AN IMPLICIT FUNCTION THEOREM FOR LIPSCHITZ MAPPINGS
INTO METRIC SPACES

PIOTR HAJLASZ AND SCOTT ZIMMERMAN

ABSTRACT. We prove a version of the implicit function theorem for Lipschitz mappings
f:R"™™ 5 A — X into arbitrary metric spaces. As long as the pull-back of the Hausdorff
content ‘H7 by f has positive upper n-density on a set of positive Lebesgue measure, then,
there is a local diffeomorphism G in R"™™ and a Lipschitz map 7= : X — R"” such that
mo foG™!, when restricted to a certain subset of A of positive measure, is the orthogonal
projection of R™”™™ onto the first n-coordinates. This may be seen as a qualitative version
of a simlar result of Azzam and Schul [2]. The main tool in our proof is the metric change
of variables introduced in [6].

In memoriam: William P. Ziemer (1934-2017)

1. INTRODUCTION

The classical implicit function theorem (IFT) ensures that the map is structurally very
nice near points where the derivative of the map has a certain rank. In this paper, we
present a version of the IFT for Lipschitz mappings f : R"™™ 5 A — X into arbitrary
metric spaces. It turns out that in the case of mappings into metric spaces, the upper
density defined below will play a role of the Jacobian of f. For a measurable set A C R¥,
and z € A, we define the lower and upper n-densities of a mapping f: A — X as

He (f(B(z,r) N A)) Hy(f(B(x,r) N A))

©™(f,r) := limsup —= . OY(f,z) :=liminf .
r—0 Wy r™ r—0 wyT™

These are simply the upper and the lower n-densities of the pull-back of ‘H” by f on A.
Here w,, is the volume of the unit ball in R” and the H72 is the Hausdorff content defined
for subsets of X by

' (E) = inf % ;(diam A",
where the infimum is taken over all coverings of E, i.e. E C J;2; 4;. Note that the
Hausdorff content of any bounded set is finite, and, for an L-Lipschitz map f: A — X,

O (f,z) < L" for all x € A.

The reader may want to compare these definitions with the definition (and properties)
of the upper and lower densities of measures in [1, 12, 14].
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The following observation will be useful throughout the paper:

(1.1) O (f,2) =0 ifand only if lim 2t/ Q@ AN A))

=0
d—0 Wy d™

where Q(z,d) is the cube centered at x with side length d. (Here and in what follows, a
cube has edges parallel to the coordinate axes.) The main result of the paper is as follows:

Theorem 1.1 (Metric IFT). Fiz a metric space X, a set A C R"™™ with positive Lebesgue
measure, and a Lipschitz mapping f : A — X. Suppose ©*"(f,x) > 0 on a subset of A
with positive Lebesque measure. Then

(A) H"(f(A)) > 0;

(B) There is a set K C A with positive Lebesque measure, a bi-Lipschitz C*-
diffeomorphism G : U — G(U) C R™™ defined on an open set U D K and a
\/n-Lipschitz map 7 : X — R™ such that

WofoG_l(:L’l,...,xn,yl...,ym) = (x1,...,2,) forall (z,y) € G(K)

is a projection on the first n coordinates when restricted to the set G(K).
Moreover the mapping F = f o G™! defined on G(K) satisfies

(C) FY(F(x,)) N G(K) C {2} x R™ for any (2,y) € G(K);
(D) F|@®rx{ypnck) s bi-Lipschitz for any y € R™.
Remark 1.2. It follows from the proof that we can exhaust the set of points where

O*"(f,x) > 0 by sets K as in (B) up to a set of H"™™ measure zero. (See the application
of Lemma 2.4 in the proof of Lemma 3.1 as well as Remark 3.5.)

Remark 1.3. The map 7 : X — R" is in fact 1-Lipschitz as a map from X to (R™,£5°)
where the norm £5° is defined by ||(z1,...,%,)|lcc = max;|z;|. This will follow from our
proof.

Remark 1.4. Statement (C) means that the preimage under F' of any point in F(G(K)) =
f(K) is contained in an m-dimensional subspace of R"* orthogonal to R™. For related
results about the structure of preimages f~!(z) of Lipschitz maps, see [9, Theorem 1.2],
[13, Theorem 4.16].

Remark 1.5. In fact, we will prove a quantitative lower bound in (D):

(1.2) |21 — 22]|oe < d(F(21,9), F(22,y))

for any y € R™ and all (z1,y), (z2,y) € (R™ x {y}) N G(K).

Remark 1.6. The classical implicit function theorem is stated using a condition about
the rank of the derivative of f, and the condition ©*"(f,z) > 0 is a related one. Indeed,
in the case X = R", we will see in Proposition 5.2 that the Jacobian of f defined by

|J"f|(x) = \/det(Df)(Df)T (z) satisfies ©*"(f,z) = |J" f|(z) almost everywhere. See also
Lemma 3.3 for the case of mappings f: A — (°°.

Remark 1.7. In the theorem we cannot replace the density condition ©*( f, z) > 0 by the
simpler measure condition H"(f(A)) > 0. Indeed, even in the Euclidean case, Kaufmann
[10] constructed a surjective C* mapping f : R"™ — R™ n > 2, satisfying rank Df < 1
everywhere. For such a map, condition (B) cannot be satisfied since it would imply that
rank Df >n on K.
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Recall that a set E C R™™™ is countably H™-rectifiable if there are Lipschitz mappings
fi : R™ D E; — R"™ ¢ € N, such that H™(E \ U;-, f(E;)) = 0. As a corollary of
Theorem 1.1 we obtain

Corollary 1.8. Fiz a metric space X, a set A C R"™™ with positive Lebesgue measure,
and a Lipschitz mapping f : A — X. Suppose ©*"(f,-) > 0 almost everywhere in A. Then
f~Yx) is countably H™-rectifiable for H™-almost all v € X.

See Section 4 for the proof. For related results see [9, Theorem 1.2], [13, Theorem 4.16].

