condition.

Furthermore, if the initial condition is not contained in the

feature range of the training data, robustness is fragile. The

work of [14] leverages barrier-certified RL and considers

recovering safety after violations due to non-stationary dy-

namics. While it is true that CBF can guarantee safety

during the learning process given a safe initial state (due

to the forward invariance), the CBF certificate can become

infeasible. The authors of [15], [16] utilize safe learning with

worst-case disturbances for linear systems but they require

a backup of safety controllers that do not guide the learning

process at the cost of exploration efficiency.

Contributions: The contribution of this paper is

twofold. We first decompose the LTL specification to a finite

state automaton (FSA), where each sub-problem is solved as

a TPBVP. The composition of the sub-problems will accom-

plish the whole LTL specification. Moreover, by following

the work of reinforcement learning-based control [17]–[20]

we propose a novel structure to optimally solve the sub-

problems that might have different safety constraints, given

their current state in the FSA.

Structure: The remainder of the paper is structured

as follows. Section II formulates the problem wile also

including backgrounds on: LTL decomposition, systems

transformation, and game theory. Section III provides a

learning mechanism to solve the problem. Finally Section

IV provides a simulation example to validate the efficacy of

the framework while Section V concludes and talks about

future work.

II. PROBLEM FORMULATION

Consider a nonlinear system of the form,

ẋi = fi(x̄i) + gi(x̄i)xi+1, ∀i = 1, . . . , n− 1,

ẋn = fn(x̄n) + gn(x̄n)u+ hn(x̄n)v
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x(t0) = x0, t ≥ 0 (1)

where x = [x1, . . . , xn]
T ∈ R

n, u ∈ R, and v ∈ R are

the states, the control inputs and the adversarial inputs,

respectively, and fi(x) : R
n → R, gi(x) : R

n → R and

d(x) : Rn → R, ∀i = 1, . . . , n. Moreover, x̄i = [x1, . . . , xi]
T

is a subset of the states.

A. Temporal Logic Syntax and Semantics

A TL formula defines predicates of the form lb ≤ p(x) =
aTx+r̄ ≤ ub, where p(x) = R

n → R is a linear combination

of the states with a ∈ R
n, r̄ ∈ R and lb ∈ R, ub ∈ R. For

predicates with only lower bound constraints, we can always

trivially add large enough upper bounds; and vice-versa for

the absence of lower bounds. With predicates p1 and p2, a

TL specification has the following syntax,

p |= ⊤|© p1|�p1|¬p1|♦p1|p1 ∧ p2|p1 ∨ p2|

p1 ⇒ p2|p1Up2|p1T p2, (2)

where ⊤ is the true Boolean constant, ©(next), � (always),

♦ (eventually), U (until), T (then) are the temporal operators,

and ¬(negation/not), ∧ (conjunction/and), and ∨ (disjunc-

tion/or) are the Boolean connectives. Consider an example

formula of the form p |= ♦p1 ∧ ♦p2 ∧ �p3 which denotes

that the trajectory of the state will eventually satisfy p1 and

p2 while always satisfying p3.

Problem 1: For the system given in (1), find a control

policy such that the closed-loop system has a stable equilib-

rium point, while the control input satisfies ‖u‖ ≤ λ1, the

adversarial input satisfies ‖v‖ ≤ λ2, and the states satisfy

LTL safety constraints given by p.

In the following, we will discuss the satisfaction of a TL

specification.

B. Decomposition of LTL

Given that the TL specification is related to the time evo-

lution, the concrete safety constraint in a given time interval

varies. As a result, via the use of FSA, we manually divided

Problem 1 into a series of sequential sub-problems, that each

satisfies a certain safety constraint. Consequently, the original

TL safety constraint is eventually satisfied. Consider now the

LTL p |= ♦p2 ∧ (¬p2Up1) ∧ �¬p3, whose FSA is shown in

Figure 1. Given that p1 and p2 are disjoint, the only path from

the initial FSA state T0_init to the final state accept_S0 is:

T0_init → T0_S2 → accept_S0, where the state accept_S0

means the LTL p is satisfied. Thus, there are two TPBVP sub-

problems, with different safety constraints. For the first one

(T0_init → T0_S2), the boundary conditions are the initial

states and p1 while the safety zone is outside of p2 ∪ p3.