Our result may be seen as a qualitative version of a theorem proven in 2012 by Azzam
and Schul [2]. In that paper, the authors proved the following quantitative version of the
IFT for Lipschitz mappings into metric spaces:

Theorem 1.9 (Quantitative metric IFT; Azzam and Schul, 2012). Fiz a metric space X
and a 1-Lipschitz mapping f : R"*™ — X. Suppose 0 < H"(f(]0,1]"t™)) < 1 and

(1.3) 0 <o <HY"(f.[0,1]")

for some 6 > 0. Then there are constants A = A(n,m,0) > 1 and n = n(n,m,5) > 0, a
set K C [0, 1]"™ with

(1.4) H(K) >,

and a A-bi-Lipschitz homeomorphism G : R*™ — R ™ such that F = f o G~! satisfies
F Y F(z,y))NG(K) C{z} xR™ for any (z,y) € G(K) C R"*™

and F|®rx{yh)nck) 15 A-bi-Lipschitz for any y € R™.

The authors of [2] call HZ™ the (n,m)-Hausdorff content of f. It is defined for a
Lipschitz map f : @ — X from a cube @ C R"™™ to a metric space by

(1.5) HE™(f,Q) = ianHZo(f(Qj))d?,

where the infimum is taken over all families of open pairwise disjoint cubes @); C @) of side
length d; that cover () up to a set of measure zero.

Note that Theorems 1.1 and 1.9 provide the same qualitative structure on the vertical
and horizontal slices of the preimage of F'. However, Theorem 1.9 is a quantitative version
of the metric IFT in the sense that it provides the lower bound (1.4) which depends only on
the dimensions m, n and § from (1.3). Moreover, the mapping G is a globally defined C-bi-
Lipschitz homomorphism where C' depends only on m, n, and 6. Our result (Theorem 1.1)
does not contain these quantitative conclusions. This is because the assumption (1.3) in
Theorem 1.9 is much stronger than the assumption that ©*"(f,z) > 0 on a set of positive
measure. Indeed, Proposition 5.1 shows that the positivity of ©*(f,x) follows from the
assumption (1.3). In fact, for any € > 0, one may construct a mapping f : [0,1]> - R
with ©*1(f,z) = 1 almost everywhere so that the set K C R? satisfying the conclusion
of Theorem 1.1 (for a global bi-Lipschitz homeomorphism G) must satisfy H?*(K) < ¢
(and hence (1.4) cannot hold). See Proposition 5.3 for the construction and a detailed
statement.
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On the other hand, while the assumptions of Theorem 1.1 are much weaker than those
of Theorem 1.9, some of the conclusions seem stronger: (1) As we already pointed out, the
condition about positivity of ©*( f, ) is much weaker than condition (1.3); (2) Azzam and
Schul assume that 0 < H™(f([0,1]""™)) < 1 while we do not assume anything about the
Hausdorff measure of the image. In fact, we prove the lower bound H"(f(A)) > 0 in (A)
and finiteness of the measure of the image plays no role in our theorem; (3) Our mapping
G is a bi-Lipschitz C! diffeomorphism while their mapping G is only a bi-Lipschitz map.
However, their map is defined globally and ours is defined locally only; (4) While parts
(C) and (D) are the same as the corresponding statements in Theorem 1.9, part (B) seems
stronger than that. (C) and (D) easily follow from (B), but we do not know if (B) can be
concluded from Theorem 1.9; (5) We obtain the quantitative lower bound estimate (1.2);
(6) At last, but not least, our proof is much simpler than that in [2].

The classical IFT states that a C'' mapping has a nice structure near a point where the
derivative has rank of a certain order. However, the classical IF'T does not provide any
estimate for the size of the set where the map is nice. Our result has the same feature as
the classical one: we do not obtain any estimate for the size of the set K except that it
has a positive measure.

The main tool in the proof of Theorem 1.1 will be the metric change of variables intro-
duced in [6]. This change of variables has been used to prove versions of Sard’s theorem
for Lipschitz mappings and BLD mappings into metric spaces [6, 7].

This paper is organized as follows. In Section 2 we collect basic definitions and lemmata
needed in the proofs of Theorem 1.1 and Corollary 1.8. In Sections 3 and 4 we prove The-
orem 1.1 and Corollary 1.8 respectively. Finally, in Section 5, we prove some other results
that help us compare Theorems 1.1 and 1.9, we prove that the condition H2™(f,Q) > 0
implies positivity of ©*"(f,x) on a set of positive measure (Proposition 5.1), we prove
that, if f : R™™™ > A — R” is Lipschitz, then ©*(f,z) = O7(f,z) = |J"f|(x) almost
everywhere in A (Proposition 5.2), and we construct an example showing that we cannot
obtain any lower bound for H"*™(K') (Proposition 5.3).

Notation used in the paper is fairly standard. The n-dimensional Hausdorff measure
will be denoted by H™. Note that in R", H" equals the Lebesgue measure and we will
use Hausdorff measure notation in place of the Lebesgue measure. Occasionally we will
write |E| to denote the Lebesgue measure of E. Notation H% will stand for the Hausdorff
content defined above. The constant w,, denotes the measure of the unit ball in R™. The
Banach space of bounded real valued sequences will be denoted by ¢°°. Balls in metric
spaces are denoted by B(z,r), and Q(z,d) denotes the Euclidean cube centered at x
with side length d. All cubes are assumed to have edges parallel to the coordinate axes.
Occasionally a k-dimensional ball in a Euclidean space will be denoted by B*(z,r). By a
A-bi-Lipschitz homeomorphism f : (X, d) — (Y, p) we mean a homeomorphism satisfying
AYd(x,y) < p(f(2), f(y)) < Ad(z,y). The tangent space to R at 2 € R* will be denoted
by T,R*. By C' we will denote a general constant whose value may change in a single string
of estimates. Writing C' = C(n, m), for example, indicates that the constant C' depends
on n and m only.
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2. PRELIMINARIES

In this section we collect basic definitions and results that will be used later on.

If & > n, then the H™ content of subsets of R* is very different from their Hausdorff
measure. For example H" (E) < oo for any bounded set £ C R*, but H"(B) = oo for any
k-ball B C R*. However, we have (see [14, Theorem 2.6])

Lemma 2.1. HZ (E) = H"(E) for all sets E C R".

Lemma 2.2. Fvery separable metric space admits an isometric embedding into £°°.

Indeed, given zyp € X and a dense set {x;}3°, in a separable metric space (X, d),
X 3z k(x) = (d(x,x;) — d(z;,10))52, € £
is an isometric embedding. This is the well known Kuratowski embedding for metric spaces.
For a proof of the following elementary result, see [8, Corollary 4.1.7].

Lemma 2.3. Let Y be a metric space, let E CY and let f: E — (> be an L-Lipschitz
mapping. Then there is an L-Lipschitz mapping F : Y — (> such that F|p = f.

The idea of the proof is very simple. Each component f; of f is L-Lipschitz and we
define F' by extending each of the components of f using the formula from the McShane
extension. Then it is easy to verify that the resulting map is L-Lipschitz and it takes
values in £*°.

Fix an integer & > 1, and suppose A C R* is measurable. Recall that a function
f A — Ris approximately differentiable at x € A if there is a measurable set A, C A
and a linear map L : R™ — R such that = is a density point of A, and

lim |f(y) = f(z) — Ly — )|

Asdy—a ly — x|

= 0.

L is called the approzimate derivative of f at x and is denoted by ap D f(x). Recall also
that z € E C R is a density point of E if H*(E N B(x,d))/(wpd)* — 1 as d — 0.

If in addition f : A — R is Lipschitz, then the approximate derivative ap D f(zx) exists
for almost every © € A. This follows from the McShane extension and Rademacher’s
theorem. Indeed, if F': R* — R is a Lipschitz extension of f, then ap D f(z) exists at all
points of the set

E ={x € A: zis a density point of A and F is differentiable at z}.

Moreover ap D f(x) = DF(x) at points of the set E.
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For a Lipschitz map f = (f1, f2,...) : A — £°°, we define the component-wise approxi-
mate derivative by

ap D f1(x)
apDf(z) = | ap Df2(z)

Since each component f; is Lipschitz, ap D f exists almost everywhere in A.

It is easy to see that the row and column ranks of this oo x k matrix are equal, and
rank (ap D f(x)) equals the dimension of the image of ap D f(x) in ¢*°. It follows in partic-
ular that rank (ap Df(z)) < k.

Let V be a linear space of all real sequences. In particular, £~ C V', but we do not equip
V with any norm or topology. If all components of a mapping g = (g1, ¢9a,...) : RF =V
are differentiable at a point z, we will say that g is component-wise differentiable at x and
write

Dgi(z)
Dy(z) := | Dg2(x)

We will also need the following result of Federer (for a proof, see [11, Theorem 1.69], [14,
Theorem 5.3], [15]).

Lemma 2.4. If A C R is measurable and f : A — R is Lipschitz, then for any ¢ > 0
there is a function g € C'(R*) such that

H({z e A: f(x) #g(x)}) <e.

It is easy to see that if z is a density point of the set

(2.1) {reA: f(z)=g(x)},
then ap D f(xg) exists and ap Df(xg) = Dg(zo). In particular Dg = ap Df almost every-
where in the set (2.1).

The next lemma was proven in [6, Proposition 2.3].
Lemma 2.5. Let D C R* be a cube or ball, and let f : D — ¢ be L-Lipschitz. Then
diam(f (D)) < C(k)LH (D \ A)V*,
where A={x € D : Df(x) =0} and Df is the component-wise derivative of f.

Finally, in the proof of Corollary 1.8 we will need

Lemma 2.6. If f : X — Y is a Lipschitz mapping between metric spaces and A C X,
0<m <n, then

Here [ " stands for the upper integral and Lip f is a Lipschitz constant of f. Federer [5,
2.10.25] proved this result under additional assumptions. The general case was obtained
by Davies [3]. A detailed proof is given in [13, Theorem 2.4].
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Corollary 2.7. If f : X — Y is Lipschitz mapping between metric spaces and A C X,
H'(A)=0,0<m<mn, then H* " (f(y) N A) =0 for H™ almost all y € Y.

3. PROOF OF THEOREM 1.1

The proof is based on techniques developed in [6] (see also [7]). Consider a Lipschitz map
f: A — (= defined on a measurable set A C R¥. Our first lemma shows that, if the rank
of ap Df(x) is at least j on a set of positive measure, then, up to local diffeomorphisms, f
fixes the first j coordinates on some non-null subset.

Lemma 3.1. Suppose f : A — (* is a Lipschitz map defined on a measurable set A C R¥.
If rank (ap Df(x)) > j on a subset of A of positive H*-measure, then there is an open
set U C R¥, a set K C ANU of positive H¥-measure, a bi-Lipschitz C*-diffeomorphism
G :U — G(U) C Rk, and a permutation of a finite number of coordinates W : (> — (>
(which is an isometry of £>°) such that

(3.1) (Vo foG Ni(x)=a; fori=1,2,...,5 and v € G(K).
That is for x € G(K) we have
(\Ij @) f e} G_1)<$1, Ce ,In) = ([El, ceey gy (\If @) f e} G_l)j+1($)7 (\Ij ©) f @) G_l)j+2<$), .. )

Proof. By restricting f to the set where rank (ap Df(z)) > j, we may assume that
rank (ap Df(z)) > j a.e. in A. Since f = (f1, fa,...) : A — £ is Lipschitz, each com-
ponent f; of f is Lipschitz. Therefore, by applying Lemma 2.4 component-wise, we may
choose F' C A with H¥(F) > 0 and a mapping g = (g1, g2, - .. ) : R¥ = V with g; € C'(R¥)
for every j € N and such that ¢ = f, Dg = ap Df, and rank Dg = rank ap Df > j on
F'. Here, as before, V' is the vector space consisting of all real valued sequences. (This is
needed since sequences (g;())52, are not necessarily bounded.)

Lemma 3.2. Fiz zqg € F. Under the above assumptions, there is a bi-Lipschitz C!-
diffeomorphism G : U — G(U) C R¥ defined on a neighborhood U of xo and a permutation
U :V =V of a finite number of coordinates so that

(WogoG Yi(x)=a; fori=1,2,...,7 and xz € G(U).
That is, W o go G fizes the first j coordinates on G(U).