Similarly, for the second sub-problem (T0_S2 → accept_S0),

the boundary conditions are p1 and p2 while the safety zone

is outside of p3. However, systematically for an LTL formula

with a complex FSA, it is not straightforward to get the path

from an initial FSA state to a final FSA state. Hence, we can

view the FSA as a directed graph and approximately estimate

the edge weights, i.e., distance, and then cast it as a shortest

path problem. So far, we have finished decomposing complex

LTL specifications into sequential sub-problems, that as a

whole will eventually satisfy the original LTL constraint.

Fig. 1. Finite state automaton generated by formula p |= ♦p2 ∧
(¬p2Up1) ∧ �¬p3.

C. Sub-Problems as TPBVPs

In a TPBVP sub-problem, with the predicates as ci ≤ pi =
aix+ ri ≤ Ci with i = 1, . . . ,m, the safety constraints are

defined as,

c ≤ Ax+ r ≤ C

with A = [aT
1; a

T
2; . . . ; a

T
m]T ∈ R

m×n, r = [r1, . . . , rm], c =
[c1, . . . , cm], and C = [C1, . . . , Cm] ∈ R

m.

Problem 2: (sub-problem) For the system given by (1),

find a control policy such that the system reaches a certain

terminal condition xT given an initial condition x0, while

the control input satisfies ‖u‖ ≤ λ1, the adversarial input

satisfies ‖v‖ ≤ λ2, and the states satisfy c ≤ Ax+ r ≤ C.

As a sub-problem of Problem 1, the Problem 2 translates

a temporal logic constraint p to a more detailed and time-

invariant constraint in the current time interval.

In order to deal with the safety constraint, a barrier

function is defined by,

b(p, c0, C0) = log
(C0

c0

c0 − p

C0 − p

)

, ∀p ∈ (c0, C0), (3)

where c0 < 0 < C0. This does not lose any generality

since we can always satisfy this via adjusting ri. Moreover,

b(p, c0, C0) is invertible in the interval (c0, C0) as follows

b−1(y, c0, C0) = c0C0
e

y

2 − e−
y

2

c0e
y

2 − C0e−
y

2

, ∀y ∈ R, (4)

with dynamics,

db−1(y, c0, C0)

dy
=

C0c
2
0 − c0C

2
0

c20e
y − 2c0C0 + C2

0e
−y

. (5)

A system transformation of (1) that accounts for safety

can be written as,

si = b(pi(x), ci, Ci)

pi(x) = b−1(si, ci, Ci) (6)

pi(x) = aix+ ri, ∀i = 1, . . . ,m.

Through the use of the chain rule, we have that,

dpi(x)

dt
= aiẋ =

db−1(si, ci, Ci)

dsi

dsi
dt

,
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which yields,

dsi
dt

=
1

db−1(si,ci,Ci)
dsi

aTi ẋ. (7)

We can thus write in a compact form,

ẋ = f(x) + g(x)u+ d(x)v

x(t0) = x0, (8)

with f(x) = [fi(x̄i) + gi(x̄i)xi+1, . . . , fn−1(x̄n−1) +
gn−1(x̄n−1)xn, fn(x̄n)]

T, g(x) = [0, . . . , 0, gn(x̄n)] and

d(x) = [0, . . . , 0, dn(x̄n)]. Additionally, from equation (6),

we have that,

Ax+ r = b−1(s, c, C), (9)

with b−1(s, c, C) = [b−1(s1, c1, C1), . . . , b
−1(sm, cm, Cm)]T ∈

R
m.

It also follows that,

x = (ATA)−1AT(b−1(s, c, C)− r). (10)

Remark 3: It is worth noting that in order to make ATA ∈
Sn invertible, it will be necessary for A to be full column

rank, i.e., m ≥ n. That is not restricted since we can always

add sufficiently large trivial bounds on the states, such as

−M ≤ x1 ≤ M with M > 0.

Now combining (7), (8), and (10), one has,

dsi
dt

=
1

db−1(si,ci,Ci)
dsi

aiẋ (11)

=
1

db−1(si,ci,Ci)
dsi

ai
(

f(x) + g(x)u+ h(x)v
)

,

with x = (ATA)−1AT (b−1(s, c, C) − r). For notational

convenience, the system (11) will be rewritten in a compact

form as

ṡ = F (s) +G(s)u+H(s)v. (12)

In Problem 2, the terminal condition is required to

be xT . Correspondingly, in 12 the terminal condition

is b(p(xT ), c, C) = [b(s1, c1, C1), . . . , b(sm, cm, Cm)]T .

Through some algebra, the TPBVP is transformed now,

from b(p(x0), c, C) to b(p(xT ), c, C). Then a new equivalent

problem is defined as follows.