Proof. Since rank Dg(xg) > j, acertain j x j minor of Dg(zg) has rank j. By precomposing
g with a permutation W of j variables in R* and postcomposing it with a permutation W
of j variables in V| we have that

g:(glagb'”):\llogoil

satisfies

(3.2) det {%(@1(%))} £ 0.
Oz 1<m <]

Let
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It follows from (3.2) that det DH (W~ (x0)) # 0, so H is a diffeomorphism in a neighbor-
hood U of ¥~!(zy). Replacing U by a smaller open set, it follows that H is bi-Lipschitz.
Now observe that

(GoH Yy(x)=ax; fori=1,2,...,5 and z € H(U).
Therefore, if we write G = H o Ei/*l, then W o go G~ = o H! satisfies the claim of the
lemma on the open set U = W(U), U is a neighborhood of zg, and G(U) = H(U). O

Now if zy is any density point of F, then the set K = F N U has positive measure.
Since f =g on K, (3.1) follows because the permutation of coordinates ¥ : V' — V maps
(> C V to £ C V in an isometric way. This completes the proof of Lemma 3.1. O

Lemma 3.3. Fiz a measurable set A C R¥ and n < k. Suppose f : A — (> is a Lipschitz
map. If O (f,x) > 0 on a subset of A of positive measure, then rank (ap Df(x)) > n on
a set of positive measure.

Remark 3.4. Note that the above lemmata involve Lipschitz mappings into £*°. As we
will see later, this will be sufficient in the setting of any metric space since the separable
metric space f(A) may be embedded isometrically into ¢ via the Kuratowski embedding.

Remark 3.5. In the following proof, we will see in particular that, for j € {0,1,2,...,n—
1}, the set of points z € A where ©*"(f,x) > 0, ap D f(x) exists, and rank (ap D f(z)) = j
must have measure zero.

Proof. Suppose to the contrary that ©*(f,x) > 0 on a set of positive measure and
rank (ap Df(z)) < n almost everywhere in A. Then there is j € {0,1,2,...,n — 1} and
aset F C A with H¥(F) > 0 such that ©*(f,z) > 0 for all z € F, ap D f(z) exists and
rank (ap Df(z)) = j for all x € F.

According to Lemma 3.1, there is a permutation ¥ : ¢*° — (> of a finite number of
variables, an open set U C R* aset K ¢ F'NU with H*(K) > 0 and a bi-Lipschitz C-

diffeomorphism G : U — G(U) C R* such that f = ¥ o f o G~ defined on A = G(ANU)
satisfies
(3.3) ﬁ(m)zwZ fori=1,2,...,jand z € K

where K = G(K). Note that ap Df(z) exists and rank (ap Df)(x) = j for all z € K,
because composition with a diffeomorphism and a permutation ¥ preserve approximate
differentiability and the rank of the approximate derivative.

Assume that xq is a density point of K. Since ©*(f,x) > 0 for all z € K, in order to
arrive to a contradiction, it suffices to show that

O™ (f,x¢) = 0.
Note that yo = G(z0) is a density point of K = G(K) because diffeomorphisms map
density points to density points.

The next lemma shows that it suffices to prove that

(3.4) O (f,yo) = lim sup Hi(f(B(yo,d) N A))

= 0.
d—0 wndn
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Lemma 3.6. If @*”(f, yo) =0, then ©(f,z) = 0.

Proof. Let d > 0 be so small that B(yo,d) C G(U). Since the diffeomorphism G~! is
bi-Lipschitz on G(U), there is a constant A > 0 such that

B <x0, %) C G7Y(B(yo,d)).

SinceA the permutation of coordinates W : (* — (™ is an_isometry, it follows that
H(f(E)) =HY(f(GTH(E))) for any set E in the domain of f. Therefore

H(f(B(yo, d) N A)) = HL(F(GH(B(yo,d) N A)) > HL(f(B(zo, d/A) N A)),

SO
N n < B A
O™ (f,yo) = limsup Hi (S (y();d) NA))
d—0 wpd
i HL (f(B(zo, d/A)NA))
> A nl S 00 _ A n@*n |
= lrg—n;lp wn(d//\)" (f IO)
and the lemma follows. .

To conclude the proof of (3.4), we will apply the following lemma.
Lemma 3.7. Assume d > 0 is such that Q(yo,d) C G(U) and

X d\"
H Q) \ ) < (1)
for some positive integer M. Then f(Q(yo,d) N A) can be covered by M7 balls of radius
CLAM™" for some constant C = C(k,n) > 0, where L is the Lipschitz constant of f. In
particular, we have

HE(F(Q(yo, d) N A)) < w,(CLd)" M.

Before proving this lemma, we will see how it can be used to prove (3.4). Let ¢ > 0. Fix
a positive integer M such that (C'L)"M7~™ < e. (This is possible since 7 —n < 0.) Since
Yo is a density point of K, there is 6 > 0 such that for 0 < d < 4, Q(yo,d) C G(U) satisfies
HE(Q(yo.d) ( d )

Hence, by Lemma 3.7, we have

H(F(Q(yo, d) N A))

Wy, d™

<(CL)"M’ ™™ <¢e for0<d<é

which, along with (1.1), implies that ©**(f,y,) = 0. That completes the proof of (3.4)
once Lemma 3.7 has been verified. The proof of Lemma 3.7 is nearly identical to the proof
of [6, Lemma 2.7], but we will include it here for completeness.
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Proof of Lemma 3.7. Assume that a positive integer M > 0 and d > 0 satisfy Q(yo,d) C
G(U) and

. d\"
QU \ B < (1)
Since the result is translation invariant, we may assume without loss of generality that
Q(y(b d) = Q = [07 d]j X [OJ d]kij'

According to Lemma 2.3, the L-Lipschitz mapping f QN A — £>° admits an L-Lipschitz
extension f : @ — ¢*°. According to Rademacher’s theorem, f is component-wise differ-
entiable for almost all points in Q.