Problem 4: For the system (12), find a policy u such

that the system reaches the terminal condition b(p(xT ), c, C)
from the initial condition b(p(x0), c, C) such that the perfor-

mance

J(s0) =

∫

∞

t0

(

Q(s) + Θ(u)− Φ(v)
)

dt

is minimized by u and maximized by v subject to the

dynamics given by (12), ‖u‖ ≤ λ1, ‖v‖ ≤ λ2, where

λ1 > 0, λ2 > 0, Q(s) is positive definite and monotonically

increasing with regards to ‖s‖, and Θ(u), is a positive

definite integrand function. For notational simplicity, we shall

define U(s, u, v) := Q(s)+Θ(u)−Φ(v). Note now that, v is

treated as the worst-case perturbation rather than a random

one.

Lemma 5: (sub-problem) Suppose that u⋆, v⋆ solve the

optimization Problem 4. Then u⋆, v⋆ also solve Problem 2

with x0 satisfying c ≤ Ax0 + b ≤ C.

Proof: The proof is given in [9].

In order to satisfy the safety constraint on u, v, i.e.,

‖u‖ ≤ λ1, ‖v‖ ≤ λ2, Θ(u) and Φ(v) has the following

form adopted from [21],

Θ(u) = 2

∫ u

0

λ1tanh−1
( z

λ1

)

γ1dz

Φ(v) = 2

∫ v

0

λ2tanh−1
( z

λ2

)

γ2dz (13)

where tanh−1(·) denotes the inverse of the hyperbolic tangent

function. One also needs to note that the states s and control

v are not coupled in the safety constraints.

We are interested to find a saddle-point solution, which is

equivalent to,

J(s0, u
⋆, v) ≤ J(s0, u

⋆, v⋆) ≤ J(s0, u, v
⋆). (14)

As a result, the ultimate goal is to find the following

optimal value function,

V ⋆(st) = min
u

max
v

∫

∞

t

(Q(s) + Θ(u)− Φ(v))dt ∀st, t ≥ 0.

Given an admissible pair of policies u, v, the Hamiltonian

function is,

0 = H(s, u, v,
∂V ⋆

∂s
) = (15)

(

∂V ⋆

∂s

)T[

F (s) +G(s)u+H(s)v

]

+ U(s, u, v).

Consequently, we can apply the stationary condition to

(15) i.e.„ ∂H
∂u

= 0 and ∂H
∂v

= 0, and for the minimizer

(control input), we can get

∂H

∂u
= GT(s)

∂V ⋆

∂s
+

∂Θ(u⋆)

∂u
= 0. (16)

Combining
∂Θ(u)
∂u

= 2λtanh−1
(

u
λ

)

γ1, (16) leads to

u⋆ = −λ1 tanh
( 1

2λ1γ1
GT(s)

∂V ⋆

∂s

)

. (17)

In a similar way, the worst-case adversarial input (maxi-

mizer) v⋆ is

v⋆ = λ2 tanh
( 1

2λ2γ2
HT(s)

∂V ⋆

∂s

)

. (18)

Given (17) and (18), and plugging u⋆ and v⋆ into

H(s, u⋆, v⋆, ∂V ⋆

∂s
) one has,

0 =

(

∂V ⋆

∂s

)T

F (s) +Q(s) + λ2
1γ1 ln

(

1− tanh2(D⋆
2)
)

−λ2
2γ2 ln

(

1− tanh2(D⋆
1)
)

, (19)

with D⋆
1 = 1

2λ1γ1

GT(s)∂V
⋆

∂s
and D⋆

2 = 1
2λ2γ2

HT(s)∂V
⋆

∂s
.
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III. SAFE LEARNING

Based on the transformed system, we will use two actors.

One will approximate the control input (17) and one will

approximate the worst-case adversarial input (18). Finally we

will use a critic network to approximate the value (14). All

approximators will be updated synchronously. A schematic

representation of the framework is shown in Figure 2.

Fig. 2. The flowchart of the framework. The critic learning, control input
actor and adversarial input learning are driven by the errors (25), (35) and
(37), respectively.