Divide [0, d}/ into M7 cubes {Q,}*’, with pairwise disjoint interiors each of edge length

v=1

d/M. Tt suffices to show that each set
F@Qu > [0,d" )N A) € F(Q, x [0,d]*)

is contained in an ¢>-ball of radius C'LdM~! for some constant C' = C'(k,n) > 0. By our
assumptions, for each v we have

o - d\"
HAQu x 0.0\ F) < HHQVR) < (47 ) -
Hence ‘ R 4
HY((Q, x [0,d" )N K) > (M7 — M~*)d".
According to Fubini’s Theorem, we may therefore choose some p € @), such that
HI(({p} x [0,d* )N K) > (1 — MIF) @+
and f is component-wise differentiable at almost all points of {p} x [0,d]*~7. Hence

. o d\"
(35) (o x 0P VK < ()
According to (3.3), f fixes the first j coordinates in K. Since f = f in K and
rank (ap Df(z)) = j everywhere in K, it follows that f;(z) = z; for i = 1,2,...,7 and

z € K and rank D f(x) = j almost everywhere in K. Therefore, the component-wise de-
rivative of f along {p} x [0,d]*77 vanishes at almost all points in ({p} x [0,d]*7) N K.
That is . ' A

D(fpupar—s) =0 ae. in ({p} x [0, ) N K.

Therefore Lemma 2.5 applied to f : {p}x[0,d]*7 — (> (with k replaced by k—j) together
with (3.5) yield

diam(f({p} x [0, d]*7)) < CLH*(({p} x [0,d)*7) \ K)V*9 < CLaM .

Since the distance from any point in @, X [0,d]*=7 to the set {p} x [0,d]*77 is at most
diam(Q,) = /jdM =1 and f is L-Lipschitz, this implies that

diam(f(Q, x [0,d]*™7)) < CLdM™!
(for a larger value of C'). This proves Lemma 3.7. O

This also completes the proof of (3.4) and hence that of Lemma 3.3. O
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We now can finish the proof of Theorem 1.1.

Proof of Theorem 1.1. Since f(A) C X is a separable metric space, there is an isometric
embedding k : f(A) — £ (see Lemma 2.2). The mapping & is 1-Lipschitz. According to
Lemma 2.3, the map s admits a 1-Lipschitz extension IC : X — ¢°°.

Then f =Ko f=ko f:A— (> is Lipchitz and ©(f,z) > 0 on a subset of A with
positive measure (composition with an isometric map does not change the upper density).

It follows from Lemma 3.3 (with k = n + m) that rank ap Df > n on a set of positive
measure. Therefore, according to Lemma 3.1, there is an open set U C R"™™, a subset
K C ANU with H"™™(K) > 0, a bi-Lipschitz C'-diffeomorphism G : U — G(U) C R"*™
and a permutation of finitely many coordinates W : > — (> such that
(3.6) (Vo foG N(x)=a; fori=1,2,...,nand x € G(K).

Let
P:0>* SR Pxy,z,...)=(x1,22,...,2,)

be the projection onto the first n coordinates. Then P is 1-Lipschitz as a mapping to R”
equipped with the £2° norm, ||(x1,...,7,)|lec = max; |z;| and y/n-Lipschitz as a mapping
to R™ with the Euclidean metric. Therefore, it follows that the mapping

7: X —=>R" 7m=PoVolk
is 1-Lipschitz as a mapping to R™ equipped with the norm ¢° and /n-Lipschitz as a
mapping to R” with the Euclidean metric (see Remark 1.3).

If we swith to notation

(,y) = (1, -, Ty Y1y ey Ym) = (T1, oo, Ty Tt 1y« -+ Tk
then clearly, (3.6) means that (7o f o G7')(z,y) = z for (z,y) € G(K) which completes
the proof of the statement (B).

To prove (A), suppose to the contrary that H"(f(A)) = 0. Then H"(f(K)) = 0 and
hence

(3.7) H'((mo foGT(G(K)) =H(n(f(K))) < (Vn)"H"(f(K)) =0,
because the \/n-Lipschitz map 7 can increase the H"-measure no more than by a factor
(v/n)™ On the other hand, G(K) has positive H"""-measure so it follows from Fubini’s

theorem that its projection (7o f o G™1)(G(K)) onto the first n-coordinates has positive
H™-measure which contradicts (3.7).

Parts (C) and (D) are easy consequences of part (B) as follows. Write F' = f o G,
Let (¢/,3) € F~(F(,9)) N G(K). Then F(/,y/) = F(z,y) s0 2’ = (F(/,y/)) =
7(F(x,y)) = « and hence (2',y) = (z,y') € {x} x R™ which proves (C).
To prove (D), fix y € R™ and let (z1,y), (x2,y) € G(K). Let A be the Lipschitz constant
of Fon G(K). Since 7 : X — (R", £>°) is 1-Lipschitz we have
0"y — | < oy — wolloe = (|7 (F(21,y)) — 7(F(22,)) 0
S d(F(Ilvy)7 F(I%y)) S A|Q§'1 - [E2|
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which proves (D) along with the estimate (1.2). The proof is complete. O

4. PROOF OF COROLLARY 1.8

Since ©**(f,x) > 0 almost everywhere in A, we can exhaust A up to a set of H"t™
measure zero by a countable family of pairwise disjoint sets of positive H"™™ measure
{K;}, where each of the sets K = K; satisfies claim (B) of Theorem 1.1. Say {G;} are the
associated bi-Lipschitz C'-diffeomorphisms.

Let W = U2, K; and Z = A\ W so H""™(Z) = 0. Let f; = f|k, and let F; =
fio G;'. Since F; is defined on G;(K;) only, we have from part (C) of Theorem 1.1 that
for any » € X, F;'(2) is contained in an m-dimensional affine subspace of R"*™ and
hence f;'(2) = G;*(F;!(2)) is contained in an m-dimensional submanifold (of class C*).

Therefore, for any z € X,
Enw=Jre
i=1

is countably H™-rectifiable as it is contained in a countable union of m-manifolds, and it
remains to observe from Corollary 2.7 that H™(f~'(2) \ W) = H™(f~'(2)NZ) = 0 for H"
almost all z € X. O

5. COMPARING THEOREMS 1.1 AND 1.9

Recall the (n,m)-Hausdorff content which was defined in (1.5). As mentioned in the
introduction, the assumption that ©*(f,x) > 0 on a set of positive measure in Theo-
rem 1.1 is weaker than the assumption of positive (n, m)-Hausdorff content of a cube in
Theorem 1.9. We see this fact in the following proposition, the proof of which follows
easily from the Vitali Covering Theorem.

Proposition 5.1. Suppose Q C R™™™ is a cube, X is a metric space, and f : Q — X s
Lipschitz. Then

n,m & n/
H(£Q) < S+ m) [

Q@’j(f, x)dr < %(n—i—m)”ﬂ/ O™ (f,x) dx.

Q

Proof. In this proof Q(z,d) and Q(z, d) will denote open and closed cubes in R"*™ respec-

tively. Note that Q(z,d) C B(z, Ad), where A = ¥,

the set of all points in the interior of () which are Lebesgue points of the function O7(f, -
Fix a point z € A, and choose d, > 0 small enough so that Q(z,d,) C B(z,Ad,) C
Choose a sequence {d:}22; with d, > d’ “\, 0 satisfying the following for each d = d':

1 €
() —_— oy dy + -
) S gy L QS

The function ©7(f,-) is integrable on () since it is bounded. Fix ¢ > 0. Denote by A
).

and
He(f(Q(x,d)) _ HE(f(B(z,Ad)))
wp(Ad)™ - wp(Ad)™

<el(f.a)+3.
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Both inequalities imply that

HE(f(Q(x,d)))d™ < w, A" (/ O (f,y)dy + 5d”+m) for all z € A and all d = d_.
Q(

z,d)

The collection of closed cubes
Q={Q(x,d): z€ A, i e N}

is a fine Vitali covering of A. Thus there is a countable, pairwise disjoint collection of
cubes {Q(z;,d;)} in Q so that

Hn—i—m (Q \ UQ(.Z'J‘, d]>> = HTH_m <A \ U@(J]j, d])> = 0.

Since the cubes Q(z;,d;) are open, pairwise disjoint, contained in (), and they cover @ up
to a set of measure zero, the definition of H%™(f, Q) yields

wwM@szy&mm%@mWS%”CZA«M@“”@“§3wﬂ

:%v(éwuw@+m®.

Sending ¢ — 0 gives the desired result. O

The next result shows that ©7(f,x) is in fact equal to the Jacobian of f when f is
a Lipschitz mapping to R™. This result is related to Lemma 3.3. Consider a mapping
f:R™™ — R"™ which is differentiable at 2z € R"*™. Define the Jacobian |J" f|(x) at x as
follows:

[J"fl(x) = /det(Df)(Df)" ().

Geometrically, it follows that, when rank D f(x) = n, the Jacobian satisfies

 H (W)

(5.1) |J" fl(x) o for any r > 0,
where
(5.2) W, = f(x) + Df(x)(B(0,r)) for B(0,r) C T,R"*™

is the ellipsoid approximation (in R™) of f(B(z,r)). This Jacobian plays an important role
in the so called co-area formula [16, Theorem 2.7.3].
)

Observe that if 7 : T,R™™™ — (ker D f(x))* C T,R™™™ is the orthogonal projection
onto the n-dimensional subspace (ker Df(z))*, then W,, = f(x) + Df(z)(x(B(0,r)),
so Wy, is (up to a translation by the vector f(x)) the image of the n-dimensional ball
7(B(0,7)) C (ker Df(x))* of radius r under the linear map D f(x). That is, |J"f|(x) is
the ratio of the volume of the ellipsoid W, , to the volume of 7(B(0,7)).

If the rank of Df(x) is less than n, we have |J"f|(x) = 0. Therefore |J"f|(z) > 0 if
and only if rank D f(z) = n. We similarly define the Jacobian of any Lipschitz mapping
f:R"™ 5 A — R" using the approximate derivative.
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Proposition 5.2. Let f : A — R" be a Lipschitz map defined on a measurable set A C
R™*™_ Then

(5-3) OL(f,x) =07 (f,x) = |J"f|(x)

for almost every x € A.

Note that combining this result with Proposition 5.1 gives the following for any cube
Q C R™™ and any Lipschitz [ : Q — R™

(5.4) H"(,Q) < nn e m)? [ 17 f](a) d
Q
This inequality is essentially Lemma 6.13 in [2].

Proof. Assume first that f : R"*™ — R" is an L-Lipschitz mapping defined on all of R"*™,
It suffices to prove that (5.3) holds true at all points of differentiability of f.

Let € R™™™ be a point of differentiability of f. Given L > ¢ > 0, there is § > 0 such
that

(5.5) lf(y) — f(z) = Df(z)(y —x)| <er forall0<r<dandye B(x,r).
Assume first that |J" f|(x) = 0. We will show that ©7(f,z) = ©**(f,z) = 0.

Let W, = f(z) + Df(z)(T,R™™™) be an affine space through f(z) (which is the image
of the derivative in R™). Since |J"f|(z) = 0, we have that dim W, < n — 1 and hence
(5.6) f(B(z,7)) C B(f(z), Lr)n{z € R": dist(z, W,) <er} for0<r <.

Since dim W, = k£ < n — 1 we have that
H™(f(B(z,7))) < C(n)eL™ 'r™.
Indeed, the k-dimensional affine ball B(f(x), Lr) N W, C R™ can be covered by

k n—1
o(5) =<(%)
Er IS

balls in R™ of radius er and centered at the points of B(f(x),Lr) N W,. Then the balls
with radii 2er and the same centers cover the set on the right hand side of (5.6), and hence
they also cover f(B(xz,r)). Since a ball of radius 2er has diameter 4er we have that

HY(f(B(z,r))) < C%(4»37“)”0 (é) . C(n)wper™ L™ 1.

Therefore,
Hoo(f(B(z,1)))
W™

which readily yields ©7(f,z) = ©*(f,z) = 0.

Assume now that |J"f|(x) > 0. Let W,, = f(z) + Df(z)(B(0,7)) be the ellipsoid
considered in (5.2). Let 0 < A\ < Ay < ... < A, be the singular values of Df(z) i.e.,
the lengths of the semiaxes of W, are 0 < A\ir < dor < ... < Ayr. (A > 0 because
" f[(x) > 0).