Assumption 6: There exists a positive definite and differ-

entiable V (x) to (15). Also, there exists an approximator

such that the value function V (s) and its gradient ∇V (s) :=
∂V (s)
∂s

can be uniformly approximated in Ω ∈ R
n as

V ⋆(s) = W Tφ(s) + ǫ(s)

∇V ⋆(s) = [∇φ(s)]TW +∇ǫ(s) (20)

where W ∈ R
N is the critic weight, φ(s) : R

n → R
N

is the critic basis, ǫ(s) and ∇ǫ(s) are approximation errors

bounded as ‖ǫ(s)‖ ≤ bǫ and ‖∇ǫ(s)‖ ≤ bdǫ. Moreover, it is

assumed that ‖φ(s)‖ ≤ bφ and ‖∇φ(s)‖ for all s ∈ Ω.

Given the control policy u⋆ and the worst-case adversarial

input v⋆, the approximation error of the Bellman equation

(15) is

ǫB = U(s, u⋆, v⋆) +W Tσ, (21)

with σ = ∇φ(s)(F (s) + G(s)u⋆ + H(s)v⋆). Moreover,

multiplying [F (s) +G(s)u⋆ +H(s)v⋆] at both sides of the

∇V (s) approximation in (20), and combining the Bellman

equation (15), then (21) can be written as

ǫB = −[∇ǫ(s)]T[F (s) +G(s)u⋆ +H(s)v⋆],

with ‖ǫB‖ ≤ bB .

Furthermore, the approximation error of the HJB equation

(19) is

ǫHJB(s) = W T∇φ(s)F (s) +Q(s)

λ2
1γ1 ln

(

1− tanh2(D1)
)

− λ2
2γ2 ln

(

1− tanh2(D2)
)

,

where D⋆
1 := 1

2λ1γ1

GT(s)[∇φ(s)]TW and D⋆
2 :=

1
2λ2γ2

HT(s)[∇φ(s)]TW . It is further assumed that approxi-

mator (20) can guarantee that the HJB approximation error

is also bounded as ‖ǫHJB(s)‖ ≤ bHJB.

A. Value Function Approximation

The ideal weights W , which best approximate the value

function V ⋆(s) in (20) are unknown. Hence, we will use an

estimation of W namely, Wc to write,

V̂ (s) = Ŵ T
c φ(s)

∇V̂ (s) = [∇φ(s)]TŴc. (22)

Then the residual of the Bellman equation (15) expressed via

Ŵc is

ec(t) = U(s(t), u(t), v(t)) + Ŵ T
c σ(t). (23)

Then the critic weight approximation error is

W̃c = W − Ŵc. (24)

After combining equations (21), (23), and (24), one has,

ec = ǫB − W̃ T
c σ. (25)

Subject to the worst-case adversarial input, the policy

evaluation of the admissible control u can be formulated to

continuously adapt Wc such as that the following error index

is minimized [19]

Ec =
1

2

[ec(t)]
2

(1 + σTσ)2
. (26)

Then via chain rule and the definition of ec in (23), a

gradient descent algorithm is used to minimize Ec as,

˙̂
Wc = −αc

∂Ec

∂Ŵc

(27)

= −αc

σ(t)

(1 + σT (t)σ(t))2

(

U(s(t), u(t), v(t)) + Ŵ T
c σ(t)

)

.

Definition 7: (Persistency of Excitation (PE)) A vector

signal y(t) ∈ R
p is exciting in the interval [t, t+T ], ∀T > 0,

if there exists β1, β2 ∈ R
+ such that

β1Ip×p ≤

∫ t+T

t

y(τ)yT (τ)dτ ≤ β2Ip×p, ∀t. (28)

Theorem 8: For any admissible policy, let the critic net-

work (22) be updated according to (27). Suppose that the

signal σ(t)/(1 + σT (t)σ(t)) satisfies the PE condition, then

W̃c is uniformly ultimately bounded.

Proof: Combining (23), (24), (25) together with (27),

it yields that

˙̃Wc = −αc

[

σ(t)σT(t)

(1 + σT(t)σ(t))2

]

W̃c (29)

+αc

[

σ(t)

(1 + σT(t)σ(t))2

]

ǫB(t).
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The dynamics of W̃c can be viewed as a linear time-

varying system with ǫB(t) as the control input and write

W̃c as

W̃c(t) = ϕ(t, t0)W̃c(t0) +

∫ t

t0

ϕ(t, τ)
αcσ(τ)ǫB(τ)

[1 + σT(τ)σ(τ)]2
dτ,

(30)

where the state transition matrix is defined as

∂ϕ(t, t0)

∂t
= −αc

σ(t)σT(t)

(1 + σT(t)σ(t))2
ϕ(t, t0), ϕ(t, t) = I.