< Cel™' for0<r<$§
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Consider the three concentric and homothetic ellipsoids (we further assume 0 < ¢ < A4
sol—¢g/A >0)
Wx,(l—a//\l)r C W:L‘,T C Wx,(l—i—s/)q)r-

The distance between the boundary of the ellipsoid W, , and the boundaries of each of
the other two ellipsoids equals er since the distance between the homothetic ellipsoids is
measured along the shortest semiaxes (as an easy exercise for the Lagrange multipliers).
Therefore it follows from (5.5) that

(5.7) Wm,(lfs/)\l)r C f(B(l’,T’)) C Ww,(1+€/>\l)r for 0 < r <.

Indeed, the right inclusion follows immediately from (5.5). The proof of the left inclusion
is more intricate. Suppose to the contrary that

S Wac,(l—a/)q)r \ f(B<x7T>>

Then using a ‘radial’ projection from z and estimate (5.5) one can construct a retraction
of the ellipsoid W, , to its boundary which is a contradiction. We leave details of a
construction of a retraction to the reader.

It follows from Lemma 2.1 and (5.1) that for any R > 0
Hoo(War) = H" (War) = [J" fl(2)w, R
so (5.7) implies that for 0 < r < § we have

e (1 £) < HelBry

and letting ¢ — 0 yields (5.3).

<l (1+ £

Note that the proof presented above is enough to establish (5.4).

We can now proceed to the proof of the result in the general case when f : R"*™ 5 A —
R™ is Lipschitz.

Let f : R™™ — R" be a Lipschitz extension of f. Assume that L is the Lipschitz
constant of f. Note that |J"f| = |J*f| at almost all points of A, and, by the proof
presented above, \J"ﬂ(:v) = 0"(f, x) = e (f, x) for almost all z € R"™. Note also
that ©**(f,z) > ©**(f, ), because in the case of ©*"(f, x) we consider the Hausdorff
content of f(B(z,r)) while in the case of ©**(f, x) we only consider the Hausdorff content
of f(B(z,r)NA) = f(B(z,r) N A).

Since for almost all z € A we have
|[J" () = [J"f|(x) = ©L(f, ) = ©"(f,2) > O (f,2) > OL(f,x),
it suffices to show that
(5.8) O™ f,x) > |J"f|(z) for almost all = € A.
For almost all x € A such that |J" f|(z) = 0, this is particularly easy. Indeed, we have

OL(f,z) = 0=|J"f|(x) = |J"f|(2),

so (5.8) is obvious.
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We are left with the case when [J"f|(z) > 0. Since we want to prove (5.8) almost
everywhere, we can assume that x is a density point of A and f is differentiable at x. Then

7" fl(x) = ©(f,x) = ©L(f,2), ap Df(z) = Df(), and |J"f|(x) = |J"f|(z) > 0. In

particular, we have rank D f(z) = n.

The idea of the rest of the proof is simple. Since z is a density point of A, for small

r > 0, the content H2 (f(B(z,r)NA)) = H"(f(B(xz,r)N A)) is not much smaller than

H(f(B(z,r))) = H™(f(B(z,7))). Therefore dividing by w,r" and passing to the liminf
as r — 0 gives
r—0 Wpr™ r—0 Wpr™

fox)=1J"f|(x)

for all € > 0. Thus the main focus in the argument presented below is proving the phrase
“is not much smaller”. While the idea of the proof presented below is very geometric
and relatively simple, the details are not.

By translating the coordinate system we may assume that x = 0. The ellipsoid W, =
f(0)+ Df(0)(B(0,r)) is the image of the ball B"+™(0,r) C TyR"*™. By abusing notation
we will identify the tangent space ToR™* with R"™. For example the same notation will
be used for the ball B"*™(0,r) in the tangent space ToR"*™ and for the ball B"*™(0,r) =
0+ B™™(0,r) in R™*™.

Since rank D f(0) = n, we have dimker Df(0) = m. Rotating the coordinate system in
R™™ we may assume that
R™™ = TyR"™™ = (ker Df(0))* @ (ker Df(0)) = R" & R™.

Let

T RPOR™ - R"® {0} CR"®R™
be the orthogonal projection. Note that the n-dimensional ball in the tangent space

By (r) .= n(B"™(0,r)) = (R" x {0}) N B"*™(0,r) C T,R"*™
has radius r and 3 .
Wo, = f(0) + Df(0)(Bg(r)).

Let € > 0 be given, then there is a positive integer M such that

(59) " 71(0) (1 - %) (1= 537) - 337 2 V"0 -

where 0 < Ay < Ay < ... <\, are the singular values of Df(O).

For any » > 0 and any 0 <t < 1 let
Vir = (R x B™(0,tr)) N B"™™(0,r)

be the tr-cylinder around Bj(r) inside of the ball B"*™(0,r). Clearly H"™™(V;,) <
Wy ™ - Wiy (tr)™ because Vi, C B™(0,7) x B™(0,tr). Also, when ¢ is small, the volume of
Vi,» must be close to the volume of this product of balls in the following sense:
n+m V
lim H (Vi)

50 W™ - Wiy (B1)™
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Thus there is 0 < ¢y < (1 — 537)"/" such that

AM

Note that t); depends on M but not on r because V;, = rV;; (where rE := {rz : x € E'}
for £ C R™™).

1
(5.10) <1 — —) Wpw T < HTT (Vi) < wpwim TR

Since 0 € A is a density point of A, we may choose § > 0 depending on M so that for
0 <7r < d we have

1
(BI1) HT (Vi \ A) S HB0,0) \ A) < ™

and hence

1
(512) W (Vi 14) = B (Vi) = K (Vi V) > (1 0 )™

Since f is differentiable at 0, we may also assume (by taking, if necessary, a smaller § > 0
depending on M) that

(5.13) 17 (y) — f(0) — DF(0)y| < % for all 0 < r < § and y € B"™(0, 7).
Let 0 <r < 6. For b € R™ we define
BrMr) = (R™ x {b}) 0 B™™(0,r).

If we regard V;,, . as a cylinder with base B™(0,tyr) (and with spherical caps), then the
fibers (orthogonal to the base) are the n-balls B}'(r) where b ranges over B™(0,tyr).

We claim that the set of b € B™(0,t),r) which satisfy

2M

has positive H"™-measure. Indeed, suppose to the contrary that

(5.14) MBI () A) > (1 - L) ™

2M

Then it follows from Fubini’s theorem that

1
H (Vi r NA) < (1 — —) W™ Wi (Epr)™

1
H'(By(r)nA) < (1 - —) w,r™  for H™-almost all b € B™(0, tyr).

2M

which contradicts (5.12). In other words, we have shown that the set of fibers of V;,, ,
which see a “large” part of A has positive H™-measure.

Let b € B™(0,tyr) be such that (5.14) is satisfied. Then the radius R of the ball B} (r)

satisfies
1 1/n
> 1——
r>R> ( 2]\/[) T,

and since D f(0) vanishes in the direction of (0, b)
F(0) + DF(0)(By(r) = f(0) + DF(O)(w(B; (1)) = f(0) + DF(0)(B; (R)) = Wo.r,
H" (Wo,r) = |1 F(0)wn R
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Recall that

1 1/n
0<ty< (1_W) and be B™(0,tyr).

Therefore, |b| < tpr < R. Thus by (5.13) and the Pythagorean theorem, we have

(5.15) |f( ) — (f ( )+ Df( Y| < M/ (tyr)? + R2 < V2M™'R fory € OBy (r).
Since the distance between the boundaries of the ellipsoids (we assume that M is so large
that v/2/M < \;)
Wo.a—vam-1anr € Wor
equals v2M 'R, it follows from (5.15) (as in (5.7)) that
Wo,a—vam—1 a0k € JE(BZL(T))

Therefore

HO(FBE) = HWo o sangrjays) = 17 Fl(O)c <1_ ﬁ) -

= |7 F1(0)wn <1-§%})n<ﬁ-§%z)rw

Inequality (5.14) also implies that

(5.16)

H(BY(r) \ A) = H'(BY(r) — H (B (r) N A) < = o™

2M
Therefore
n( £/ nn L
(517) H(FBL()\ A)) < o ™
We have
(5.18) f(Bp(r)) = F(By(r) M A) U f(By(r) \ A)

o (5.18), (5.16), and (5.17) yield
H(f(By (r) N A)) = H"(f(By(r)) = H"(f(Bi(r) \ A))

s (0 (1 25) (1) - )

and hence (5.9) yields

HL(F(B(0,) 1 A) _ HFB7(0,r) 1 4) | H (B ()1 4)
. vz )" 1 L
> 1710 <1—A1M> (1-537) - 737
> fl(0) - =

for any 0 < r < §. Therefore
Ha (f(B™™(0,r) N A))

WpT™

O1(f,0) = lim inf > [J"f|(0)
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which completes the proof of (5.8) and hence that of Proposition 5.2. OJ

The following example provides evidence that, if the assumption (1.3) is replaced by the
assumptions of Theorem 1.1, then the bound (1.4) and global bi-Lipschitz homeomorphism
G cannot be recovered. In other words, even if the n-density of f satisfies ©*"(f,x) > 0

on a set of positive measure, there is no universal constant n > 0 depending only on m, n,
and 0 so that H"t™(K) > n.

Proposition 5.3. Fiz a constant A > 1. For any € > 0, there is a mapping f : Rt D
[0,1]* — R with ©*'(f, x) =OL(f,z) =|J'f|(x) =1 a.e. satisfying the following: for any
measurable set K C [0,1]* and any A-bi-Lipschitz homeomorphism G : R* — R? such that
(f o G Y |rxgyhnar) is A-bi-Lipschitz for any y € R, we have H*(K) < e.

Proof. Fix ¢ > 0 and choose N € N large enough so that A*2'"Vy/2 < ¢. For any n € N,
define £, : [0,27(""V]2 — [0,27"]? as follows:

(z,y) if (z,y) € 10,27"] x [0,27"]
B (2*(” D —z,y) if (z,y) € 27,27 1] x [0,27™]
B0y =4 (2 27000 ) if (2,9 € [0,2°7] x [2°7,2-(+-1)]
(2= — g 27D ) i (2,y) € 277,27 D] x [277, 27 (1)

That is, we divide [0,2~("Y]? into four squares of equal size. On the lower left square, f,
is the identity mapping. On the upper left and lower right squares, f,, is a reflection over
an edge onto the lower left square. On the upper right square, f, is a reflection over both
the bottom and left edges onto the lower left square.

Define f : [0,1]%> — [0,27"] to be a composition of N of these reflections together with
the projection 7 : R? — R onto the first coordinate: m(z,y) = x. That is, we set

f::WOfNOfN_lo'--OfQOfl
Clearly, f is Lipschitz.

Divide [0, 1]? into (2V)? squares {Q;} of side length 27V, Note that in each of the squares
f is a composition of an isometry of R? and the orthogonal projection to R so |J1f] =1
and hence ©*}(f,x) = OL(f,z) = |J fl(z) =1 a.e.

Let G be any A-bi-Lipschitz homeomorphism of R? and K C [0, 1]> be a measurable set
such that (f o G—l)] ®x{yHnG(x) 18 A-bi-Lipschitz for any y € R. Write F' = fo G~ L For
each y € R, we have

HU((R x {y}) NG(K)) < AHHF(R x {y}) N G(K))) < AH'([0,277]) = A277.

Indeed, the first inequality is a consequence of the fact that F| (Rx {y})NG(K y is A-bi-Lipschitz
and the second inequality follows simply from the fact that the image of F' is contained
n [0,27"]. Note also that diam(G(K)) < Adiam(K) < Av2. In particular, G(K) is
contained in some square () = I; x I where I; and I, are intervals of length 2Av/2. Thus

HAK) < NH2(G(K)) = A? /Q Xeu = A% [ MR x {3) 1 GUR) dy

< A? / A2 N dy = A2V < e

Iz
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