Moreover, as it is assumed that the signal σ(t)/(1 +
σT (t)σ(t)) satisfies the PE condition, there exist ρ1, ρ2 ∈
R

+ such that

‖W̃c(t)‖ = (31)

ρ1e
−ρ2(t−t0)‖W̃c(t0)‖+

αc

ρ2[1 + σT(t)σ(t)]
‖ǫB(t)‖.

It is thus easy to conclude that ‖W̃c(t)‖ is uniformly ulti-

mately bounded given ǫB(t).

B. Actor Learning

The control policy is,

u(s) = −λ1 tanh(D1), (32)

with D1 = 1
2λ1γ1

GT(s)[∇φ]TŴc.

However, this policy improvement will not guarantee the

stability of the equilibrium point of the closed-loop system.

As a result, the policy that is going to be implement in a

form of an actor network as follows,

ua(s) = −λ1 tanh(Da) (33)

with Da = 1
2λ1γ1

GT(s)[∇φ]TŴa. Similarly, for the adver-

sarial input, we have

vd(s) = λ2 tanh(Dd) (34)

with Dd = 1
2λ2γ2

HT(s)[∇φ]TŴd.

To minimize the error function,

Eu =
γ1
2
‖eu‖

2
2. (35)

where eu = uc − ua = λ1[tanh(Da)− tanh(D1)]. In order

to minimize (35) we will use a gradient-based rule to write,

˙̂
Wa = −αa[∇φGeu −∇φG tanh2(Da)eu + YaŴa]. (36)

Similarly, for the adversarial actor, we have

˙̂
Wd = −αd[∇φHev −∇φH tanh2(Dd)ev + YdŴd]. (37)

with ev = vd − vc = λ2[tanh(Dd)− tanh(D2)] with D2 =
1

2λ2γ2

HT(s)[∇φ]TWc.

Theorem 9: Consider the system given in (12). Let the

control input and the worst-case adversarial input be given

by (33) and (34), respectively. Moreover, the critic learning

is given by (27) and the tuning laws for the control input and

adversarial input are (36) and (37), respectively. Suppose that

the signal σ/(1 + σTσ) satisfies the PE condition, then the

closed-loop system is uniformly ultimately bounded for a

sufficient large basis with, Ya ≥
MaM

T
a

2 , and Yd ≥
MdM

T
d

2
where Ma = ∇φGλ1[tanh(κDa) − tanh(Da)] and Md =
∇φHλ2[tanh(κDd)− tanh(Dd)].

Proof: Omitted here due to space limit. Interested

readers are referred to our long version preprint.

IV. SIMULATION

To validate that our algorithm solves Problem 1, we

apply our learning algorithm on the controlled Van-der-Pol

oscillator given as

ẋ =

[

x2

−x1 + 0.5(1− x2
2)x2

]

+

[

0
x1

]

u+

[

0
x1

]

v. (38)

We set g(x) = h(x), and v is considered to be the

perturbation of the control u. The LTL specification is given

as p |= ♦p1 ∧ ♦p2 ∧ �p3, with p1 and p2 and p3 denotes

the regions Ω1, Ω2 and Ω3, respectively. Specifically, Ω3 is

a polygon defined by c ≤ Ax+ r ≤ C with A = [0, 1; 4, 1],
c = [−0.2;−1.9] and C = [0.5; 0.2]. The FSA of p is shown

in Figure 3. We use polynomials up to the 6th order as

our basis functions φ. The path we choose to satisfy the

LTL is T0_init → T0_S3 → accept_S0. The converse HJB

method [22] cannot guarantee the safety and the presence of

the adversarial input worsens it. Then we apply our algorithm

described in Theorem 9 and the phase plot is demonstrated

in Figures 4 and 5, respectively. It can be seen that there

are multiple times that the adversarial input tries to get the

trajectory out of the safety zone but eventually the control

input prevails to keep safety while the LTL specification is

satisfied.

Fig. 3. Finite state automaton generated from formula p |= ♦p1 ∧♦p2 ∧
�p3.

V. CONCLUSION

We propose a learning method to address the safe learning

problem satisfying an LTL specification in adversarial envi-

ronments. Via a finite state automaton, we first decompose

the LTL specification into a sequence of TPBVPs. Then a

system transformation is employed to guarantee safety. Then

we use a learning method to solve the sub-problem safely.

Two actors are used to approximate the control input and the

adversarial input while a critic is used to approximate cost

and proper tuning laws are.

Future work will focus on extending the work to automatic

satisfaction of the state constraint, with a more general

structure that works also in stochastic settings.
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